xref: /openbmc/linux/drivers/nvme/target/core.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Common code for the NVMe target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/rculist.h>
18 
19 #include "nvmet.h"
20 
21 static struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
22 static DEFINE_IDA(cntlid_ida);
23 
24 /*
25  * This read/write semaphore is used to synchronize access to configuration
26  * information on a target system that will result in discovery log page
27  * information change for at least one host.
28  * The full list of resources to protected by this semaphore is:
29  *
30  *  - subsystems list
31  *  - per-subsystem allowed hosts list
32  *  - allow_any_host subsystem attribute
33  *  - nvmet_genctr
34  *  - the nvmet_transports array
35  *
36  * When updating any of those lists/structures write lock should be obtained,
37  * while when reading (popolating discovery log page or checking host-subsystem
38  * link) read lock is obtained to allow concurrent reads.
39  */
40 DECLARE_RWSEM(nvmet_config_sem);
41 
42 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
43 		const char *subsysnqn);
44 
45 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
46 		size_t len)
47 {
48 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
49 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
50 	return 0;
51 }
52 
53 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
54 {
55 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
56 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
57 	return 0;
58 }
59 
60 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
61 {
62 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
63 }
64 
65 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
66 {
67 	struct nvmet_req *req;
68 
69 	while (1) {
70 		mutex_lock(&ctrl->lock);
71 		if (!ctrl->nr_async_event_cmds) {
72 			mutex_unlock(&ctrl->lock);
73 			return;
74 		}
75 
76 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
77 		mutex_unlock(&ctrl->lock);
78 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
79 	}
80 }
81 
82 static void nvmet_async_event_work(struct work_struct *work)
83 {
84 	struct nvmet_ctrl *ctrl =
85 		container_of(work, struct nvmet_ctrl, async_event_work);
86 	struct nvmet_async_event *aen;
87 	struct nvmet_req *req;
88 
89 	while (1) {
90 		mutex_lock(&ctrl->lock);
91 		aen = list_first_entry_or_null(&ctrl->async_events,
92 				struct nvmet_async_event, entry);
93 		if (!aen || !ctrl->nr_async_event_cmds) {
94 			mutex_unlock(&ctrl->lock);
95 			return;
96 		}
97 
98 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
99 		nvmet_set_result(req, nvmet_async_event_result(aen));
100 
101 		list_del(&aen->entry);
102 		kfree(aen);
103 
104 		mutex_unlock(&ctrl->lock);
105 		nvmet_req_complete(req, 0);
106 	}
107 }
108 
109 static void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
110 		u8 event_info, u8 log_page)
111 {
112 	struct nvmet_async_event *aen;
113 
114 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
115 	if (!aen)
116 		return;
117 
118 	aen->event_type = event_type;
119 	aen->event_info = event_info;
120 	aen->log_page = log_page;
121 
122 	mutex_lock(&ctrl->lock);
123 	list_add_tail(&aen->entry, &ctrl->async_events);
124 	mutex_unlock(&ctrl->lock);
125 
126 	schedule_work(&ctrl->async_event_work);
127 }
128 
129 int nvmet_register_transport(struct nvmet_fabrics_ops *ops)
130 {
131 	int ret = 0;
132 
133 	down_write(&nvmet_config_sem);
134 	if (nvmet_transports[ops->type])
135 		ret = -EINVAL;
136 	else
137 		nvmet_transports[ops->type] = ops;
138 	up_write(&nvmet_config_sem);
139 
140 	return ret;
141 }
142 EXPORT_SYMBOL_GPL(nvmet_register_transport);
143 
144 void nvmet_unregister_transport(struct nvmet_fabrics_ops *ops)
145 {
146 	down_write(&nvmet_config_sem);
147 	nvmet_transports[ops->type] = NULL;
148 	up_write(&nvmet_config_sem);
149 }
150 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
151 
152 int nvmet_enable_port(struct nvmet_port *port)
153 {
154 	struct nvmet_fabrics_ops *ops;
155 	int ret;
156 
157 	lockdep_assert_held(&nvmet_config_sem);
158 
159 	ops = nvmet_transports[port->disc_addr.trtype];
160 	if (!ops) {
161 		up_write(&nvmet_config_sem);
162 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
163 		down_write(&nvmet_config_sem);
164 		ops = nvmet_transports[port->disc_addr.trtype];
165 		if (!ops) {
166 			pr_err("transport type %d not supported\n",
167 				port->disc_addr.trtype);
168 			return -EINVAL;
169 		}
170 	}
171 
172 	if (!try_module_get(ops->owner))
173 		return -EINVAL;
174 
175 	ret = ops->add_port(port);
176 	if (ret) {
177 		module_put(ops->owner);
178 		return ret;
179 	}
180 
181 	port->enabled = true;
182 	return 0;
183 }
184 
185 void nvmet_disable_port(struct nvmet_port *port)
186 {
187 	struct nvmet_fabrics_ops *ops;
188 
189 	lockdep_assert_held(&nvmet_config_sem);
190 
191 	port->enabled = false;
192 
193 	ops = nvmet_transports[port->disc_addr.trtype];
194 	ops->remove_port(port);
195 	module_put(ops->owner);
196 }
197 
198 static void nvmet_keep_alive_timer(struct work_struct *work)
199 {
200 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
201 			struct nvmet_ctrl, ka_work);
202 
203 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
204 		ctrl->cntlid, ctrl->kato);
205 
206 	nvmet_ctrl_fatal_error(ctrl);
207 }
208 
209 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
210 {
211 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
212 		ctrl->cntlid, ctrl->kato);
213 
214 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
215 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
216 }
217 
218 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
219 {
220 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
221 
222 	cancel_delayed_work_sync(&ctrl->ka_work);
223 }
224 
225 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
226 		__le32 nsid)
227 {
228 	struct nvmet_ns *ns;
229 
230 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
231 		if (ns->nsid == le32_to_cpu(nsid))
232 			return ns;
233 	}
234 
235 	return NULL;
236 }
237 
238 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
239 {
240 	struct nvmet_ns *ns;
241 
242 	rcu_read_lock();
243 	ns = __nvmet_find_namespace(ctrl, nsid);
244 	if (ns)
245 		percpu_ref_get(&ns->ref);
246 	rcu_read_unlock();
247 
248 	return ns;
249 }
250 
251 static void nvmet_destroy_namespace(struct percpu_ref *ref)
252 {
253 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
254 
255 	complete(&ns->disable_done);
256 }
257 
258 void nvmet_put_namespace(struct nvmet_ns *ns)
259 {
260 	percpu_ref_put(&ns->ref);
261 }
262 
263 int nvmet_ns_enable(struct nvmet_ns *ns)
264 {
265 	struct nvmet_subsys *subsys = ns->subsys;
266 	struct nvmet_ctrl *ctrl;
267 	int ret = 0;
268 
269 	mutex_lock(&subsys->lock);
270 	if (ns->enabled)
271 		goto out_unlock;
272 
273 	ns->bdev = blkdev_get_by_path(ns->device_path, FMODE_READ | FMODE_WRITE,
274 			NULL);
275 	if (IS_ERR(ns->bdev)) {
276 		pr_err("failed to open block device %s: (%ld)\n",
277 		       ns->device_path, PTR_ERR(ns->bdev));
278 		ret = PTR_ERR(ns->bdev);
279 		ns->bdev = NULL;
280 		goto out_unlock;
281 	}
282 
283 	ns->size = i_size_read(ns->bdev->bd_inode);
284 	ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
285 
286 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
287 				0, GFP_KERNEL);
288 	if (ret)
289 		goto out_blkdev_put;
290 
291 	if (ns->nsid > subsys->max_nsid)
292 		subsys->max_nsid = ns->nsid;
293 
294 	/*
295 	 * The namespaces list needs to be sorted to simplify the implementation
296 	 * of the Identify Namepace List subcommand.
297 	 */
298 	if (list_empty(&subsys->namespaces)) {
299 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
300 	} else {
301 		struct nvmet_ns *old;
302 
303 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
304 			BUG_ON(ns->nsid == old->nsid);
305 			if (ns->nsid < old->nsid)
306 				break;
307 		}
308 
309 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
310 	}
311 
312 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
313 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 0, 0);
314 
315 	ns->enabled = true;
316 	ret = 0;
317 out_unlock:
318 	mutex_unlock(&subsys->lock);
319 	return ret;
320 out_blkdev_put:
321 	blkdev_put(ns->bdev, FMODE_WRITE|FMODE_READ);
322 	ns->bdev = NULL;
323 	goto out_unlock;
324 }
325 
326 void nvmet_ns_disable(struct nvmet_ns *ns)
327 {
328 	struct nvmet_subsys *subsys = ns->subsys;
329 	struct nvmet_ctrl *ctrl;
330 
331 	mutex_lock(&subsys->lock);
332 	if (!ns->enabled)
333 		goto out_unlock;
334 
335 	ns->enabled = false;
336 	list_del_rcu(&ns->dev_link);
337 	mutex_unlock(&subsys->lock);
338 
339 	/*
340 	 * Now that we removed the namespaces from the lookup list, we
341 	 * can kill the per_cpu ref and wait for any remaining references
342 	 * to be dropped, as well as a RCU grace period for anyone only
343 	 * using the namepace under rcu_read_lock().  Note that we can't
344 	 * use call_rcu here as we need to ensure the namespaces have
345 	 * been fully destroyed before unloading the module.
346 	 */
347 	percpu_ref_kill(&ns->ref);
348 	synchronize_rcu();
349 	wait_for_completion(&ns->disable_done);
350 	percpu_ref_exit(&ns->ref);
351 
352 	mutex_lock(&subsys->lock);
353 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
354 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 0, 0);
355 
356 	if (ns->bdev)
357 		blkdev_put(ns->bdev, FMODE_WRITE|FMODE_READ);
358 out_unlock:
359 	mutex_unlock(&subsys->lock);
360 }
361 
362 void nvmet_ns_free(struct nvmet_ns *ns)
363 {
364 	nvmet_ns_disable(ns);
365 
366 	kfree(ns->device_path);
367 	kfree(ns);
368 }
369 
370 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
371 {
372 	struct nvmet_ns *ns;
373 
374 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
375 	if (!ns)
376 		return NULL;
377 
378 	INIT_LIST_HEAD(&ns->dev_link);
379 	init_completion(&ns->disable_done);
380 
381 	ns->nsid = nsid;
382 	ns->subsys = subsys;
383 	uuid_gen(&ns->uuid);
384 
385 	return ns;
386 }
387 
388 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
389 {
390 	if (status)
391 		nvmet_set_status(req, status);
392 
393 	if (req->sq->size)
394 		req->sq->sqhd = (req->sq->sqhd + 1) % req->sq->size;
395 	req->rsp->sq_head = cpu_to_le16(req->sq->sqhd);
396 	req->rsp->sq_id = cpu_to_le16(req->sq->qid);
397 	req->rsp->command_id = req->cmd->common.command_id;
398 
399 	if (req->ns)
400 		nvmet_put_namespace(req->ns);
401 	req->ops->queue_response(req);
402 }
403 
404 void nvmet_req_complete(struct nvmet_req *req, u16 status)
405 {
406 	__nvmet_req_complete(req, status);
407 	percpu_ref_put(&req->sq->ref);
408 }
409 EXPORT_SYMBOL_GPL(nvmet_req_complete);
410 
411 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
412 		u16 qid, u16 size)
413 {
414 	cq->qid = qid;
415 	cq->size = size;
416 
417 	ctrl->cqs[qid] = cq;
418 }
419 
420 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
421 		u16 qid, u16 size)
422 {
423 	sq->sqhd = 0;
424 	sq->qid = qid;
425 	sq->size = size;
426 
427 	ctrl->sqs[qid] = sq;
428 }
429 
430 static void nvmet_confirm_sq(struct percpu_ref *ref)
431 {
432 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
433 
434 	complete(&sq->confirm_done);
435 }
436 
437 void nvmet_sq_destroy(struct nvmet_sq *sq)
438 {
439 	/*
440 	 * If this is the admin queue, complete all AERs so that our
441 	 * queue doesn't have outstanding requests on it.
442 	 */
443 	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
444 		nvmet_async_events_free(sq->ctrl);
445 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
446 	wait_for_completion(&sq->confirm_done);
447 	wait_for_completion(&sq->free_done);
448 	percpu_ref_exit(&sq->ref);
449 
450 	if (sq->ctrl) {
451 		nvmet_ctrl_put(sq->ctrl);
452 		sq->ctrl = NULL; /* allows reusing the queue later */
453 	}
454 }
455 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
456 
457 static void nvmet_sq_free(struct percpu_ref *ref)
458 {
459 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
460 
461 	complete(&sq->free_done);
462 }
463 
464 int nvmet_sq_init(struct nvmet_sq *sq)
465 {
466 	int ret;
467 
468 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
469 	if (ret) {
470 		pr_err("percpu_ref init failed!\n");
471 		return ret;
472 	}
473 	init_completion(&sq->free_done);
474 	init_completion(&sq->confirm_done);
475 
476 	return 0;
477 }
478 EXPORT_SYMBOL_GPL(nvmet_sq_init);
479 
480 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
481 		struct nvmet_sq *sq, struct nvmet_fabrics_ops *ops)
482 {
483 	u8 flags = req->cmd->common.flags;
484 	u16 status;
485 
486 	req->cq = cq;
487 	req->sq = sq;
488 	req->ops = ops;
489 	req->sg = NULL;
490 	req->sg_cnt = 0;
491 	req->rsp->status = 0;
492 
493 	/* no support for fused commands yet */
494 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
495 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
496 		goto fail;
497 	}
498 
499 	/* either variant of SGLs is fine, as we don't support metadata */
500 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF &&
501 		     (flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METASEG)) {
502 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
503 		goto fail;
504 	}
505 
506 	if (unlikely(!req->sq->ctrl))
507 		/* will return an error for any Non-connect command: */
508 		status = nvmet_parse_connect_cmd(req);
509 	else if (likely(req->sq->qid != 0))
510 		status = nvmet_parse_io_cmd(req);
511 	else if (req->cmd->common.opcode == nvme_fabrics_command)
512 		status = nvmet_parse_fabrics_cmd(req);
513 	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
514 		status = nvmet_parse_discovery_cmd(req);
515 	else
516 		status = nvmet_parse_admin_cmd(req);
517 
518 	if (status)
519 		goto fail;
520 
521 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
522 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
523 		goto fail;
524 	}
525 
526 	return true;
527 
528 fail:
529 	__nvmet_req_complete(req, status);
530 	return false;
531 }
532 EXPORT_SYMBOL_GPL(nvmet_req_init);
533 
534 void nvmet_req_uninit(struct nvmet_req *req)
535 {
536 	percpu_ref_put(&req->sq->ref);
537 }
538 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
539 
540 static inline bool nvmet_cc_en(u32 cc)
541 {
542 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
543 }
544 
545 static inline u8 nvmet_cc_css(u32 cc)
546 {
547 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
548 }
549 
550 static inline u8 nvmet_cc_mps(u32 cc)
551 {
552 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
553 }
554 
555 static inline u8 nvmet_cc_ams(u32 cc)
556 {
557 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
558 }
559 
560 static inline u8 nvmet_cc_shn(u32 cc)
561 {
562 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
563 }
564 
565 static inline u8 nvmet_cc_iosqes(u32 cc)
566 {
567 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
568 }
569 
570 static inline u8 nvmet_cc_iocqes(u32 cc)
571 {
572 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
573 }
574 
575 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
576 {
577 	lockdep_assert_held(&ctrl->lock);
578 
579 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
580 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
581 	    nvmet_cc_mps(ctrl->cc) != 0 ||
582 	    nvmet_cc_ams(ctrl->cc) != 0 ||
583 	    nvmet_cc_css(ctrl->cc) != 0) {
584 		ctrl->csts = NVME_CSTS_CFS;
585 		return;
586 	}
587 
588 	ctrl->csts = NVME_CSTS_RDY;
589 }
590 
591 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
592 {
593 	lockdep_assert_held(&ctrl->lock);
594 
595 	/* XXX: tear down queues? */
596 	ctrl->csts &= ~NVME_CSTS_RDY;
597 	ctrl->cc = 0;
598 }
599 
600 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
601 {
602 	u32 old;
603 
604 	mutex_lock(&ctrl->lock);
605 	old = ctrl->cc;
606 	ctrl->cc = new;
607 
608 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
609 		nvmet_start_ctrl(ctrl);
610 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
611 		nvmet_clear_ctrl(ctrl);
612 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
613 		nvmet_clear_ctrl(ctrl);
614 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
615 	}
616 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
617 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
618 	mutex_unlock(&ctrl->lock);
619 }
620 
621 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
622 {
623 	/* command sets supported: NVMe command set: */
624 	ctrl->cap = (1ULL << 37);
625 	/* CC.EN timeout in 500msec units: */
626 	ctrl->cap |= (15ULL << 24);
627 	/* maximum queue entries supported: */
628 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
629 }
630 
631 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
632 		struct nvmet_req *req, struct nvmet_ctrl **ret)
633 {
634 	struct nvmet_subsys *subsys;
635 	struct nvmet_ctrl *ctrl;
636 	u16 status = 0;
637 
638 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
639 	if (!subsys) {
640 		pr_warn("connect request for invalid subsystem %s!\n",
641 			subsysnqn);
642 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
643 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
644 	}
645 
646 	mutex_lock(&subsys->lock);
647 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
648 		if (ctrl->cntlid == cntlid) {
649 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
650 				pr_warn("hostnqn mismatch.\n");
651 				continue;
652 			}
653 			if (!kref_get_unless_zero(&ctrl->ref))
654 				continue;
655 
656 			*ret = ctrl;
657 			goto out;
658 		}
659 	}
660 
661 	pr_warn("could not find controller %d for subsys %s / host %s\n",
662 		cntlid, subsysnqn, hostnqn);
663 	req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
664 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
665 
666 out:
667 	mutex_unlock(&subsys->lock);
668 	nvmet_subsys_put(subsys);
669 	return status;
670 }
671 
672 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
673 {
674 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
675 		pr_err("got io cmd %d while CC.EN == 0 on qid = %d\n",
676 		       cmd->common.opcode, req->sq->qid);
677 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
678 	}
679 
680 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
681 		pr_err("got io cmd %d while CSTS.RDY == 0 on qid = %d\n",
682 		       cmd->common.opcode, req->sq->qid);
683 		req->ns = NULL;
684 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
685 	}
686 	return 0;
687 }
688 
689 static bool __nvmet_host_allowed(struct nvmet_subsys *subsys,
690 		const char *hostnqn)
691 {
692 	struct nvmet_host_link *p;
693 
694 	if (subsys->allow_any_host)
695 		return true;
696 
697 	list_for_each_entry(p, &subsys->hosts, entry) {
698 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
699 			return true;
700 	}
701 
702 	return false;
703 }
704 
705 static bool nvmet_host_discovery_allowed(struct nvmet_req *req,
706 		const char *hostnqn)
707 {
708 	struct nvmet_subsys_link *s;
709 
710 	list_for_each_entry(s, &req->port->subsystems, entry) {
711 		if (__nvmet_host_allowed(s->subsys, hostnqn))
712 			return true;
713 	}
714 
715 	return false;
716 }
717 
718 bool nvmet_host_allowed(struct nvmet_req *req, struct nvmet_subsys *subsys,
719 		const char *hostnqn)
720 {
721 	lockdep_assert_held(&nvmet_config_sem);
722 
723 	if (subsys->type == NVME_NQN_DISC)
724 		return nvmet_host_discovery_allowed(req, hostnqn);
725 	else
726 		return __nvmet_host_allowed(subsys, hostnqn);
727 }
728 
729 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
730 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
731 {
732 	struct nvmet_subsys *subsys;
733 	struct nvmet_ctrl *ctrl;
734 	int ret;
735 	u16 status;
736 
737 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
738 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
739 	if (!subsys) {
740 		pr_warn("connect request for invalid subsystem %s!\n",
741 			subsysnqn);
742 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
743 		goto out;
744 	}
745 
746 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
747 	down_read(&nvmet_config_sem);
748 	if (!nvmet_host_allowed(req, subsys, hostnqn)) {
749 		pr_info("connect by host %s for subsystem %s not allowed\n",
750 			hostnqn, subsysnqn);
751 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
752 		up_read(&nvmet_config_sem);
753 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
754 		goto out_put_subsystem;
755 	}
756 	up_read(&nvmet_config_sem);
757 
758 	status = NVME_SC_INTERNAL;
759 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
760 	if (!ctrl)
761 		goto out_put_subsystem;
762 	mutex_init(&ctrl->lock);
763 
764 	nvmet_init_cap(ctrl);
765 
766 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
767 	INIT_LIST_HEAD(&ctrl->async_events);
768 
769 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
770 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
771 
772 	kref_init(&ctrl->ref);
773 	ctrl->subsys = subsys;
774 
775 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
776 			sizeof(struct nvmet_cq *),
777 			GFP_KERNEL);
778 	if (!ctrl->cqs)
779 		goto out_free_ctrl;
780 
781 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
782 			sizeof(struct nvmet_sq *),
783 			GFP_KERNEL);
784 	if (!ctrl->sqs)
785 		goto out_free_cqs;
786 
787 	ret = ida_simple_get(&cntlid_ida,
788 			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
789 			     GFP_KERNEL);
790 	if (ret < 0) {
791 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
792 		goto out_free_sqs;
793 	}
794 	ctrl->cntlid = ret;
795 
796 	ctrl->ops = req->ops;
797 	if (ctrl->subsys->type == NVME_NQN_DISC) {
798 		/* Don't accept keep-alive timeout for discovery controllers */
799 		if (kato) {
800 			status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
801 			goto out_free_sqs;
802 		}
803 
804 		/*
805 		 * Discovery controllers use some arbitrary high value in order
806 		 * to cleanup stale discovery sessions
807 		 *
808 		 * From the latest base diff RC:
809 		 * "The Keep Alive command is not supported by
810 		 * Discovery controllers. A transport may specify a
811 		 * fixed Discovery controller activity timeout value
812 		 * (e.g., 2 minutes).  If no commands are received
813 		 * by a Discovery controller within that time
814 		 * period, the controller may perform the
815 		 * actions for Keep Alive Timer expiration".
816 		 */
817 		ctrl->kato = NVMET_DISC_KATO;
818 	} else {
819 		/* keep-alive timeout in seconds */
820 		ctrl->kato = DIV_ROUND_UP(kato, 1000);
821 	}
822 	nvmet_start_keep_alive_timer(ctrl);
823 
824 	mutex_lock(&subsys->lock);
825 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
826 	mutex_unlock(&subsys->lock);
827 
828 	*ctrlp = ctrl;
829 	return 0;
830 
831 out_free_sqs:
832 	kfree(ctrl->sqs);
833 out_free_cqs:
834 	kfree(ctrl->cqs);
835 out_free_ctrl:
836 	kfree(ctrl);
837 out_put_subsystem:
838 	nvmet_subsys_put(subsys);
839 out:
840 	return status;
841 }
842 
843 static void nvmet_ctrl_free(struct kref *ref)
844 {
845 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
846 	struct nvmet_subsys *subsys = ctrl->subsys;
847 
848 	nvmet_stop_keep_alive_timer(ctrl);
849 
850 	mutex_lock(&subsys->lock);
851 	list_del(&ctrl->subsys_entry);
852 	mutex_unlock(&subsys->lock);
853 
854 	flush_work(&ctrl->async_event_work);
855 	cancel_work_sync(&ctrl->fatal_err_work);
856 
857 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
858 	nvmet_subsys_put(subsys);
859 
860 	kfree(ctrl->sqs);
861 	kfree(ctrl->cqs);
862 	kfree(ctrl);
863 }
864 
865 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
866 {
867 	kref_put(&ctrl->ref, nvmet_ctrl_free);
868 }
869 
870 static void nvmet_fatal_error_handler(struct work_struct *work)
871 {
872 	struct nvmet_ctrl *ctrl =
873 			container_of(work, struct nvmet_ctrl, fatal_err_work);
874 
875 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
876 	ctrl->ops->delete_ctrl(ctrl);
877 }
878 
879 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
880 {
881 	mutex_lock(&ctrl->lock);
882 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
883 		ctrl->csts |= NVME_CSTS_CFS;
884 		INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
885 		schedule_work(&ctrl->fatal_err_work);
886 	}
887 	mutex_unlock(&ctrl->lock);
888 }
889 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
890 
891 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
892 		const char *subsysnqn)
893 {
894 	struct nvmet_subsys_link *p;
895 
896 	if (!port)
897 		return NULL;
898 
899 	if (!strncmp(NVME_DISC_SUBSYS_NAME, subsysnqn,
900 			NVMF_NQN_SIZE)) {
901 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
902 			return NULL;
903 		return nvmet_disc_subsys;
904 	}
905 
906 	down_read(&nvmet_config_sem);
907 	list_for_each_entry(p, &port->subsystems, entry) {
908 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
909 				NVMF_NQN_SIZE)) {
910 			if (!kref_get_unless_zero(&p->subsys->ref))
911 				break;
912 			up_read(&nvmet_config_sem);
913 			return p->subsys;
914 		}
915 	}
916 	up_read(&nvmet_config_sem);
917 	return NULL;
918 }
919 
920 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
921 		enum nvme_subsys_type type)
922 {
923 	struct nvmet_subsys *subsys;
924 
925 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
926 	if (!subsys)
927 		return NULL;
928 
929 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
930 	/* generate a random serial number as our controllers are ephemeral: */
931 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
932 
933 	switch (type) {
934 	case NVME_NQN_NVME:
935 		subsys->max_qid = NVMET_NR_QUEUES;
936 		break;
937 	case NVME_NQN_DISC:
938 		subsys->max_qid = 0;
939 		break;
940 	default:
941 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
942 		kfree(subsys);
943 		return NULL;
944 	}
945 	subsys->type = type;
946 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
947 			GFP_KERNEL);
948 	if (!subsys->subsysnqn) {
949 		kfree(subsys);
950 		return NULL;
951 	}
952 
953 	kref_init(&subsys->ref);
954 
955 	mutex_init(&subsys->lock);
956 	INIT_LIST_HEAD(&subsys->namespaces);
957 	INIT_LIST_HEAD(&subsys->ctrls);
958 	INIT_LIST_HEAD(&subsys->hosts);
959 
960 	return subsys;
961 }
962 
963 static void nvmet_subsys_free(struct kref *ref)
964 {
965 	struct nvmet_subsys *subsys =
966 		container_of(ref, struct nvmet_subsys, ref);
967 
968 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
969 
970 	kfree(subsys->subsysnqn);
971 	kfree(subsys);
972 }
973 
974 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
975 {
976 	struct nvmet_ctrl *ctrl;
977 
978 	mutex_lock(&subsys->lock);
979 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
980 		ctrl->ops->delete_ctrl(ctrl);
981 	mutex_unlock(&subsys->lock);
982 }
983 
984 void nvmet_subsys_put(struct nvmet_subsys *subsys)
985 {
986 	kref_put(&subsys->ref, nvmet_subsys_free);
987 }
988 
989 static int __init nvmet_init(void)
990 {
991 	int error;
992 
993 	error = nvmet_init_discovery();
994 	if (error)
995 		goto out;
996 
997 	error = nvmet_init_configfs();
998 	if (error)
999 		goto out_exit_discovery;
1000 	return 0;
1001 
1002 out_exit_discovery:
1003 	nvmet_exit_discovery();
1004 out:
1005 	return error;
1006 }
1007 
1008 static void __exit nvmet_exit(void)
1009 {
1010 	nvmet_exit_configfs();
1011 	nvmet_exit_discovery();
1012 	ida_destroy(&cntlid_ida);
1013 
1014 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1015 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1016 }
1017 
1018 module_init(nvmet_init);
1019 module_exit(nvmet_exit);
1020 
1021 MODULE_LICENSE("GPL v2");
1022