1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 20 static DEFINE_IDA(cntlid_ida); 21 22 /* 23 * This read/write semaphore is used to synchronize access to configuration 24 * information on a target system that will result in discovery log page 25 * information change for at least one host. 26 * The full list of resources to protected by this semaphore is: 27 * 28 * - subsystems list 29 * - per-subsystem allowed hosts list 30 * - allow_any_host subsystem attribute 31 * - nvmet_genctr 32 * - the nvmet_transports array 33 * 34 * When updating any of those lists/structures write lock should be obtained, 35 * while when reading (popolating discovery log page or checking host-subsystem 36 * link) read lock is obtained to allow concurrent reads. 37 */ 38 DECLARE_RWSEM(nvmet_config_sem); 39 40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 41 u64 nvmet_ana_chgcnt; 42 DECLARE_RWSEM(nvmet_ana_sem); 43 44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 45 { 46 u16 status; 47 48 switch (errno) { 49 case 0: 50 status = NVME_SC_SUCCESS; 51 break; 52 case -ENOSPC: 53 req->error_loc = offsetof(struct nvme_rw_command, length); 54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 55 break; 56 case -EREMOTEIO: 57 req->error_loc = offsetof(struct nvme_rw_command, slba); 58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 59 break; 60 case -EOPNOTSUPP: 61 req->error_loc = offsetof(struct nvme_common_command, opcode); 62 switch (req->cmd->common.opcode) { 63 case nvme_cmd_dsm: 64 case nvme_cmd_write_zeroes: 65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 66 break; 67 default: 68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 69 } 70 break; 71 case -ENODATA: 72 req->error_loc = offsetof(struct nvme_rw_command, nsid); 73 status = NVME_SC_ACCESS_DENIED; 74 break; 75 case -EIO: 76 /* FALLTHRU */ 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 status = NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 82 return status; 83 } 84 85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 86 const char *subsysnqn); 87 88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 89 size_t len) 90 { 91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 92 req->error_loc = offsetof(struct nvme_common_command, dptr); 93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 94 } 95 return 0; 96 } 97 98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 99 { 100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 101 req->error_loc = offsetof(struct nvme_common_command, dptr); 102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 103 } 104 return 0; 105 } 106 107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 108 { 109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 110 req->error_loc = offsetof(struct nvme_common_command, dptr); 111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 112 } 113 return 0; 114 } 115 116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys) 117 { 118 struct nvmet_ns *ns; 119 120 if (list_empty(&subsys->namespaces)) 121 return 0; 122 123 ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link); 124 return ns->nsid; 125 } 126 127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 128 { 129 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 130 } 131 132 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl, u16 status) 133 { 134 struct nvmet_async_event *aen; 135 struct nvmet_req *req; 136 137 while (1) { 138 mutex_lock(&ctrl->lock); 139 aen = list_first_entry_or_null(&ctrl->async_events, 140 struct nvmet_async_event, entry); 141 if (!aen || !ctrl->nr_async_event_cmds) { 142 mutex_unlock(&ctrl->lock); 143 break; 144 } 145 146 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 147 if (status == 0) 148 nvmet_set_result(req, nvmet_async_event_result(aen)); 149 150 list_del(&aen->entry); 151 kfree(aen); 152 153 mutex_unlock(&ctrl->lock); 154 nvmet_req_complete(req, status); 155 } 156 } 157 158 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 159 { 160 struct nvmet_req *req; 161 162 mutex_lock(&ctrl->lock); 163 while (ctrl->nr_async_event_cmds) { 164 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 165 mutex_unlock(&ctrl->lock); 166 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); 167 mutex_lock(&ctrl->lock); 168 } 169 mutex_unlock(&ctrl->lock); 170 } 171 172 static void nvmet_async_event_work(struct work_struct *work) 173 { 174 struct nvmet_ctrl *ctrl = 175 container_of(work, struct nvmet_ctrl, async_event_work); 176 177 nvmet_async_events_process(ctrl, 0); 178 } 179 180 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 181 u8 event_info, u8 log_page) 182 { 183 struct nvmet_async_event *aen; 184 185 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 186 if (!aen) 187 return; 188 189 aen->event_type = event_type; 190 aen->event_info = event_info; 191 aen->log_page = log_page; 192 193 mutex_lock(&ctrl->lock); 194 list_add_tail(&aen->entry, &ctrl->async_events); 195 mutex_unlock(&ctrl->lock); 196 197 schedule_work(&ctrl->async_event_work); 198 } 199 200 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 201 { 202 u32 i; 203 204 mutex_lock(&ctrl->lock); 205 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 206 goto out_unlock; 207 208 for (i = 0; i < ctrl->nr_changed_ns; i++) { 209 if (ctrl->changed_ns_list[i] == nsid) 210 goto out_unlock; 211 } 212 213 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 214 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 215 ctrl->nr_changed_ns = U32_MAX; 216 goto out_unlock; 217 } 218 219 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 220 out_unlock: 221 mutex_unlock(&ctrl->lock); 222 } 223 224 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 225 { 226 struct nvmet_ctrl *ctrl; 227 228 lockdep_assert_held(&subsys->lock); 229 230 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 231 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 232 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 233 continue; 234 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 235 NVME_AER_NOTICE_NS_CHANGED, 236 NVME_LOG_CHANGED_NS); 237 } 238 } 239 240 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 241 struct nvmet_port *port) 242 { 243 struct nvmet_ctrl *ctrl; 244 245 mutex_lock(&subsys->lock); 246 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 247 if (port && ctrl->port != port) 248 continue; 249 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 250 continue; 251 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 252 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 253 } 254 mutex_unlock(&subsys->lock); 255 } 256 257 void nvmet_port_send_ana_event(struct nvmet_port *port) 258 { 259 struct nvmet_subsys_link *p; 260 261 down_read(&nvmet_config_sem); 262 list_for_each_entry(p, &port->subsystems, entry) 263 nvmet_send_ana_event(p->subsys, port); 264 up_read(&nvmet_config_sem); 265 } 266 267 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 268 { 269 int ret = 0; 270 271 down_write(&nvmet_config_sem); 272 if (nvmet_transports[ops->type]) 273 ret = -EINVAL; 274 else 275 nvmet_transports[ops->type] = ops; 276 up_write(&nvmet_config_sem); 277 278 return ret; 279 } 280 EXPORT_SYMBOL_GPL(nvmet_register_transport); 281 282 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 283 { 284 down_write(&nvmet_config_sem); 285 nvmet_transports[ops->type] = NULL; 286 up_write(&nvmet_config_sem); 287 } 288 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 289 290 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 291 { 292 struct nvmet_ctrl *ctrl; 293 294 mutex_lock(&subsys->lock); 295 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 296 if (ctrl->port == port) 297 ctrl->ops->delete_ctrl(ctrl); 298 } 299 mutex_unlock(&subsys->lock); 300 } 301 302 int nvmet_enable_port(struct nvmet_port *port) 303 { 304 const struct nvmet_fabrics_ops *ops; 305 int ret; 306 307 lockdep_assert_held(&nvmet_config_sem); 308 309 ops = nvmet_transports[port->disc_addr.trtype]; 310 if (!ops) { 311 up_write(&nvmet_config_sem); 312 request_module("nvmet-transport-%d", port->disc_addr.trtype); 313 down_write(&nvmet_config_sem); 314 ops = nvmet_transports[port->disc_addr.trtype]; 315 if (!ops) { 316 pr_err("transport type %d not supported\n", 317 port->disc_addr.trtype); 318 return -EINVAL; 319 } 320 } 321 322 if (!try_module_get(ops->owner)) 323 return -EINVAL; 324 325 ret = ops->add_port(port); 326 if (ret) { 327 module_put(ops->owner); 328 return ret; 329 } 330 331 /* If the transport didn't set inline_data_size, then disable it. */ 332 if (port->inline_data_size < 0) 333 port->inline_data_size = 0; 334 335 port->enabled = true; 336 port->tr_ops = ops; 337 return 0; 338 } 339 340 void nvmet_disable_port(struct nvmet_port *port) 341 { 342 const struct nvmet_fabrics_ops *ops; 343 344 lockdep_assert_held(&nvmet_config_sem); 345 346 port->enabled = false; 347 port->tr_ops = NULL; 348 349 ops = nvmet_transports[port->disc_addr.trtype]; 350 ops->remove_port(port); 351 module_put(ops->owner); 352 } 353 354 static void nvmet_keep_alive_timer(struct work_struct *work) 355 { 356 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 357 struct nvmet_ctrl, ka_work); 358 bool cmd_seen = ctrl->cmd_seen; 359 360 ctrl->cmd_seen = false; 361 if (cmd_seen) { 362 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 363 ctrl->cntlid); 364 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 365 return; 366 } 367 368 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 369 ctrl->cntlid, ctrl->kato); 370 371 nvmet_ctrl_fatal_error(ctrl); 372 } 373 374 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 375 { 376 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 377 ctrl->cntlid, ctrl->kato); 378 379 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 380 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 381 } 382 383 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 384 { 385 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 386 387 cancel_delayed_work_sync(&ctrl->ka_work); 388 } 389 390 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl, 391 __le32 nsid) 392 { 393 struct nvmet_ns *ns; 394 395 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { 396 if (ns->nsid == le32_to_cpu(nsid)) 397 return ns; 398 } 399 400 return NULL; 401 } 402 403 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid) 404 { 405 struct nvmet_ns *ns; 406 407 rcu_read_lock(); 408 ns = __nvmet_find_namespace(ctrl, nsid); 409 if (ns) 410 percpu_ref_get(&ns->ref); 411 rcu_read_unlock(); 412 413 return ns; 414 } 415 416 static void nvmet_destroy_namespace(struct percpu_ref *ref) 417 { 418 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 419 420 complete(&ns->disable_done); 421 } 422 423 void nvmet_put_namespace(struct nvmet_ns *ns) 424 { 425 percpu_ref_put(&ns->ref); 426 } 427 428 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 429 { 430 nvmet_bdev_ns_disable(ns); 431 nvmet_file_ns_disable(ns); 432 } 433 434 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 435 { 436 int ret; 437 struct pci_dev *p2p_dev; 438 439 if (!ns->use_p2pmem) 440 return 0; 441 442 if (!ns->bdev) { 443 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 444 return -EINVAL; 445 } 446 447 if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) { 448 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 449 ns->device_path); 450 return -EINVAL; 451 } 452 453 if (ns->p2p_dev) { 454 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 455 if (ret < 0) 456 return -EINVAL; 457 } else { 458 /* 459 * Right now we just check that there is p2pmem available so 460 * we can report an error to the user right away if there 461 * is not. We'll find the actual device to use once we 462 * setup the controller when the port's device is available. 463 */ 464 465 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 466 if (!p2p_dev) { 467 pr_err("no peer-to-peer memory is available for %s\n", 468 ns->device_path); 469 return -EINVAL; 470 } 471 472 pci_dev_put(p2p_dev); 473 } 474 475 return 0; 476 } 477 478 /* 479 * Note: ctrl->subsys->lock should be held when calling this function 480 */ 481 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 482 struct nvmet_ns *ns) 483 { 484 struct device *clients[2]; 485 struct pci_dev *p2p_dev; 486 int ret; 487 488 if (!ctrl->p2p_client || !ns->use_p2pmem) 489 return; 490 491 if (ns->p2p_dev) { 492 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 493 if (ret < 0) 494 return; 495 496 p2p_dev = pci_dev_get(ns->p2p_dev); 497 } else { 498 clients[0] = ctrl->p2p_client; 499 clients[1] = nvmet_ns_dev(ns); 500 501 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 502 if (!p2p_dev) { 503 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 504 dev_name(ctrl->p2p_client), ns->device_path); 505 return; 506 } 507 } 508 509 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 510 if (ret < 0) 511 pci_dev_put(p2p_dev); 512 513 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 514 ns->nsid); 515 } 516 517 int nvmet_ns_enable(struct nvmet_ns *ns) 518 { 519 struct nvmet_subsys *subsys = ns->subsys; 520 struct nvmet_ctrl *ctrl; 521 int ret; 522 523 mutex_lock(&subsys->lock); 524 ret = 0; 525 if (ns->enabled) 526 goto out_unlock; 527 528 ret = -EMFILE; 529 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 530 goto out_unlock; 531 532 ret = nvmet_bdev_ns_enable(ns); 533 if (ret == -ENOTBLK) 534 ret = nvmet_file_ns_enable(ns); 535 if (ret) 536 goto out_unlock; 537 538 ret = nvmet_p2pmem_ns_enable(ns); 539 if (ret) 540 goto out_dev_disable; 541 542 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 543 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 544 545 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 546 0, GFP_KERNEL); 547 if (ret) 548 goto out_dev_put; 549 550 if (ns->nsid > subsys->max_nsid) 551 subsys->max_nsid = ns->nsid; 552 553 /* 554 * The namespaces list needs to be sorted to simplify the implementation 555 * of the Identify Namepace List subcommand. 556 */ 557 if (list_empty(&subsys->namespaces)) { 558 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces); 559 } else { 560 struct nvmet_ns *old; 561 562 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link, 563 lockdep_is_held(&subsys->lock)) { 564 BUG_ON(ns->nsid == old->nsid); 565 if (ns->nsid < old->nsid) 566 break; 567 } 568 569 list_add_tail_rcu(&ns->dev_link, &old->dev_link); 570 } 571 subsys->nr_namespaces++; 572 573 nvmet_ns_changed(subsys, ns->nsid); 574 ns->enabled = true; 575 ret = 0; 576 out_unlock: 577 mutex_unlock(&subsys->lock); 578 return ret; 579 out_dev_put: 580 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 581 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 582 out_dev_disable: 583 nvmet_ns_dev_disable(ns); 584 goto out_unlock; 585 } 586 587 void nvmet_ns_disable(struct nvmet_ns *ns) 588 { 589 struct nvmet_subsys *subsys = ns->subsys; 590 struct nvmet_ctrl *ctrl; 591 592 mutex_lock(&subsys->lock); 593 if (!ns->enabled) 594 goto out_unlock; 595 596 ns->enabled = false; 597 list_del_rcu(&ns->dev_link); 598 if (ns->nsid == subsys->max_nsid) 599 subsys->max_nsid = nvmet_max_nsid(subsys); 600 601 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 602 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 603 604 mutex_unlock(&subsys->lock); 605 606 /* 607 * Now that we removed the namespaces from the lookup list, we 608 * can kill the per_cpu ref and wait for any remaining references 609 * to be dropped, as well as a RCU grace period for anyone only 610 * using the namepace under rcu_read_lock(). Note that we can't 611 * use call_rcu here as we need to ensure the namespaces have 612 * been fully destroyed before unloading the module. 613 */ 614 percpu_ref_kill(&ns->ref); 615 synchronize_rcu(); 616 wait_for_completion(&ns->disable_done); 617 percpu_ref_exit(&ns->ref); 618 619 mutex_lock(&subsys->lock); 620 621 subsys->nr_namespaces--; 622 nvmet_ns_changed(subsys, ns->nsid); 623 nvmet_ns_dev_disable(ns); 624 out_unlock: 625 mutex_unlock(&subsys->lock); 626 } 627 628 void nvmet_ns_free(struct nvmet_ns *ns) 629 { 630 nvmet_ns_disable(ns); 631 632 down_write(&nvmet_ana_sem); 633 nvmet_ana_group_enabled[ns->anagrpid]--; 634 up_write(&nvmet_ana_sem); 635 636 kfree(ns->device_path); 637 kfree(ns); 638 } 639 640 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 641 { 642 struct nvmet_ns *ns; 643 644 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 645 if (!ns) 646 return NULL; 647 648 INIT_LIST_HEAD(&ns->dev_link); 649 init_completion(&ns->disable_done); 650 651 ns->nsid = nsid; 652 ns->subsys = subsys; 653 654 down_write(&nvmet_ana_sem); 655 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 656 nvmet_ana_group_enabled[ns->anagrpid]++; 657 up_write(&nvmet_ana_sem); 658 659 uuid_gen(&ns->uuid); 660 ns->buffered_io = false; 661 662 return ns; 663 } 664 665 static void nvmet_update_sq_head(struct nvmet_req *req) 666 { 667 if (req->sq->size) { 668 u32 old_sqhd, new_sqhd; 669 670 do { 671 old_sqhd = req->sq->sqhd; 672 new_sqhd = (old_sqhd + 1) % req->sq->size; 673 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 674 old_sqhd); 675 } 676 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 677 } 678 679 static void nvmet_set_error(struct nvmet_req *req, u16 status) 680 { 681 struct nvmet_ctrl *ctrl = req->sq->ctrl; 682 struct nvme_error_slot *new_error_slot; 683 unsigned long flags; 684 685 req->cqe->status = cpu_to_le16(status << 1); 686 687 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 688 return; 689 690 spin_lock_irqsave(&ctrl->error_lock, flags); 691 ctrl->err_counter++; 692 new_error_slot = 693 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 694 695 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 696 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 697 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 698 new_error_slot->status_field = cpu_to_le16(status << 1); 699 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 700 new_error_slot->lba = cpu_to_le64(req->error_slba); 701 new_error_slot->nsid = req->cmd->common.nsid; 702 spin_unlock_irqrestore(&ctrl->error_lock, flags); 703 704 /* set the more bit for this request */ 705 req->cqe->status |= cpu_to_le16(1 << 14); 706 } 707 708 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 709 { 710 if (!req->sq->sqhd_disabled) 711 nvmet_update_sq_head(req); 712 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 713 req->cqe->command_id = req->cmd->common.command_id; 714 715 if (unlikely(status)) 716 nvmet_set_error(req, status); 717 718 trace_nvmet_req_complete(req); 719 720 if (req->ns) 721 nvmet_put_namespace(req->ns); 722 req->ops->queue_response(req); 723 } 724 725 void nvmet_req_complete(struct nvmet_req *req, u16 status) 726 { 727 __nvmet_req_complete(req, status); 728 percpu_ref_put(&req->sq->ref); 729 } 730 EXPORT_SYMBOL_GPL(nvmet_req_complete); 731 732 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 733 u16 qid, u16 size) 734 { 735 cq->qid = qid; 736 cq->size = size; 737 738 ctrl->cqs[qid] = cq; 739 } 740 741 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 742 u16 qid, u16 size) 743 { 744 sq->sqhd = 0; 745 sq->qid = qid; 746 sq->size = size; 747 748 ctrl->sqs[qid] = sq; 749 } 750 751 static void nvmet_confirm_sq(struct percpu_ref *ref) 752 { 753 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 754 755 complete(&sq->confirm_done); 756 } 757 758 void nvmet_sq_destroy(struct nvmet_sq *sq) 759 { 760 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR; 761 struct nvmet_ctrl *ctrl = sq->ctrl; 762 763 /* 764 * If this is the admin queue, complete all AERs so that our 765 * queue doesn't have outstanding requests on it. 766 */ 767 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) { 768 nvmet_async_events_process(ctrl, status); 769 nvmet_async_events_free(ctrl); 770 } 771 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 772 wait_for_completion(&sq->confirm_done); 773 wait_for_completion(&sq->free_done); 774 percpu_ref_exit(&sq->ref); 775 776 if (ctrl) { 777 nvmet_ctrl_put(ctrl); 778 sq->ctrl = NULL; /* allows reusing the queue later */ 779 } 780 } 781 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 782 783 static void nvmet_sq_free(struct percpu_ref *ref) 784 { 785 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 786 787 complete(&sq->free_done); 788 } 789 790 int nvmet_sq_init(struct nvmet_sq *sq) 791 { 792 int ret; 793 794 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 795 if (ret) { 796 pr_err("percpu_ref init failed!\n"); 797 return ret; 798 } 799 init_completion(&sq->free_done); 800 init_completion(&sq->confirm_done); 801 802 return 0; 803 } 804 EXPORT_SYMBOL_GPL(nvmet_sq_init); 805 806 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 807 struct nvmet_ns *ns) 808 { 809 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 810 811 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 812 return NVME_SC_ANA_INACCESSIBLE; 813 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 814 return NVME_SC_ANA_PERSISTENT_LOSS; 815 if (unlikely(state == NVME_ANA_CHANGE)) 816 return NVME_SC_ANA_TRANSITION; 817 return 0; 818 } 819 820 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 821 { 822 if (unlikely(req->ns->readonly)) { 823 switch (req->cmd->common.opcode) { 824 case nvme_cmd_read: 825 case nvme_cmd_flush: 826 break; 827 default: 828 return NVME_SC_NS_WRITE_PROTECTED; 829 } 830 } 831 832 return 0; 833 } 834 835 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 836 { 837 struct nvme_command *cmd = req->cmd; 838 u16 ret; 839 840 ret = nvmet_check_ctrl_status(req, cmd); 841 if (unlikely(ret)) 842 return ret; 843 844 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid); 845 if (unlikely(!req->ns)) { 846 req->error_loc = offsetof(struct nvme_common_command, nsid); 847 return NVME_SC_INVALID_NS | NVME_SC_DNR; 848 } 849 ret = nvmet_check_ana_state(req->port, req->ns); 850 if (unlikely(ret)) { 851 req->error_loc = offsetof(struct nvme_common_command, nsid); 852 return ret; 853 } 854 ret = nvmet_io_cmd_check_access(req); 855 if (unlikely(ret)) { 856 req->error_loc = offsetof(struct nvme_common_command, nsid); 857 return ret; 858 } 859 860 if (req->ns->file) 861 return nvmet_file_parse_io_cmd(req); 862 else 863 return nvmet_bdev_parse_io_cmd(req); 864 } 865 866 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 867 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 868 { 869 u8 flags = req->cmd->common.flags; 870 u16 status; 871 872 req->cq = cq; 873 req->sq = sq; 874 req->ops = ops; 875 req->sg = NULL; 876 req->sg_cnt = 0; 877 req->transfer_len = 0; 878 req->cqe->status = 0; 879 req->cqe->sq_head = 0; 880 req->ns = NULL; 881 req->error_loc = NVMET_NO_ERROR_LOC; 882 req->error_slba = 0; 883 884 trace_nvmet_req_init(req, req->cmd); 885 886 /* no support for fused commands yet */ 887 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 888 req->error_loc = offsetof(struct nvme_common_command, flags); 889 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 890 goto fail; 891 } 892 893 /* 894 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 895 * contains an address of a single contiguous physical buffer that is 896 * byte aligned. 897 */ 898 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 899 req->error_loc = offsetof(struct nvme_common_command, flags); 900 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 901 goto fail; 902 } 903 904 if (unlikely(!req->sq->ctrl)) 905 /* will return an error for any non-connect command: */ 906 status = nvmet_parse_connect_cmd(req); 907 else if (likely(req->sq->qid != 0)) 908 status = nvmet_parse_io_cmd(req); 909 else 910 status = nvmet_parse_admin_cmd(req); 911 912 if (status) 913 goto fail; 914 915 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 916 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 917 goto fail; 918 } 919 920 if (sq->ctrl) 921 sq->ctrl->cmd_seen = true; 922 923 return true; 924 925 fail: 926 __nvmet_req_complete(req, status); 927 return false; 928 } 929 EXPORT_SYMBOL_GPL(nvmet_req_init); 930 931 void nvmet_req_uninit(struct nvmet_req *req) 932 { 933 percpu_ref_put(&req->sq->ref); 934 if (req->ns) 935 nvmet_put_namespace(req->ns); 936 } 937 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 938 939 bool nvmet_check_data_len(struct nvmet_req *req, size_t data_len) 940 { 941 if (unlikely(data_len != req->transfer_len)) { 942 req->error_loc = offsetof(struct nvme_common_command, dptr); 943 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 944 return false; 945 } 946 947 return true; 948 } 949 EXPORT_SYMBOL_GPL(nvmet_check_data_len); 950 951 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 952 { 953 if (unlikely(data_len > req->transfer_len)) { 954 req->error_loc = offsetof(struct nvme_common_command, dptr); 955 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 956 return false; 957 } 958 959 return true; 960 } 961 962 int nvmet_req_alloc_sgl(struct nvmet_req *req) 963 { 964 struct pci_dev *p2p_dev = NULL; 965 966 if (IS_ENABLED(CONFIG_PCI_P2PDMA)) { 967 if (req->sq->ctrl && req->ns) 968 p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, 969 req->ns->nsid); 970 971 req->p2p_dev = NULL; 972 if (req->sq->qid && p2p_dev) { 973 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 974 req->transfer_len); 975 if (req->sg) { 976 req->p2p_dev = p2p_dev; 977 return 0; 978 } 979 } 980 981 /* 982 * If no P2P memory was available we fallback to using 983 * regular memory 984 */ 985 } 986 987 req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt); 988 if (unlikely(!req->sg)) 989 return -ENOMEM; 990 991 return 0; 992 } 993 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl); 994 995 void nvmet_req_free_sgl(struct nvmet_req *req) 996 { 997 if (req->p2p_dev) 998 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 999 else 1000 sgl_free(req->sg); 1001 1002 req->sg = NULL; 1003 req->sg_cnt = 0; 1004 } 1005 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl); 1006 1007 static inline bool nvmet_cc_en(u32 cc) 1008 { 1009 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1010 } 1011 1012 static inline u8 nvmet_cc_css(u32 cc) 1013 { 1014 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1015 } 1016 1017 static inline u8 nvmet_cc_mps(u32 cc) 1018 { 1019 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1020 } 1021 1022 static inline u8 nvmet_cc_ams(u32 cc) 1023 { 1024 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1025 } 1026 1027 static inline u8 nvmet_cc_shn(u32 cc) 1028 { 1029 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1030 } 1031 1032 static inline u8 nvmet_cc_iosqes(u32 cc) 1033 { 1034 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1035 } 1036 1037 static inline u8 nvmet_cc_iocqes(u32 cc) 1038 { 1039 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1040 } 1041 1042 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1043 { 1044 lockdep_assert_held(&ctrl->lock); 1045 1046 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1047 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES || 1048 nvmet_cc_mps(ctrl->cc) != 0 || 1049 nvmet_cc_ams(ctrl->cc) != 0 || 1050 nvmet_cc_css(ctrl->cc) != 0) { 1051 ctrl->csts = NVME_CSTS_CFS; 1052 return; 1053 } 1054 1055 ctrl->csts = NVME_CSTS_RDY; 1056 1057 /* 1058 * Controllers that are not yet enabled should not really enforce the 1059 * keep alive timeout, but we still want to track a timeout and cleanup 1060 * in case a host died before it enabled the controller. Hence, simply 1061 * reset the keep alive timer when the controller is enabled. 1062 */ 1063 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1064 } 1065 1066 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1067 { 1068 lockdep_assert_held(&ctrl->lock); 1069 1070 /* XXX: tear down queues? */ 1071 ctrl->csts &= ~NVME_CSTS_RDY; 1072 ctrl->cc = 0; 1073 } 1074 1075 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1076 { 1077 u32 old; 1078 1079 mutex_lock(&ctrl->lock); 1080 old = ctrl->cc; 1081 ctrl->cc = new; 1082 1083 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1084 nvmet_start_ctrl(ctrl); 1085 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1086 nvmet_clear_ctrl(ctrl); 1087 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1088 nvmet_clear_ctrl(ctrl); 1089 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1090 } 1091 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1092 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1093 mutex_unlock(&ctrl->lock); 1094 } 1095 1096 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1097 { 1098 /* command sets supported: NVMe command set: */ 1099 ctrl->cap = (1ULL << 37); 1100 /* CC.EN timeout in 500msec units: */ 1101 ctrl->cap |= (15ULL << 24); 1102 /* maximum queue entries supported: */ 1103 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1104 } 1105 1106 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, 1107 struct nvmet_req *req, struct nvmet_ctrl **ret) 1108 { 1109 struct nvmet_subsys *subsys; 1110 struct nvmet_ctrl *ctrl; 1111 u16 status = 0; 1112 1113 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1114 if (!subsys) { 1115 pr_warn("connect request for invalid subsystem %s!\n", 1116 subsysnqn); 1117 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1118 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1119 } 1120 1121 mutex_lock(&subsys->lock); 1122 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1123 if (ctrl->cntlid == cntlid) { 1124 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1125 pr_warn("hostnqn mismatch.\n"); 1126 continue; 1127 } 1128 if (!kref_get_unless_zero(&ctrl->ref)) 1129 continue; 1130 1131 *ret = ctrl; 1132 goto out; 1133 } 1134 } 1135 1136 pr_warn("could not find controller %d for subsys %s / host %s\n", 1137 cntlid, subsysnqn, hostnqn); 1138 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1139 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1140 1141 out: 1142 mutex_unlock(&subsys->lock); 1143 nvmet_subsys_put(subsys); 1144 return status; 1145 } 1146 1147 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd) 1148 { 1149 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1150 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1151 cmd->common.opcode, req->sq->qid); 1152 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1153 } 1154 1155 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1156 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1157 cmd->common.opcode, req->sq->qid); 1158 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1159 } 1160 return 0; 1161 } 1162 1163 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1164 { 1165 struct nvmet_host_link *p; 1166 1167 lockdep_assert_held(&nvmet_config_sem); 1168 1169 if (subsys->allow_any_host) 1170 return true; 1171 1172 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */ 1173 return true; 1174 1175 list_for_each_entry(p, &subsys->hosts, entry) { 1176 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1177 return true; 1178 } 1179 1180 return false; 1181 } 1182 1183 /* 1184 * Note: ctrl->subsys->lock should be held when calling this function 1185 */ 1186 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1187 struct nvmet_req *req) 1188 { 1189 struct nvmet_ns *ns; 1190 1191 if (!req->p2p_client) 1192 return; 1193 1194 ctrl->p2p_client = get_device(req->p2p_client); 1195 1196 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link, 1197 lockdep_is_held(&ctrl->subsys->lock)) 1198 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1199 } 1200 1201 /* 1202 * Note: ctrl->subsys->lock should be held when calling this function 1203 */ 1204 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1205 { 1206 struct radix_tree_iter iter; 1207 void __rcu **slot; 1208 1209 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1210 pci_dev_put(radix_tree_deref_slot(slot)); 1211 1212 put_device(ctrl->p2p_client); 1213 } 1214 1215 static void nvmet_fatal_error_handler(struct work_struct *work) 1216 { 1217 struct nvmet_ctrl *ctrl = 1218 container_of(work, struct nvmet_ctrl, fatal_err_work); 1219 1220 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1221 ctrl->ops->delete_ctrl(ctrl); 1222 } 1223 1224 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1225 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1226 { 1227 struct nvmet_subsys *subsys; 1228 struct nvmet_ctrl *ctrl; 1229 int ret; 1230 u16 status; 1231 1232 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1233 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1234 if (!subsys) { 1235 pr_warn("connect request for invalid subsystem %s!\n", 1236 subsysnqn); 1237 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1238 goto out; 1239 } 1240 1241 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1242 down_read(&nvmet_config_sem); 1243 if (!nvmet_host_allowed(subsys, hostnqn)) { 1244 pr_info("connect by host %s for subsystem %s not allowed\n", 1245 hostnqn, subsysnqn); 1246 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1247 up_read(&nvmet_config_sem); 1248 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1249 goto out_put_subsystem; 1250 } 1251 up_read(&nvmet_config_sem); 1252 1253 status = NVME_SC_INTERNAL; 1254 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1255 if (!ctrl) 1256 goto out_put_subsystem; 1257 mutex_init(&ctrl->lock); 1258 1259 nvmet_init_cap(ctrl); 1260 1261 ctrl->port = req->port; 1262 1263 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1264 INIT_LIST_HEAD(&ctrl->async_events); 1265 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1266 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1267 1268 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1269 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1270 1271 kref_init(&ctrl->ref); 1272 ctrl->subsys = subsys; 1273 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1274 1275 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1276 sizeof(__le32), GFP_KERNEL); 1277 if (!ctrl->changed_ns_list) 1278 goto out_free_ctrl; 1279 1280 ctrl->cqs = kcalloc(subsys->max_qid + 1, 1281 sizeof(struct nvmet_cq *), 1282 GFP_KERNEL); 1283 if (!ctrl->cqs) 1284 goto out_free_changed_ns_list; 1285 1286 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1287 sizeof(struct nvmet_sq *), 1288 GFP_KERNEL); 1289 if (!ctrl->sqs) 1290 goto out_free_cqs; 1291 1292 if (subsys->cntlid_min > subsys->cntlid_max) 1293 goto out_free_cqs; 1294 1295 ret = ida_simple_get(&cntlid_ida, 1296 subsys->cntlid_min, subsys->cntlid_max, 1297 GFP_KERNEL); 1298 if (ret < 0) { 1299 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1300 goto out_free_sqs; 1301 } 1302 ctrl->cntlid = ret; 1303 1304 ctrl->ops = req->ops; 1305 1306 /* 1307 * Discovery controllers may use some arbitrary high value 1308 * in order to cleanup stale discovery sessions 1309 */ 1310 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato) 1311 kato = NVMET_DISC_KATO_MS; 1312 1313 /* keep-alive timeout in seconds */ 1314 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1315 1316 ctrl->err_counter = 0; 1317 spin_lock_init(&ctrl->error_lock); 1318 1319 nvmet_start_keep_alive_timer(ctrl); 1320 1321 mutex_lock(&subsys->lock); 1322 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1323 nvmet_setup_p2p_ns_map(ctrl, req); 1324 mutex_unlock(&subsys->lock); 1325 1326 *ctrlp = ctrl; 1327 return 0; 1328 1329 out_free_sqs: 1330 kfree(ctrl->sqs); 1331 out_free_cqs: 1332 kfree(ctrl->cqs); 1333 out_free_changed_ns_list: 1334 kfree(ctrl->changed_ns_list); 1335 out_free_ctrl: 1336 kfree(ctrl); 1337 out_put_subsystem: 1338 nvmet_subsys_put(subsys); 1339 out: 1340 return status; 1341 } 1342 1343 static void nvmet_ctrl_free(struct kref *ref) 1344 { 1345 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1346 struct nvmet_subsys *subsys = ctrl->subsys; 1347 1348 mutex_lock(&subsys->lock); 1349 nvmet_release_p2p_ns_map(ctrl); 1350 list_del(&ctrl->subsys_entry); 1351 mutex_unlock(&subsys->lock); 1352 1353 nvmet_stop_keep_alive_timer(ctrl); 1354 1355 flush_work(&ctrl->async_event_work); 1356 cancel_work_sync(&ctrl->fatal_err_work); 1357 1358 ida_simple_remove(&cntlid_ida, ctrl->cntlid); 1359 1360 kfree(ctrl->sqs); 1361 kfree(ctrl->cqs); 1362 kfree(ctrl->changed_ns_list); 1363 kfree(ctrl); 1364 1365 nvmet_subsys_put(subsys); 1366 } 1367 1368 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1369 { 1370 kref_put(&ctrl->ref, nvmet_ctrl_free); 1371 } 1372 1373 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1374 { 1375 mutex_lock(&ctrl->lock); 1376 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1377 ctrl->csts |= NVME_CSTS_CFS; 1378 schedule_work(&ctrl->fatal_err_work); 1379 } 1380 mutex_unlock(&ctrl->lock); 1381 } 1382 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1383 1384 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1385 const char *subsysnqn) 1386 { 1387 struct nvmet_subsys_link *p; 1388 1389 if (!port) 1390 return NULL; 1391 1392 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1393 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1394 return NULL; 1395 return nvmet_disc_subsys; 1396 } 1397 1398 down_read(&nvmet_config_sem); 1399 list_for_each_entry(p, &port->subsystems, entry) { 1400 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1401 NVMF_NQN_SIZE)) { 1402 if (!kref_get_unless_zero(&p->subsys->ref)) 1403 break; 1404 up_read(&nvmet_config_sem); 1405 return p->subsys; 1406 } 1407 } 1408 up_read(&nvmet_config_sem); 1409 return NULL; 1410 } 1411 1412 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1413 enum nvme_subsys_type type) 1414 { 1415 struct nvmet_subsys *subsys; 1416 1417 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1418 if (!subsys) 1419 return ERR_PTR(-ENOMEM); 1420 1421 subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */ 1422 /* generate a random serial number as our controllers are ephemeral: */ 1423 get_random_bytes(&subsys->serial, sizeof(subsys->serial)); 1424 1425 switch (type) { 1426 case NVME_NQN_NVME: 1427 subsys->max_qid = NVMET_NR_QUEUES; 1428 break; 1429 case NVME_NQN_DISC: 1430 subsys->max_qid = 0; 1431 break; 1432 default: 1433 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1434 kfree(subsys); 1435 return ERR_PTR(-EINVAL); 1436 } 1437 subsys->type = type; 1438 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1439 GFP_KERNEL); 1440 if (!subsys->subsysnqn) { 1441 kfree(subsys); 1442 return ERR_PTR(-ENOMEM); 1443 } 1444 subsys->cntlid_min = NVME_CNTLID_MIN; 1445 subsys->cntlid_max = NVME_CNTLID_MAX; 1446 kref_init(&subsys->ref); 1447 1448 mutex_init(&subsys->lock); 1449 INIT_LIST_HEAD(&subsys->namespaces); 1450 INIT_LIST_HEAD(&subsys->ctrls); 1451 INIT_LIST_HEAD(&subsys->hosts); 1452 1453 return subsys; 1454 } 1455 1456 static void nvmet_subsys_free(struct kref *ref) 1457 { 1458 struct nvmet_subsys *subsys = 1459 container_of(ref, struct nvmet_subsys, ref); 1460 1461 WARN_ON_ONCE(!list_empty(&subsys->namespaces)); 1462 1463 kfree(subsys->subsysnqn); 1464 kfree_rcu(subsys->model, rcuhead); 1465 kfree(subsys); 1466 } 1467 1468 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1469 { 1470 struct nvmet_ctrl *ctrl; 1471 1472 mutex_lock(&subsys->lock); 1473 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1474 ctrl->ops->delete_ctrl(ctrl); 1475 mutex_unlock(&subsys->lock); 1476 } 1477 1478 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1479 { 1480 kref_put(&subsys->ref, nvmet_subsys_free); 1481 } 1482 1483 static int __init nvmet_init(void) 1484 { 1485 int error; 1486 1487 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1488 1489 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1490 WQ_MEM_RECLAIM, 0); 1491 if (!buffered_io_wq) { 1492 error = -ENOMEM; 1493 goto out; 1494 } 1495 1496 error = nvmet_init_discovery(); 1497 if (error) 1498 goto out_free_work_queue; 1499 1500 error = nvmet_init_configfs(); 1501 if (error) 1502 goto out_exit_discovery; 1503 return 0; 1504 1505 out_exit_discovery: 1506 nvmet_exit_discovery(); 1507 out_free_work_queue: 1508 destroy_workqueue(buffered_io_wq); 1509 out: 1510 return error; 1511 } 1512 1513 static void __exit nvmet_exit(void) 1514 { 1515 nvmet_exit_configfs(); 1516 nvmet_exit_discovery(); 1517 ida_destroy(&cntlid_ida); 1518 destroy_workqueue(buffered_io_wq); 1519 1520 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1521 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1522 } 1523 1524 module_init(nvmet_init); 1525 module_exit(nvmet_exit); 1526 1527 MODULE_LICENSE("GPL v2"); 1528