xref: /openbmc/linux/drivers/nvme/target/core.c (revision adb57164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21 
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39 
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43 
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 	u16 status;
47 
48 	switch (errno) {
49 	case 0:
50 		status = NVME_SC_SUCCESS;
51 		break;
52 	case -ENOSPC:
53 		req->error_loc = offsetof(struct nvme_rw_command, length);
54 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 		break;
56 	case -EREMOTEIO:
57 		req->error_loc = offsetof(struct nvme_rw_command, slba);
58 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 		break;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 			break;
67 		default:
68 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 		}
70 		break;
71 	case -ENODATA:
72 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 		status = NVME_SC_ACCESS_DENIED;
74 		break;
75 	case -EIO:
76 		/* FALLTHRU */
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 
82 	return status;
83 }
84 
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 		const char *subsysnqn);
87 
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 		size_t len)
90 {
91 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 		req->error_loc = offsetof(struct nvme_common_command, dptr);
93 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 	}
95 	return 0;
96 }
97 
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 		req->error_loc = offsetof(struct nvme_common_command, dptr);
102 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 	}
104 	return 0;
105 }
106 
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 		req->error_loc = offsetof(struct nvme_common_command, dptr);
111 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 	}
113 	return 0;
114 }
115 
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 	struct nvmet_ns *ns;
119 
120 	if (list_empty(&subsys->namespaces))
121 		return 0;
122 
123 	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
124 	return ns->nsid;
125 }
126 
127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
128 {
129 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
130 }
131 
132 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl, u16 status)
133 {
134 	struct nvmet_async_event *aen;
135 	struct nvmet_req *req;
136 
137 	while (1) {
138 		mutex_lock(&ctrl->lock);
139 		aen = list_first_entry_or_null(&ctrl->async_events,
140 				struct nvmet_async_event, entry);
141 		if (!aen || !ctrl->nr_async_event_cmds) {
142 			mutex_unlock(&ctrl->lock);
143 			break;
144 		}
145 
146 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
147 		if (status == 0)
148 			nvmet_set_result(req, nvmet_async_event_result(aen));
149 
150 		list_del(&aen->entry);
151 		kfree(aen);
152 
153 		mutex_unlock(&ctrl->lock);
154 		nvmet_req_complete(req, status);
155 	}
156 }
157 
158 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
159 {
160 	struct nvmet_req *req;
161 
162 	mutex_lock(&ctrl->lock);
163 	while (ctrl->nr_async_event_cmds) {
164 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 		mutex_unlock(&ctrl->lock);
166 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
167 		mutex_lock(&ctrl->lock);
168 	}
169 	mutex_unlock(&ctrl->lock);
170 }
171 
172 static void nvmet_async_event_work(struct work_struct *work)
173 {
174 	struct nvmet_ctrl *ctrl =
175 		container_of(work, struct nvmet_ctrl, async_event_work);
176 
177 	nvmet_async_events_process(ctrl, 0);
178 }
179 
180 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
181 		u8 event_info, u8 log_page)
182 {
183 	struct nvmet_async_event *aen;
184 
185 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
186 	if (!aen)
187 		return;
188 
189 	aen->event_type = event_type;
190 	aen->event_info = event_info;
191 	aen->log_page = log_page;
192 
193 	mutex_lock(&ctrl->lock);
194 	list_add_tail(&aen->entry, &ctrl->async_events);
195 	mutex_unlock(&ctrl->lock);
196 
197 	schedule_work(&ctrl->async_event_work);
198 }
199 
200 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
201 {
202 	u32 i;
203 
204 	mutex_lock(&ctrl->lock);
205 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
206 		goto out_unlock;
207 
208 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
209 		if (ctrl->changed_ns_list[i] == nsid)
210 			goto out_unlock;
211 	}
212 
213 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
214 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
215 		ctrl->nr_changed_ns = U32_MAX;
216 		goto out_unlock;
217 	}
218 
219 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
220 out_unlock:
221 	mutex_unlock(&ctrl->lock);
222 }
223 
224 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
225 {
226 	struct nvmet_ctrl *ctrl;
227 
228 	lockdep_assert_held(&subsys->lock);
229 
230 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
231 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
232 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
233 			continue;
234 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
235 				NVME_AER_NOTICE_NS_CHANGED,
236 				NVME_LOG_CHANGED_NS);
237 	}
238 }
239 
240 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
241 		struct nvmet_port *port)
242 {
243 	struct nvmet_ctrl *ctrl;
244 
245 	mutex_lock(&subsys->lock);
246 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
247 		if (port && ctrl->port != port)
248 			continue;
249 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
250 			continue;
251 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
252 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
253 	}
254 	mutex_unlock(&subsys->lock);
255 }
256 
257 void nvmet_port_send_ana_event(struct nvmet_port *port)
258 {
259 	struct nvmet_subsys_link *p;
260 
261 	down_read(&nvmet_config_sem);
262 	list_for_each_entry(p, &port->subsystems, entry)
263 		nvmet_send_ana_event(p->subsys, port);
264 	up_read(&nvmet_config_sem);
265 }
266 
267 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
268 {
269 	int ret = 0;
270 
271 	down_write(&nvmet_config_sem);
272 	if (nvmet_transports[ops->type])
273 		ret = -EINVAL;
274 	else
275 		nvmet_transports[ops->type] = ops;
276 	up_write(&nvmet_config_sem);
277 
278 	return ret;
279 }
280 EXPORT_SYMBOL_GPL(nvmet_register_transport);
281 
282 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
283 {
284 	down_write(&nvmet_config_sem);
285 	nvmet_transports[ops->type] = NULL;
286 	up_write(&nvmet_config_sem);
287 }
288 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
289 
290 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
291 {
292 	struct nvmet_ctrl *ctrl;
293 
294 	mutex_lock(&subsys->lock);
295 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
296 		if (ctrl->port == port)
297 			ctrl->ops->delete_ctrl(ctrl);
298 	}
299 	mutex_unlock(&subsys->lock);
300 }
301 
302 int nvmet_enable_port(struct nvmet_port *port)
303 {
304 	const struct nvmet_fabrics_ops *ops;
305 	int ret;
306 
307 	lockdep_assert_held(&nvmet_config_sem);
308 
309 	ops = nvmet_transports[port->disc_addr.trtype];
310 	if (!ops) {
311 		up_write(&nvmet_config_sem);
312 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
313 		down_write(&nvmet_config_sem);
314 		ops = nvmet_transports[port->disc_addr.trtype];
315 		if (!ops) {
316 			pr_err("transport type %d not supported\n",
317 				port->disc_addr.trtype);
318 			return -EINVAL;
319 		}
320 	}
321 
322 	if (!try_module_get(ops->owner))
323 		return -EINVAL;
324 
325 	ret = ops->add_port(port);
326 	if (ret) {
327 		module_put(ops->owner);
328 		return ret;
329 	}
330 
331 	/* If the transport didn't set inline_data_size, then disable it. */
332 	if (port->inline_data_size < 0)
333 		port->inline_data_size = 0;
334 
335 	port->enabled = true;
336 	port->tr_ops = ops;
337 	return 0;
338 }
339 
340 void nvmet_disable_port(struct nvmet_port *port)
341 {
342 	const struct nvmet_fabrics_ops *ops;
343 
344 	lockdep_assert_held(&nvmet_config_sem);
345 
346 	port->enabled = false;
347 	port->tr_ops = NULL;
348 
349 	ops = nvmet_transports[port->disc_addr.trtype];
350 	ops->remove_port(port);
351 	module_put(ops->owner);
352 }
353 
354 static void nvmet_keep_alive_timer(struct work_struct *work)
355 {
356 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
357 			struct nvmet_ctrl, ka_work);
358 	bool cmd_seen = ctrl->cmd_seen;
359 
360 	ctrl->cmd_seen = false;
361 	if (cmd_seen) {
362 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
363 			ctrl->cntlid);
364 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
365 		return;
366 	}
367 
368 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
369 		ctrl->cntlid, ctrl->kato);
370 
371 	nvmet_ctrl_fatal_error(ctrl);
372 }
373 
374 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
375 {
376 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
377 		ctrl->cntlid, ctrl->kato);
378 
379 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
380 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
381 }
382 
383 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
384 {
385 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
386 
387 	cancel_delayed_work_sync(&ctrl->ka_work);
388 }
389 
390 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
391 		__le32 nsid)
392 {
393 	struct nvmet_ns *ns;
394 
395 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
396 		if (ns->nsid == le32_to_cpu(nsid))
397 			return ns;
398 	}
399 
400 	return NULL;
401 }
402 
403 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
404 {
405 	struct nvmet_ns *ns;
406 
407 	rcu_read_lock();
408 	ns = __nvmet_find_namespace(ctrl, nsid);
409 	if (ns)
410 		percpu_ref_get(&ns->ref);
411 	rcu_read_unlock();
412 
413 	return ns;
414 }
415 
416 static void nvmet_destroy_namespace(struct percpu_ref *ref)
417 {
418 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
419 
420 	complete(&ns->disable_done);
421 }
422 
423 void nvmet_put_namespace(struct nvmet_ns *ns)
424 {
425 	percpu_ref_put(&ns->ref);
426 }
427 
428 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
429 {
430 	nvmet_bdev_ns_disable(ns);
431 	nvmet_file_ns_disable(ns);
432 }
433 
434 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
435 {
436 	int ret;
437 	struct pci_dev *p2p_dev;
438 
439 	if (!ns->use_p2pmem)
440 		return 0;
441 
442 	if (!ns->bdev) {
443 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
444 		return -EINVAL;
445 	}
446 
447 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
448 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
449 		       ns->device_path);
450 		return -EINVAL;
451 	}
452 
453 	if (ns->p2p_dev) {
454 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
455 		if (ret < 0)
456 			return -EINVAL;
457 	} else {
458 		/*
459 		 * Right now we just check that there is p2pmem available so
460 		 * we can report an error to the user right away if there
461 		 * is not. We'll find the actual device to use once we
462 		 * setup the controller when the port's device is available.
463 		 */
464 
465 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
466 		if (!p2p_dev) {
467 			pr_err("no peer-to-peer memory is available for %s\n",
468 			       ns->device_path);
469 			return -EINVAL;
470 		}
471 
472 		pci_dev_put(p2p_dev);
473 	}
474 
475 	return 0;
476 }
477 
478 /*
479  * Note: ctrl->subsys->lock should be held when calling this function
480  */
481 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
482 				    struct nvmet_ns *ns)
483 {
484 	struct device *clients[2];
485 	struct pci_dev *p2p_dev;
486 	int ret;
487 
488 	if (!ctrl->p2p_client || !ns->use_p2pmem)
489 		return;
490 
491 	if (ns->p2p_dev) {
492 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
493 		if (ret < 0)
494 			return;
495 
496 		p2p_dev = pci_dev_get(ns->p2p_dev);
497 	} else {
498 		clients[0] = ctrl->p2p_client;
499 		clients[1] = nvmet_ns_dev(ns);
500 
501 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
502 		if (!p2p_dev) {
503 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
504 			       dev_name(ctrl->p2p_client), ns->device_path);
505 			return;
506 		}
507 	}
508 
509 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
510 	if (ret < 0)
511 		pci_dev_put(p2p_dev);
512 
513 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
514 		ns->nsid);
515 }
516 
517 int nvmet_ns_enable(struct nvmet_ns *ns)
518 {
519 	struct nvmet_subsys *subsys = ns->subsys;
520 	struct nvmet_ctrl *ctrl;
521 	int ret;
522 
523 	mutex_lock(&subsys->lock);
524 	ret = 0;
525 	if (ns->enabled)
526 		goto out_unlock;
527 
528 	ret = -EMFILE;
529 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
530 		goto out_unlock;
531 
532 	ret = nvmet_bdev_ns_enable(ns);
533 	if (ret == -ENOTBLK)
534 		ret = nvmet_file_ns_enable(ns);
535 	if (ret)
536 		goto out_unlock;
537 
538 	ret = nvmet_p2pmem_ns_enable(ns);
539 	if (ret)
540 		goto out_dev_disable;
541 
542 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
543 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
544 
545 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
546 				0, GFP_KERNEL);
547 	if (ret)
548 		goto out_dev_put;
549 
550 	if (ns->nsid > subsys->max_nsid)
551 		subsys->max_nsid = ns->nsid;
552 
553 	/*
554 	 * The namespaces list needs to be sorted to simplify the implementation
555 	 * of the Identify Namepace List subcommand.
556 	 */
557 	if (list_empty(&subsys->namespaces)) {
558 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
559 	} else {
560 		struct nvmet_ns *old;
561 
562 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link,
563 					lockdep_is_held(&subsys->lock)) {
564 			BUG_ON(ns->nsid == old->nsid);
565 			if (ns->nsid < old->nsid)
566 				break;
567 		}
568 
569 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
570 	}
571 	subsys->nr_namespaces++;
572 
573 	nvmet_ns_changed(subsys, ns->nsid);
574 	ns->enabled = true;
575 	ret = 0;
576 out_unlock:
577 	mutex_unlock(&subsys->lock);
578 	return ret;
579 out_dev_put:
580 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
581 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
582 out_dev_disable:
583 	nvmet_ns_dev_disable(ns);
584 	goto out_unlock;
585 }
586 
587 void nvmet_ns_disable(struct nvmet_ns *ns)
588 {
589 	struct nvmet_subsys *subsys = ns->subsys;
590 	struct nvmet_ctrl *ctrl;
591 
592 	mutex_lock(&subsys->lock);
593 	if (!ns->enabled)
594 		goto out_unlock;
595 
596 	ns->enabled = false;
597 	list_del_rcu(&ns->dev_link);
598 	if (ns->nsid == subsys->max_nsid)
599 		subsys->max_nsid = nvmet_max_nsid(subsys);
600 
601 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
602 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
603 
604 	mutex_unlock(&subsys->lock);
605 
606 	/*
607 	 * Now that we removed the namespaces from the lookup list, we
608 	 * can kill the per_cpu ref and wait for any remaining references
609 	 * to be dropped, as well as a RCU grace period for anyone only
610 	 * using the namepace under rcu_read_lock().  Note that we can't
611 	 * use call_rcu here as we need to ensure the namespaces have
612 	 * been fully destroyed before unloading the module.
613 	 */
614 	percpu_ref_kill(&ns->ref);
615 	synchronize_rcu();
616 	wait_for_completion(&ns->disable_done);
617 	percpu_ref_exit(&ns->ref);
618 
619 	mutex_lock(&subsys->lock);
620 
621 	subsys->nr_namespaces--;
622 	nvmet_ns_changed(subsys, ns->nsid);
623 	nvmet_ns_dev_disable(ns);
624 out_unlock:
625 	mutex_unlock(&subsys->lock);
626 }
627 
628 void nvmet_ns_free(struct nvmet_ns *ns)
629 {
630 	nvmet_ns_disable(ns);
631 
632 	down_write(&nvmet_ana_sem);
633 	nvmet_ana_group_enabled[ns->anagrpid]--;
634 	up_write(&nvmet_ana_sem);
635 
636 	kfree(ns->device_path);
637 	kfree(ns);
638 }
639 
640 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
641 {
642 	struct nvmet_ns *ns;
643 
644 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
645 	if (!ns)
646 		return NULL;
647 
648 	INIT_LIST_HEAD(&ns->dev_link);
649 	init_completion(&ns->disable_done);
650 
651 	ns->nsid = nsid;
652 	ns->subsys = subsys;
653 
654 	down_write(&nvmet_ana_sem);
655 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
656 	nvmet_ana_group_enabled[ns->anagrpid]++;
657 	up_write(&nvmet_ana_sem);
658 
659 	uuid_gen(&ns->uuid);
660 	ns->buffered_io = false;
661 
662 	return ns;
663 }
664 
665 static void nvmet_update_sq_head(struct nvmet_req *req)
666 {
667 	if (req->sq->size) {
668 		u32 old_sqhd, new_sqhd;
669 
670 		do {
671 			old_sqhd = req->sq->sqhd;
672 			new_sqhd = (old_sqhd + 1) % req->sq->size;
673 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
674 					old_sqhd);
675 	}
676 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
677 }
678 
679 static void nvmet_set_error(struct nvmet_req *req, u16 status)
680 {
681 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
682 	struct nvme_error_slot *new_error_slot;
683 	unsigned long flags;
684 
685 	req->cqe->status = cpu_to_le16(status << 1);
686 
687 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
688 		return;
689 
690 	spin_lock_irqsave(&ctrl->error_lock, flags);
691 	ctrl->err_counter++;
692 	new_error_slot =
693 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
694 
695 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
696 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
697 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
698 	new_error_slot->status_field = cpu_to_le16(status << 1);
699 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
700 	new_error_slot->lba = cpu_to_le64(req->error_slba);
701 	new_error_slot->nsid = req->cmd->common.nsid;
702 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
703 
704 	/* set the more bit for this request */
705 	req->cqe->status |= cpu_to_le16(1 << 14);
706 }
707 
708 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
709 {
710 	if (!req->sq->sqhd_disabled)
711 		nvmet_update_sq_head(req);
712 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
713 	req->cqe->command_id = req->cmd->common.command_id;
714 
715 	if (unlikely(status))
716 		nvmet_set_error(req, status);
717 
718 	trace_nvmet_req_complete(req);
719 
720 	if (req->ns)
721 		nvmet_put_namespace(req->ns);
722 	req->ops->queue_response(req);
723 }
724 
725 void nvmet_req_complete(struct nvmet_req *req, u16 status)
726 {
727 	__nvmet_req_complete(req, status);
728 	percpu_ref_put(&req->sq->ref);
729 }
730 EXPORT_SYMBOL_GPL(nvmet_req_complete);
731 
732 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
733 		u16 qid, u16 size)
734 {
735 	cq->qid = qid;
736 	cq->size = size;
737 
738 	ctrl->cqs[qid] = cq;
739 }
740 
741 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
742 		u16 qid, u16 size)
743 {
744 	sq->sqhd = 0;
745 	sq->qid = qid;
746 	sq->size = size;
747 
748 	ctrl->sqs[qid] = sq;
749 }
750 
751 static void nvmet_confirm_sq(struct percpu_ref *ref)
752 {
753 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
754 
755 	complete(&sq->confirm_done);
756 }
757 
758 void nvmet_sq_destroy(struct nvmet_sq *sq)
759 {
760 	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
761 	struct nvmet_ctrl *ctrl = sq->ctrl;
762 
763 	/*
764 	 * If this is the admin queue, complete all AERs so that our
765 	 * queue doesn't have outstanding requests on it.
766 	 */
767 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) {
768 		nvmet_async_events_process(ctrl, status);
769 		nvmet_async_events_free(ctrl);
770 	}
771 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
772 	wait_for_completion(&sq->confirm_done);
773 	wait_for_completion(&sq->free_done);
774 	percpu_ref_exit(&sq->ref);
775 
776 	if (ctrl) {
777 		nvmet_ctrl_put(ctrl);
778 		sq->ctrl = NULL; /* allows reusing the queue later */
779 	}
780 }
781 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
782 
783 static void nvmet_sq_free(struct percpu_ref *ref)
784 {
785 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
786 
787 	complete(&sq->free_done);
788 }
789 
790 int nvmet_sq_init(struct nvmet_sq *sq)
791 {
792 	int ret;
793 
794 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
795 	if (ret) {
796 		pr_err("percpu_ref init failed!\n");
797 		return ret;
798 	}
799 	init_completion(&sq->free_done);
800 	init_completion(&sq->confirm_done);
801 
802 	return 0;
803 }
804 EXPORT_SYMBOL_GPL(nvmet_sq_init);
805 
806 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
807 		struct nvmet_ns *ns)
808 {
809 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
810 
811 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
812 		return NVME_SC_ANA_INACCESSIBLE;
813 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
814 		return NVME_SC_ANA_PERSISTENT_LOSS;
815 	if (unlikely(state == NVME_ANA_CHANGE))
816 		return NVME_SC_ANA_TRANSITION;
817 	return 0;
818 }
819 
820 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
821 {
822 	if (unlikely(req->ns->readonly)) {
823 		switch (req->cmd->common.opcode) {
824 		case nvme_cmd_read:
825 		case nvme_cmd_flush:
826 			break;
827 		default:
828 			return NVME_SC_NS_WRITE_PROTECTED;
829 		}
830 	}
831 
832 	return 0;
833 }
834 
835 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
836 {
837 	struct nvme_command *cmd = req->cmd;
838 	u16 ret;
839 
840 	ret = nvmet_check_ctrl_status(req, cmd);
841 	if (unlikely(ret))
842 		return ret;
843 
844 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
845 	if (unlikely(!req->ns)) {
846 		req->error_loc = offsetof(struct nvme_common_command, nsid);
847 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
848 	}
849 	ret = nvmet_check_ana_state(req->port, req->ns);
850 	if (unlikely(ret)) {
851 		req->error_loc = offsetof(struct nvme_common_command, nsid);
852 		return ret;
853 	}
854 	ret = nvmet_io_cmd_check_access(req);
855 	if (unlikely(ret)) {
856 		req->error_loc = offsetof(struct nvme_common_command, nsid);
857 		return ret;
858 	}
859 
860 	if (req->ns->file)
861 		return nvmet_file_parse_io_cmd(req);
862 	else
863 		return nvmet_bdev_parse_io_cmd(req);
864 }
865 
866 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
867 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
868 {
869 	u8 flags = req->cmd->common.flags;
870 	u16 status;
871 
872 	req->cq = cq;
873 	req->sq = sq;
874 	req->ops = ops;
875 	req->sg = NULL;
876 	req->sg_cnt = 0;
877 	req->transfer_len = 0;
878 	req->cqe->status = 0;
879 	req->cqe->sq_head = 0;
880 	req->ns = NULL;
881 	req->error_loc = NVMET_NO_ERROR_LOC;
882 	req->error_slba = 0;
883 
884 	trace_nvmet_req_init(req, req->cmd);
885 
886 	/* no support for fused commands yet */
887 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
888 		req->error_loc = offsetof(struct nvme_common_command, flags);
889 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
890 		goto fail;
891 	}
892 
893 	/*
894 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
895 	 * contains an address of a single contiguous physical buffer that is
896 	 * byte aligned.
897 	 */
898 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
899 		req->error_loc = offsetof(struct nvme_common_command, flags);
900 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
901 		goto fail;
902 	}
903 
904 	if (unlikely(!req->sq->ctrl))
905 		/* will return an error for any non-connect command: */
906 		status = nvmet_parse_connect_cmd(req);
907 	else if (likely(req->sq->qid != 0))
908 		status = nvmet_parse_io_cmd(req);
909 	else
910 		status = nvmet_parse_admin_cmd(req);
911 
912 	if (status)
913 		goto fail;
914 
915 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
916 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
917 		goto fail;
918 	}
919 
920 	if (sq->ctrl)
921 		sq->ctrl->cmd_seen = true;
922 
923 	return true;
924 
925 fail:
926 	__nvmet_req_complete(req, status);
927 	return false;
928 }
929 EXPORT_SYMBOL_GPL(nvmet_req_init);
930 
931 void nvmet_req_uninit(struct nvmet_req *req)
932 {
933 	percpu_ref_put(&req->sq->ref);
934 	if (req->ns)
935 		nvmet_put_namespace(req->ns);
936 }
937 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
938 
939 bool nvmet_check_data_len(struct nvmet_req *req, size_t data_len)
940 {
941 	if (unlikely(data_len != req->transfer_len)) {
942 		req->error_loc = offsetof(struct nvme_common_command, dptr);
943 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
944 		return false;
945 	}
946 
947 	return true;
948 }
949 EXPORT_SYMBOL_GPL(nvmet_check_data_len);
950 
951 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
952 {
953 	if (unlikely(data_len > req->transfer_len)) {
954 		req->error_loc = offsetof(struct nvme_common_command, dptr);
955 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
956 		return false;
957 	}
958 
959 	return true;
960 }
961 
962 int nvmet_req_alloc_sgl(struct nvmet_req *req)
963 {
964 	struct pci_dev *p2p_dev = NULL;
965 
966 	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
967 		if (req->sq->ctrl && req->ns)
968 			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
969 						    req->ns->nsid);
970 
971 		req->p2p_dev = NULL;
972 		if (req->sq->qid && p2p_dev) {
973 			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
974 						       req->transfer_len);
975 			if (req->sg) {
976 				req->p2p_dev = p2p_dev;
977 				return 0;
978 			}
979 		}
980 
981 		/*
982 		 * If no P2P memory was available we fallback to using
983 		 * regular memory
984 		 */
985 	}
986 
987 	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
988 	if (unlikely(!req->sg))
989 		return -ENOMEM;
990 
991 	return 0;
992 }
993 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
994 
995 void nvmet_req_free_sgl(struct nvmet_req *req)
996 {
997 	if (req->p2p_dev)
998 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
999 	else
1000 		sgl_free(req->sg);
1001 
1002 	req->sg = NULL;
1003 	req->sg_cnt = 0;
1004 }
1005 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
1006 
1007 static inline bool nvmet_cc_en(u32 cc)
1008 {
1009 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1010 }
1011 
1012 static inline u8 nvmet_cc_css(u32 cc)
1013 {
1014 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1015 }
1016 
1017 static inline u8 nvmet_cc_mps(u32 cc)
1018 {
1019 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1020 }
1021 
1022 static inline u8 nvmet_cc_ams(u32 cc)
1023 {
1024 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1025 }
1026 
1027 static inline u8 nvmet_cc_shn(u32 cc)
1028 {
1029 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1030 }
1031 
1032 static inline u8 nvmet_cc_iosqes(u32 cc)
1033 {
1034 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1035 }
1036 
1037 static inline u8 nvmet_cc_iocqes(u32 cc)
1038 {
1039 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1040 }
1041 
1042 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1043 {
1044 	lockdep_assert_held(&ctrl->lock);
1045 
1046 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1047 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1048 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1049 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1050 	    nvmet_cc_css(ctrl->cc) != 0) {
1051 		ctrl->csts = NVME_CSTS_CFS;
1052 		return;
1053 	}
1054 
1055 	ctrl->csts = NVME_CSTS_RDY;
1056 
1057 	/*
1058 	 * Controllers that are not yet enabled should not really enforce the
1059 	 * keep alive timeout, but we still want to track a timeout and cleanup
1060 	 * in case a host died before it enabled the controller.  Hence, simply
1061 	 * reset the keep alive timer when the controller is enabled.
1062 	 */
1063 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1064 }
1065 
1066 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1067 {
1068 	lockdep_assert_held(&ctrl->lock);
1069 
1070 	/* XXX: tear down queues? */
1071 	ctrl->csts &= ~NVME_CSTS_RDY;
1072 	ctrl->cc = 0;
1073 }
1074 
1075 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1076 {
1077 	u32 old;
1078 
1079 	mutex_lock(&ctrl->lock);
1080 	old = ctrl->cc;
1081 	ctrl->cc = new;
1082 
1083 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1084 		nvmet_start_ctrl(ctrl);
1085 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1086 		nvmet_clear_ctrl(ctrl);
1087 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1088 		nvmet_clear_ctrl(ctrl);
1089 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1090 	}
1091 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1092 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1093 	mutex_unlock(&ctrl->lock);
1094 }
1095 
1096 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1097 {
1098 	/* command sets supported: NVMe command set: */
1099 	ctrl->cap = (1ULL << 37);
1100 	/* CC.EN timeout in 500msec units: */
1101 	ctrl->cap |= (15ULL << 24);
1102 	/* maximum queue entries supported: */
1103 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1104 }
1105 
1106 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1107 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1108 {
1109 	struct nvmet_subsys *subsys;
1110 	struct nvmet_ctrl *ctrl;
1111 	u16 status = 0;
1112 
1113 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1114 	if (!subsys) {
1115 		pr_warn("connect request for invalid subsystem %s!\n",
1116 			subsysnqn);
1117 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1118 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1119 	}
1120 
1121 	mutex_lock(&subsys->lock);
1122 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1123 		if (ctrl->cntlid == cntlid) {
1124 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1125 				pr_warn("hostnqn mismatch.\n");
1126 				continue;
1127 			}
1128 			if (!kref_get_unless_zero(&ctrl->ref))
1129 				continue;
1130 
1131 			*ret = ctrl;
1132 			goto out;
1133 		}
1134 	}
1135 
1136 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1137 		cntlid, subsysnqn, hostnqn);
1138 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1139 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1140 
1141 out:
1142 	mutex_unlock(&subsys->lock);
1143 	nvmet_subsys_put(subsys);
1144 	return status;
1145 }
1146 
1147 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1148 {
1149 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1150 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1151 		       cmd->common.opcode, req->sq->qid);
1152 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1153 	}
1154 
1155 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1156 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1157 		       cmd->common.opcode, req->sq->qid);
1158 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1159 	}
1160 	return 0;
1161 }
1162 
1163 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1164 {
1165 	struct nvmet_host_link *p;
1166 
1167 	lockdep_assert_held(&nvmet_config_sem);
1168 
1169 	if (subsys->allow_any_host)
1170 		return true;
1171 
1172 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1173 		return true;
1174 
1175 	list_for_each_entry(p, &subsys->hosts, entry) {
1176 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1177 			return true;
1178 	}
1179 
1180 	return false;
1181 }
1182 
1183 /*
1184  * Note: ctrl->subsys->lock should be held when calling this function
1185  */
1186 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1187 		struct nvmet_req *req)
1188 {
1189 	struct nvmet_ns *ns;
1190 
1191 	if (!req->p2p_client)
1192 		return;
1193 
1194 	ctrl->p2p_client = get_device(req->p2p_client);
1195 
1196 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link,
1197 				lockdep_is_held(&ctrl->subsys->lock))
1198 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1199 }
1200 
1201 /*
1202  * Note: ctrl->subsys->lock should be held when calling this function
1203  */
1204 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1205 {
1206 	struct radix_tree_iter iter;
1207 	void __rcu **slot;
1208 
1209 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1210 		pci_dev_put(radix_tree_deref_slot(slot));
1211 
1212 	put_device(ctrl->p2p_client);
1213 }
1214 
1215 static void nvmet_fatal_error_handler(struct work_struct *work)
1216 {
1217 	struct nvmet_ctrl *ctrl =
1218 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1219 
1220 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1221 	ctrl->ops->delete_ctrl(ctrl);
1222 }
1223 
1224 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1225 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1226 {
1227 	struct nvmet_subsys *subsys;
1228 	struct nvmet_ctrl *ctrl;
1229 	int ret;
1230 	u16 status;
1231 
1232 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1233 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1234 	if (!subsys) {
1235 		pr_warn("connect request for invalid subsystem %s!\n",
1236 			subsysnqn);
1237 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1238 		goto out;
1239 	}
1240 
1241 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1242 	down_read(&nvmet_config_sem);
1243 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1244 		pr_info("connect by host %s for subsystem %s not allowed\n",
1245 			hostnqn, subsysnqn);
1246 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1247 		up_read(&nvmet_config_sem);
1248 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1249 		goto out_put_subsystem;
1250 	}
1251 	up_read(&nvmet_config_sem);
1252 
1253 	status = NVME_SC_INTERNAL;
1254 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1255 	if (!ctrl)
1256 		goto out_put_subsystem;
1257 	mutex_init(&ctrl->lock);
1258 
1259 	nvmet_init_cap(ctrl);
1260 
1261 	ctrl->port = req->port;
1262 
1263 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1264 	INIT_LIST_HEAD(&ctrl->async_events);
1265 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1266 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1267 
1268 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1269 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1270 
1271 	kref_init(&ctrl->ref);
1272 	ctrl->subsys = subsys;
1273 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1274 
1275 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1276 			sizeof(__le32), GFP_KERNEL);
1277 	if (!ctrl->changed_ns_list)
1278 		goto out_free_ctrl;
1279 
1280 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1281 			sizeof(struct nvmet_cq *),
1282 			GFP_KERNEL);
1283 	if (!ctrl->cqs)
1284 		goto out_free_changed_ns_list;
1285 
1286 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1287 			sizeof(struct nvmet_sq *),
1288 			GFP_KERNEL);
1289 	if (!ctrl->sqs)
1290 		goto out_free_cqs;
1291 
1292 	if (subsys->cntlid_min > subsys->cntlid_max)
1293 		goto out_free_cqs;
1294 
1295 	ret = ida_simple_get(&cntlid_ida,
1296 			     subsys->cntlid_min, subsys->cntlid_max,
1297 			     GFP_KERNEL);
1298 	if (ret < 0) {
1299 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1300 		goto out_free_sqs;
1301 	}
1302 	ctrl->cntlid = ret;
1303 
1304 	ctrl->ops = req->ops;
1305 
1306 	/*
1307 	 * Discovery controllers may use some arbitrary high value
1308 	 * in order to cleanup stale discovery sessions
1309 	 */
1310 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1311 		kato = NVMET_DISC_KATO_MS;
1312 
1313 	/* keep-alive timeout in seconds */
1314 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1315 
1316 	ctrl->err_counter = 0;
1317 	spin_lock_init(&ctrl->error_lock);
1318 
1319 	nvmet_start_keep_alive_timer(ctrl);
1320 
1321 	mutex_lock(&subsys->lock);
1322 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1323 	nvmet_setup_p2p_ns_map(ctrl, req);
1324 	mutex_unlock(&subsys->lock);
1325 
1326 	*ctrlp = ctrl;
1327 	return 0;
1328 
1329 out_free_sqs:
1330 	kfree(ctrl->sqs);
1331 out_free_cqs:
1332 	kfree(ctrl->cqs);
1333 out_free_changed_ns_list:
1334 	kfree(ctrl->changed_ns_list);
1335 out_free_ctrl:
1336 	kfree(ctrl);
1337 out_put_subsystem:
1338 	nvmet_subsys_put(subsys);
1339 out:
1340 	return status;
1341 }
1342 
1343 static void nvmet_ctrl_free(struct kref *ref)
1344 {
1345 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1346 	struct nvmet_subsys *subsys = ctrl->subsys;
1347 
1348 	mutex_lock(&subsys->lock);
1349 	nvmet_release_p2p_ns_map(ctrl);
1350 	list_del(&ctrl->subsys_entry);
1351 	mutex_unlock(&subsys->lock);
1352 
1353 	nvmet_stop_keep_alive_timer(ctrl);
1354 
1355 	flush_work(&ctrl->async_event_work);
1356 	cancel_work_sync(&ctrl->fatal_err_work);
1357 
1358 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1359 
1360 	kfree(ctrl->sqs);
1361 	kfree(ctrl->cqs);
1362 	kfree(ctrl->changed_ns_list);
1363 	kfree(ctrl);
1364 
1365 	nvmet_subsys_put(subsys);
1366 }
1367 
1368 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1369 {
1370 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1371 }
1372 
1373 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1374 {
1375 	mutex_lock(&ctrl->lock);
1376 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1377 		ctrl->csts |= NVME_CSTS_CFS;
1378 		schedule_work(&ctrl->fatal_err_work);
1379 	}
1380 	mutex_unlock(&ctrl->lock);
1381 }
1382 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1383 
1384 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1385 		const char *subsysnqn)
1386 {
1387 	struct nvmet_subsys_link *p;
1388 
1389 	if (!port)
1390 		return NULL;
1391 
1392 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1393 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1394 			return NULL;
1395 		return nvmet_disc_subsys;
1396 	}
1397 
1398 	down_read(&nvmet_config_sem);
1399 	list_for_each_entry(p, &port->subsystems, entry) {
1400 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1401 				NVMF_NQN_SIZE)) {
1402 			if (!kref_get_unless_zero(&p->subsys->ref))
1403 				break;
1404 			up_read(&nvmet_config_sem);
1405 			return p->subsys;
1406 		}
1407 	}
1408 	up_read(&nvmet_config_sem);
1409 	return NULL;
1410 }
1411 
1412 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1413 		enum nvme_subsys_type type)
1414 {
1415 	struct nvmet_subsys *subsys;
1416 
1417 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1418 	if (!subsys)
1419 		return ERR_PTR(-ENOMEM);
1420 
1421 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1422 	/* generate a random serial number as our controllers are ephemeral: */
1423 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1424 
1425 	switch (type) {
1426 	case NVME_NQN_NVME:
1427 		subsys->max_qid = NVMET_NR_QUEUES;
1428 		break;
1429 	case NVME_NQN_DISC:
1430 		subsys->max_qid = 0;
1431 		break;
1432 	default:
1433 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1434 		kfree(subsys);
1435 		return ERR_PTR(-EINVAL);
1436 	}
1437 	subsys->type = type;
1438 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1439 			GFP_KERNEL);
1440 	if (!subsys->subsysnqn) {
1441 		kfree(subsys);
1442 		return ERR_PTR(-ENOMEM);
1443 	}
1444 	subsys->cntlid_min = NVME_CNTLID_MIN;
1445 	subsys->cntlid_max = NVME_CNTLID_MAX;
1446 	kref_init(&subsys->ref);
1447 
1448 	mutex_init(&subsys->lock);
1449 	INIT_LIST_HEAD(&subsys->namespaces);
1450 	INIT_LIST_HEAD(&subsys->ctrls);
1451 	INIT_LIST_HEAD(&subsys->hosts);
1452 
1453 	return subsys;
1454 }
1455 
1456 static void nvmet_subsys_free(struct kref *ref)
1457 {
1458 	struct nvmet_subsys *subsys =
1459 		container_of(ref, struct nvmet_subsys, ref);
1460 
1461 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1462 
1463 	kfree(subsys->subsysnqn);
1464 	kfree_rcu(subsys->model, rcuhead);
1465 	kfree(subsys);
1466 }
1467 
1468 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1469 {
1470 	struct nvmet_ctrl *ctrl;
1471 
1472 	mutex_lock(&subsys->lock);
1473 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1474 		ctrl->ops->delete_ctrl(ctrl);
1475 	mutex_unlock(&subsys->lock);
1476 }
1477 
1478 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1479 {
1480 	kref_put(&subsys->ref, nvmet_subsys_free);
1481 }
1482 
1483 static int __init nvmet_init(void)
1484 {
1485 	int error;
1486 
1487 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1488 
1489 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1490 			WQ_MEM_RECLAIM, 0);
1491 	if (!buffered_io_wq) {
1492 		error = -ENOMEM;
1493 		goto out;
1494 	}
1495 
1496 	error = nvmet_init_discovery();
1497 	if (error)
1498 		goto out_free_work_queue;
1499 
1500 	error = nvmet_init_configfs();
1501 	if (error)
1502 		goto out_exit_discovery;
1503 	return 0;
1504 
1505 out_exit_discovery:
1506 	nvmet_exit_discovery();
1507 out_free_work_queue:
1508 	destroy_workqueue(buffered_io_wq);
1509 out:
1510 	return error;
1511 }
1512 
1513 static void __exit nvmet_exit(void)
1514 {
1515 	nvmet_exit_configfs();
1516 	nvmet_exit_discovery();
1517 	ida_destroy(&cntlid_ida);
1518 	destroy_workqueue(buffered_io_wq);
1519 
1520 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1521 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1522 }
1523 
1524 module_init(nvmet_init);
1525 module_exit(nvmet_exit);
1526 
1527 MODULE_LICENSE("GPL v2");
1528