xref: /openbmc/linux/drivers/nvme/target/core.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 struct workqueue_struct *zbd_wq;
20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
21 static DEFINE_IDA(cntlid_ida);
22 
23 /*
24  * This read/write semaphore is used to synchronize access to configuration
25  * information on a target system that will result in discovery log page
26  * information change for at least one host.
27  * The full list of resources to protected by this semaphore is:
28  *
29  *  - subsystems list
30  *  - per-subsystem allowed hosts list
31  *  - allow_any_host subsystem attribute
32  *  - nvmet_genctr
33  *  - the nvmet_transports array
34  *
35  * When updating any of those lists/structures write lock should be obtained,
36  * while when reading (popolating discovery log page or checking host-subsystem
37  * link) read lock is obtained to allow concurrent reads.
38  */
39 DECLARE_RWSEM(nvmet_config_sem);
40 
41 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
42 u64 nvmet_ana_chgcnt;
43 DECLARE_RWSEM(nvmet_ana_sem);
44 
45 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
46 {
47 	switch (errno) {
48 	case 0:
49 		return NVME_SC_SUCCESS;
50 	case -ENOSPC:
51 		req->error_loc = offsetof(struct nvme_rw_command, length);
52 		return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
53 	case -EREMOTEIO:
54 		req->error_loc = offsetof(struct nvme_rw_command, slba);
55 		return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
56 	case -EOPNOTSUPP:
57 		req->error_loc = offsetof(struct nvme_common_command, opcode);
58 		switch (req->cmd->common.opcode) {
59 		case nvme_cmd_dsm:
60 		case nvme_cmd_write_zeroes:
61 			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
62 		default:
63 			return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
64 		}
65 		break;
66 	case -ENODATA:
67 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
68 		return NVME_SC_ACCESS_DENIED;
69 	case -EIO:
70 		fallthrough;
71 	default:
72 		req->error_loc = offsetof(struct nvme_common_command, opcode);
73 		return NVME_SC_INTERNAL | NVME_SC_DNR;
74 	}
75 }
76 
77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
78 {
79 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
80 		 req->sq->qid);
81 
82 	req->error_loc = offsetof(struct nvme_common_command, opcode);
83 	return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
84 }
85 
86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
87 		const char *subsysnqn);
88 
89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
90 		size_t len)
91 {
92 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
93 		req->error_loc = offsetof(struct nvme_common_command, dptr);
94 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
95 	}
96 	return 0;
97 }
98 
99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 {
101 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
102 		req->error_loc = offsetof(struct nvme_common_command, dptr);
103 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
104 	}
105 	return 0;
106 }
107 
108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 {
110 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
111 		req->error_loc = offsetof(struct nvme_common_command, dptr);
112 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
113 	}
114 	return 0;
115 }
116 
117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
118 {
119 	struct nvmet_ns *cur;
120 	unsigned long idx;
121 	u32 nsid = 0;
122 
123 	xa_for_each(&subsys->namespaces, idx, cur)
124 		nsid = cur->nsid;
125 
126 	return nsid;
127 }
128 
129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
130 {
131 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
132 }
133 
134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
135 {
136 	struct nvmet_req *req;
137 
138 	mutex_lock(&ctrl->lock);
139 	while (ctrl->nr_async_event_cmds) {
140 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 		mutex_unlock(&ctrl->lock);
142 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
143 		mutex_lock(&ctrl->lock);
144 	}
145 	mutex_unlock(&ctrl->lock);
146 }
147 
148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 	struct nvmet_async_event *aen;
151 	struct nvmet_req *req;
152 
153 	mutex_lock(&ctrl->lock);
154 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 		aen = list_first_entry(&ctrl->async_events,
156 				       struct nvmet_async_event, entry);
157 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 		nvmet_set_result(req, nvmet_async_event_result(aen));
159 
160 		list_del(&aen->entry);
161 		kfree(aen);
162 
163 		mutex_unlock(&ctrl->lock);
164 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 		nvmet_req_complete(req, 0);
166 		mutex_lock(&ctrl->lock);
167 	}
168 	mutex_unlock(&ctrl->lock);
169 }
170 
171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 	struct nvmet_async_event *aen, *tmp;
174 
175 	mutex_lock(&ctrl->lock);
176 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 		list_del(&aen->entry);
178 		kfree(aen);
179 	}
180 	mutex_unlock(&ctrl->lock);
181 }
182 
183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 	struct nvmet_ctrl *ctrl =
186 		container_of(work, struct nvmet_ctrl, async_event_work);
187 
188 	nvmet_async_events_process(ctrl);
189 }
190 
191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 		u8 event_info, u8 log_page)
193 {
194 	struct nvmet_async_event *aen;
195 
196 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 	if (!aen)
198 		return;
199 
200 	aen->event_type = event_type;
201 	aen->event_info = event_info;
202 	aen->log_page = log_page;
203 
204 	mutex_lock(&ctrl->lock);
205 	list_add_tail(&aen->entry, &ctrl->async_events);
206 	mutex_unlock(&ctrl->lock);
207 
208 	schedule_work(&ctrl->async_event_work);
209 }
210 
211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 	u32 i;
214 
215 	mutex_lock(&ctrl->lock);
216 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 		goto out_unlock;
218 
219 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 		if (ctrl->changed_ns_list[i] == nsid)
221 			goto out_unlock;
222 	}
223 
224 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 		ctrl->nr_changed_ns = U32_MAX;
227 		goto out_unlock;
228 	}
229 
230 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 	mutex_unlock(&ctrl->lock);
233 }
234 
235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 	struct nvmet_ctrl *ctrl;
238 
239 	lockdep_assert_held(&subsys->lock);
240 
241 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 			continue;
245 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 				NVME_AER_NOTICE_NS_CHANGED,
247 				NVME_LOG_CHANGED_NS);
248 	}
249 }
250 
251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 		struct nvmet_port *port)
253 {
254 	struct nvmet_ctrl *ctrl;
255 
256 	mutex_lock(&subsys->lock);
257 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 		if (port && ctrl->port != port)
259 			continue;
260 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 			continue;
262 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 	}
265 	mutex_unlock(&subsys->lock);
266 }
267 
268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 	struct nvmet_subsys_link *p;
271 
272 	down_read(&nvmet_config_sem);
273 	list_for_each_entry(p, &port->subsystems, entry)
274 		nvmet_send_ana_event(p->subsys, port);
275 	up_read(&nvmet_config_sem);
276 }
277 
278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 	int ret = 0;
281 
282 	down_write(&nvmet_config_sem);
283 	if (nvmet_transports[ops->type])
284 		ret = -EINVAL;
285 	else
286 		nvmet_transports[ops->type] = ops;
287 	up_write(&nvmet_config_sem);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292 
293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 	down_write(&nvmet_config_sem);
296 	nvmet_transports[ops->type] = NULL;
297 	up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300 
301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 	struct nvmet_ctrl *ctrl;
304 
305 	mutex_lock(&subsys->lock);
306 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 		if (ctrl->port == port)
308 			ctrl->ops->delete_ctrl(ctrl);
309 	}
310 	mutex_unlock(&subsys->lock);
311 }
312 
313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 	const struct nvmet_fabrics_ops *ops;
316 	int ret;
317 
318 	lockdep_assert_held(&nvmet_config_sem);
319 
320 	ops = nvmet_transports[port->disc_addr.trtype];
321 	if (!ops) {
322 		up_write(&nvmet_config_sem);
323 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 		down_write(&nvmet_config_sem);
325 		ops = nvmet_transports[port->disc_addr.trtype];
326 		if (!ops) {
327 			pr_err("transport type %d not supported\n",
328 				port->disc_addr.trtype);
329 			return -EINVAL;
330 		}
331 	}
332 
333 	if (!try_module_get(ops->owner))
334 		return -EINVAL;
335 
336 	/*
337 	 * If the user requested PI support and the transport isn't pi capable,
338 	 * don't enable the port.
339 	 */
340 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 		pr_err("T10-PI is not supported by transport type %d\n",
342 		       port->disc_addr.trtype);
343 		ret = -EINVAL;
344 		goto out_put;
345 	}
346 
347 	ret = ops->add_port(port);
348 	if (ret)
349 		goto out_put;
350 
351 	/* If the transport didn't set inline_data_size, then disable it. */
352 	if (port->inline_data_size < 0)
353 		port->inline_data_size = 0;
354 
355 	port->enabled = true;
356 	port->tr_ops = ops;
357 	return 0;
358 
359 out_put:
360 	module_put(ops->owner);
361 	return ret;
362 }
363 
364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366 	const struct nvmet_fabrics_ops *ops;
367 
368 	lockdep_assert_held(&nvmet_config_sem);
369 
370 	port->enabled = false;
371 	port->tr_ops = NULL;
372 
373 	ops = nvmet_transports[port->disc_addr.trtype];
374 	ops->remove_port(port);
375 	module_put(ops->owner);
376 }
377 
378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 			struct nvmet_ctrl, ka_work);
382 	bool reset_tbkas = ctrl->reset_tbkas;
383 
384 	ctrl->reset_tbkas = false;
385 	if (reset_tbkas) {
386 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 			ctrl->cntlid);
388 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 		return;
390 	}
391 
392 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 		ctrl->cntlid, ctrl->kato);
394 
395 	nvmet_ctrl_fatal_error(ctrl);
396 }
397 
398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400 	if (unlikely(ctrl->kato == 0))
401 		return;
402 
403 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404 		ctrl->cntlid, ctrl->kato);
405 
406 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
407 }
408 
409 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
410 {
411 	if (unlikely(ctrl->kato == 0))
412 		return;
413 
414 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
415 
416 	cancel_delayed_work_sync(&ctrl->ka_work);
417 }
418 
419 u16 nvmet_req_find_ns(struct nvmet_req *req)
420 {
421 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
422 
423 	req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
424 	if (unlikely(!req->ns)) {
425 		req->error_loc = offsetof(struct nvme_common_command, nsid);
426 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
427 	}
428 
429 	percpu_ref_get(&req->ns->ref);
430 	return NVME_SC_SUCCESS;
431 }
432 
433 static void nvmet_destroy_namespace(struct percpu_ref *ref)
434 {
435 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
436 
437 	complete(&ns->disable_done);
438 }
439 
440 void nvmet_put_namespace(struct nvmet_ns *ns)
441 {
442 	percpu_ref_put(&ns->ref);
443 }
444 
445 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
446 {
447 	nvmet_bdev_ns_disable(ns);
448 	nvmet_file_ns_disable(ns);
449 }
450 
451 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
452 {
453 	int ret;
454 	struct pci_dev *p2p_dev;
455 
456 	if (!ns->use_p2pmem)
457 		return 0;
458 
459 	if (!ns->bdev) {
460 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
461 		return -EINVAL;
462 	}
463 
464 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
465 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
466 		       ns->device_path);
467 		return -EINVAL;
468 	}
469 
470 	if (ns->p2p_dev) {
471 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
472 		if (ret < 0)
473 			return -EINVAL;
474 	} else {
475 		/*
476 		 * Right now we just check that there is p2pmem available so
477 		 * we can report an error to the user right away if there
478 		 * is not. We'll find the actual device to use once we
479 		 * setup the controller when the port's device is available.
480 		 */
481 
482 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
483 		if (!p2p_dev) {
484 			pr_err("no peer-to-peer memory is available for %s\n",
485 			       ns->device_path);
486 			return -EINVAL;
487 		}
488 
489 		pci_dev_put(p2p_dev);
490 	}
491 
492 	return 0;
493 }
494 
495 /*
496  * Note: ctrl->subsys->lock should be held when calling this function
497  */
498 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
499 				    struct nvmet_ns *ns)
500 {
501 	struct device *clients[2];
502 	struct pci_dev *p2p_dev;
503 	int ret;
504 
505 	if (!ctrl->p2p_client || !ns->use_p2pmem)
506 		return;
507 
508 	if (ns->p2p_dev) {
509 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
510 		if (ret < 0)
511 			return;
512 
513 		p2p_dev = pci_dev_get(ns->p2p_dev);
514 	} else {
515 		clients[0] = ctrl->p2p_client;
516 		clients[1] = nvmet_ns_dev(ns);
517 
518 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
519 		if (!p2p_dev) {
520 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
521 			       dev_name(ctrl->p2p_client), ns->device_path);
522 			return;
523 		}
524 	}
525 
526 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
527 	if (ret < 0)
528 		pci_dev_put(p2p_dev);
529 
530 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
531 		ns->nsid);
532 }
533 
534 void nvmet_ns_revalidate(struct nvmet_ns *ns)
535 {
536 	loff_t oldsize = ns->size;
537 
538 	if (ns->bdev)
539 		nvmet_bdev_ns_revalidate(ns);
540 	else
541 		nvmet_file_ns_revalidate(ns);
542 
543 	if (oldsize != ns->size)
544 		nvmet_ns_changed(ns->subsys, ns->nsid);
545 }
546 
547 int nvmet_ns_enable(struct nvmet_ns *ns)
548 {
549 	struct nvmet_subsys *subsys = ns->subsys;
550 	struct nvmet_ctrl *ctrl;
551 	int ret;
552 
553 	mutex_lock(&subsys->lock);
554 	ret = 0;
555 
556 	if (nvmet_passthru_ctrl(subsys)) {
557 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
558 		goto out_unlock;
559 	}
560 
561 	if (ns->enabled)
562 		goto out_unlock;
563 
564 	ret = -EMFILE;
565 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
566 		goto out_unlock;
567 
568 	ret = nvmet_bdev_ns_enable(ns);
569 	if (ret == -ENOTBLK)
570 		ret = nvmet_file_ns_enable(ns);
571 	if (ret)
572 		goto out_unlock;
573 
574 	ret = nvmet_p2pmem_ns_enable(ns);
575 	if (ret)
576 		goto out_dev_disable;
577 
578 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
579 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
580 
581 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
582 				0, GFP_KERNEL);
583 	if (ret)
584 		goto out_dev_put;
585 
586 	if (ns->nsid > subsys->max_nsid)
587 		subsys->max_nsid = ns->nsid;
588 
589 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
590 	if (ret)
591 		goto out_restore_subsys_maxnsid;
592 
593 	subsys->nr_namespaces++;
594 
595 	nvmet_ns_changed(subsys, ns->nsid);
596 	ns->enabled = true;
597 	ret = 0;
598 out_unlock:
599 	mutex_unlock(&subsys->lock);
600 	return ret;
601 
602 out_restore_subsys_maxnsid:
603 	subsys->max_nsid = nvmet_max_nsid(subsys);
604 	percpu_ref_exit(&ns->ref);
605 out_dev_put:
606 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
607 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
608 out_dev_disable:
609 	nvmet_ns_dev_disable(ns);
610 	goto out_unlock;
611 }
612 
613 void nvmet_ns_disable(struct nvmet_ns *ns)
614 {
615 	struct nvmet_subsys *subsys = ns->subsys;
616 	struct nvmet_ctrl *ctrl;
617 
618 	mutex_lock(&subsys->lock);
619 	if (!ns->enabled)
620 		goto out_unlock;
621 
622 	ns->enabled = false;
623 	xa_erase(&ns->subsys->namespaces, ns->nsid);
624 	if (ns->nsid == subsys->max_nsid)
625 		subsys->max_nsid = nvmet_max_nsid(subsys);
626 
627 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
628 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
629 
630 	mutex_unlock(&subsys->lock);
631 
632 	/*
633 	 * Now that we removed the namespaces from the lookup list, we
634 	 * can kill the per_cpu ref and wait for any remaining references
635 	 * to be dropped, as well as a RCU grace period for anyone only
636 	 * using the namepace under rcu_read_lock().  Note that we can't
637 	 * use call_rcu here as we need to ensure the namespaces have
638 	 * been fully destroyed before unloading the module.
639 	 */
640 	percpu_ref_kill(&ns->ref);
641 	synchronize_rcu();
642 	wait_for_completion(&ns->disable_done);
643 	percpu_ref_exit(&ns->ref);
644 
645 	mutex_lock(&subsys->lock);
646 
647 	subsys->nr_namespaces--;
648 	nvmet_ns_changed(subsys, ns->nsid);
649 	nvmet_ns_dev_disable(ns);
650 out_unlock:
651 	mutex_unlock(&subsys->lock);
652 }
653 
654 void nvmet_ns_free(struct nvmet_ns *ns)
655 {
656 	nvmet_ns_disable(ns);
657 
658 	down_write(&nvmet_ana_sem);
659 	nvmet_ana_group_enabled[ns->anagrpid]--;
660 	up_write(&nvmet_ana_sem);
661 
662 	kfree(ns->device_path);
663 	kfree(ns);
664 }
665 
666 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
667 {
668 	struct nvmet_ns *ns;
669 
670 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
671 	if (!ns)
672 		return NULL;
673 
674 	init_completion(&ns->disable_done);
675 
676 	ns->nsid = nsid;
677 	ns->subsys = subsys;
678 
679 	down_write(&nvmet_ana_sem);
680 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
681 	nvmet_ana_group_enabled[ns->anagrpid]++;
682 	up_write(&nvmet_ana_sem);
683 
684 	uuid_gen(&ns->uuid);
685 	ns->buffered_io = false;
686 	ns->csi = NVME_CSI_NVM;
687 
688 	return ns;
689 }
690 
691 static void nvmet_update_sq_head(struct nvmet_req *req)
692 {
693 	if (req->sq->size) {
694 		u32 old_sqhd, new_sqhd;
695 
696 		do {
697 			old_sqhd = req->sq->sqhd;
698 			new_sqhd = (old_sqhd + 1) % req->sq->size;
699 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
700 					old_sqhd);
701 	}
702 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
703 }
704 
705 static void nvmet_set_error(struct nvmet_req *req, u16 status)
706 {
707 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
708 	struct nvme_error_slot *new_error_slot;
709 	unsigned long flags;
710 
711 	req->cqe->status = cpu_to_le16(status << 1);
712 
713 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
714 		return;
715 
716 	spin_lock_irqsave(&ctrl->error_lock, flags);
717 	ctrl->err_counter++;
718 	new_error_slot =
719 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
720 
721 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
722 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
723 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
724 	new_error_slot->status_field = cpu_to_le16(status << 1);
725 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
726 	new_error_slot->lba = cpu_to_le64(req->error_slba);
727 	new_error_slot->nsid = req->cmd->common.nsid;
728 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
729 
730 	/* set the more bit for this request */
731 	req->cqe->status |= cpu_to_le16(1 << 14);
732 }
733 
734 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
735 {
736 	if (!req->sq->sqhd_disabled)
737 		nvmet_update_sq_head(req);
738 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
739 	req->cqe->command_id = req->cmd->common.command_id;
740 
741 	if (unlikely(status))
742 		nvmet_set_error(req, status);
743 
744 	trace_nvmet_req_complete(req);
745 
746 	if (req->ns)
747 		nvmet_put_namespace(req->ns);
748 	req->ops->queue_response(req);
749 }
750 
751 void nvmet_req_complete(struct nvmet_req *req, u16 status)
752 {
753 	__nvmet_req_complete(req, status);
754 	percpu_ref_put(&req->sq->ref);
755 }
756 EXPORT_SYMBOL_GPL(nvmet_req_complete);
757 
758 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
759 		u16 qid, u16 size)
760 {
761 	cq->qid = qid;
762 	cq->size = size;
763 }
764 
765 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
766 		u16 qid, u16 size)
767 {
768 	sq->sqhd = 0;
769 	sq->qid = qid;
770 	sq->size = size;
771 
772 	ctrl->sqs[qid] = sq;
773 }
774 
775 static void nvmet_confirm_sq(struct percpu_ref *ref)
776 {
777 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
778 
779 	complete(&sq->confirm_done);
780 }
781 
782 void nvmet_sq_destroy(struct nvmet_sq *sq)
783 {
784 	struct nvmet_ctrl *ctrl = sq->ctrl;
785 
786 	/*
787 	 * If this is the admin queue, complete all AERs so that our
788 	 * queue doesn't have outstanding requests on it.
789 	 */
790 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
791 		nvmet_async_events_failall(ctrl);
792 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
793 	wait_for_completion(&sq->confirm_done);
794 	wait_for_completion(&sq->free_done);
795 	percpu_ref_exit(&sq->ref);
796 
797 	if (ctrl) {
798 		/*
799 		 * The teardown flow may take some time, and the host may not
800 		 * send us keep-alive during this period, hence reset the
801 		 * traffic based keep-alive timer so we don't trigger a
802 		 * controller teardown as a result of a keep-alive expiration.
803 		 */
804 		ctrl->reset_tbkas = true;
805 		nvmet_ctrl_put(ctrl);
806 		sq->ctrl = NULL; /* allows reusing the queue later */
807 	}
808 }
809 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
810 
811 static void nvmet_sq_free(struct percpu_ref *ref)
812 {
813 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
814 
815 	complete(&sq->free_done);
816 }
817 
818 int nvmet_sq_init(struct nvmet_sq *sq)
819 {
820 	int ret;
821 
822 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
823 	if (ret) {
824 		pr_err("percpu_ref init failed!\n");
825 		return ret;
826 	}
827 	init_completion(&sq->free_done);
828 	init_completion(&sq->confirm_done);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(nvmet_sq_init);
833 
834 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
835 		struct nvmet_ns *ns)
836 {
837 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
838 
839 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
840 		return NVME_SC_ANA_INACCESSIBLE;
841 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
842 		return NVME_SC_ANA_PERSISTENT_LOSS;
843 	if (unlikely(state == NVME_ANA_CHANGE))
844 		return NVME_SC_ANA_TRANSITION;
845 	return 0;
846 }
847 
848 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
849 {
850 	if (unlikely(req->ns->readonly)) {
851 		switch (req->cmd->common.opcode) {
852 		case nvme_cmd_read:
853 		case nvme_cmd_flush:
854 			break;
855 		default:
856 			return NVME_SC_NS_WRITE_PROTECTED;
857 		}
858 	}
859 
860 	return 0;
861 }
862 
863 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
864 {
865 	u16 ret;
866 
867 	ret = nvmet_check_ctrl_status(req);
868 	if (unlikely(ret))
869 		return ret;
870 
871 	if (nvmet_req_passthru_ctrl(req))
872 		return nvmet_parse_passthru_io_cmd(req);
873 
874 	ret = nvmet_req_find_ns(req);
875 	if (unlikely(ret))
876 		return ret;
877 
878 	ret = nvmet_check_ana_state(req->port, req->ns);
879 	if (unlikely(ret)) {
880 		req->error_loc = offsetof(struct nvme_common_command, nsid);
881 		return ret;
882 	}
883 	ret = nvmet_io_cmd_check_access(req);
884 	if (unlikely(ret)) {
885 		req->error_loc = offsetof(struct nvme_common_command, nsid);
886 		return ret;
887 	}
888 
889 	switch (req->ns->csi) {
890 	case NVME_CSI_NVM:
891 		if (req->ns->file)
892 			return nvmet_file_parse_io_cmd(req);
893 		return nvmet_bdev_parse_io_cmd(req);
894 	case NVME_CSI_ZNS:
895 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
896 			return nvmet_bdev_zns_parse_io_cmd(req);
897 		return NVME_SC_INVALID_IO_CMD_SET;
898 	default:
899 		return NVME_SC_INVALID_IO_CMD_SET;
900 	}
901 }
902 
903 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
904 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
905 {
906 	u8 flags = req->cmd->common.flags;
907 	u16 status;
908 
909 	req->cq = cq;
910 	req->sq = sq;
911 	req->ops = ops;
912 	req->sg = NULL;
913 	req->metadata_sg = NULL;
914 	req->sg_cnt = 0;
915 	req->metadata_sg_cnt = 0;
916 	req->transfer_len = 0;
917 	req->metadata_len = 0;
918 	req->cqe->status = 0;
919 	req->cqe->sq_head = 0;
920 	req->ns = NULL;
921 	req->error_loc = NVMET_NO_ERROR_LOC;
922 	req->error_slba = 0;
923 
924 	/* no support for fused commands yet */
925 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
926 		req->error_loc = offsetof(struct nvme_common_command, flags);
927 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
928 		goto fail;
929 	}
930 
931 	/*
932 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
933 	 * contains an address of a single contiguous physical buffer that is
934 	 * byte aligned.
935 	 */
936 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
937 		req->error_loc = offsetof(struct nvme_common_command, flags);
938 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
939 		goto fail;
940 	}
941 
942 	if (unlikely(!req->sq->ctrl))
943 		/* will return an error for any non-connect command: */
944 		status = nvmet_parse_connect_cmd(req);
945 	else if (likely(req->sq->qid != 0))
946 		status = nvmet_parse_io_cmd(req);
947 	else
948 		status = nvmet_parse_admin_cmd(req);
949 
950 	if (status)
951 		goto fail;
952 
953 	trace_nvmet_req_init(req, req->cmd);
954 
955 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
956 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
957 		goto fail;
958 	}
959 
960 	if (sq->ctrl)
961 		sq->ctrl->reset_tbkas = true;
962 
963 	return true;
964 
965 fail:
966 	__nvmet_req_complete(req, status);
967 	return false;
968 }
969 EXPORT_SYMBOL_GPL(nvmet_req_init);
970 
971 void nvmet_req_uninit(struct nvmet_req *req)
972 {
973 	percpu_ref_put(&req->sq->ref);
974 	if (req->ns)
975 		nvmet_put_namespace(req->ns);
976 }
977 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
978 
979 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
980 {
981 	if (unlikely(len != req->transfer_len)) {
982 		req->error_loc = offsetof(struct nvme_common_command, dptr);
983 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
984 		return false;
985 	}
986 
987 	return true;
988 }
989 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
990 
991 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
992 {
993 	if (unlikely(data_len > req->transfer_len)) {
994 		req->error_loc = offsetof(struct nvme_common_command, dptr);
995 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
996 		return false;
997 	}
998 
999 	return true;
1000 }
1001 
1002 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1003 {
1004 	return req->transfer_len - req->metadata_len;
1005 }
1006 
1007 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1008 		struct nvmet_req *req)
1009 {
1010 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1011 			nvmet_data_transfer_len(req));
1012 	if (!req->sg)
1013 		goto out_err;
1014 
1015 	if (req->metadata_len) {
1016 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1017 				&req->metadata_sg_cnt, req->metadata_len);
1018 		if (!req->metadata_sg)
1019 			goto out_free_sg;
1020 	}
1021 
1022 	req->p2p_dev = p2p_dev;
1023 
1024 	return 0;
1025 out_free_sg:
1026 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1027 out_err:
1028 	return -ENOMEM;
1029 }
1030 
1031 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1032 {
1033 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1034 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1035 		return NULL;
1036 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1037 }
1038 
1039 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1040 {
1041 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1042 
1043 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1044 		return 0;
1045 
1046 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1047 			    &req->sg_cnt);
1048 	if (unlikely(!req->sg))
1049 		goto out;
1050 
1051 	if (req->metadata_len) {
1052 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1053 					     &req->metadata_sg_cnt);
1054 		if (unlikely(!req->metadata_sg))
1055 			goto out_free;
1056 	}
1057 
1058 	return 0;
1059 out_free:
1060 	sgl_free(req->sg);
1061 out:
1062 	return -ENOMEM;
1063 }
1064 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1065 
1066 void nvmet_req_free_sgls(struct nvmet_req *req)
1067 {
1068 	if (req->p2p_dev) {
1069 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1070 		if (req->metadata_sg)
1071 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1072 		req->p2p_dev = NULL;
1073 	} else {
1074 		sgl_free(req->sg);
1075 		if (req->metadata_sg)
1076 			sgl_free(req->metadata_sg);
1077 	}
1078 
1079 	req->sg = NULL;
1080 	req->metadata_sg = NULL;
1081 	req->sg_cnt = 0;
1082 	req->metadata_sg_cnt = 0;
1083 }
1084 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1085 
1086 static inline bool nvmet_cc_en(u32 cc)
1087 {
1088 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1089 }
1090 
1091 static inline u8 nvmet_cc_css(u32 cc)
1092 {
1093 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1094 }
1095 
1096 static inline u8 nvmet_cc_mps(u32 cc)
1097 {
1098 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1099 }
1100 
1101 static inline u8 nvmet_cc_ams(u32 cc)
1102 {
1103 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1104 }
1105 
1106 static inline u8 nvmet_cc_shn(u32 cc)
1107 {
1108 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1109 }
1110 
1111 static inline u8 nvmet_cc_iosqes(u32 cc)
1112 {
1113 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1114 }
1115 
1116 static inline u8 nvmet_cc_iocqes(u32 cc)
1117 {
1118 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1119 }
1120 
1121 static inline bool nvmet_css_supported(u8 cc_css)
1122 {
1123 	switch (cc_css <<= NVME_CC_CSS_SHIFT) {
1124 	case NVME_CC_CSS_NVM:
1125 	case NVME_CC_CSS_CSI:
1126 		return true;
1127 	default:
1128 		return false;
1129 	}
1130 }
1131 
1132 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1133 {
1134 	lockdep_assert_held(&ctrl->lock);
1135 
1136 	/*
1137 	 * Only I/O controllers should verify iosqes,iocqes.
1138 	 * Strictly speaking, the spec says a discovery controller
1139 	 * should verify iosqes,iocqes are zeroed, however that
1140 	 * would break backwards compatibility, so don't enforce it.
1141 	 */
1142 	if (ctrl->subsys->type != NVME_NQN_DISC &&
1143 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1144 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1145 		ctrl->csts = NVME_CSTS_CFS;
1146 		return;
1147 	}
1148 
1149 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1150 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1151 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1152 		ctrl->csts = NVME_CSTS_CFS;
1153 		return;
1154 	}
1155 
1156 	ctrl->csts = NVME_CSTS_RDY;
1157 
1158 	/*
1159 	 * Controllers that are not yet enabled should not really enforce the
1160 	 * keep alive timeout, but we still want to track a timeout and cleanup
1161 	 * in case a host died before it enabled the controller.  Hence, simply
1162 	 * reset the keep alive timer when the controller is enabled.
1163 	 */
1164 	if (ctrl->kato)
1165 		mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1166 }
1167 
1168 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1169 {
1170 	lockdep_assert_held(&ctrl->lock);
1171 
1172 	/* XXX: tear down queues? */
1173 	ctrl->csts &= ~NVME_CSTS_RDY;
1174 	ctrl->cc = 0;
1175 }
1176 
1177 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1178 {
1179 	u32 old;
1180 
1181 	mutex_lock(&ctrl->lock);
1182 	old = ctrl->cc;
1183 	ctrl->cc = new;
1184 
1185 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1186 		nvmet_start_ctrl(ctrl);
1187 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1188 		nvmet_clear_ctrl(ctrl);
1189 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1190 		nvmet_clear_ctrl(ctrl);
1191 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1192 	}
1193 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1194 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1195 	mutex_unlock(&ctrl->lock);
1196 }
1197 
1198 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1199 {
1200 	/* command sets supported: NVMe command set: */
1201 	ctrl->cap = (1ULL << 37);
1202 	/* Controller supports one or more I/O Command Sets */
1203 	ctrl->cap |= (1ULL << 43);
1204 	/* CC.EN timeout in 500msec units: */
1205 	ctrl->cap |= (15ULL << 24);
1206 	/* maximum queue entries supported: */
1207 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1208 }
1209 
1210 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1211 				       const char *hostnqn, u16 cntlid,
1212 				       struct nvmet_req *req)
1213 {
1214 	struct nvmet_ctrl *ctrl = NULL;
1215 	struct nvmet_subsys *subsys;
1216 
1217 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1218 	if (!subsys) {
1219 		pr_warn("connect request for invalid subsystem %s!\n",
1220 			subsysnqn);
1221 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1222 		goto out;
1223 	}
1224 
1225 	mutex_lock(&subsys->lock);
1226 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1227 		if (ctrl->cntlid == cntlid) {
1228 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1229 				pr_warn("hostnqn mismatch.\n");
1230 				continue;
1231 			}
1232 			if (!kref_get_unless_zero(&ctrl->ref))
1233 				continue;
1234 
1235 			/* ctrl found */
1236 			goto found;
1237 		}
1238 	}
1239 
1240 	ctrl = NULL; /* ctrl not found */
1241 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1242 		cntlid, subsysnqn, hostnqn);
1243 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1244 
1245 found:
1246 	mutex_unlock(&subsys->lock);
1247 	nvmet_subsys_put(subsys);
1248 out:
1249 	return ctrl;
1250 }
1251 
1252 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1253 {
1254 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1255 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1256 		       req->cmd->common.opcode, req->sq->qid);
1257 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1258 	}
1259 
1260 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1261 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1262 		       req->cmd->common.opcode, req->sq->qid);
1263 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1264 	}
1265 	return 0;
1266 }
1267 
1268 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1269 {
1270 	struct nvmet_host_link *p;
1271 
1272 	lockdep_assert_held(&nvmet_config_sem);
1273 
1274 	if (subsys->allow_any_host)
1275 		return true;
1276 
1277 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1278 		return true;
1279 
1280 	list_for_each_entry(p, &subsys->hosts, entry) {
1281 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1282 			return true;
1283 	}
1284 
1285 	return false;
1286 }
1287 
1288 /*
1289  * Note: ctrl->subsys->lock should be held when calling this function
1290  */
1291 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1292 		struct nvmet_req *req)
1293 {
1294 	struct nvmet_ns *ns;
1295 	unsigned long idx;
1296 
1297 	if (!req->p2p_client)
1298 		return;
1299 
1300 	ctrl->p2p_client = get_device(req->p2p_client);
1301 
1302 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1303 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1304 }
1305 
1306 /*
1307  * Note: ctrl->subsys->lock should be held when calling this function
1308  */
1309 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1310 {
1311 	struct radix_tree_iter iter;
1312 	void __rcu **slot;
1313 
1314 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1315 		pci_dev_put(radix_tree_deref_slot(slot));
1316 
1317 	put_device(ctrl->p2p_client);
1318 }
1319 
1320 static void nvmet_fatal_error_handler(struct work_struct *work)
1321 {
1322 	struct nvmet_ctrl *ctrl =
1323 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1324 
1325 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1326 	ctrl->ops->delete_ctrl(ctrl);
1327 }
1328 
1329 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1330 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1331 {
1332 	struct nvmet_subsys *subsys;
1333 	struct nvmet_ctrl *ctrl;
1334 	int ret;
1335 	u16 status;
1336 
1337 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1338 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1339 	if (!subsys) {
1340 		pr_warn("connect request for invalid subsystem %s!\n",
1341 			subsysnqn);
1342 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1343 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1344 		goto out;
1345 	}
1346 
1347 	down_read(&nvmet_config_sem);
1348 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1349 		pr_info("connect by host %s for subsystem %s not allowed\n",
1350 			hostnqn, subsysnqn);
1351 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1352 		up_read(&nvmet_config_sem);
1353 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1354 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1355 		goto out_put_subsystem;
1356 	}
1357 	up_read(&nvmet_config_sem);
1358 
1359 	status = NVME_SC_INTERNAL;
1360 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1361 	if (!ctrl)
1362 		goto out_put_subsystem;
1363 	mutex_init(&ctrl->lock);
1364 
1365 	nvmet_init_cap(ctrl);
1366 
1367 	ctrl->port = req->port;
1368 
1369 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1370 	INIT_LIST_HEAD(&ctrl->async_events);
1371 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1372 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1373 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1374 
1375 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1376 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1377 
1378 	kref_init(&ctrl->ref);
1379 	ctrl->subsys = subsys;
1380 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1381 
1382 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1383 			sizeof(__le32), GFP_KERNEL);
1384 	if (!ctrl->changed_ns_list)
1385 		goto out_free_ctrl;
1386 
1387 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1388 			sizeof(struct nvmet_sq *),
1389 			GFP_KERNEL);
1390 	if (!ctrl->sqs)
1391 		goto out_free_changed_ns_list;
1392 
1393 	if (subsys->cntlid_min > subsys->cntlid_max)
1394 		goto out_free_sqs;
1395 
1396 	ret = ida_simple_get(&cntlid_ida,
1397 			     subsys->cntlid_min, subsys->cntlid_max,
1398 			     GFP_KERNEL);
1399 	if (ret < 0) {
1400 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1401 		goto out_free_sqs;
1402 	}
1403 	ctrl->cntlid = ret;
1404 
1405 	ctrl->ops = req->ops;
1406 
1407 	/*
1408 	 * Discovery controllers may use some arbitrary high value
1409 	 * in order to cleanup stale discovery sessions
1410 	 */
1411 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1412 		kato = NVMET_DISC_KATO_MS;
1413 
1414 	/* keep-alive timeout in seconds */
1415 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1416 
1417 	ctrl->err_counter = 0;
1418 	spin_lock_init(&ctrl->error_lock);
1419 
1420 	nvmet_start_keep_alive_timer(ctrl);
1421 
1422 	mutex_lock(&subsys->lock);
1423 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1424 	nvmet_setup_p2p_ns_map(ctrl, req);
1425 	mutex_unlock(&subsys->lock);
1426 
1427 	*ctrlp = ctrl;
1428 	return 0;
1429 
1430 out_free_sqs:
1431 	kfree(ctrl->sqs);
1432 out_free_changed_ns_list:
1433 	kfree(ctrl->changed_ns_list);
1434 out_free_ctrl:
1435 	kfree(ctrl);
1436 out_put_subsystem:
1437 	nvmet_subsys_put(subsys);
1438 out:
1439 	return status;
1440 }
1441 
1442 static void nvmet_ctrl_free(struct kref *ref)
1443 {
1444 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1445 	struct nvmet_subsys *subsys = ctrl->subsys;
1446 
1447 	mutex_lock(&subsys->lock);
1448 	nvmet_release_p2p_ns_map(ctrl);
1449 	list_del(&ctrl->subsys_entry);
1450 	mutex_unlock(&subsys->lock);
1451 
1452 	nvmet_stop_keep_alive_timer(ctrl);
1453 
1454 	flush_work(&ctrl->async_event_work);
1455 	cancel_work_sync(&ctrl->fatal_err_work);
1456 
1457 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1458 
1459 	nvmet_async_events_free(ctrl);
1460 	kfree(ctrl->sqs);
1461 	kfree(ctrl->changed_ns_list);
1462 	kfree(ctrl);
1463 
1464 	nvmet_subsys_put(subsys);
1465 }
1466 
1467 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1468 {
1469 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1470 }
1471 
1472 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1473 {
1474 	mutex_lock(&ctrl->lock);
1475 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1476 		ctrl->csts |= NVME_CSTS_CFS;
1477 		schedule_work(&ctrl->fatal_err_work);
1478 	}
1479 	mutex_unlock(&ctrl->lock);
1480 }
1481 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1482 
1483 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1484 		const char *subsysnqn)
1485 {
1486 	struct nvmet_subsys_link *p;
1487 
1488 	if (!port)
1489 		return NULL;
1490 
1491 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1492 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1493 			return NULL;
1494 		return nvmet_disc_subsys;
1495 	}
1496 
1497 	down_read(&nvmet_config_sem);
1498 	list_for_each_entry(p, &port->subsystems, entry) {
1499 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1500 				NVMF_NQN_SIZE)) {
1501 			if (!kref_get_unless_zero(&p->subsys->ref))
1502 				break;
1503 			up_read(&nvmet_config_sem);
1504 			return p->subsys;
1505 		}
1506 	}
1507 	up_read(&nvmet_config_sem);
1508 	return NULL;
1509 }
1510 
1511 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1512 		enum nvme_subsys_type type)
1513 {
1514 	struct nvmet_subsys *subsys;
1515 	char serial[NVMET_SN_MAX_SIZE / 2];
1516 	int ret;
1517 
1518 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1519 	if (!subsys)
1520 		return ERR_PTR(-ENOMEM);
1521 
1522 	subsys->ver = NVMET_DEFAULT_VS;
1523 	/* generate a random serial number as our controllers are ephemeral: */
1524 	get_random_bytes(&serial, sizeof(serial));
1525 	bin2hex(subsys->serial, &serial, sizeof(serial));
1526 
1527 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1528 	if (!subsys->model_number) {
1529 		ret = -ENOMEM;
1530 		goto free_subsys;
1531 	}
1532 
1533 	switch (type) {
1534 	case NVME_NQN_NVME:
1535 		subsys->max_qid = NVMET_NR_QUEUES;
1536 		break;
1537 	case NVME_NQN_DISC:
1538 		subsys->max_qid = 0;
1539 		break;
1540 	default:
1541 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1542 		ret = -EINVAL;
1543 		goto free_mn;
1544 	}
1545 	subsys->type = type;
1546 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1547 			GFP_KERNEL);
1548 	if (!subsys->subsysnqn) {
1549 		ret = -ENOMEM;
1550 		goto free_mn;
1551 	}
1552 	subsys->cntlid_min = NVME_CNTLID_MIN;
1553 	subsys->cntlid_max = NVME_CNTLID_MAX;
1554 	kref_init(&subsys->ref);
1555 
1556 	mutex_init(&subsys->lock);
1557 	xa_init(&subsys->namespaces);
1558 	INIT_LIST_HEAD(&subsys->ctrls);
1559 	INIT_LIST_HEAD(&subsys->hosts);
1560 
1561 	return subsys;
1562 
1563 free_mn:
1564 	kfree(subsys->model_number);
1565 free_subsys:
1566 	kfree(subsys);
1567 	return ERR_PTR(ret);
1568 }
1569 
1570 static void nvmet_subsys_free(struct kref *ref)
1571 {
1572 	struct nvmet_subsys *subsys =
1573 		container_of(ref, struct nvmet_subsys, ref);
1574 
1575 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1576 
1577 	xa_destroy(&subsys->namespaces);
1578 	nvmet_passthru_subsys_free(subsys);
1579 
1580 	kfree(subsys->subsysnqn);
1581 	kfree(subsys->model_number);
1582 	kfree(subsys);
1583 }
1584 
1585 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1586 {
1587 	struct nvmet_ctrl *ctrl;
1588 
1589 	mutex_lock(&subsys->lock);
1590 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1591 		ctrl->ops->delete_ctrl(ctrl);
1592 	mutex_unlock(&subsys->lock);
1593 }
1594 
1595 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1596 {
1597 	kref_put(&subsys->ref, nvmet_subsys_free);
1598 }
1599 
1600 static int __init nvmet_init(void)
1601 {
1602 	int error;
1603 
1604 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1605 
1606 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1607 	if (!zbd_wq)
1608 		return -ENOMEM;
1609 
1610 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1611 			WQ_MEM_RECLAIM, 0);
1612 	if (!buffered_io_wq) {
1613 		error = -ENOMEM;
1614 		goto out_free_zbd_work_queue;
1615 	}
1616 
1617 	error = nvmet_init_discovery();
1618 	if (error)
1619 		goto out_free_work_queue;
1620 
1621 	error = nvmet_init_configfs();
1622 	if (error)
1623 		goto out_exit_discovery;
1624 	return 0;
1625 
1626 out_exit_discovery:
1627 	nvmet_exit_discovery();
1628 out_free_work_queue:
1629 	destroy_workqueue(buffered_io_wq);
1630 out_free_zbd_work_queue:
1631 	destroy_workqueue(zbd_wq);
1632 	return error;
1633 }
1634 
1635 static void __exit nvmet_exit(void)
1636 {
1637 	nvmet_exit_configfs();
1638 	nvmet_exit_discovery();
1639 	ida_destroy(&cntlid_ida);
1640 	destroy_workqueue(buffered_io_wq);
1641 	destroy_workqueue(zbd_wq);
1642 
1643 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1644 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1645 }
1646 
1647 module_init(nvmet_init);
1648 module_exit(nvmet_exit);
1649 
1650 MODULE_LICENSE("GPL v2");
1651