xref: /openbmc/linux/drivers/nvme/target/core.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21 
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39 
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43 
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 	u16 status;
47 
48 	switch (errno) {
49 	case 0:
50 		status = NVME_SC_SUCCESS;
51 		break;
52 	case -ENOSPC:
53 		req->error_loc = offsetof(struct nvme_rw_command, length);
54 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 		break;
56 	case -EREMOTEIO:
57 		req->error_loc = offsetof(struct nvme_rw_command, slba);
58 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 		break;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 			break;
67 		default:
68 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 		}
70 		break;
71 	case -ENODATA:
72 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 		status = NVME_SC_ACCESS_DENIED;
74 		break;
75 	case -EIO:
76 		/* FALLTHRU */
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 
82 	return status;
83 }
84 
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 		const char *subsysnqn);
87 
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 		size_t len)
90 {
91 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 		req->error_loc = offsetof(struct nvme_common_command, dptr);
93 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 	}
95 	return 0;
96 }
97 
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 		req->error_loc = offsetof(struct nvme_common_command, dptr);
102 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 	}
104 	return 0;
105 }
106 
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 		req->error_loc = offsetof(struct nvme_common_command, dptr);
111 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 	}
113 	return 0;
114 }
115 
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 	struct nvmet_ns *ns;
119 
120 	if (list_empty(&subsys->namespaces))
121 		return 0;
122 
123 	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
124 	return ns->nsid;
125 }
126 
127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
128 {
129 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
130 }
131 
132 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
133 {
134 	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
135 	struct nvmet_req *req;
136 
137 	mutex_lock(&ctrl->lock);
138 	while (ctrl->nr_async_event_cmds) {
139 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
140 		mutex_unlock(&ctrl->lock);
141 		nvmet_req_complete(req, status);
142 		mutex_lock(&ctrl->lock);
143 	}
144 	mutex_unlock(&ctrl->lock);
145 }
146 
147 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
148 {
149 	struct nvmet_async_event *aen;
150 	struct nvmet_req *req;
151 
152 	mutex_lock(&ctrl->lock);
153 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
154 		aen = list_first_entry(&ctrl->async_events,
155 				       struct nvmet_async_event, entry);
156 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
157 		nvmet_set_result(req, nvmet_async_event_result(aen));
158 
159 		list_del(&aen->entry);
160 		kfree(aen);
161 
162 		mutex_unlock(&ctrl->lock);
163 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
164 		nvmet_req_complete(req, 0);
165 		mutex_lock(&ctrl->lock);
166 	}
167 	mutex_unlock(&ctrl->lock);
168 }
169 
170 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
171 {
172 	struct nvmet_async_event *aen, *tmp;
173 
174 	mutex_lock(&ctrl->lock);
175 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
176 		list_del(&aen->entry);
177 		kfree(aen);
178 	}
179 	mutex_unlock(&ctrl->lock);
180 }
181 
182 static void nvmet_async_event_work(struct work_struct *work)
183 {
184 	struct nvmet_ctrl *ctrl =
185 		container_of(work, struct nvmet_ctrl, async_event_work);
186 
187 	nvmet_async_events_process(ctrl);
188 }
189 
190 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
191 		u8 event_info, u8 log_page)
192 {
193 	struct nvmet_async_event *aen;
194 
195 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
196 	if (!aen)
197 		return;
198 
199 	aen->event_type = event_type;
200 	aen->event_info = event_info;
201 	aen->log_page = log_page;
202 
203 	mutex_lock(&ctrl->lock);
204 	list_add_tail(&aen->entry, &ctrl->async_events);
205 	mutex_unlock(&ctrl->lock);
206 
207 	schedule_work(&ctrl->async_event_work);
208 }
209 
210 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
211 {
212 	u32 i;
213 
214 	mutex_lock(&ctrl->lock);
215 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
216 		goto out_unlock;
217 
218 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
219 		if (ctrl->changed_ns_list[i] == nsid)
220 			goto out_unlock;
221 	}
222 
223 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
224 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
225 		ctrl->nr_changed_ns = U32_MAX;
226 		goto out_unlock;
227 	}
228 
229 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
230 out_unlock:
231 	mutex_unlock(&ctrl->lock);
232 }
233 
234 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
235 {
236 	struct nvmet_ctrl *ctrl;
237 
238 	lockdep_assert_held(&subsys->lock);
239 
240 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
241 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
242 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
243 			continue;
244 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
245 				NVME_AER_NOTICE_NS_CHANGED,
246 				NVME_LOG_CHANGED_NS);
247 	}
248 }
249 
250 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
251 		struct nvmet_port *port)
252 {
253 	struct nvmet_ctrl *ctrl;
254 
255 	mutex_lock(&subsys->lock);
256 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
257 		if (port && ctrl->port != port)
258 			continue;
259 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
260 			continue;
261 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
262 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
263 	}
264 	mutex_unlock(&subsys->lock);
265 }
266 
267 void nvmet_port_send_ana_event(struct nvmet_port *port)
268 {
269 	struct nvmet_subsys_link *p;
270 
271 	down_read(&nvmet_config_sem);
272 	list_for_each_entry(p, &port->subsystems, entry)
273 		nvmet_send_ana_event(p->subsys, port);
274 	up_read(&nvmet_config_sem);
275 }
276 
277 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
278 {
279 	int ret = 0;
280 
281 	down_write(&nvmet_config_sem);
282 	if (nvmet_transports[ops->type])
283 		ret = -EINVAL;
284 	else
285 		nvmet_transports[ops->type] = ops;
286 	up_write(&nvmet_config_sem);
287 
288 	return ret;
289 }
290 EXPORT_SYMBOL_GPL(nvmet_register_transport);
291 
292 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
293 {
294 	down_write(&nvmet_config_sem);
295 	nvmet_transports[ops->type] = NULL;
296 	up_write(&nvmet_config_sem);
297 }
298 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
299 
300 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
301 {
302 	struct nvmet_ctrl *ctrl;
303 
304 	mutex_lock(&subsys->lock);
305 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
306 		if (ctrl->port == port)
307 			ctrl->ops->delete_ctrl(ctrl);
308 	}
309 	mutex_unlock(&subsys->lock);
310 }
311 
312 int nvmet_enable_port(struct nvmet_port *port)
313 {
314 	const struct nvmet_fabrics_ops *ops;
315 	int ret;
316 
317 	lockdep_assert_held(&nvmet_config_sem);
318 
319 	ops = nvmet_transports[port->disc_addr.trtype];
320 	if (!ops) {
321 		up_write(&nvmet_config_sem);
322 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
323 		down_write(&nvmet_config_sem);
324 		ops = nvmet_transports[port->disc_addr.trtype];
325 		if (!ops) {
326 			pr_err("transport type %d not supported\n",
327 				port->disc_addr.trtype);
328 			return -EINVAL;
329 		}
330 	}
331 
332 	if (!try_module_get(ops->owner))
333 		return -EINVAL;
334 
335 	/*
336 	 * If the user requested PI support and the transport isn't pi capable,
337 	 * don't enable the port.
338 	 */
339 	if (port->pi_enable && !ops->metadata_support) {
340 		pr_err("T10-PI is not supported by transport type %d\n",
341 		       port->disc_addr.trtype);
342 		ret = -EINVAL;
343 		goto out_put;
344 	}
345 
346 	ret = ops->add_port(port);
347 	if (ret)
348 		goto out_put;
349 
350 	/* If the transport didn't set inline_data_size, then disable it. */
351 	if (port->inline_data_size < 0)
352 		port->inline_data_size = 0;
353 
354 	port->enabled = true;
355 	port->tr_ops = ops;
356 	return 0;
357 
358 out_put:
359 	module_put(ops->owner);
360 	return ret;
361 }
362 
363 void nvmet_disable_port(struct nvmet_port *port)
364 {
365 	const struct nvmet_fabrics_ops *ops;
366 
367 	lockdep_assert_held(&nvmet_config_sem);
368 
369 	port->enabled = false;
370 	port->tr_ops = NULL;
371 
372 	ops = nvmet_transports[port->disc_addr.trtype];
373 	ops->remove_port(port);
374 	module_put(ops->owner);
375 }
376 
377 static void nvmet_keep_alive_timer(struct work_struct *work)
378 {
379 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
380 			struct nvmet_ctrl, ka_work);
381 	bool cmd_seen = ctrl->cmd_seen;
382 
383 	ctrl->cmd_seen = false;
384 	if (cmd_seen) {
385 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
386 			ctrl->cntlid);
387 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
388 		return;
389 	}
390 
391 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
392 		ctrl->cntlid, ctrl->kato);
393 
394 	nvmet_ctrl_fatal_error(ctrl);
395 }
396 
397 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
398 {
399 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
400 		ctrl->cntlid, ctrl->kato);
401 
402 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
403 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
404 }
405 
406 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
407 {
408 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
409 
410 	cancel_delayed_work_sync(&ctrl->ka_work);
411 }
412 
413 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
414 		__le32 nsid)
415 {
416 	struct nvmet_ns *ns;
417 
418 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
419 		if (ns->nsid == le32_to_cpu(nsid))
420 			return ns;
421 	}
422 
423 	return NULL;
424 }
425 
426 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
427 {
428 	struct nvmet_ns *ns;
429 
430 	rcu_read_lock();
431 	ns = __nvmet_find_namespace(ctrl, nsid);
432 	if (ns)
433 		percpu_ref_get(&ns->ref);
434 	rcu_read_unlock();
435 
436 	return ns;
437 }
438 
439 static void nvmet_destroy_namespace(struct percpu_ref *ref)
440 {
441 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
442 
443 	complete(&ns->disable_done);
444 }
445 
446 void nvmet_put_namespace(struct nvmet_ns *ns)
447 {
448 	percpu_ref_put(&ns->ref);
449 }
450 
451 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
452 {
453 	nvmet_bdev_ns_disable(ns);
454 	nvmet_file_ns_disable(ns);
455 }
456 
457 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
458 {
459 	int ret;
460 	struct pci_dev *p2p_dev;
461 
462 	if (!ns->use_p2pmem)
463 		return 0;
464 
465 	if (!ns->bdev) {
466 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
467 		return -EINVAL;
468 	}
469 
470 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
471 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
472 		       ns->device_path);
473 		return -EINVAL;
474 	}
475 
476 	if (ns->p2p_dev) {
477 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
478 		if (ret < 0)
479 			return -EINVAL;
480 	} else {
481 		/*
482 		 * Right now we just check that there is p2pmem available so
483 		 * we can report an error to the user right away if there
484 		 * is not. We'll find the actual device to use once we
485 		 * setup the controller when the port's device is available.
486 		 */
487 
488 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
489 		if (!p2p_dev) {
490 			pr_err("no peer-to-peer memory is available for %s\n",
491 			       ns->device_path);
492 			return -EINVAL;
493 		}
494 
495 		pci_dev_put(p2p_dev);
496 	}
497 
498 	return 0;
499 }
500 
501 /*
502  * Note: ctrl->subsys->lock should be held when calling this function
503  */
504 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
505 				    struct nvmet_ns *ns)
506 {
507 	struct device *clients[2];
508 	struct pci_dev *p2p_dev;
509 	int ret;
510 
511 	if (!ctrl->p2p_client || !ns->use_p2pmem)
512 		return;
513 
514 	if (ns->p2p_dev) {
515 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
516 		if (ret < 0)
517 			return;
518 
519 		p2p_dev = pci_dev_get(ns->p2p_dev);
520 	} else {
521 		clients[0] = ctrl->p2p_client;
522 		clients[1] = nvmet_ns_dev(ns);
523 
524 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
525 		if (!p2p_dev) {
526 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
527 			       dev_name(ctrl->p2p_client), ns->device_path);
528 			return;
529 		}
530 	}
531 
532 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
533 	if (ret < 0)
534 		pci_dev_put(p2p_dev);
535 
536 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
537 		ns->nsid);
538 }
539 
540 void nvmet_ns_revalidate(struct nvmet_ns *ns)
541 {
542 	loff_t oldsize = ns->size;
543 
544 	if (ns->bdev)
545 		nvmet_bdev_ns_revalidate(ns);
546 	else
547 		nvmet_file_ns_revalidate(ns);
548 
549 	if (oldsize != ns->size)
550 		nvmet_ns_changed(ns->subsys, ns->nsid);
551 }
552 
553 int nvmet_ns_enable(struct nvmet_ns *ns)
554 {
555 	struct nvmet_subsys *subsys = ns->subsys;
556 	struct nvmet_ctrl *ctrl;
557 	int ret;
558 
559 	mutex_lock(&subsys->lock);
560 	ret = 0;
561 	if (ns->enabled)
562 		goto out_unlock;
563 
564 	ret = -EMFILE;
565 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
566 		goto out_unlock;
567 
568 	ret = nvmet_bdev_ns_enable(ns);
569 	if (ret == -ENOTBLK)
570 		ret = nvmet_file_ns_enable(ns);
571 	if (ret)
572 		goto out_unlock;
573 
574 	ret = nvmet_p2pmem_ns_enable(ns);
575 	if (ret)
576 		goto out_dev_disable;
577 
578 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
579 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
580 
581 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
582 				0, GFP_KERNEL);
583 	if (ret)
584 		goto out_dev_put;
585 
586 	if (ns->nsid > subsys->max_nsid)
587 		subsys->max_nsid = ns->nsid;
588 
589 	/*
590 	 * The namespaces list needs to be sorted to simplify the implementation
591 	 * of the Identify Namepace List subcommand.
592 	 */
593 	if (list_empty(&subsys->namespaces)) {
594 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
595 	} else {
596 		struct nvmet_ns *old;
597 
598 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link,
599 					lockdep_is_held(&subsys->lock)) {
600 			BUG_ON(ns->nsid == old->nsid);
601 			if (ns->nsid < old->nsid)
602 				break;
603 		}
604 
605 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
606 	}
607 	subsys->nr_namespaces++;
608 
609 	nvmet_ns_changed(subsys, ns->nsid);
610 	ns->enabled = true;
611 	ret = 0;
612 out_unlock:
613 	mutex_unlock(&subsys->lock);
614 	return ret;
615 out_dev_put:
616 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
617 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
618 out_dev_disable:
619 	nvmet_ns_dev_disable(ns);
620 	goto out_unlock;
621 }
622 
623 void nvmet_ns_disable(struct nvmet_ns *ns)
624 {
625 	struct nvmet_subsys *subsys = ns->subsys;
626 	struct nvmet_ctrl *ctrl;
627 
628 	mutex_lock(&subsys->lock);
629 	if (!ns->enabled)
630 		goto out_unlock;
631 
632 	ns->enabled = false;
633 	list_del_rcu(&ns->dev_link);
634 	if (ns->nsid == subsys->max_nsid)
635 		subsys->max_nsid = nvmet_max_nsid(subsys);
636 
637 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
638 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
639 
640 	mutex_unlock(&subsys->lock);
641 
642 	/*
643 	 * Now that we removed the namespaces from the lookup list, we
644 	 * can kill the per_cpu ref and wait for any remaining references
645 	 * to be dropped, as well as a RCU grace period for anyone only
646 	 * using the namepace under rcu_read_lock().  Note that we can't
647 	 * use call_rcu here as we need to ensure the namespaces have
648 	 * been fully destroyed before unloading the module.
649 	 */
650 	percpu_ref_kill(&ns->ref);
651 	synchronize_rcu();
652 	wait_for_completion(&ns->disable_done);
653 	percpu_ref_exit(&ns->ref);
654 
655 	mutex_lock(&subsys->lock);
656 
657 	subsys->nr_namespaces--;
658 	nvmet_ns_changed(subsys, ns->nsid);
659 	nvmet_ns_dev_disable(ns);
660 out_unlock:
661 	mutex_unlock(&subsys->lock);
662 }
663 
664 void nvmet_ns_free(struct nvmet_ns *ns)
665 {
666 	nvmet_ns_disable(ns);
667 
668 	down_write(&nvmet_ana_sem);
669 	nvmet_ana_group_enabled[ns->anagrpid]--;
670 	up_write(&nvmet_ana_sem);
671 
672 	kfree(ns->device_path);
673 	kfree(ns);
674 }
675 
676 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
677 {
678 	struct nvmet_ns *ns;
679 
680 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
681 	if (!ns)
682 		return NULL;
683 
684 	INIT_LIST_HEAD(&ns->dev_link);
685 	init_completion(&ns->disable_done);
686 
687 	ns->nsid = nsid;
688 	ns->subsys = subsys;
689 
690 	down_write(&nvmet_ana_sem);
691 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
692 	nvmet_ana_group_enabled[ns->anagrpid]++;
693 	up_write(&nvmet_ana_sem);
694 
695 	uuid_gen(&ns->uuid);
696 	ns->buffered_io = false;
697 
698 	return ns;
699 }
700 
701 static void nvmet_update_sq_head(struct nvmet_req *req)
702 {
703 	if (req->sq->size) {
704 		u32 old_sqhd, new_sqhd;
705 
706 		do {
707 			old_sqhd = req->sq->sqhd;
708 			new_sqhd = (old_sqhd + 1) % req->sq->size;
709 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
710 					old_sqhd);
711 	}
712 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
713 }
714 
715 static void nvmet_set_error(struct nvmet_req *req, u16 status)
716 {
717 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
718 	struct nvme_error_slot *new_error_slot;
719 	unsigned long flags;
720 
721 	req->cqe->status = cpu_to_le16(status << 1);
722 
723 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
724 		return;
725 
726 	spin_lock_irqsave(&ctrl->error_lock, flags);
727 	ctrl->err_counter++;
728 	new_error_slot =
729 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
730 
731 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
732 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
733 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
734 	new_error_slot->status_field = cpu_to_le16(status << 1);
735 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
736 	new_error_slot->lba = cpu_to_le64(req->error_slba);
737 	new_error_slot->nsid = req->cmd->common.nsid;
738 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
739 
740 	/* set the more bit for this request */
741 	req->cqe->status |= cpu_to_le16(1 << 14);
742 }
743 
744 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
745 {
746 	if (!req->sq->sqhd_disabled)
747 		nvmet_update_sq_head(req);
748 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
749 	req->cqe->command_id = req->cmd->common.command_id;
750 
751 	if (unlikely(status))
752 		nvmet_set_error(req, status);
753 
754 	trace_nvmet_req_complete(req);
755 
756 	if (req->ns)
757 		nvmet_put_namespace(req->ns);
758 	req->ops->queue_response(req);
759 }
760 
761 void nvmet_req_complete(struct nvmet_req *req, u16 status)
762 {
763 	__nvmet_req_complete(req, status);
764 	percpu_ref_put(&req->sq->ref);
765 }
766 EXPORT_SYMBOL_GPL(nvmet_req_complete);
767 
768 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
769 		u16 qid, u16 size)
770 {
771 	cq->qid = qid;
772 	cq->size = size;
773 
774 	ctrl->cqs[qid] = cq;
775 }
776 
777 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
778 		u16 qid, u16 size)
779 {
780 	sq->sqhd = 0;
781 	sq->qid = qid;
782 	sq->size = size;
783 
784 	ctrl->sqs[qid] = sq;
785 }
786 
787 static void nvmet_confirm_sq(struct percpu_ref *ref)
788 {
789 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
790 
791 	complete(&sq->confirm_done);
792 }
793 
794 void nvmet_sq_destroy(struct nvmet_sq *sq)
795 {
796 	struct nvmet_ctrl *ctrl = sq->ctrl;
797 
798 	/*
799 	 * If this is the admin queue, complete all AERs so that our
800 	 * queue doesn't have outstanding requests on it.
801 	 */
802 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
803 		nvmet_async_events_failall(ctrl);
804 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
805 	wait_for_completion(&sq->confirm_done);
806 	wait_for_completion(&sq->free_done);
807 	percpu_ref_exit(&sq->ref);
808 
809 	if (ctrl) {
810 		nvmet_ctrl_put(ctrl);
811 		sq->ctrl = NULL; /* allows reusing the queue later */
812 	}
813 }
814 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
815 
816 static void nvmet_sq_free(struct percpu_ref *ref)
817 {
818 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
819 
820 	complete(&sq->free_done);
821 }
822 
823 int nvmet_sq_init(struct nvmet_sq *sq)
824 {
825 	int ret;
826 
827 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
828 	if (ret) {
829 		pr_err("percpu_ref init failed!\n");
830 		return ret;
831 	}
832 	init_completion(&sq->free_done);
833 	init_completion(&sq->confirm_done);
834 
835 	return 0;
836 }
837 EXPORT_SYMBOL_GPL(nvmet_sq_init);
838 
839 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
840 		struct nvmet_ns *ns)
841 {
842 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
843 
844 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
845 		return NVME_SC_ANA_INACCESSIBLE;
846 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
847 		return NVME_SC_ANA_PERSISTENT_LOSS;
848 	if (unlikely(state == NVME_ANA_CHANGE))
849 		return NVME_SC_ANA_TRANSITION;
850 	return 0;
851 }
852 
853 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
854 {
855 	if (unlikely(req->ns->readonly)) {
856 		switch (req->cmd->common.opcode) {
857 		case nvme_cmd_read:
858 		case nvme_cmd_flush:
859 			break;
860 		default:
861 			return NVME_SC_NS_WRITE_PROTECTED;
862 		}
863 	}
864 
865 	return 0;
866 }
867 
868 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
869 {
870 	struct nvme_command *cmd = req->cmd;
871 	u16 ret;
872 
873 	ret = nvmet_check_ctrl_status(req, cmd);
874 	if (unlikely(ret))
875 		return ret;
876 
877 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
878 	if (unlikely(!req->ns)) {
879 		req->error_loc = offsetof(struct nvme_common_command, nsid);
880 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
881 	}
882 	ret = nvmet_check_ana_state(req->port, req->ns);
883 	if (unlikely(ret)) {
884 		req->error_loc = offsetof(struct nvme_common_command, nsid);
885 		return ret;
886 	}
887 	ret = nvmet_io_cmd_check_access(req);
888 	if (unlikely(ret)) {
889 		req->error_loc = offsetof(struct nvme_common_command, nsid);
890 		return ret;
891 	}
892 
893 	if (req->ns->file)
894 		return nvmet_file_parse_io_cmd(req);
895 	else
896 		return nvmet_bdev_parse_io_cmd(req);
897 }
898 
899 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
900 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
901 {
902 	u8 flags = req->cmd->common.flags;
903 	u16 status;
904 
905 	req->cq = cq;
906 	req->sq = sq;
907 	req->ops = ops;
908 	req->sg = NULL;
909 	req->metadata_sg = NULL;
910 	req->sg_cnt = 0;
911 	req->metadata_sg_cnt = 0;
912 	req->transfer_len = 0;
913 	req->metadata_len = 0;
914 	req->cqe->status = 0;
915 	req->cqe->sq_head = 0;
916 	req->ns = NULL;
917 	req->error_loc = NVMET_NO_ERROR_LOC;
918 	req->error_slba = 0;
919 
920 	trace_nvmet_req_init(req, req->cmd);
921 
922 	/* no support for fused commands yet */
923 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
924 		req->error_loc = offsetof(struct nvme_common_command, flags);
925 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
926 		goto fail;
927 	}
928 
929 	/*
930 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
931 	 * contains an address of a single contiguous physical buffer that is
932 	 * byte aligned.
933 	 */
934 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
935 		req->error_loc = offsetof(struct nvme_common_command, flags);
936 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
937 		goto fail;
938 	}
939 
940 	if (unlikely(!req->sq->ctrl))
941 		/* will return an error for any non-connect command: */
942 		status = nvmet_parse_connect_cmd(req);
943 	else if (likely(req->sq->qid != 0))
944 		status = nvmet_parse_io_cmd(req);
945 	else
946 		status = nvmet_parse_admin_cmd(req);
947 
948 	if (status)
949 		goto fail;
950 
951 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
952 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
953 		goto fail;
954 	}
955 
956 	if (sq->ctrl)
957 		sq->ctrl->cmd_seen = true;
958 
959 	return true;
960 
961 fail:
962 	__nvmet_req_complete(req, status);
963 	return false;
964 }
965 EXPORT_SYMBOL_GPL(nvmet_req_init);
966 
967 void nvmet_req_uninit(struct nvmet_req *req)
968 {
969 	percpu_ref_put(&req->sq->ref);
970 	if (req->ns)
971 		nvmet_put_namespace(req->ns);
972 }
973 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
974 
975 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
976 {
977 	if (unlikely(len != req->transfer_len)) {
978 		req->error_loc = offsetof(struct nvme_common_command, dptr);
979 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
980 		return false;
981 	}
982 
983 	return true;
984 }
985 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
986 
987 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
988 {
989 	if (unlikely(data_len > req->transfer_len)) {
990 		req->error_loc = offsetof(struct nvme_common_command, dptr);
991 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
992 		return false;
993 	}
994 
995 	return true;
996 }
997 
998 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
999 {
1000 	return req->transfer_len - req->metadata_len;
1001 }
1002 
1003 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
1004 {
1005 	req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
1006 			nvmet_data_transfer_len(req));
1007 	if (!req->sg)
1008 		goto out_err;
1009 
1010 	if (req->metadata_len) {
1011 		req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
1012 				&req->metadata_sg_cnt, req->metadata_len);
1013 		if (!req->metadata_sg)
1014 			goto out_free_sg;
1015 	}
1016 	return 0;
1017 out_free_sg:
1018 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1019 out_err:
1020 	return -ENOMEM;
1021 }
1022 
1023 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
1024 {
1025 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
1026 		return false;
1027 
1028 	if (req->sq->ctrl && req->sq->qid && req->ns) {
1029 		req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
1030 						 req->ns->nsid);
1031 		if (req->p2p_dev)
1032 			return true;
1033 	}
1034 
1035 	req->p2p_dev = NULL;
1036 	return false;
1037 }
1038 
1039 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1040 {
1041 	if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
1042 		return 0;
1043 
1044 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1045 			    &req->sg_cnt);
1046 	if (unlikely(!req->sg))
1047 		goto out;
1048 
1049 	if (req->metadata_len) {
1050 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1051 					     &req->metadata_sg_cnt);
1052 		if (unlikely(!req->metadata_sg))
1053 			goto out_free;
1054 	}
1055 
1056 	return 0;
1057 out_free:
1058 	sgl_free(req->sg);
1059 out:
1060 	return -ENOMEM;
1061 }
1062 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1063 
1064 void nvmet_req_free_sgls(struct nvmet_req *req)
1065 {
1066 	if (req->p2p_dev) {
1067 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1068 		if (req->metadata_sg)
1069 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1070 	} else {
1071 		sgl_free(req->sg);
1072 		if (req->metadata_sg)
1073 			sgl_free(req->metadata_sg);
1074 	}
1075 
1076 	req->sg = NULL;
1077 	req->metadata_sg = NULL;
1078 	req->sg_cnt = 0;
1079 	req->metadata_sg_cnt = 0;
1080 }
1081 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1082 
1083 static inline bool nvmet_cc_en(u32 cc)
1084 {
1085 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1086 }
1087 
1088 static inline u8 nvmet_cc_css(u32 cc)
1089 {
1090 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1091 }
1092 
1093 static inline u8 nvmet_cc_mps(u32 cc)
1094 {
1095 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1096 }
1097 
1098 static inline u8 nvmet_cc_ams(u32 cc)
1099 {
1100 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1101 }
1102 
1103 static inline u8 nvmet_cc_shn(u32 cc)
1104 {
1105 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1106 }
1107 
1108 static inline u8 nvmet_cc_iosqes(u32 cc)
1109 {
1110 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1111 }
1112 
1113 static inline u8 nvmet_cc_iocqes(u32 cc)
1114 {
1115 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1116 }
1117 
1118 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1119 {
1120 	lockdep_assert_held(&ctrl->lock);
1121 
1122 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1123 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1124 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1125 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1126 	    nvmet_cc_css(ctrl->cc) != 0) {
1127 		ctrl->csts = NVME_CSTS_CFS;
1128 		return;
1129 	}
1130 
1131 	ctrl->csts = NVME_CSTS_RDY;
1132 
1133 	/*
1134 	 * Controllers that are not yet enabled should not really enforce the
1135 	 * keep alive timeout, but we still want to track a timeout and cleanup
1136 	 * in case a host died before it enabled the controller.  Hence, simply
1137 	 * reset the keep alive timer when the controller is enabled.
1138 	 */
1139 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1140 }
1141 
1142 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1143 {
1144 	lockdep_assert_held(&ctrl->lock);
1145 
1146 	/* XXX: tear down queues? */
1147 	ctrl->csts &= ~NVME_CSTS_RDY;
1148 	ctrl->cc = 0;
1149 }
1150 
1151 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1152 {
1153 	u32 old;
1154 
1155 	mutex_lock(&ctrl->lock);
1156 	old = ctrl->cc;
1157 	ctrl->cc = new;
1158 
1159 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1160 		nvmet_start_ctrl(ctrl);
1161 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1162 		nvmet_clear_ctrl(ctrl);
1163 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1164 		nvmet_clear_ctrl(ctrl);
1165 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1166 	}
1167 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1168 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1169 	mutex_unlock(&ctrl->lock);
1170 }
1171 
1172 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1173 {
1174 	/* command sets supported: NVMe command set: */
1175 	ctrl->cap = (1ULL << 37);
1176 	/* CC.EN timeout in 500msec units: */
1177 	ctrl->cap |= (15ULL << 24);
1178 	/* maximum queue entries supported: */
1179 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1180 }
1181 
1182 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1183 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1184 {
1185 	struct nvmet_subsys *subsys;
1186 	struct nvmet_ctrl *ctrl;
1187 	u16 status = 0;
1188 
1189 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1190 	if (!subsys) {
1191 		pr_warn("connect request for invalid subsystem %s!\n",
1192 			subsysnqn);
1193 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1194 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1195 	}
1196 
1197 	mutex_lock(&subsys->lock);
1198 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1199 		if (ctrl->cntlid == cntlid) {
1200 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1201 				pr_warn("hostnqn mismatch.\n");
1202 				continue;
1203 			}
1204 			if (!kref_get_unless_zero(&ctrl->ref))
1205 				continue;
1206 
1207 			*ret = ctrl;
1208 			goto out;
1209 		}
1210 	}
1211 
1212 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1213 		cntlid, subsysnqn, hostnqn);
1214 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1215 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1216 
1217 out:
1218 	mutex_unlock(&subsys->lock);
1219 	nvmet_subsys_put(subsys);
1220 	return status;
1221 }
1222 
1223 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1224 {
1225 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1226 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1227 		       cmd->common.opcode, req->sq->qid);
1228 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1229 	}
1230 
1231 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1232 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1233 		       cmd->common.opcode, req->sq->qid);
1234 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1235 	}
1236 	return 0;
1237 }
1238 
1239 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1240 {
1241 	struct nvmet_host_link *p;
1242 
1243 	lockdep_assert_held(&nvmet_config_sem);
1244 
1245 	if (subsys->allow_any_host)
1246 		return true;
1247 
1248 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1249 		return true;
1250 
1251 	list_for_each_entry(p, &subsys->hosts, entry) {
1252 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1253 			return true;
1254 	}
1255 
1256 	return false;
1257 }
1258 
1259 /*
1260  * Note: ctrl->subsys->lock should be held when calling this function
1261  */
1262 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1263 		struct nvmet_req *req)
1264 {
1265 	struct nvmet_ns *ns;
1266 
1267 	if (!req->p2p_client)
1268 		return;
1269 
1270 	ctrl->p2p_client = get_device(req->p2p_client);
1271 
1272 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link,
1273 				lockdep_is_held(&ctrl->subsys->lock))
1274 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1275 }
1276 
1277 /*
1278  * Note: ctrl->subsys->lock should be held when calling this function
1279  */
1280 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1281 {
1282 	struct radix_tree_iter iter;
1283 	void __rcu **slot;
1284 
1285 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1286 		pci_dev_put(radix_tree_deref_slot(slot));
1287 
1288 	put_device(ctrl->p2p_client);
1289 }
1290 
1291 static void nvmet_fatal_error_handler(struct work_struct *work)
1292 {
1293 	struct nvmet_ctrl *ctrl =
1294 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1295 
1296 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1297 	ctrl->ops->delete_ctrl(ctrl);
1298 }
1299 
1300 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1301 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1302 {
1303 	struct nvmet_subsys *subsys;
1304 	struct nvmet_ctrl *ctrl;
1305 	int ret;
1306 	u16 status;
1307 
1308 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1309 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1310 	if (!subsys) {
1311 		pr_warn("connect request for invalid subsystem %s!\n",
1312 			subsysnqn);
1313 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1314 		goto out;
1315 	}
1316 
1317 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1318 	down_read(&nvmet_config_sem);
1319 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1320 		pr_info("connect by host %s for subsystem %s not allowed\n",
1321 			hostnqn, subsysnqn);
1322 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1323 		up_read(&nvmet_config_sem);
1324 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1325 		goto out_put_subsystem;
1326 	}
1327 	up_read(&nvmet_config_sem);
1328 
1329 	status = NVME_SC_INTERNAL;
1330 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1331 	if (!ctrl)
1332 		goto out_put_subsystem;
1333 	mutex_init(&ctrl->lock);
1334 
1335 	nvmet_init_cap(ctrl);
1336 
1337 	ctrl->port = req->port;
1338 
1339 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1340 	INIT_LIST_HEAD(&ctrl->async_events);
1341 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1342 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1343 
1344 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1345 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1346 
1347 	kref_init(&ctrl->ref);
1348 	ctrl->subsys = subsys;
1349 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1350 
1351 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1352 			sizeof(__le32), GFP_KERNEL);
1353 	if (!ctrl->changed_ns_list)
1354 		goto out_free_ctrl;
1355 
1356 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1357 			sizeof(struct nvmet_cq *),
1358 			GFP_KERNEL);
1359 	if (!ctrl->cqs)
1360 		goto out_free_changed_ns_list;
1361 
1362 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1363 			sizeof(struct nvmet_sq *),
1364 			GFP_KERNEL);
1365 	if (!ctrl->sqs)
1366 		goto out_free_cqs;
1367 
1368 	if (subsys->cntlid_min > subsys->cntlid_max)
1369 		goto out_free_cqs;
1370 
1371 	ret = ida_simple_get(&cntlid_ida,
1372 			     subsys->cntlid_min, subsys->cntlid_max,
1373 			     GFP_KERNEL);
1374 	if (ret < 0) {
1375 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1376 		goto out_free_sqs;
1377 	}
1378 	ctrl->cntlid = ret;
1379 
1380 	ctrl->ops = req->ops;
1381 
1382 	/*
1383 	 * Discovery controllers may use some arbitrary high value
1384 	 * in order to cleanup stale discovery sessions
1385 	 */
1386 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1387 		kato = NVMET_DISC_KATO_MS;
1388 
1389 	/* keep-alive timeout in seconds */
1390 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1391 
1392 	ctrl->err_counter = 0;
1393 	spin_lock_init(&ctrl->error_lock);
1394 
1395 	nvmet_start_keep_alive_timer(ctrl);
1396 
1397 	mutex_lock(&subsys->lock);
1398 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1399 	nvmet_setup_p2p_ns_map(ctrl, req);
1400 	mutex_unlock(&subsys->lock);
1401 
1402 	*ctrlp = ctrl;
1403 	return 0;
1404 
1405 out_free_sqs:
1406 	kfree(ctrl->sqs);
1407 out_free_cqs:
1408 	kfree(ctrl->cqs);
1409 out_free_changed_ns_list:
1410 	kfree(ctrl->changed_ns_list);
1411 out_free_ctrl:
1412 	kfree(ctrl);
1413 out_put_subsystem:
1414 	nvmet_subsys_put(subsys);
1415 out:
1416 	return status;
1417 }
1418 
1419 static void nvmet_ctrl_free(struct kref *ref)
1420 {
1421 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1422 	struct nvmet_subsys *subsys = ctrl->subsys;
1423 
1424 	mutex_lock(&subsys->lock);
1425 	nvmet_release_p2p_ns_map(ctrl);
1426 	list_del(&ctrl->subsys_entry);
1427 	mutex_unlock(&subsys->lock);
1428 
1429 	nvmet_stop_keep_alive_timer(ctrl);
1430 
1431 	flush_work(&ctrl->async_event_work);
1432 	cancel_work_sync(&ctrl->fatal_err_work);
1433 
1434 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1435 
1436 	nvmet_async_events_free(ctrl);
1437 	kfree(ctrl->sqs);
1438 	kfree(ctrl->cqs);
1439 	kfree(ctrl->changed_ns_list);
1440 	kfree(ctrl);
1441 
1442 	nvmet_subsys_put(subsys);
1443 }
1444 
1445 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1446 {
1447 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1448 }
1449 
1450 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1451 {
1452 	mutex_lock(&ctrl->lock);
1453 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1454 		ctrl->csts |= NVME_CSTS_CFS;
1455 		schedule_work(&ctrl->fatal_err_work);
1456 	}
1457 	mutex_unlock(&ctrl->lock);
1458 }
1459 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1460 
1461 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1462 		const char *subsysnqn)
1463 {
1464 	struct nvmet_subsys_link *p;
1465 
1466 	if (!port)
1467 		return NULL;
1468 
1469 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1470 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1471 			return NULL;
1472 		return nvmet_disc_subsys;
1473 	}
1474 
1475 	down_read(&nvmet_config_sem);
1476 	list_for_each_entry(p, &port->subsystems, entry) {
1477 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1478 				NVMF_NQN_SIZE)) {
1479 			if (!kref_get_unless_zero(&p->subsys->ref))
1480 				break;
1481 			up_read(&nvmet_config_sem);
1482 			return p->subsys;
1483 		}
1484 	}
1485 	up_read(&nvmet_config_sem);
1486 	return NULL;
1487 }
1488 
1489 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1490 		enum nvme_subsys_type type)
1491 {
1492 	struct nvmet_subsys *subsys;
1493 
1494 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1495 	if (!subsys)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1499 	/* generate a random serial number as our controllers are ephemeral: */
1500 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1501 
1502 	switch (type) {
1503 	case NVME_NQN_NVME:
1504 		subsys->max_qid = NVMET_NR_QUEUES;
1505 		break;
1506 	case NVME_NQN_DISC:
1507 		subsys->max_qid = 0;
1508 		break;
1509 	default:
1510 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1511 		kfree(subsys);
1512 		return ERR_PTR(-EINVAL);
1513 	}
1514 	subsys->type = type;
1515 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1516 			GFP_KERNEL);
1517 	if (!subsys->subsysnqn) {
1518 		kfree(subsys);
1519 		return ERR_PTR(-ENOMEM);
1520 	}
1521 	subsys->cntlid_min = NVME_CNTLID_MIN;
1522 	subsys->cntlid_max = NVME_CNTLID_MAX;
1523 	kref_init(&subsys->ref);
1524 
1525 	mutex_init(&subsys->lock);
1526 	INIT_LIST_HEAD(&subsys->namespaces);
1527 	INIT_LIST_HEAD(&subsys->ctrls);
1528 	INIT_LIST_HEAD(&subsys->hosts);
1529 
1530 	return subsys;
1531 }
1532 
1533 static void nvmet_subsys_free(struct kref *ref)
1534 {
1535 	struct nvmet_subsys *subsys =
1536 		container_of(ref, struct nvmet_subsys, ref);
1537 
1538 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1539 
1540 	kfree(subsys->subsysnqn);
1541 	kfree_rcu(subsys->model, rcuhead);
1542 	kfree(subsys);
1543 }
1544 
1545 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1546 {
1547 	struct nvmet_ctrl *ctrl;
1548 
1549 	mutex_lock(&subsys->lock);
1550 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1551 		ctrl->ops->delete_ctrl(ctrl);
1552 	mutex_unlock(&subsys->lock);
1553 }
1554 
1555 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1556 {
1557 	kref_put(&subsys->ref, nvmet_subsys_free);
1558 }
1559 
1560 static int __init nvmet_init(void)
1561 {
1562 	int error;
1563 
1564 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1565 
1566 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1567 			WQ_MEM_RECLAIM, 0);
1568 	if (!buffered_io_wq) {
1569 		error = -ENOMEM;
1570 		goto out;
1571 	}
1572 
1573 	error = nvmet_init_discovery();
1574 	if (error)
1575 		goto out_free_work_queue;
1576 
1577 	error = nvmet_init_configfs();
1578 	if (error)
1579 		goto out_exit_discovery;
1580 	return 0;
1581 
1582 out_exit_discovery:
1583 	nvmet_exit_discovery();
1584 out_free_work_queue:
1585 	destroy_workqueue(buffered_io_wq);
1586 out:
1587 	return error;
1588 }
1589 
1590 static void __exit nvmet_exit(void)
1591 {
1592 	nvmet_exit_configfs();
1593 	nvmet_exit_discovery();
1594 	ida_destroy(&cntlid_ida);
1595 	destroy_workqueue(buffered_io_wq);
1596 
1597 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1598 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1599 }
1600 
1601 module_init(nvmet_init);
1602 module_exit(nvmet_exit);
1603 
1604 MODULE_LICENSE("GPL v2");
1605