1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 20 static DEFINE_IDA(cntlid_ida); 21 22 /* 23 * This read/write semaphore is used to synchronize access to configuration 24 * information on a target system that will result in discovery log page 25 * information change for at least one host. 26 * The full list of resources to protected by this semaphore is: 27 * 28 * - subsystems list 29 * - per-subsystem allowed hosts list 30 * - allow_any_host subsystem attribute 31 * - nvmet_genctr 32 * - the nvmet_transports array 33 * 34 * When updating any of those lists/structures write lock should be obtained, 35 * while when reading (popolating discovery log page or checking host-subsystem 36 * link) read lock is obtained to allow concurrent reads. 37 */ 38 DECLARE_RWSEM(nvmet_config_sem); 39 40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 41 u64 nvmet_ana_chgcnt; 42 DECLARE_RWSEM(nvmet_ana_sem); 43 44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 45 { 46 u16 status; 47 48 switch (errno) { 49 case 0: 50 status = NVME_SC_SUCCESS; 51 break; 52 case -ENOSPC: 53 req->error_loc = offsetof(struct nvme_rw_command, length); 54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 55 break; 56 case -EREMOTEIO: 57 req->error_loc = offsetof(struct nvme_rw_command, slba); 58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 59 break; 60 case -EOPNOTSUPP: 61 req->error_loc = offsetof(struct nvme_common_command, opcode); 62 switch (req->cmd->common.opcode) { 63 case nvme_cmd_dsm: 64 case nvme_cmd_write_zeroes: 65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 66 break; 67 default: 68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 69 } 70 break; 71 case -ENODATA: 72 req->error_loc = offsetof(struct nvme_rw_command, nsid); 73 status = NVME_SC_ACCESS_DENIED; 74 break; 75 case -EIO: 76 /* FALLTHRU */ 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 status = NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 82 return status; 83 } 84 85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 86 const char *subsysnqn); 87 88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 89 size_t len) 90 { 91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 92 req->error_loc = offsetof(struct nvme_common_command, dptr); 93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 94 } 95 return 0; 96 } 97 98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 99 { 100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 101 req->error_loc = offsetof(struct nvme_common_command, dptr); 102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 103 } 104 return 0; 105 } 106 107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 108 { 109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 110 req->error_loc = offsetof(struct nvme_common_command, dptr); 111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 112 } 113 return 0; 114 } 115 116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys) 117 { 118 struct nvmet_ns *ns; 119 120 if (list_empty(&subsys->namespaces)) 121 return 0; 122 123 ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link); 124 return ns->nsid; 125 } 126 127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 128 { 129 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 130 } 131 132 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 133 { 134 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR; 135 struct nvmet_req *req; 136 137 mutex_lock(&ctrl->lock); 138 while (ctrl->nr_async_event_cmds) { 139 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 140 mutex_unlock(&ctrl->lock); 141 nvmet_req_complete(req, status); 142 mutex_lock(&ctrl->lock); 143 } 144 mutex_unlock(&ctrl->lock); 145 } 146 147 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 148 { 149 struct nvmet_async_event *aen; 150 struct nvmet_req *req; 151 152 mutex_lock(&ctrl->lock); 153 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 154 aen = list_first_entry(&ctrl->async_events, 155 struct nvmet_async_event, entry); 156 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 157 nvmet_set_result(req, nvmet_async_event_result(aen)); 158 159 list_del(&aen->entry); 160 kfree(aen); 161 162 mutex_unlock(&ctrl->lock); 163 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 164 nvmet_req_complete(req, 0); 165 mutex_lock(&ctrl->lock); 166 } 167 mutex_unlock(&ctrl->lock); 168 } 169 170 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 171 { 172 struct nvmet_async_event *aen, *tmp; 173 174 mutex_lock(&ctrl->lock); 175 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 176 list_del(&aen->entry); 177 kfree(aen); 178 } 179 mutex_unlock(&ctrl->lock); 180 } 181 182 static void nvmet_async_event_work(struct work_struct *work) 183 { 184 struct nvmet_ctrl *ctrl = 185 container_of(work, struct nvmet_ctrl, async_event_work); 186 187 nvmet_async_events_process(ctrl); 188 } 189 190 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 191 u8 event_info, u8 log_page) 192 { 193 struct nvmet_async_event *aen; 194 195 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 196 if (!aen) 197 return; 198 199 aen->event_type = event_type; 200 aen->event_info = event_info; 201 aen->log_page = log_page; 202 203 mutex_lock(&ctrl->lock); 204 list_add_tail(&aen->entry, &ctrl->async_events); 205 mutex_unlock(&ctrl->lock); 206 207 schedule_work(&ctrl->async_event_work); 208 } 209 210 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 211 { 212 u32 i; 213 214 mutex_lock(&ctrl->lock); 215 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 216 goto out_unlock; 217 218 for (i = 0; i < ctrl->nr_changed_ns; i++) { 219 if (ctrl->changed_ns_list[i] == nsid) 220 goto out_unlock; 221 } 222 223 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 224 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 225 ctrl->nr_changed_ns = U32_MAX; 226 goto out_unlock; 227 } 228 229 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 230 out_unlock: 231 mutex_unlock(&ctrl->lock); 232 } 233 234 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 235 { 236 struct nvmet_ctrl *ctrl; 237 238 lockdep_assert_held(&subsys->lock); 239 240 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 241 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 242 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 243 continue; 244 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 245 NVME_AER_NOTICE_NS_CHANGED, 246 NVME_LOG_CHANGED_NS); 247 } 248 } 249 250 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 251 struct nvmet_port *port) 252 { 253 struct nvmet_ctrl *ctrl; 254 255 mutex_lock(&subsys->lock); 256 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 257 if (port && ctrl->port != port) 258 continue; 259 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 260 continue; 261 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 262 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 263 } 264 mutex_unlock(&subsys->lock); 265 } 266 267 void nvmet_port_send_ana_event(struct nvmet_port *port) 268 { 269 struct nvmet_subsys_link *p; 270 271 down_read(&nvmet_config_sem); 272 list_for_each_entry(p, &port->subsystems, entry) 273 nvmet_send_ana_event(p->subsys, port); 274 up_read(&nvmet_config_sem); 275 } 276 277 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 278 { 279 int ret = 0; 280 281 down_write(&nvmet_config_sem); 282 if (nvmet_transports[ops->type]) 283 ret = -EINVAL; 284 else 285 nvmet_transports[ops->type] = ops; 286 up_write(&nvmet_config_sem); 287 288 return ret; 289 } 290 EXPORT_SYMBOL_GPL(nvmet_register_transport); 291 292 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 293 { 294 down_write(&nvmet_config_sem); 295 nvmet_transports[ops->type] = NULL; 296 up_write(&nvmet_config_sem); 297 } 298 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 299 300 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 301 { 302 struct nvmet_ctrl *ctrl; 303 304 mutex_lock(&subsys->lock); 305 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 306 if (ctrl->port == port) 307 ctrl->ops->delete_ctrl(ctrl); 308 } 309 mutex_unlock(&subsys->lock); 310 } 311 312 int nvmet_enable_port(struct nvmet_port *port) 313 { 314 const struct nvmet_fabrics_ops *ops; 315 int ret; 316 317 lockdep_assert_held(&nvmet_config_sem); 318 319 ops = nvmet_transports[port->disc_addr.trtype]; 320 if (!ops) { 321 up_write(&nvmet_config_sem); 322 request_module("nvmet-transport-%d", port->disc_addr.trtype); 323 down_write(&nvmet_config_sem); 324 ops = nvmet_transports[port->disc_addr.trtype]; 325 if (!ops) { 326 pr_err("transport type %d not supported\n", 327 port->disc_addr.trtype); 328 return -EINVAL; 329 } 330 } 331 332 if (!try_module_get(ops->owner)) 333 return -EINVAL; 334 335 /* 336 * If the user requested PI support and the transport isn't pi capable, 337 * don't enable the port. 338 */ 339 if (port->pi_enable && !ops->metadata_support) { 340 pr_err("T10-PI is not supported by transport type %d\n", 341 port->disc_addr.trtype); 342 ret = -EINVAL; 343 goto out_put; 344 } 345 346 ret = ops->add_port(port); 347 if (ret) 348 goto out_put; 349 350 /* If the transport didn't set inline_data_size, then disable it. */ 351 if (port->inline_data_size < 0) 352 port->inline_data_size = 0; 353 354 port->enabled = true; 355 port->tr_ops = ops; 356 return 0; 357 358 out_put: 359 module_put(ops->owner); 360 return ret; 361 } 362 363 void nvmet_disable_port(struct nvmet_port *port) 364 { 365 const struct nvmet_fabrics_ops *ops; 366 367 lockdep_assert_held(&nvmet_config_sem); 368 369 port->enabled = false; 370 port->tr_ops = NULL; 371 372 ops = nvmet_transports[port->disc_addr.trtype]; 373 ops->remove_port(port); 374 module_put(ops->owner); 375 } 376 377 static void nvmet_keep_alive_timer(struct work_struct *work) 378 { 379 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 380 struct nvmet_ctrl, ka_work); 381 bool cmd_seen = ctrl->cmd_seen; 382 383 ctrl->cmd_seen = false; 384 if (cmd_seen) { 385 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 386 ctrl->cntlid); 387 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 388 return; 389 } 390 391 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 392 ctrl->cntlid, ctrl->kato); 393 394 nvmet_ctrl_fatal_error(ctrl); 395 } 396 397 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 398 { 399 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 400 ctrl->cntlid, ctrl->kato); 401 402 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 403 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 404 } 405 406 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 407 { 408 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 409 410 cancel_delayed_work_sync(&ctrl->ka_work); 411 } 412 413 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl, 414 __le32 nsid) 415 { 416 struct nvmet_ns *ns; 417 418 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { 419 if (ns->nsid == le32_to_cpu(nsid)) 420 return ns; 421 } 422 423 return NULL; 424 } 425 426 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid) 427 { 428 struct nvmet_ns *ns; 429 430 rcu_read_lock(); 431 ns = __nvmet_find_namespace(ctrl, nsid); 432 if (ns) 433 percpu_ref_get(&ns->ref); 434 rcu_read_unlock(); 435 436 return ns; 437 } 438 439 static void nvmet_destroy_namespace(struct percpu_ref *ref) 440 { 441 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 442 443 complete(&ns->disable_done); 444 } 445 446 void nvmet_put_namespace(struct nvmet_ns *ns) 447 { 448 percpu_ref_put(&ns->ref); 449 } 450 451 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 452 { 453 nvmet_bdev_ns_disable(ns); 454 nvmet_file_ns_disable(ns); 455 } 456 457 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 458 { 459 int ret; 460 struct pci_dev *p2p_dev; 461 462 if (!ns->use_p2pmem) 463 return 0; 464 465 if (!ns->bdev) { 466 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 467 return -EINVAL; 468 } 469 470 if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) { 471 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 472 ns->device_path); 473 return -EINVAL; 474 } 475 476 if (ns->p2p_dev) { 477 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 478 if (ret < 0) 479 return -EINVAL; 480 } else { 481 /* 482 * Right now we just check that there is p2pmem available so 483 * we can report an error to the user right away if there 484 * is not. We'll find the actual device to use once we 485 * setup the controller when the port's device is available. 486 */ 487 488 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 489 if (!p2p_dev) { 490 pr_err("no peer-to-peer memory is available for %s\n", 491 ns->device_path); 492 return -EINVAL; 493 } 494 495 pci_dev_put(p2p_dev); 496 } 497 498 return 0; 499 } 500 501 /* 502 * Note: ctrl->subsys->lock should be held when calling this function 503 */ 504 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 505 struct nvmet_ns *ns) 506 { 507 struct device *clients[2]; 508 struct pci_dev *p2p_dev; 509 int ret; 510 511 if (!ctrl->p2p_client || !ns->use_p2pmem) 512 return; 513 514 if (ns->p2p_dev) { 515 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 516 if (ret < 0) 517 return; 518 519 p2p_dev = pci_dev_get(ns->p2p_dev); 520 } else { 521 clients[0] = ctrl->p2p_client; 522 clients[1] = nvmet_ns_dev(ns); 523 524 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 525 if (!p2p_dev) { 526 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 527 dev_name(ctrl->p2p_client), ns->device_path); 528 return; 529 } 530 } 531 532 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 533 if (ret < 0) 534 pci_dev_put(p2p_dev); 535 536 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 537 ns->nsid); 538 } 539 540 void nvmet_ns_revalidate(struct nvmet_ns *ns) 541 { 542 loff_t oldsize = ns->size; 543 544 if (ns->bdev) 545 nvmet_bdev_ns_revalidate(ns); 546 else 547 nvmet_file_ns_revalidate(ns); 548 549 if (oldsize != ns->size) 550 nvmet_ns_changed(ns->subsys, ns->nsid); 551 } 552 553 int nvmet_ns_enable(struct nvmet_ns *ns) 554 { 555 struct nvmet_subsys *subsys = ns->subsys; 556 struct nvmet_ctrl *ctrl; 557 int ret; 558 559 mutex_lock(&subsys->lock); 560 ret = 0; 561 if (ns->enabled) 562 goto out_unlock; 563 564 ret = -EMFILE; 565 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 566 goto out_unlock; 567 568 ret = nvmet_bdev_ns_enable(ns); 569 if (ret == -ENOTBLK) 570 ret = nvmet_file_ns_enable(ns); 571 if (ret) 572 goto out_unlock; 573 574 ret = nvmet_p2pmem_ns_enable(ns); 575 if (ret) 576 goto out_dev_disable; 577 578 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 579 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 580 581 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 582 0, GFP_KERNEL); 583 if (ret) 584 goto out_dev_put; 585 586 if (ns->nsid > subsys->max_nsid) 587 subsys->max_nsid = ns->nsid; 588 589 /* 590 * The namespaces list needs to be sorted to simplify the implementation 591 * of the Identify Namepace List subcommand. 592 */ 593 if (list_empty(&subsys->namespaces)) { 594 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces); 595 } else { 596 struct nvmet_ns *old; 597 598 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link, 599 lockdep_is_held(&subsys->lock)) { 600 BUG_ON(ns->nsid == old->nsid); 601 if (ns->nsid < old->nsid) 602 break; 603 } 604 605 list_add_tail_rcu(&ns->dev_link, &old->dev_link); 606 } 607 subsys->nr_namespaces++; 608 609 nvmet_ns_changed(subsys, ns->nsid); 610 ns->enabled = true; 611 ret = 0; 612 out_unlock: 613 mutex_unlock(&subsys->lock); 614 return ret; 615 out_dev_put: 616 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 617 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 618 out_dev_disable: 619 nvmet_ns_dev_disable(ns); 620 goto out_unlock; 621 } 622 623 void nvmet_ns_disable(struct nvmet_ns *ns) 624 { 625 struct nvmet_subsys *subsys = ns->subsys; 626 struct nvmet_ctrl *ctrl; 627 628 mutex_lock(&subsys->lock); 629 if (!ns->enabled) 630 goto out_unlock; 631 632 ns->enabled = false; 633 list_del_rcu(&ns->dev_link); 634 if (ns->nsid == subsys->max_nsid) 635 subsys->max_nsid = nvmet_max_nsid(subsys); 636 637 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 638 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 639 640 mutex_unlock(&subsys->lock); 641 642 /* 643 * Now that we removed the namespaces from the lookup list, we 644 * can kill the per_cpu ref and wait for any remaining references 645 * to be dropped, as well as a RCU grace period for anyone only 646 * using the namepace under rcu_read_lock(). Note that we can't 647 * use call_rcu here as we need to ensure the namespaces have 648 * been fully destroyed before unloading the module. 649 */ 650 percpu_ref_kill(&ns->ref); 651 synchronize_rcu(); 652 wait_for_completion(&ns->disable_done); 653 percpu_ref_exit(&ns->ref); 654 655 mutex_lock(&subsys->lock); 656 657 subsys->nr_namespaces--; 658 nvmet_ns_changed(subsys, ns->nsid); 659 nvmet_ns_dev_disable(ns); 660 out_unlock: 661 mutex_unlock(&subsys->lock); 662 } 663 664 void nvmet_ns_free(struct nvmet_ns *ns) 665 { 666 nvmet_ns_disable(ns); 667 668 down_write(&nvmet_ana_sem); 669 nvmet_ana_group_enabled[ns->anagrpid]--; 670 up_write(&nvmet_ana_sem); 671 672 kfree(ns->device_path); 673 kfree(ns); 674 } 675 676 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 677 { 678 struct nvmet_ns *ns; 679 680 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 681 if (!ns) 682 return NULL; 683 684 INIT_LIST_HEAD(&ns->dev_link); 685 init_completion(&ns->disable_done); 686 687 ns->nsid = nsid; 688 ns->subsys = subsys; 689 690 down_write(&nvmet_ana_sem); 691 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 692 nvmet_ana_group_enabled[ns->anagrpid]++; 693 up_write(&nvmet_ana_sem); 694 695 uuid_gen(&ns->uuid); 696 ns->buffered_io = false; 697 698 return ns; 699 } 700 701 static void nvmet_update_sq_head(struct nvmet_req *req) 702 { 703 if (req->sq->size) { 704 u32 old_sqhd, new_sqhd; 705 706 do { 707 old_sqhd = req->sq->sqhd; 708 new_sqhd = (old_sqhd + 1) % req->sq->size; 709 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 710 old_sqhd); 711 } 712 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 713 } 714 715 static void nvmet_set_error(struct nvmet_req *req, u16 status) 716 { 717 struct nvmet_ctrl *ctrl = req->sq->ctrl; 718 struct nvme_error_slot *new_error_slot; 719 unsigned long flags; 720 721 req->cqe->status = cpu_to_le16(status << 1); 722 723 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 724 return; 725 726 spin_lock_irqsave(&ctrl->error_lock, flags); 727 ctrl->err_counter++; 728 new_error_slot = 729 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 730 731 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 732 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 733 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 734 new_error_slot->status_field = cpu_to_le16(status << 1); 735 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 736 new_error_slot->lba = cpu_to_le64(req->error_slba); 737 new_error_slot->nsid = req->cmd->common.nsid; 738 spin_unlock_irqrestore(&ctrl->error_lock, flags); 739 740 /* set the more bit for this request */ 741 req->cqe->status |= cpu_to_le16(1 << 14); 742 } 743 744 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 745 { 746 if (!req->sq->sqhd_disabled) 747 nvmet_update_sq_head(req); 748 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 749 req->cqe->command_id = req->cmd->common.command_id; 750 751 if (unlikely(status)) 752 nvmet_set_error(req, status); 753 754 trace_nvmet_req_complete(req); 755 756 if (req->ns) 757 nvmet_put_namespace(req->ns); 758 req->ops->queue_response(req); 759 } 760 761 void nvmet_req_complete(struct nvmet_req *req, u16 status) 762 { 763 __nvmet_req_complete(req, status); 764 percpu_ref_put(&req->sq->ref); 765 } 766 EXPORT_SYMBOL_GPL(nvmet_req_complete); 767 768 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 769 u16 qid, u16 size) 770 { 771 cq->qid = qid; 772 cq->size = size; 773 774 ctrl->cqs[qid] = cq; 775 } 776 777 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 778 u16 qid, u16 size) 779 { 780 sq->sqhd = 0; 781 sq->qid = qid; 782 sq->size = size; 783 784 ctrl->sqs[qid] = sq; 785 } 786 787 static void nvmet_confirm_sq(struct percpu_ref *ref) 788 { 789 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 790 791 complete(&sq->confirm_done); 792 } 793 794 void nvmet_sq_destroy(struct nvmet_sq *sq) 795 { 796 struct nvmet_ctrl *ctrl = sq->ctrl; 797 798 /* 799 * If this is the admin queue, complete all AERs so that our 800 * queue doesn't have outstanding requests on it. 801 */ 802 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 803 nvmet_async_events_failall(ctrl); 804 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 805 wait_for_completion(&sq->confirm_done); 806 wait_for_completion(&sq->free_done); 807 percpu_ref_exit(&sq->ref); 808 809 if (ctrl) { 810 nvmet_ctrl_put(ctrl); 811 sq->ctrl = NULL; /* allows reusing the queue later */ 812 } 813 } 814 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 815 816 static void nvmet_sq_free(struct percpu_ref *ref) 817 { 818 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 819 820 complete(&sq->free_done); 821 } 822 823 int nvmet_sq_init(struct nvmet_sq *sq) 824 { 825 int ret; 826 827 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 828 if (ret) { 829 pr_err("percpu_ref init failed!\n"); 830 return ret; 831 } 832 init_completion(&sq->free_done); 833 init_completion(&sq->confirm_done); 834 835 return 0; 836 } 837 EXPORT_SYMBOL_GPL(nvmet_sq_init); 838 839 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 840 struct nvmet_ns *ns) 841 { 842 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 843 844 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 845 return NVME_SC_ANA_INACCESSIBLE; 846 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 847 return NVME_SC_ANA_PERSISTENT_LOSS; 848 if (unlikely(state == NVME_ANA_CHANGE)) 849 return NVME_SC_ANA_TRANSITION; 850 return 0; 851 } 852 853 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 854 { 855 if (unlikely(req->ns->readonly)) { 856 switch (req->cmd->common.opcode) { 857 case nvme_cmd_read: 858 case nvme_cmd_flush: 859 break; 860 default: 861 return NVME_SC_NS_WRITE_PROTECTED; 862 } 863 } 864 865 return 0; 866 } 867 868 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 869 { 870 struct nvme_command *cmd = req->cmd; 871 u16 ret; 872 873 ret = nvmet_check_ctrl_status(req, cmd); 874 if (unlikely(ret)) 875 return ret; 876 877 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid); 878 if (unlikely(!req->ns)) { 879 req->error_loc = offsetof(struct nvme_common_command, nsid); 880 return NVME_SC_INVALID_NS | NVME_SC_DNR; 881 } 882 ret = nvmet_check_ana_state(req->port, req->ns); 883 if (unlikely(ret)) { 884 req->error_loc = offsetof(struct nvme_common_command, nsid); 885 return ret; 886 } 887 ret = nvmet_io_cmd_check_access(req); 888 if (unlikely(ret)) { 889 req->error_loc = offsetof(struct nvme_common_command, nsid); 890 return ret; 891 } 892 893 if (req->ns->file) 894 return nvmet_file_parse_io_cmd(req); 895 else 896 return nvmet_bdev_parse_io_cmd(req); 897 } 898 899 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 900 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 901 { 902 u8 flags = req->cmd->common.flags; 903 u16 status; 904 905 req->cq = cq; 906 req->sq = sq; 907 req->ops = ops; 908 req->sg = NULL; 909 req->metadata_sg = NULL; 910 req->sg_cnt = 0; 911 req->metadata_sg_cnt = 0; 912 req->transfer_len = 0; 913 req->metadata_len = 0; 914 req->cqe->status = 0; 915 req->cqe->sq_head = 0; 916 req->ns = NULL; 917 req->error_loc = NVMET_NO_ERROR_LOC; 918 req->error_slba = 0; 919 920 trace_nvmet_req_init(req, req->cmd); 921 922 /* no support for fused commands yet */ 923 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 924 req->error_loc = offsetof(struct nvme_common_command, flags); 925 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 926 goto fail; 927 } 928 929 /* 930 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 931 * contains an address of a single contiguous physical buffer that is 932 * byte aligned. 933 */ 934 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 935 req->error_loc = offsetof(struct nvme_common_command, flags); 936 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 937 goto fail; 938 } 939 940 if (unlikely(!req->sq->ctrl)) 941 /* will return an error for any non-connect command: */ 942 status = nvmet_parse_connect_cmd(req); 943 else if (likely(req->sq->qid != 0)) 944 status = nvmet_parse_io_cmd(req); 945 else 946 status = nvmet_parse_admin_cmd(req); 947 948 if (status) 949 goto fail; 950 951 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 952 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 953 goto fail; 954 } 955 956 if (sq->ctrl) 957 sq->ctrl->cmd_seen = true; 958 959 return true; 960 961 fail: 962 __nvmet_req_complete(req, status); 963 return false; 964 } 965 EXPORT_SYMBOL_GPL(nvmet_req_init); 966 967 void nvmet_req_uninit(struct nvmet_req *req) 968 { 969 percpu_ref_put(&req->sq->ref); 970 if (req->ns) 971 nvmet_put_namespace(req->ns); 972 } 973 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 974 975 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 976 { 977 if (unlikely(len != req->transfer_len)) { 978 req->error_loc = offsetof(struct nvme_common_command, dptr); 979 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 980 return false; 981 } 982 983 return true; 984 } 985 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 986 987 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 988 { 989 if (unlikely(data_len > req->transfer_len)) { 990 req->error_loc = offsetof(struct nvme_common_command, dptr); 991 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 992 return false; 993 } 994 995 return true; 996 } 997 998 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 999 { 1000 return req->transfer_len - req->metadata_len; 1001 } 1002 1003 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req) 1004 { 1005 req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt, 1006 nvmet_data_transfer_len(req)); 1007 if (!req->sg) 1008 goto out_err; 1009 1010 if (req->metadata_len) { 1011 req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev, 1012 &req->metadata_sg_cnt, req->metadata_len); 1013 if (!req->metadata_sg) 1014 goto out_free_sg; 1015 } 1016 return 0; 1017 out_free_sg: 1018 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1019 out_err: 1020 return -ENOMEM; 1021 } 1022 1023 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req) 1024 { 1025 if (!IS_ENABLED(CONFIG_PCI_P2PDMA)) 1026 return false; 1027 1028 if (req->sq->ctrl && req->sq->qid && req->ns) { 1029 req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, 1030 req->ns->nsid); 1031 if (req->p2p_dev) 1032 return true; 1033 } 1034 1035 req->p2p_dev = NULL; 1036 return false; 1037 } 1038 1039 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1040 { 1041 if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req)) 1042 return 0; 1043 1044 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1045 &req->sg_cnt); 1046 if (unlikely(!req->sg)) 1047 goto out; 1048 1049 if (req->metadata_len) { 1050 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1051 &req->metadata_sg_cnt); 1052 if (unlikely(!req->metadata_sg)) 1053 goto out_free; 1054 } 1055 1056 return 0; 1057 out_free: 1058 sgl_free(req->sg); 1059 out: 1060 return -ENOMEM; 1061 } 1062 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1063 1064 void nvmet_req_free_sgls(struct nvmet_req *req) 1065 { 1066 if (req->p2p_dev) { 1067 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1068 if (req->metadata_sg) 1069 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1070 } else { 1071 sgl_free(req->sg); 1072 if (req->metadata_sg) 1073 sgl_free(req->metadata_sg); 1074 } 1075 1076 req->sg = NULL; 1077 req->metadata_sg = NULL; 1078 req->sg_cnt = 0; 1079 req->metadata_sg_cnt = 0; 1080 } 1081 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1082 1083 static inline bool nvmet_cc_en(u32 cc) 1084 { 1085 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1086 } 1087 1088 static inline u8 nvmet_cc_css(u32 cc) 1089 { 1090 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1091 } 1092 1093 static inline u8 nvmet_cc_mps(u32 cc) 1094 { 1095 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1096 } 1097 1098 static inline u8 nvmet_cc_ams(u32 cc) 1099 { 1100 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1101 } 1102 1103 static inline u8 nvmet_cc_shn(u32 cc) 1104 { 1105 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1106 } 1107 1108 static inline u8 nvmet_cc_iosqes(u32 cc) 1109 { 1110 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1111 } 1112 1113 static inline u8 nvmet_cc_iocqes(u32 cc) 1114 { 1115 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1116 } 1117 1118 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1119 { 1120 lockdep_assert_held(&ctrl->lock); 1121 1122 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1123 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES || 1124 nvmet_cc_mps(ctrl->cc) != 0 || 1125 nvmet_cc_ams(ctrl->cc) != 0 || 1126 nvmet_cc_css(ctrl->cc) != 0) { 1127 ctrl->csts = NVME_CSTS_CFS; 1128 return; 1129 } 1130 1131 ctrl->csts = NVME_CSTS_RDY; 1132 1133 /* 1134 * Controllers that are not yet enabled should not really enforce the 1135 * keep alive timeout, but we still want to track a timeout and cleanup 1136 * in case a host died before it enabled the controller. Hence, simply 1137 * reset the keep alive timer when the controller is enabled. 1138 */ 1139 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1140 } 1141 1142 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1143 { 1144 lockdep_assert_held(&ctrl->lock); 1145 1146 /* XXX: tear down queues? */ 1147 ctrl->csts &= ~NVME_CSTS_RDY; 1148 ctrl->cc = 0; 1149 } 1150 1151 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1152 { 1153 u32 old; 1154 1155 mutex_lock(&ctrl->lock); 1156 old = ctrl->cc; 1157 ctrl->cc = new; 1158 1159 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1160 nvmet_start_ctrl(ctrl); 1161 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1162 nvmet_clear_ctrl(ctrl); 1163 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1164 nvmet_clear_ctrl(ctrl); 1165 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1166 } 1167 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1168 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1169 mutex_unlock(&ctrl->lock); 1170 } 1171 1172 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1173 { 1174 /* command sets supported: NVMe command set: */ 1175 ctrl->cap = (1ULL << 37); 1176 /* CC.EN timeout in 500msec units: */ 1177 ctrl->cap |= (15ULL << 24); 1178 /* maximum queue entries supported: */ 1179 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1180 } 1181 1182 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, 1183 struct nvmet_req *req, struct nvmet_ctrl **ret) 1184 { 1185 struct nvmet_subsys *subsys; 1186 struct nvmet_ctrl *ctrl; 1187 u16 status = 0; 1188 1189 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1190 if (!subsys) { 1191 pr_warn("connect request for invalid subsystem %s!\n", 1192 subsysnqn); 1193 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1194 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1195 } 1196 1197 mutex_lock(&subsys->lock); 1198 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1199 if (ctrl->cntlid == cntlid) { 1200 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1201 pr_warn("hostnqn mismatch.\n"); 1202 continue; 1203 } 1204 if (!kref_get_unless_zero(&ctrl->ref)) 1205 continue; 1206 1207 *ret = ctrl; 1208 goto out; 1209 } 1210 } 1211 1212 pr_warn("could not find controller %d for subsys %s / host %s\n", 1213 cntlid, subsysnqn, hostnqn); 1214 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1215 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1216 1217 out: 1218 mutex_unlock(&subsys->lock); 1219 nvmet_subsys_put(subsys); 1220 return status; 1221 } 1222 1223 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd) 1224 { 1225 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1226 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1227 cmd->common.opcode, req->sq->qid); 1228 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1229 } 1230 1231 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1232 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1233 cmd->common.opcode, req->sq->qid); 1234 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1235 } 1236 return 0; 1237 } 1238 1239 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1240 { 1241 struct nvmet_host_link *p; 1242 1243 lockdep_assert_held(&nvmet_config_sem); 1244 1245 if (subsys->allow_any_host) 1246 return true; 1247 1248 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */ 1249 return true; 1250 1251 list_for_each_entry(p, &subsys->hosts, entry) { 1252 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 /* 1260 * Note: ctrl->subsys->lock should be held when calling this function 1261 */ 1262 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1263 struct nvmet_req *req) 1264 { 1265 struct nvmet_ns *ns; 1266 1267 if (!req->p2p_client) 1268 return; 1269 1270 ctrl->p2p_client = get_device(req->p2p_client); 1271 1272 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link, 1273 lockdep_is_held(&ctrl->subsys->lock)) 1274 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1275 } 1276 1277 /* 1278 * Note: ctrl->subsys->lock should be held when calling this function 1279 */ 1280 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1281 { 1282 struct radix_tree_iter iter; 1283 void __rcu **slot; 1284 1285 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1286 pci_dev_put(radix_tree_deref_slot(slot)); 1287 1288 put_device(ctrl->p2p_client); 1289 } 1290 1291 static void nvmet_fatal_error_handler(struct work_struct *work) 1292 { 1293 struct nvmet_ctrl *ctrl = 1294 container_of(work, struct nvmet_ctrl, fatal_err_work); 1295 1296 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1297 ctrl->ops->delete_ctrl(ctrl); 1298 } 1299 1300 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1301 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1302 { 1303 struct nvmet_subsys *subsys; 1304 struct nvmet_ctrl *ctrl; 1305 int ret; 1306 u16 status; 1307 1308 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1309 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1310 if (!subsys) { 1311 pr_warn("connect request for invalid subsystem %s!\n", 1312 subsysnqn); 1313 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1314 goto out; 1315 } 1316 1317 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1318 down_read(&nvmet_config_sem); 1319 if (!nvmet_host_allowed(subsys, hostnqn)) { 1320 pr_info("connect by host %s for subsystem %s not allowed\n", 1321 hostnqn, subsysnqn); 1322 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1323 up_read(&nvmet_config_sem); 1324 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1325 goto out_put_subsystem; 1326 } 1327 up_read(&nvmet_config_sem); 1328 1329 status = NVME_SC_INTERNAL; 1330 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1331 if (!ctrl) 1332 goto out_put_subsystem; 1333 mutex_init(&ctrl->lock); 1334 1335 nvmet_init_cap(ctrl); 1336 1337 ctrl->port = req->port; 1338 1339 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1340 INIT_LIST_HEAD(&ctrl->async_events); 1341 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1342 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1343 1344 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1345 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1346 1347 kref_init(&ctrl->ref); 1348 ctrl->subsys = subsys; 1349 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1350 1351 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1352 sizeof(__le32), GFP_KERNEL); 1353 if (!ctrl->changed_ns_list) 1354 goto out_free_ctrl; 1355 1356 ctrl->cqs = kcalloc(subsys->max_qid + 1, 1357 sizeof(struct nvmet_cq *), 1358 GFP_KERNEL); 1359 if (!ctrl->cqs) 1360 goto out_free_changed_ns_list; 1361 1362 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1363 sizeof(struct nvmet_sq *), 1364 GFP_KERNEL); 1365 if (!ctrl->sqs) 1366 goto out_free_cqs; 1367 1368 if (subsys->cntlid_min > subsys->cntlid_max) 1369 goto out_free_cqs; 1370 1371 ret = ida_simple_get(&cntlid_ida, 1372 subsys->cntlid_min, subsys->cntlid_max, 1373 GFP_KERNEL); 1374 if (ret < 0) { 1375 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1376 goto out_free_sqs; 1377 } 1378 ctrl->cntlid = ret; 1379 1380 ctrl->ops = req->ops; 1381 1382 /* 1383 * Discovery controllers may use some arbitrary high value 1384 * in order to cleanup stale discovery sessions 1385 */ 1386 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato) 1387 kato = NVMET_DISC_KATO_MS; 1388 1389 /* keep-alive timeout in seconds */ 1390 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1391 1392 ctrl->err_counter = 0; 1393 spin_lock_init(&ctrl->error_lock); 1394 1395 nvmet_start_keep_alive_timer(ctrl); 1396 1397 mutex_lock(&subsys->lock); 1398 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1399 nvmet_setup_p2p_ns_map(ctrl, req); 1400 mutex_unlock(&subsys->lock); 1401 1402 *ctrlp = ctrl; 1403 return 0; 1404 1405 out_free_sqs: 1406 kfree(ctrl->sqs); 1407 out_free_cqs: 1408 kfree(ctrl->cqs); 1409 out_free_changed_ns_list: 1410 kfree(ctrl->changed_ns_list); 1411 out_free_ctrl: 1412 kfree(ctrl); 1413 out_put_subsystem: 1414 nvmet_subsys_put(subsys); 1415 out: 1416 return status; 1417 } 1418 1419 static void nvmet_ctrl_free(struct kref *ref) 1420 { 1421 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1422 struct nvmet_subsys *subsys = ctrl->subsys; 1423 1424 mutex_lock(&subsys->lock); 1425 nvmet_release_p2p_ns_map(ctrl); 1426 list_del(&ctrl->subsys_entry); 1427 mutex_unlock(&subsys->lock); 1428 1429 nvmet_stop_keep_alive_timer(ctrl); 1430 1431 flush_work(&ctrl->async_event_work); 1432 cancel_work_sync(&ctrl->fatal_err_work); 1433 1434 ida_simple_remove(&cntlid_ida, ctrl->cntlid); 1435 1436 nvmet_async_events_free(ctrl); 1437 kfree(ctrl->sqs); 1438 kfree(ctrl->cqs); 1439 kfree(ctrl->changed_ns_list); 1440 kfree(ctrl); 1441 1442 nvmet_subsys_put(subsys); 1443 } 1444 1445 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1446 { 1447 kref_put(&ctrl->ref, nvmet_ctrl_free); 1448 } 1449 1450 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1451 { 1452 mutex_lock(&ctrl->lock); 1453 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1454 ctrl->csts |= NVME_CSTS_CFS; 1455 schedule_work(&ctrl->fatal_err_work); 1456 } 1457 mutex_unlock(&ctrl->lock); 1458 } 1459 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1460 1461 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1462 const char *subsysnqn) 1463 { 1464 struct nvmet_subsys_link *p; 1465 1466 if (!port) 1467 return NULL; 1468 1469 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1470 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1471 return NULL; 1472 return nvmet_disc_subsys; 1473 } 1474 1475 down_read(&nvmet_config_sem); 1476 list_for_each_entry(p, &port->subsystems, entry) { 1477 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1478 NVMF_NQN_SIZE)) { 1479 if (!kref_get_unless_zero(&p->subsys->ref)) 1480 break; 1481 up_read(&nvmet_config_sem); 1482 return p->subsys; 1483 } 1484 } 1485 up_read(&nvmet_config_sem); 1486 return NULL; 1487 } 1488 1489 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1490 enum nvme_subsys_type type) 1491 { 1492 struct nvmet_subsys *subsys; 1493 1494 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1495 if (!subsys) 1496 return ERR_PTR(-ENOMEM); 1497 1498 subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */ 1499 /* generate a random serial number as our controllers are ephemeral: */ 1500 get_random_bytes(&subsys->serial, sizeof(subsys->serial)); 1501 1502 switch (type) { 1503 case NVME_NQN_NVME: 1504 subsys->max_qid = NVMET_NR_QUEUES; 1505 break; 1506 case NVME_NQN_DISC: 1507 subsys->max_qid = 0; 1508 break; 1509 default: 1510 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1511 kfree(subsys); 1512 return ERR_PTR(-EINVAL); 1513 } 1514 subsys->type = type; 1515 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1516 GFP_KERNEL); 1517 if (!subsys->subsysnqn) { 1518 kfree(subsys); 1519 return ERR_PTR(-ENOMEM); 1520 } 1521 subsys->cntlid_min = NVME_CNTLID_MIN; 1522 subsys->cntlid_max = NVME_CNTLID_MAX; 1523 kref_init(&subsys->ref); 1524 1525 mutex_init(&subsys->lock); 1526 INIT_LIST_HEAD(&subsys->namespaces); 1527 INIT_LIST_HEAD(&subsys->ctrls); 1528 INIT_LIST_HEAD(&subsys->hosts); 1529 1530 return subsys; 1531 } 1532 1533 static void nvmet_subsys_free(struct kref *ref) 1534 { 1535 struct nvmet_subsys *subsys = 1536 container_of(ref, struct nvmet_subsys, ref); 1537 1538 WARN_ON_ONCE(!list_empty(&subsys->namespaces)); 1539 1540 kfree(subsys->subsysnqn); 1541 kfree_rcu(subsys->model, rcuhead); 1542 kfree(subsys); 1543 } 1544 1545 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1546 { 1547 struct nvmet_ctrl *ctrl; 1548 1549 mutex_lock(&subsys->lock); 1550 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1551 ctrl->ops->delete_ctrl(ctrl); 1552 mutex_unlock(&subsys->lock); 1553 } 1554 1555 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1556 { 1557 kref_put(&subsys->ref, nvmet_subsys_free); 1558 } 1559 1560 static int __init nvmet_init(void) 1561 { 1562 int error; 1563 1564 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1565 1566 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1567 WQ_MEM_RECLAIM, 0); 1568 if (!buffered_io_wq) { 1569 error = -ENOMEM; 1570 goto out; 1571 } 1572 1573 error = nvmet_init_discovery(); 1574 if (error) 1575 goto out_free_work_queue; 1576 1577 error = nvmet_init_configfs(); 1578 if (error) 1579 goto out_exit_discovery; 1580 return 0; 1581 1582 out_exit_discovery: 1583 nvmet_exit_discovery(); 1584 out_free_work_queue: 1585 destroy_workqueue(buffered_io_wq); 1586 out: 1587 return error; 1588 } 1589 1590 static void __exit nvmet_exit(void) 1591 { 1592 nvmet_exit_configfs(); 1593 nvmet_exit_discovery(); 1594 ida_destroy(&cntlid_ida); 1595 destroy_workqueue(buffered_io_wq); 1596 1597 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1598 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1599 } 1600 1601 module_init(nvmet_init); 1602 module_exit(nvmet_exit); 1603 1604 MODULE_LICENSE("GPL v2"); 1605