1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #include <generated/utsrelease.h> 14 15 #define CREATE_TRACE_POINTS 16 #include "trace.h" 17 18 #include "nvmet.h" 19 20 struct kmem_cache *nvmet_bvec_cache; 21 struct workqueue_struct *buffered_io_wq; 22 struct workqueue_struct *zbd_wq; 23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 24 static DEFINE_IDA(cntlid_ida); 25 26 struct workqueue_struct *nvmet_wq; 27 EXPORT_SYMBOL_GPL(nvmet_wq); 28 29 /* 30 * This read/write semaphore is used to synchronize access to configuration 31 * information on a target system that will result in discovery log page 32 * information change for at least one host. 33 * The full list of resources to protected by this semaphore is: 34 * 35 * - subsystems list 36 * - per-subsystem allowed hosts list 37 * - allow_any_host subsystem attribute 38 * - nvmet_genctr 39 * - the nvmet_transports array 40 * 41 * When updating any of those lists/structures write lock should be obtained, 42 * while when reading (popolating discovery log page or checking host-subsystem 43 * link) read lock is obtained to allow concurrent reads. 44 */ 45 DECLARE_RWSEM(nvmet_config_sem); 46 47 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 48 u64 nvmet_ana_chgcnt; 49 DECLARE_RWSEM(nvmet_ana_sem); 50 51 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 52 { 53 switch (errno) { 54 case 0: 55 return NVME_SC_SUCCESS; 56 case -ENOSPC: 57 req->error_loc = offsetof(struct nvme_rw_command, length); 58 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 59 case -EREMOTEIO: 60 req->error_loc = offsetof(struct nvme_rw_command, slba); 61 return NVME_SC_LBA_RANGE | NVME_SC_DNR; 62 case -EOPNOTSUPP: 63 req->error_loc = offsetof(struct nvme_common_command, opcode); 64 switch (req->cmd->common.opcode) { 65 case nvme_cmd_dsm: 66 case nvme_cmd_write_zeroes: 67 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 68 default: 69 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 70 } 71 break; 72 case -ENODATA: 73 req->error_loc = offsetof(struct nvme_rw_command, nsid); 74 return NVME_SC_ACCESS_DENIED; 75 case -EIO: 76 fallthrough; 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 return NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 } 82 83 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 84 { 85 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 86 req->sq->qid); 87 88 req->error_loc = offsetof(struct nvme_common_command, opcode); 89 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 90 } 91 92 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 93 const char *subsysnqn); 94 95 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 96 size_t len) 97 { 98 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 99 req->error_loc = offsetof(struct nvme_common_command, dptr); 100 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 101 } 102 return 0; 103 } 104 105 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 106 { 107 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 108 req->error_loc = offsetof(struct nvme_common_command, dptr); 109 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 110 } 111 return 0; 112 } 113 114 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 115 { 116 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 117 req->error_loc = offsetof(struct nvme_common_command, dptr); 118 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 119 } 120 return 0; 121 } 122 123 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 124 { 125 struct nvmet_ns *cur; 126 unsigned long idx; 127 u32 nsid = 0; 128 129 xa_for_each(&subsys->namespaces, idx, cur) 130 nsid = cur->nsid; 131 132 return nsid; 133 } 134 135 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 136 { 137 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 138 } 139 140 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 141 { 142 struct nvmet_req *req; 143 144 mutex_lock(&ctrl->lock); 145 while (ctrl->nr_async_event_cmds) { 146 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 147 mutex_unlock(&ctrl->lock); 148 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); 149 mutex_lock(&ctrl->lock); 150 } 151 mutex_unlock(&ctrl->lock); 152 } 153 154 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 155 { 156 struct nvmet_async_event *aen; 157 struct nvmet_req *req; 158 159 mutex_lock(&ctrl->lock); 160 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 161 aen = list_first_entry(&ctrl->async_events, 162 struct nvmet_async_event, entry); 163 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 164 nvmet_set_result(req, nvmet_async_event_result(aen)); 165 166 list_del(&aen->entry); 167 kfree(aen); 168 169 mutex_unlock(&ctrl->lock); 170 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 171 nvmet_req_complete(req, 0); 172 mutex_lock(&ctrl->lock); 173 } 174 mutex_unlock(&ctrl->lock); 175 } 176 177 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 178 { 179 struct nvmet_async_event *aen, *tmp; 180 181 mutex_lock(&ctrl->lock); 182 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 183 list_del(&aen->entry); 184 kfree(aen); 185 } 186 mutex_unlock(&ctrl->lock); 187 } 188 189 static void nvmet_async_event_work(struct work_struct *work) 190 { 191 struct nvmet_ctrl *ctrl = 192 container_of(work, struct nvmet_ctrl, async_event_work); 193 194 nvmet_async_events_process(ctrl); 195 } 196 197 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 198 u8 event_info, u8 log_page) 199 { 200 struct nvmet_async_event *aen; 201 202 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 203 if (!aen) 204 return; 205 206 aen->event_type = event_type; 207 aen->event_info = event_info; 208 aen->log_page = log_page; 209 210 mutex_lock(&ctrl->lock); 211 list_add_tail(&aen->entry, &ctrl->async_events); 212 mutex_unlock(&ctrl->lock); 213 214 queue_work(nvmet_wq, &ctrl->async_event_work); 215 } 216 217 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 218 { 219 u32 i; 220 221 mutex_lock(&ctrl->lock); 222 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 223 goto out_unlock; 224 225 for (i = 0; i < ctrl->nr_changed_ns; i++) { 226 if (ctrl->changed_ns_list[i] == nsid) 227 goto out_unlock; 228 } 229 230 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 231 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 232 ctrl->nr_changed_ns = U32_MAX; 233 goto out_unlock; 234 } 235 236 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 237 out_unlock: 238 mutex_unlock(&ctrl->lock); 239 } 240 241 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 242 { 243 struct nvmet_ctrl *ctrl; 244 245 lockdep_assert_held(&subsys->lock); 246 247 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 248 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 249 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 250 continue; 251 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 252 NVME_AER_NOTICE_NS_CHANGED, 253 NVME_LOG_CHANGED_NS); 254 } 255 } 256 257 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 258 struct nvmet_port *port) 259 { 260 struct nvmet_ctrl *ctrl; 261 262 mutex_lock(&subsys->lock); 263 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 264 if (port && ctrl->port != port) 265 continue; 266 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 267 continue; 268 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 269 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 270 } 271 mutex_unlock(&subsys->lock); 272 } 273 274 void nvmet_port_send_ana_event(struct nvmet_port *port) 275 { 276 struct nvmet_subsys_link *p; 277 278 down_read(&nvmet_config_sem); 279 list_for_each_entry(p, &port->subsystems, entry) 280 nvmet_send_ana_event(p->subsys, port); 281 up_read(&nvmet_config_sem); 282 } 283 284 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 285 { 286 int ret = 0; 287 288 down_write(&nvmet_config_sem); 289 if (nvmet_transports[ops->type]) 290 ret = -EINVAL; 291 else 292 nvmet_transports[ops->type] = ops; 293 up_write(&nvmet_config_sem); 294 295 return ret; 296 } 297 EXPORT_SYMBOL_GPL(nvmet_register_transport); 298 299 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 300 { 301 down_write(&nvmet_config_sem); 302 nvmet_transports[ops->type] = NULL; 303 up_write(&nvmet_config_sem); 304 } 305 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 306 307 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 308 { 309 struct nvmet_ctrl *ctrl; 310 311 mutex_lock(&subsys->lock); 312 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 313 if (ctrl->port == port) 314 ctrl->ops->delete_ctrl(ctrl); 315 } 316 mutex_unlock(&subsys->lock); 317 } 318 319 int nvmet_enable_port(struct nvmet_port *port) 320 { 321 const struct nvmet_fabrics_ops *ops; 322 int ret; 323 324 lockdep_assert_held(&nvmet_config_sem); 325 326 ops = nvmet_transports[port->disc_addr.trtype]; 327 if (!ops) { 328 up_write(&nvmet_config_sem); 329 request_module("nvmet-transport-%d", port->disc_addr.trtype); 330 down_write(&nvmet_config_sem); 331 ops = nvmet_transports[port->disc_addr.trtype]; 332 if (!ops) { 333 pr_err("transport type %d not supported\n", 334 port->disc_addr.trtype); 335 return -EINVAL; 336 } 337 } 338 339 if (!try_module_get(ops->owner)) 340 return -EINVAL; 341 342 /* 343 * If the user requested PI support and the transport isn't pi capable, 344 * don't enable the port. 345 */ 346 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 347 pr_err("T10-PI is not supported by transport type %d\n", 348 port->disc_addr.trtype); 349 ret = -EINVAL; 350 goto out_put; 351 } 352 353 ret = ops->add_port(port); 354 if (ret) 355 goto out_put; 356 357 /* If the transport didn't set inline_data_size, then disable it. */ 358 if (port->inline_data_size < 0) 359 port->inline_data_size = 0; 360 361 port->enabled = true; 362 port->tr_ops = ops; 363 return 0; 364 365 out_put: 366 module_put(ops->owner); 367 return ret; 368 } 369 370 void nvmet_disable_port(struct nvmet_port *port) 371 { 372 const struct nvmet_fabrics_ops *ops; 373 374 lockdep_assert_held(&nvmet_config_sem); 375 376 port->enabled = false; 377 port->tr_ops = NULL; 378 379 ops = nvmet_transports[port->disc_addr.trtype]; 380 ops->remove_port(port); 381 module_put(ops->owner); 382 } 383 384 static void nvmet_keep_alive_timer(struct work_struct *work) 385 { 386 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 387 struct nvmet_ctrl, ka_work); 388 bool reset_tbkas = ctrl->reset_tbkas; 389 390 ctrl->reset_tbkas = false; 391 if (reset_tbkas) { 392 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 393 ctrl->cntlid); 394 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 395 return; 396 } 397 398 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 399 ctrl->cntlid, ctrl->kato); 400 401 nvmet_ctrl_fatal_error(ctrl); 402 } 403 404 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 405 { 406 if (unlikely(ctrl->kato == 0)) 407 return; 408 409 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 410 ctrl->cntlid, ctrl->kato); 411 412 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 413 } 414 415 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 416 { 417 if (unlikely(ctrl->kato == 0)) 418 return; 419 420 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 421 422 cancel_delayed_work_sync(&ctrl->ka_work); 423 } 424 425 u16 nvmet_req_find_ns(struct nvmet_req *req) 426 { 427 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 428 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 429 430 req->ns = xa_load(&subsys->namespaces, nsid); 431 if (unlikely(!req->ns)) { 432 req->error_loc = offsetof(struct nvme_common_command, nsid); 433 if (nvmet_subsys_nsid_exists(subsys, nsid)) 434 return NVME_SC_INTERNAL_PATH_ERROR; 435 return NVME_SC_INVALID_NS | NVME_SC_DNR; 436 } 437 438 percpu_ref_get(&req->ns->ref); 439 return NVME_SC_SUCCESS; 440 } 441 442 static void nvmet_destroy_namespace(struct percpu_ref *ref) 443 { 444 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 445 446 complete(&ns->disable_done); 447 } 448 449 void nvmet_put_namespace(struct nvmet_ns *ns) 450 { 451 percpu_ref_put(&ns->ref); 452 } 453 454 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 455 { 456 nvmet_bdev_ns_disable(ns); 457 nvmet_file_ns_disable(ns); 458 } 459 460 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 461 { 462 int ret; 463 struct pci_dev *p2p_dev; 464 465 if (!ns->use_p2pmem) 466 return 0; 467 468 if (!ns->bdev) { 469 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 470 return -EINVAL; 471 } 472 473 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 474 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 475 ns->device_path); 476 return -EINVAL; 477 } 478 479 if (ns->p2p_dev) { 480 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 481 if (ret < 0) 482 return -EINVAL; 483 } else { 484 /* 485 * Right now we just check that there is p2pmem available so 486 * we can report an error to the user right away if there 487 * is not. We'll find the actual device to use once we 488 * setup the controller when the port's device is available. 489 */ 490 491 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 492 if (!p2p_dev) { 493 pr_err("no peer-to-peer memory is available for %s\n", 494 ns->device_path); 495 return -EINVAL; 496 } 497 498 pci_dev_put(p2p_dev); 499 } 500 501 return 0; 502 } 503 504 /* 505 * Note: ctrl->subsys->lock should be held when calling this function 506 */ 507 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 508 struct nvmet_ns *ns) 509 { 510 struct device *clients[2]; 511 struct pci_dev *p2p_dev; 512 int ret; 513 514 if (!ctrl->p2p_client || !ns->use_p2pmem) 515 return; 516 517 if (ns->p2p_dev) { 518 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 519 if (ret < 0) 520 return; 521 522 p2p_dev = pci_dev_get(ns->p2p_dev); 523 } else { 524 clients[0] = ctrl->p2p_client; 525 clients[1] = nvmet_ns_dev(ns); 526 527 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 528 if (!p2p_dev) { 529 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 530 dev_name(ctrl->p2p_client), ns->device_path); 531 return; 532 } 533 } 534 535 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 536 if (ret < 0) 537 pci_dev_put(p2p_dev); 538 539 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 540 ns->nsid); 541 } 542 543 bool nvmet_ns_revalidate(struct nvmet_ns *ns) 544 { 545 loff_t oldsize = ns->size; 546 547 if (ns->bdev) 548 nvmet_bdev_ns_revalidate(ns); 549 else 550 nvmet_file_ns_revalidate(ns); 551 552 return oldsize != ns->size; 553 } 554 555 int nvmet_ns_enable(struct nvmet_ns *ns) 556 { 557 struct nvmet_subsys *subsys = ns->subsys; 558 struct nvmet_ctrl *ctrl; 559 int ret; 560 561 mutex_lock(&subsys->lock); 562 ret = 0; 563 564 if (nvmet_is_passthru_subsys(subsys)) { 565 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 566 goto out_unlock; 567 } 568 569 if (ns->enabled) 570 goto out_unlock; 571 572 ret = -EMFILE; 573 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 574 goto out_unlock; 575 576 ret = nvmet_bdev_ns_enable(ns); 577 if (ret == -ENOTBLK) 578 ret = nvmet_file_ns_enable(ns); 579 if (ret) 580 goto out_unlock; 581 582 ret = nvmet_p2pmem_ns_enable(ns); 583 if (ret) 584 goto out_dev_disable; 585 586 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 587 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 588 589 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 590 0, GFP_KERNEL); 591 if (ret) 592 goto out_dev_put; 593 594 if (ns->nsid > subsys->max_nsid) 595 subsys->max_nsid = ns->nsid; 596 597 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 598 if (ret) 599 goto out_restore_subsys_maxnsid; 600 601 subsys->nr_namespaces++; 602 603 nvmet_ns_changed(subsys, ns->nsid); 604 ns->enabled = true; 605 ret = 0; 606 out_unlock: 607 mutex_unlock(&subsys->lock); 608 return ret; 609 610 out_restore_subsys_maxnsid: 611 subsys->max_nsid = nvmet_max_nsid(subsys); 612 percpu_ref_exit(&ns->ref); 613 out_dev_put: 614 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 615 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 616 out_dev_disable: 617 nvmet_ns_dev_disable(ns); 618 goto out_unlock; 619 } 620 621 void nvmet_ns_disable(struct nvmet_ns *ns) 622 { 623 struct nvmet_subsys *subsys = ns->subsys; 624 struct nvmet_ctrl *ctrl; 625 626 mutex_lock(&subsys->lock); 627 if (!ns->enabled) 628 goto out_unlock; 629 630 ns->enabled = false; 631 xa_erase(&ns->subsys->namespaces, ns->nsid); 632 if (ns->nsid == subsys->max_nsid) 633 subsys->max_nsid = nvmet_max_nsid(subsys); 634 635 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 636 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 637 638 mutex_unlock(&subsys->lock); 639 640 /* 641 * Now that we removed the namespaces from the lookup list, we 642 * can kill the per_cpu ref and wait for any remaining references 643 * to be dropped, as well as a RCU grace period for anyone only 644 * using the namepace under rcu_read_lock(). Note that we can't 645 * use call_rcu here as we need to ensure the namespaces have 646 * been fully destroyed before unloading the module. 647 */ 648 percpu_ref_kill(&ns->ref); 649 synchronize_rcu(); 650 wait_for_completion(&ns->disable_done); 651 percpu_ref_exit(&ns->ref); 652 653 mutex_lock(&subsys->lock); 654 655 subsys->nr_namespaces--; 656 nvmet_ns_changed(subsys, ns->nsid); 657 nvmet_ns_dev_disable(ns); 658 out_unlock: 659 mutex_unlock(&subsys->lock); 660 } 661 662 void nvmet_ns_free(struct nvmet_ns *ns) 663 { 664 nvmet_ns_disable(ns); 665 666 down_write(&nvmet_ana_sem); 667 nvmet_ana_group_enabled[ns->anagrpid]--; 668 up_write(&nvmet_ana_sem); 669 670 kfree(ns->device_path); 671 kfree(ns); 672 } 673 674 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 675 { 676 struct nvmet_ns *ns; 677 678 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 679 if (!ns) 680 return NULL; 681 682 init_completion(&ns->disable_done); 683 684 ns->nsid = nsid; 685 ns->subsys = subsys; 686 687 down_write(&nvmet_ana_sem); 688 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 689 nvmet_ana_group_enabled[ns->anagrpid]++; 690 up_write(&nvmet_ana_sem); 691 692 uuid_gen(&ns->uuid); 693 ns->buffered_io = false; 694 ns->csi = NVME_CSI_NVM; 695 696 return ns; 697 } 698 699 static void nvmet_update_sq_head(struct nvmet_req *req) 700 { 701 if (req->sq->size) { 702 u32 old_sqhd, new_sqhd; 703 704 old_sqhd = READ_ONCE(req->sq->sqhd); 705 do { 706 new_sqhd = (old_sqhd + 1) % req->sq->size; 707 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd)); 708 } 709 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 710 } 711 712 static void nvmet_set_error(struct nvmet_req *req, u16 status) 713 { 714 struct nvmet_ctrl *ctrl = req->sq->ctrl; 715 struct nvme_error_slot *new_error_slot; 716 unsigned long flags; 717 718 req->cqe->status = cpu_to_le16(status << 1); 719 720 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 721 return; 722 723 spin_lock_irqsave(&ctrl->error_lock, flags); 724 ctrl->err_counter++; 725 new_error_slot = 726 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 727 728 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 729 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 730 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 731 new_error_slot->status_field = cpu_to_le16(status << 1); 732 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 733 new_error_slot->lba = cpu_to_le64(req->error_slba); 734 new_error_slot->nsid = req->cmd->common.nsid; 735 spin_unlock_irqrestore(&ctrl->error_lock, flags); 736 737 /* set the more bit for this request */ 738 req->cqe->status |= cpu_to_le16(1 << 14); 739 } 740 741 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 742 { 743 struct nvmet_ns *ns = req->ns; 744 745 if (!req->sq->sqhd_disabled) 746 nvmet_update_sq_head(req); 747 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 748 req->cqe->command_id = req->cmd->common.command_id; 749 750 if (unlikely(status)) 751 nvmet_set_error(req, status); 752 753 trace_nvmet_req_complete(req); 754 755 req->ops->queue_response(req); 756 if (ns) 757 nvmet_put_namespace(ns); 758 } 759 760 void nvmet_req_complete(struct nvmet_req *req, u16 status) 761 { 762 struct nvmet_sq *sq = req->sq; 763 764 __nvmet_req_complete(req, status); 765 percpu_ref_put(&sq->ref); 766 } 767 EXPORT_SYMBOL_GPL(nvmet_req_complete); 768 769 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 770 u16 qid, u16 size) 771 { 772 cq->qid = qid; 773 cq->size = size; 774 } 775 776 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 777 u16 qid, u16 size) 778 { 779 sq->sqhd = 0; 780 sq->qid = qid; 781 sq->size = size; 782 783 ctrl->sqs[qid] = sq; 784 } 785 786 static void nvmet_confirm_sq(struct percpu_ref *ref) 787 { 788 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 789 790 complete(&sq->confirm_done); 791 } 792 793 void nvmet_sq_destroy(struct nvmet_sq *sq) 794 { 795 struct nvmet_ctrl *ctrl = sq->ctrl; 796 797 /* 798 * If this is the admin queue, complete all AERs so that our 799 * queue doesn't have outstanding requests on it. 800 */ 801 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 802 nvmet_async_events_failall(ctrl); 803 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 804 wait_for_completion(&sq->confirm_done); 805 wait_for_completion(&sq->free_done); 806 percpu_ref_exit(&sq->ref); 807 nvmet_auth_sq_free(sq); 808 809 if (ctrl) { 810 /* 811 * The teardown flow may take some time, and the host may not 812 * send us keep-alive during this period, hence reset the 813 * traffic based keep-alive timer so we don't trigger a 814 * controller teardown as a result of a keep-alive expiration. 815 */ 816 ctrl->reset_tbkas = true; 817 sq->ctrl->sqs[sq->qid] = NULL; 818 nvmet_ctrl_put(ctrl); 819 sq->ctrl = NULL; /* allows reusing the queue later */ 820 } 821 } 822 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 823 824 static void nvmet_sq_free(struct percpu_ref *ref) 825 { 826 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 827 828 complete(&sq->free_done); 829 } 830 831 int nvmet_sq_init(struct nvmet_sq *sq) 832 { 833 int ret; 834 835 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 836 if (ret) { 837 pr_err("percpu_ref init failed!\n"); 838 return ret; 839 } 840 init_completion(&sq->free_done); 841 init_completion(&sq->confirm_done); 842 nvmet_auth_sq_init(sq); 843 844 return 0; 845 } 846 EXPORT_SYMBOL_GPL(nvmet_sq_init); 847 848 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 849 struct nvmet_ns *ns) 850 { 851 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 852 853 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 854 return NVME_SC_ANA_INACCESSIBLE; 855 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 856 return NVME_SC_ANA_PERSISTENT_LOSS; 857 if (unlikely(state == NVME_ANA_CHANGE)) 858 return NVME_SC_ANA_TRANSITION; 859 return 0; 860 } 861 862 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 863 { 864 if (unlikely(req->ns->readonly)) { 865 switch (req->cmd->common.opcode) { 866 case nvme_cmd_read: 867 case nvme_cmd_flush: 868 break; 869 default: 870 return NVME_SC_NS_WRITE_PROTECTED; 871 } 872 } 873 874 return 0; 875 } 876 877 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 878 { 879 struct nvme_command *cmd = req->cmd; 880 u16 ret; 881 882 if (nvme_is_fabrics(cmd)) 883 return nvmet_parse_fabrics_io_cmd(req); 884 885 if (unlikely(!nvmet_check_auth_status(req))) 886 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 887 888 ret = nvmet_check_ctrl_status(req); 889 if (unlikely(ret)) 890 return ret; 891 892 if (nvmet_is_passthru_req(req)) 893 return nvmet_parse_passthru_io_cmd(req); 894 895 ret = nvmet_req_find_ns(req); 896 if (unlikely(ret)) 897 return ret; 898 899 ret = nvmet_check_ana_state(req->port, req->ns); 900 if (unlikely(ret)) { 901 req->error_loc = offsetof(struct nvme_common_command, nsid); 902 return ret; 903 } 904 ret = nvmet_io_cmd_check_access(req); 905 if (unlikely(ret)) { 906 req->error_loc = offsetof(struct nvme_common_command, nsid); 907 return ret; 908 } 909 910 switch (req->ns->csi) { 911 case NVME_CSI_NVM: 912 if (req->ns->file) 913 return nvmet_file_parse_io_cmd(req); 914 return nvmet_bdev_parse_io_cmd(req); 915 case NVME_CSI_ZNS: 916 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 917 return nvmet_bdev_zns_parse_io_cmd(req); 918 return NVME_SC_INVALID_IO_CMD_SET; 919 default: 920 return NVME_SC_INVALID_IO_CMD_SET; 921 } 922 } 923 924 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 925 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 926 { 927 u8 flags = req->cmd->common.flags; 928 u16 status; 929 930 req->cq = cq; 931 req->sq = sq; 932 req->ops = ops; 933 req->sg = NULL; 934 req->metadata_sg = NULL; 935 req->sg_cnt = 0; 936 req->metadata_sg_cnt = 0; 937 req->transfer_len = 0; 938 req->metadata_len = 0; 939 req->cqe->status = 0; 940 req->cqe->sq_head = 0; 941 req->ns = NULL; 942 req->error_loc = NVMET_NO_ERROR_LOC; 943 req->error_slba = 0; 944 945 /* no support for fused commands yet */ 946 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 947 req->error_loc = offsetof(struct nvme_common_command, flags); 948 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 949 goto fail; 950 } 951 952 /* 953 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 954 * contains an address of a single contiguous physical buffer that is 955 * byte aligned. 956 */ 957 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 958 req->error_loc = offsetof(struct nvme_common_command, flags); 959 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 960 goto fail; 961 } 962 963 if (unlikely(!req->sq->ctrl)) 964 /* will return an error for any non-connect command: */ 965 status = nvmet_parse_connect_cmd(req); 966 else if (likely(req->sq->qid != 0)) 967 status = nvmet_parse_io_cmd(req); 968 else 969 status = nvmet_parse_admin_cmd(req); 970 971 if (status) 972 goto fail; 973 974 trace_nvmet_req_init(req, req->cmd); 975 976 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 977 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 978 goto fail; 979 } 980 981 if (sq->ctrl) 982 sq->ctrl->reset_tbkas = true; 983 984 return true; 985 986 fail: 987 __nvmet_req_complete(req, status); 988 return false; 989 } 990 EXPORT_SYMBOL_GPL(nvmet_req_init); 991 992 void nvmet_req_uninit(struct nvmet_req *req) 993 { 994 percpu_ref_put(&req->sq->ref); 995 if (req->ns) 996 nvmet_put_namespace(req->ns); 997 } 998 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 999 1000 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 1001 { 1002 if (unlikely(len != req->transfer_len)) { 1003 req->error_loc = offsetof(struct nvme_common_command, dptr); 1004 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1005 return false; 1006 } 1007 1008 return true; 1009 } 1010 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 1011 1012 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 1013 { 1014 if (unlikely(data_len > req->transfer_len)) { 1015 req->error_loc = offsetof(struct nvme_common_command, dptr); 1016 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1017 return false; 1018 } 1019 1020 return true; 1021 } 1022 1023 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1024 { 1025 return req->transfer_len - req->metadata_len; 1026 } 1027 1028 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1029 struct nvmet_req *req) 1030 { 1031 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1032 nvmet_data_transfer_len(req)); 1033 if (!req->sg) 1034 goto out_err; 1035 1036 if (req->metadata_len) { 1037 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1038 &req->metadata_sg_cnt, req->metadata_len); 1039 if (!req->metadata_sg) 1040 goto out_free_sg; 1041 } 1042 1043 req->p2p_dev = p2p_dev; 1044 1045 return 0; 1046 out_free_sg: 1047 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1048 out_err: 1049 return -ENOMEM; 1050 } 1051 1052 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1053 { 1054 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1055 !req->sq->ctrl || !req->sq->qid || !req->ns) 1056 return NULL; 1057 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1058 } 1059 1060 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1061 { 1062 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1063 1064 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1065 return 0; 1066 1067 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1068 &req->sg_cnt); 1069 if (unlikely(!req->sg)) 1070 goto out; 1071 1072 if (req->metadata_len) { 1073 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1074 &req->metadata_sg_cnt); 1075 if (unlikely(!req->metadata_sg)) 1076 goto out_free; 1077 } 1078 1079 return 0; 1080 out_free: 1081 sgl_free(req->sg); 1082 out: 1083 return -ENOMEM; 1084 } 1085 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1086 1087 void nvmet_req_free_sgls(struct nvmet_req *req) 1088 { 1089 if (req->p2p_dev) { 1090 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1091 if (req->metadata_sg) 1092 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1093 req->p2p_dev = NULL; 1094 } else { 1095 sgl_free(req->sg); 1096 if (req->metadata_sg) 1097 sgl_free(req->metadata_sg); 1098 } 1099 1100 req->sg = NULL; 1101 req->metadata_sg = NULL; 1102 req->sg_cnt = 0; 1103 req->metadata_sg_cnt = 0; 1104 } 1105 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1106 1107 static inline bool nvmet_cc_en(u32 cc) 1108 { 1109 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1110 } 1111 1112 static inline u8 nvmet_cc_css(u32 cc) 1113 { 1114 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1115 } 1116 1117 static inline u8 nvmet_cc_mps(u32 cc) 1118 { 1119 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1120 } 1121 1122 static inline u8 nvmet_cc_ams(u32 cc) 1123 { 1124 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1125 } 1126 1127 static inline u8 nvmet_cc_shn(u32 cc) 1128 { 1129 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1130 } 1131 1132 static inline u8 nvmet_cc_iosqes(u32 cc) 1133 { 1134 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1135 } 1136 1137 static inline u8 nvmet_cc_iocqes(u32 cc) 1138 { 1139 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1140 } 1141 1142 static inline bool nvmet_css_supported(u8 cc_css) 1143 { 1144 switch (cc_css << NVME_CC_CSS_SHIFT) { 1145 case NVME_CC_CSS_NVM: 1146 case NVME_CC_CSS_CSI: 1147 return true; 1148 default: 1149 return false; 1150 } 1151 } 1152 1153 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1154 { 1155 lockdep_assert_held(&ctrl->lock); 1156 1157 /* 1158 * Only I/O controllers should verify iosqes,iocqes. 1159 * Strictly speaking, the spec says a discovery controller 1160 * should verify iosqes,iocqes are zeroed, however that 1161 * would break backwards compatibility, so don't enforce it. 1162 */ 1163 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1164 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1165 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1166 ctrl->csts = NVME_CSTS_CFS; 1167 return; 1168 } 1169 1170 if (nvmet_cc_mps(ctrl->cc) != 0 || 1171 nvmet_cc_ams(ctrl->cc) != 0 || 1172 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1173 ctrl->csts = NVME_CSTS_CFS; 1174 return; 1175 } 1176 1177 ctrl->csts = NVME_CSTS_RDY; 1178 1179 /* 1180 * Controllers that are not yet enabled should not really enforce the 1181 * keep alive timeout, but we still want to track a timeout and cleanup 1182 * in case a host died before it enabled the controller. Hence, simply 1183 * reset the keep alive timer when the controller is enabled. 1184 */ 1185 if (ctrl->kato) 1186 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 1187 } 1188 1189 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1190 { 1191 lockdep_assert_held(&ctrl->lock); 1192 1193 /* XXX: tear down queues? */ 1194 ctrl->csts &= ~NVME_CSTS_RDY; 1195 ctrl->cc = 0; 1196 } 1197 1198 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1199 { 1200 u32 old; 1201 1202 mutex_lock(&ctrl->lock); 1203 old = ctrl->cc; 1204 ctrl->cc = new; 1205 1206 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1207 nvmet_start_ctrl(ctrl); 1208 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1209 nvmet_clear_ctrl(ctrl); 1210 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1211 nvmet_clear_ctrl(ctrl); 1212 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1213 } 1214 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1215 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1216 mutex_unlock(&ctrl->lock); 1217 } 1218 1219 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1220 { 1221 /* command sets supported: NVMe command set: */ 1222 ctrl->cap = (1ULL << 37); 1223 /* Controller supports one or more I/O Command Sets */ 1224 ctrl->cap |= (1ULL << 43); 1225 /* CC.EN timeout in 500msec units: */ 1226 ctrl->cap |= (15ULL << 24); 1227 /* maximum queue entries supported: */ 1228 if (ctrl->ops->get_max_queue_size) 1229 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1; 1230 else 1231 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1232 1233 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1234 nvmet_passthrough_override_cap(ctrl); 1235 } 1236 1237 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1238 const char *hostnqn, u16 cntlid, 1239 struct nvmet_req *req) 1240 { 1241 struct nvmet_ctrl *ctrl = NULL; 1242 struct nvmet_subsys *subsys; 1243 1244 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1245 if (!subsys) { 1246 pr_warn("connect request for invalid subsystem %s!\n", 1247 subsysnqn); 1248 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1249 goto out; 1250 } 1251 1252 mutex_lock(&subsys->lock); 1253 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1254 if (ctrl->cntlid == cntlid) { 1255 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1256 pr_warn("hostnqn mismatch.\n"); 1257 continue; 1258 } 1259 if (!kref_get_unless_zero(&ctrl->ref)) 1260 continue; 1261 1262 /* ctrl found */ 1263 goto found; 1264 } 1265 } 1266 1267 ctrl = NULL; /* ctrl not found */ 1268 pr_warn("could not find controller %d for subsys %s / host %s\n", 1269 cntlid, subsysnqn, hostnqn); 1270 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1271 1272 found: 1273 mutex_unlock(&subsys->lock); 1274 nvmet_subsys_put(subsys); 1275 out: 1276 return ctrl; 1277 } 1278 1279 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1280 { 1281 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1282 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1283 req->cmd->common.opcode, req->sq->qid); 1284 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1285 } 1286 1287 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1288 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1289 req->cmd->common.opcode, req->sq->qid); 1290 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1291 } 1292 1293 if (unlikely(!nvmet_check_auth_status(req))) { 1294 pr_warn("qid %d not authenticated\n", req->sq->qid); 1295 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 1296 } 1297 return 0; 1298 } 1299 1300 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1301 { 1302 struct nvmet_host_link *p; 1303 1304 lockdep_assert_held(&nvmet_config_sem); 1305 1306 if (subsys->allow_any_host) 1307 return true; 1308 1309 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1310 return true; 1311 1312 list_for_each_entry(p, &subsys->hosts, entry) { 1313 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1314 return true; 1315 } 1316 1317 return false; 1318 } 1319 1320 /* 1321 * Note: ctrl->subsys->lock should be held when calling this function 1322 */ 1323 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1324 struct nvmet_req *req) 1325 { 1326 struct nvmet_ns *ns; 1327 unsigned long idx; 1328 1329 if (!req->p2p_client) 1330 return; 1331 1332 ctrl->p2p_client = get_device(req->p2p_client); 1333 1334 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1335 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1336 } 1337 1338 /* 1339 * Note: ctrl->subsys->lock should be held when calling this function 1340 */ 1341 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1342 { 1343 struct radix_tree_iter iter; 1344 void __rcu **slot; 1345 1346 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1347 pci_dev_put(radix_tree_deref_slot(slot)); 1348 1349 put_device(ctrl->p2p_client); 1350 } 1351 1352 static void nvmet_fatal_error_handler(struct work_struct *work) 1353 { 1354 struct nvmet_ctrl *ctrl = 1355 container_of(work, struct nvmet_ctrl, fatal_err_work); 1356 1357 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1358 ctrl->ops->delete_ctrl(ctrl); 1359 } 1360 1361 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1362 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1363 { 1364 struct nvmet_subsys *subsys; 1365 struct nvmet_ctrl *ctrl; 1366 int ret; 1367 u16 status; 1368 1369 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1370 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1371 if (!subsys) { 1372 pr_warn("connect request for invalid subsystem %s!\n", 1373 subsysnqn); 1374 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1375 req->error_loc = offsetof(struct nvme_common_command, dptr); 1376 goto out; 1377 } 1378 1379 down_read(&nvmet_config_sem); 1380 if (!nvmet_host_allowed(subsys, hostnqn)) { 1381 pr_info("connect by host %s for subsystem %s not allowed\n", 1382 hostnqn, subsysnqn); 1383 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1384 up_read(&nvmet_config_sem); 1385 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1386 req->error_loc = offsetof(struct nvme_common_command, dptr); 1387 goto out_put_subsystem; 1388 } 1389 up_read(&nvmet_config_sem); 1390 1391 status = NVME_SC_INTERNAL; 1392 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1393 if (!ctrl) 1394 goto out_put_subsystem; 1395 mutex_init(&ctrl->lock); 1396 1397 ctrl->port = req->port; 1398 ctrl->ops = req->ops; 1399 1400 #ifdef CONFIG_NVME_TARGET_PASSTHRU 1401 /* By default, set loop targets to clear IDS by default */ 1402 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP) 1403 subsys->clear_ids = 1; 1404 #endif 1405 1406 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1407 INIT_LIST_HEAD(&ctrl->async_events); 1408 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1409 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1410 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1411 1412 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1413 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1414 1415 kref_init(&ctrl->ref); 1416 ctrl->subsys = subsys; 1417 nvmet_init_cap(ctrl); 1418 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1419 1420 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1421 sizeof(__le32), GFP_KERNEL); 1422 if (!ctrl->changed_ns_list) 1423 goto out_free_ctrl; 1424 1425 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1426 sizeof(struct nvmet_sq *), 1427 GFP_KERNEL); 1428 if (!ctrl->sqs) 1429 goto out_free_changed_ns_list; 1430 1431 if (subsys->cntlid_min > subsys->cntlid_max) 1432 goto out_free_sqs; 1433 1434 ret = ida_alloc_range(&cntlid_ida, 1435 subsys->cntlid_min, subsys->cntlid_max, 1436 GFP_KERNEL); 1437 if (ret < 0) { 1438 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1439 goto out_free_sqs; 1440 } 1441 ctrl->cntlid = ret; 1442 1443 /* 1444 * Discovery controllers may use some arbitrary high value 1445 * in order to cleanup stale discovery sessions 1446 */ 1447 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1448 kato = NVMET_DISC_KATO_MS; 1449 1450 /* keep-alive timeout in seconds */ 1451 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1452 1453 ctrl->err_counter = 0; 1454 spin_lock_init(&ctrl->error_lock); 1455 1456 nvmet_start_keep_alive_timer(ctrl); 1457 1458 mutex_lock(&subsys->lock); 1459 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1460 nvmet_setup_p2p_ns_map(ctrl, req); 1461 mutex_unlock(&subsys->lock); 1462 1463 *ctrlp = ctrl; 1464 return 0; 1465 1466 out_free_sqs: 1467 kfree(ctrl->sqs); 1468 out_free_changed_ns_list: 1469 kfree(ctrl->changed_ns_list); 1470 out_free_ctrl: 1471 kfree(ctrl); 1472 out_put_subsystem: 1473 nvmet_subsys_put(subsys); 1474 out: 1475 return status; 1476 } 1477 1478 static void nvmet_ctrl_free(struct kref *ref) 1479 { 1480 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1481 struct nvmet_subsys *subsys = ctrl->subsys; 1482 1483 mutex_lock(&subsys->lock); 1484 nvmet_release_p2p_ns_map(ctrl); 1485 list_del(&ctrl->subsys_entry); 1486 mutex_unlock(&subsys->lock); 1487 1488 nvmet_stop_keep_alive_timer(ctrl); 1489 1490 flush_work(&ctrl->async_event_work); 1491 cancel_work_sync(&ctrl->fatal_err_work); 1492 1493 nvmet_destroy_auth(ctrl); 1494 1495 ida_free(&cntlid_ida, ctrl->cntlid); 1496 1497 nvmet_async_events_free(ctrl); 1498 kfree(ctrl->sqs); 1499 kfree(ctrl->changed_ns_list); 1500 kfree(ctrl); 1501 1502 nvmet_subsys_put(subsys); 1503 } 1504 1505 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1506 { 1507 kref_put(&ctrl->ref, nvmet_ctrl_free); 1508 } 1509 1510 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1511 { 1512 mutex_lock(&ctrl->lock); 1513 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1514 ctrl->csts |= NVME_CSTS_CFS; 1515 queue_work(nvmet_wq, &ctrl->fatal_err_work); 1516 } 1517 mutex_unlock(&ctrl->lock); 1518 } 1519 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1520 1521 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1522 const char *subsysnqn) 1523 { 1524 struct nvmet_subsys_link *p; 1525 1526 if (!port) 1527 return NULL; 1528 1529 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1530 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1531 return NULL; 1532 return nvmet_disc_subsys; 1533 } 1534 1535 down_read(&nvmet_config_sem); 1536 list_for_each_entry(p, &port->subsystems, entry) { 1537 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1538 NVMF_NQN_SIZE)) { 1539 if (!kref_get_unless_zero(&p->subsys->ref)) 1540 break; 1541 up_read(&nvmet_config_sem); 1542 return p->subsys; 1543 } 1544 } 1545 up_read(&nvmet_config_sem); 1546 return NULL; 1547 } 1548 1549 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1550 enum nvme_subsys_type type) 1551 { 1552 struct nvmet_subsys *subsys; 1553 char serial[NVMET_SN_MAX_SIZE / 2]; 1554 int ret; 1555 1556 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1557 if (!subsys) 1558 return ERR_PTR(-ENOMEM); 1559 1560 subsys->ver = NVMET_DEFAULT_VS; 1561 /* generate a random serial number as our controllers are ephemeral: */ 1562 get_random_bytes(&serial, sizeof(serial)); 1563 bin2hex(subsys->serial, &serial, sizeof(serial)); 1564 1565 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1566 if (!subsys->model_number) { 1567 ret = -ENOMEM; 1568 goto free_subsys; 1569 } 1570 1571 subsys->ieee_oui = 0; 1572 1573 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL); 1574 if (!subsys->firmware_rev) { 1575 ret = -ENOMEM; 1576 goto free_mn; 1577 } 1578 1579 switch (type) { 1580 case NVME_NQN_NVME: 1581 subsys->max_qid = NVMET_NR_QUEUES; 1582 break; 1583 case NVME_NQN_DISC: 1584 case NVME_NQN_CURR: 1585 subsys->max_qid = 0; 1586 break; 1587 default: 1588 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1589 ret = -EINVAL; 1590 goto free_fr; 1591 } 1592 subsys->type = type; 1593 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1594 GFP_KERNEL); 1595 if (!subsys->subsysnqn) { 1596 ret = -ENOMEM; 1597 goto free_fr; 1598 } 1599 subsys->cntlid_min = NVME_CNTLID_MIN; 1600 subsys->cntlid_max = NVME_CNTLID_MAX; 1601 kref_init(&subsys->ref); 1602 1603 mutex_init(&subsys->lock); 1604 xa_init(&subsys->namespaces); 1605 INIT_LIST_HEAD(&subsys->ctrls); 1606 INIT_LIST_HEAD(&subsys->hosts); 1607 1608 return subsys; 1609 1610 free_fr: 1611 kfree(subsys->firmware_rev); 1612 free_mn: 1613 kfree(subsys->model_number); 1614 free_subsys: 1615 kfree(subsys); 1616 return ERR_PTR(ret); 1617 } 1618 1619 static void nvmet_subsys_free(struct kref *ref) 1620 { 1621 struct nvmet_subsys *subsys = 1622 container_of(ref, struct nvmet_subsys, ref); 1623 1624 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1625 1626 xa_destroy(&subsys->namespaces); 1627 nvmet_passthru_subsys_free(subsys); 1628 1629 kfree(subsys->subsysnqn); 1630 kfree(subsys->model_number); 1631 kfree(subsys->firmware_rev); 1632 kfree(subsys); 1633 } 1634 1635 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1636 { 1637 struct nvmet_ctrl *ctrl; 1638 1639 mutex_lock(&subsys->lock); 1640 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1641 ctrl->ops->delete_ctrl(ctrl); 1642 mutex_unlock(&subsys->lock); 1643 } 1644 1645 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1646 { 1647 kref_put(&subsys->ref, nvmet_subsys_free); 1648 } 1649 1650 static int __init nvmet_init(void) 1651 { 1652 int error = -ENOMEM; 1653 1654 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1655 1656 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec", 1657 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, 1658 SLAB_HWCACHE_ALIGN, NULL); 1659 if (!nvmet_bvec_cache) 1660 return -ENOMEM; 1661 1662 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1663 if (!zbd_wq) 1664 goto out_destroy_bvec_cache; 1665 1666 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1667 WQ_MEM_RECLAIM, 0); 1668 if (!buffered_io_wq) 1669 goto out_free_zbd_work_queue; 1670 1671 nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0); 1672 if (!nvmet_wq) 1673 goto out_free_buffered_work_queue; 1674 1675 error = nvmet_init_discovery(); 1676 if (error) 1677 goto out_free_nvmet_work_queue; 1678 1679 error = nvmet_init_configfs(); 1680 if (error) 1681 goto out_exit_discovery; 1682 return 0; 1683 1684 out_exit_discovery: 1685 nvmet_exit_discovery(); 1686 out_free_nvmet_work_queue: 1687 destroy_workqueue(nvmet_wq); 1688 out_free_buffered_work_queue: 1689 destroy_workqueue(buffered_io_wq); 1690 out_free_zbd_work_queue: 1691 destroy_workqueue(zbd_wq); 1692 out_destroy_bvec_cache: 1693 kmem_cache_destroy(nvmet_bvec_cache); 1694 return error; 1695 } 1696 1697 static void __exit nvmet_exit(void) 1698 { 1699 nvmet_exit_configfs(); 1700 nvmet_exit_discovery(); 1701 ida_destroy(&cntlid_ida); 1702 destroy_workqueue(nvmet_wq); 1703 destroy_workqueue(buffered_io_wq); 1704 destroy_workqueue(zbd_wq); 1705 kmem_cache_destroy(nvmet_bvec_cache); 1706 1707 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1708 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1709 } 1710 1711 module_init(nvmet_init); 1712 module_exit(nvmet_exit); 1713 1714 MODULE_LICENSE("GPL v2"); 1715