xref: /openbmc/linux/drivers/nvme/target/core.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21 
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39 
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43 
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 	u16 status;
47 
48 	switch (errno) {
49 	case 0:
50 		status = NVME_SC_SUCCESS;
51 		break;
52 	case -ENOSPC:
53 		req->error_loc = offsetof(struct nvme_rw_command, length);
54 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 		break;
56 	case -EREMOTEIO:
57 		req->error_loc = offsetof(struct nvme_rw_command, slba);
58 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 		break;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 			break;
67 		default:
68 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 		}
70 		break;
71 	case -ENODATA:
72 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 		status = NVME_SC_ACCESS_DENIED;
74 		break;
75 	case -EIO:
76 		fallthrough;
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 
82 	return status;
83 }
84 
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 		const char *subsysnqn);
87 
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 		size_t len)
90 {
91 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 		req->error_loc = offsetof(struct nvme_common_command, dptr);
93 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 	}
95 	return 0;
96 }
97 
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 		req->error_loc = offsetof(struct nvme_common_command, dptr);
102 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 	}
104 	return 0;
105 }
106 
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 		req->error_loc = offsetof(struct nvme_common_command, dptr);
111 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 	}
113 	return 0;
114 }
115 
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 	unsigned long nsid = 0;
119 	struct nvmet_ns *cur;
120 	unsigned long idx;
121 
122 	xa_for_each(&subsys->namespaces, idx, cur)
123 		nsid = cur->nsid;
124 
125 	return nsid;
126 }
127 
128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
129 {
130 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
131 }
132 
133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
134 {
135 	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
136 	struct nvmet_req *req;
137 
138 	mutex_lock(&ctrl->lock);
139 	while (ctrl->nr_async_event_cmds) {
140 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 		mutex_unlock(&ctrl->lock);
142 		nvmet_req_complete(req, status);
143 		mutex_lock(&ctrl->lock);
144 	}
145 	mutex_unlock(&ctrl->lock);
146 }
147 
148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 	struct nvmet_async_event *aen;
151 	struct nvmet_req *req;
152 
153 	mutex_lock(&ctrl->lock);
154 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 		aen = list_first_entry(&ctrl->async_events,
156 				       struct nvmet_async_event, entry);
157 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 		nvmet_set_result(req, nvmet_async_event_result(aen));
159 
160 		list_del(&aen->entry);
161 		kfree(aen);
162 
163 		mutex_unlock(&ctrl->lock);
164 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 		nvmet_req_complete(req, 0);
166 		mutex_lock(&ctrl->lock);
167 	}
168 	mutex_unlock(&ctrl->lock);
169 }
170 
171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 	struct nvmet_async_event *aen, *tmp;
174 
175 	mutex_lock(&ctrl->lock);
176 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 		list_del(&aen->entry);
178 		kfree(aen);
179 	}
180 	mutex_unlock(&ctrl->lock);
181 }
182 
183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 	struct nvmet_ctrl *ctrl =
186 		container_of(work, struct nvmet_ctrl, async_event_work);
187 
188 	nvmet_async_events_process(ctrl);
189 }
190 
191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 		u8 event_info, u8 log_page)
193 {
194 	struct nvmet_async_event *aen;
195 
196 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 	if (!aen)
198 		return;
199 
200 	aen->event_type = event_type;
201 	aen->event_info = event_info;
202 	aen->log_page = log_page;
203 
204 	mutex_lock(&ctrl->lock);
205 	list_add_tail(&aen->entry, &ctrl->async_events);
206 	mutex_unlock(&ctrl->lock);
207 
208 	schedule_work(&ctrl->async_event_work);
209 }
210 
211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 	u32 i;
214 
215 	mutex_lock(&ctrl->lock);
216 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 		goto out_unlock;
218 
219 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 		if (ctrl->changed_ns_list[i] == nsid)
221 			goto out_unlock;
222 	}
223 
224 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 		ctrl->nr_changed_ns = U32_MAX;
227 		goto out_unlock;
228 	}
229 
230 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 	mutex_unlock(&ctrl->lock);
233 }
234 
235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 	struct nvmet_ctrl *ctrl;
238 
239 	lockdep_assert_held(&subsys->lock);
240 
241 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 			continue;
245 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 				NVME_AER_NOTICE_NS_CHANGED,
247 				NVME_LOG_CHANGED_NS);
248 	}
249 }
250 
251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 		struct nvmet_port *port)
253 {
254 	struct nvmet_ctrl *ctrl;
255 
256 	mutex_lock(&subsys->lock);
257 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 		if (port && ctrl->port != port)
259 			continue;
260 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 			continue;
262 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 	}
265 	mutex_unlock(&subsys->lock);
266 }
267 
268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 	struct nvmet_subsys_link *p;
271 
272 	down_read(&nvmet_config_sem);
273 	list_for_each_entry(p, &port->subsystems, entry)
274 		nvmet_send_ana_event(p->subsys, port);
275 	up_read(&nvmet_config_sem);
276 }
277 
278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 	int ret = 0;
281 
282 	down_write(&nvmet_config_sem);
283 	if (nvmet_transports[ops->type])
284 		ret = -EINVAL;
285 	else
286 		nvmet_transports[ops->type] = ops;
287 	up_write(&nvmet_config_sem);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292 
293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 	down_write(&nvmet_config_sem);
296 	nvmet_transports[ops->type] = NULL;
297 	up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300 
301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 	struct nvmet_ctrl *ctrl;
304 
305 	mutex_lock(&subsys->lock);
306 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 		if (ctrl->port == port)
308 			ctrl->ops->delete_ctrl(ctrl);
309 	}
310 	mutex_unlock(&subsys->lock);
311 }
312 
313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 	const struct nvmet_fabrics_ops *ops;
316 	int ret;
317 
318 	lockdep_assert_held(&nvmet_config_sem);
319 
320 	ops = nvmet_transports[port->disc_addr.trtype];
321 	if (!ops) {
322 		up_write(&nvmet_config_sem);
323 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 		down_write(&nvmet_config_sem);
325 		ops = nvmet_transports[port->disc_addr.trtype];
326 		if (!ops) {
327 			pr_err("transport type %d not supported\n",
328 				port->disc_addr.trtype);
329 			return -EINVAL;
330 		}
331 	}
332 
333 	if (!try_module_get(ops->owner))
334 		return -EINVAL;
335 
336 	/*
337 	 * If the user requested PI support and the transport isn't pi capable,
338 	 * don't enable the port.
339 	 */
340 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 		pr_err("T10-PI is not supported by transport type %d\n",
342 		       port->disc_addr.trtype);
343 		ret = -EINVAL;
344 		goto out_put;
345 	}
346 
347 	ret = ops->add_port(port);
348 	if (ret)
349 		goto out_put;
350 
351 	/* If the transport didn't set inline_data_size, then disable it. */
352 	if (port->inline_data_size < 0)
353 		port->inline_data_size = 0;
354 
355 	port->enabled = true;
356 	port->tr_ops = ops;
357 	return 0;
358 
359 out_put:
360 	module_put(ops->owner);
361 	return ret;
362 }
363 
364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366 	const struct nvmet_fabrics_ops *ops;
367 
368 	lockdep_assert_held(&nvmet_config_sem);
369 
370 	port->enabled = false;
371 	port->tr_ops = NULL;
372 
373 	ops = nvmet_transports[port->disc_addr.trtype];
374 	ops->remove_port(port);
375 	module_put(ops->owner);
376 }
377 
378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 			struct nvmet_ctrl, ka_work);
382 	bool cmd_seen = ctrl->cmd_seen;
383 
384 	ctrl->cmd_seen = false;
385 	if (cmd_seen) {
386 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 			ctrl->cntlid);
388 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 		return;
390 	}
391 
392 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 		ctrl->cntlid, ctrl->kato);
394 
395 	nvmet_ctrl_fatal_error(ctrl);
396 }
397 
398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400 	if (unlikely(ctrl->kato == 0))
401 		return;
402 
403 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404 		ctrl->cntlid, ctrl->kato);
405 
406 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
407 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
408 }
409 
410 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
411 {
412 	if (unlikely(ctrl->kato == 0))
413 		return;
414 
415 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
416 
417 	cancel_delayed_work_sync(&ctrl->ka_work);
418 }
419 
420 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
421 {
422 	struct nvmet_ns *ns;
423 
424 	ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid));
425 	if (ns)
426 		percpu_ref_get(&ns->ref);
427 
428 	return ns;
429 }
430 
431 static void nvmet_destroy_namespace(struct percpu_ref *ref)
432 {
433 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
434 
435 	complete(&ns->disable_done);
436 }
437 
438 void nvmet_put_namespace(struct nvmet_ns *ns)
439 {
440 	percpu_ref_put(&ns->ref);
441 }
442 
443 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
444 {
445 	nvmet_bdev_ns_disable(ns);
446 	nvmet_file_ns_disable(ns);
447 }
448 
449 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
450 {
451 	int ret;
452 	struct pci_dev *p2p_dev;
453 
454 	if (!ns->use_p2pmem)
455 		return 0;
456 
457 	if (!ns->bdev) {
458 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
459 		return -EINVAL;
460 	}
461 
462 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
463 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
464 		       ns->device_path);
465 		return -EINVAL;
466 	}
467 
468 	if (ns->p2p_dev) {
469 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
470 		if (ret < 0)
471 			return -EINVAL;
472 	} else {
473 		/*
474 		 * Right now we just check that there is p2pmem available so
475 		 * we can report an error to the user right away if there
476 		 * is not. We'll find the actual device to use once we
477 		 * setup the controller when the port's device is available.
478 		 */
479 
480 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
481 		if (!p2p_dev) {
482 			pr_err("no peer-to-peer memory is available for %s\n",
483 			       ns->device_path);
484 			return -EINVAL;
485 		}
486 
487 		pci_dev_put(p2p_dev);
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  * Note: ctrl->subsys->lock should be held when calling this function
495  */
496 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
497 				    struct nvmet_ns *ns)
498 {
499 	struct device *clients[2];
500 	struct pci_dev *p2p_dev;
501 	int ret;
502 
503 	if (!ctrl->p2p_client || !ns->use_p2pmem)
504 		return;
505 
506 	if (ns->p2p_dev) {
507 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
508 		if (ret < 0)
509 			return;
510 
511 		p2p_dev = pci_dev_get(ns->p2p_dev);
512 	} else {
513 		clients[0] = ctrl->p2p_client;
514 		clients[1] = nvmet_ns_dev(ns);
515 
516 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
517 		if (!p2p_dev) {
518 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
519 			       dev_name(ctrl->p2p_client), ns->device_path);
520 			return;
521 		}
522 	}
523 
524 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
525 	if (ret < 0)
526 		pci_dev_put(p2p_dev);
527 
528 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
529 		ns->nsid);
530 }
531 
532 void nvmet_ns_revalidate(struct nvmet_ns *ns)
533 {
534 	loff_t oldsize = ns->size;
535 
536 	if (ns->bdev)
537 		nvmet_bdev_ns_revalidate(ns);
538 	else
539 		nvmet_file_ns_revalidate(ns);
540 
541 	if (oldsize != ns->size)
542 		nvmet_ns_changed(ns->subsys, ns->nsid);
543 }
544 
545 int nvmet_ns_enable(struct nvmet_ns *ns)
546 {
547 	struct nvmet_subsys *subsys = ns->subsys;
548 	struct nvmet_ctrl *ctrl;
549 	int ret;
550 
551 	mutex_lock(&subsys->lock);
552 	ret = 0;
553 
554 	if (nvmet_passthru_ctrl(subsys)) {
555 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
556 		goto out_unlock;
557 	}
558 
559 	if (ns->enabled)
560 		goto out_unlock;
561 
562 	ret = -EMFILE;
563 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
564 		goto out_unlock;
565 
566 	ret = nvmet_bdev_ns_enable(ns);
567 	if (ret == -ENOTBLK)
568 		ret = nvmet_file_ns_enable(ns);
569 	if (ret)
570 		goto out_unlock;
571 
572 	ret = nvmet_p2pmem_ns_enable(ns);
573 	if (ret)
574 		goto out_dev_disable;
575 
576 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
577 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
578 
579 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
580 				0, GFP_KERNEL);
581 	if (ret)
582 		goto out_dev_put;
583 
584 	if (ns->nsid > subsys->max_nsid)
585 		subsys->max_nsid = ns->nsid;
586 
587 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
588 	if (ret)
589 		goto out_restore_subsys_maxnsid;
590 
591 	subsys->nr_namespaces++;
592 
593 	nvmet_ns_changed(subsys, ns->nsid);
594 	ns->enabled = true;
595 	ret = 0;
596 out_unlock:
597 	mutex_unlock(&subsys->lock);
598 	return ret;
599 
600 out_restore_subsys_maxnsid:
601 	subsys->max_nsid = nvmet_max_nsid(subsys);
602 	percpu_ref_exit(&ns->ref);
603 out_dev_put:
604 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
605 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
606 out_dev_disable:
607 	nvmet_ns_dev_disable(ns);
608 	goto out_unlock;
609 }
610 
611 void nvmet_ns_disable(struct nvmet_ns *ns)
612 {
613 	struct nvmet_subsys *subsys = ns->subsys;
614 	struct nvmet_ctrl *ctrl;
615 
616 	mutex_lock(&subsys->lock);
617 	if (!ns->enabled)
618 		goto out_unlock;
619 
620 	ns->enabled = false;
621 	xa_erase(&ns->subsys->namespaces, ns->nsid);
622 	if (ns->nsid == subsys->max_nsid)
623 		subsys->max_nsid = nvmet_max_nsid(subsys);
624 
625 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
626 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
627 
628 	mutex_unlock(&subsys->lock);
629 
630 	/*
631 	 * Now that we removed the namespaces from the lookup list, we
632 	 * can kill the per_cpu ref and wait for any remaining references
633 	 * to be dropped, as well as a RCU grace period for anyone only
634 	 * using the namepace under rcu_read_lock().  Note that we can't
635 	 * use call_rcu here as we need to ensure the namespaces have
636 	 * been fully destroyed before unloading the module.
637 	 */
638 	percpu_ref_kill(&ns->ref);
639 	synchronize_rcu();
640 	wait_for_completion(&ns->disable_done);
641 	percpu_ref_exit(&ns->ref);
642 
643 	mutex_lock(&subsys->lock);
644 
645 	subsys->nr_namespaces--;
646 	nvmet_ns_changed(subsys, ns->nsid);
647 	nvmet_ns_dev_disable(ns);
648 out_unlock:
649 	mutex_unlock(&subsys->lock);
650 }
651 
652 void nvmet_ns_free(struct nvmet_ns *ns)
653 {
654 	nvmet_ns_disable(ns);
655 
656 	down_write(&nvmet_ana_sem);
657 	nvmet_ana_group_enabled[ns->anagrpid]--;
658 	up_write(&nvmet_ana_sem);
659 
660 	kfree(ns->device_path);
661 	kfree(ns);
662 }
663 
664 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
665 {
666 	struct nvmet_ns *ns;
667 
668 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
669 	if (!ns)
670 		return NULL;
671 
672 	init_completion(&ns->disable_done);
673 
674 	ns->nsid = nsid;
675 	ns->subsys = subsys;
676 
677 	down_write(&nvmet_ana_sem);
678 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
679 	nvmet_ana_group_enabled[ns->anagrpid]++;
680 	up_write(&nvmet_ana_sem);
681 
682 	uuid_gen(&ns->uuid);
683 	ns->buffered_io = false;
684 
685 	return ns;
686 }
687 
688 static void nvmet_update_sq_head(struct nvmet_req *req)
689 {
690 	if (req->sq->size) {
691 		u32 old_sqhd, new_sqhd;
692 
693 		do {
694 			old_sqhd = req->sq->sqhd;
695 			new_sqhd = (old_sqhd + 1) % req->sq->size;
696 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
697 					old_sqhd);
698 	}
699 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
700 }
701 
702 static void nvmet_set_error(struct nvmet_req *req, u16 status)
703 {
704 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
705 	struct nvme_error_slot *new_error_slot;
706 	unsigned long flags;
707 
708 	req->cqe->status = cpu_to_le16(status << 1);
709 
710 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
711 		return;
712 
713 	spin_lock_irqsave(&ctrl->error_lock, flags);
714 	ctrl->err_counter++;
715 	new_error_slot =
716 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
717 
718 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
719 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
720 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
721 	new_error_slot->status_field = cpu_to_le16(status << 1);
722 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
723 	new_error_slot->lba = cpu_to_le64(req->error_slba);
724 	new_error_slot->nsid = req->cmd->common.nsid;
725 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
726 
727 	/* set the more bit for this request */
728 	req->cqe->status |= cpu_to_le16(1 << 14);
729 }
730 
731 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
732 {
733 	if (!req->sq->sqhd_disabled)
734 		nvmet_update_sq_head(req);
735 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
736 	req->cqe->command_id = req->cmd->common.command_id;
737 
738 	if (unlikely(status))
739 		nvmet_set_error(req, status);
740 
741 	trace_nvmet_req_complete(req);
742 
743 	if (req->ns)
744 		nvmet_put_namespace(req->ns);
745 	req->ops->queue_response(req);
746 }
747 
748 void nvmet_req_complete(struct nvmet_req *req, u16 status)
749 {
750 	__nvmet_req_complete(req, status);
751 	percpu_ref_put(&req->sq->ref);
752 }
753 EXPORT_SYMBOL_GPL(nvmet_req_complete);
754 
755 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
756 		u16 qid, u16 size)
757 {
758 	cq->qid = qid;
759 	cq->size = size;
760 }
761 
762 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
763 		u16 qid, u16 size)
764 {
765 	sq->sqhd = 0;
766 	sq->qid = qid;
767 	sq->size = size;
768 
769 	ctrl->sqs[qid] = sq;
770 }
771 
772 static void nvmet_confirm_sq(struct percpu_ref *ref)
773 {
774 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
775 
776 	complete(&sq->confirm_done);
777 }
778 
779 void nvmet_sq_destroy(struct nvmet_sq *sq)
780 {
781 	struct nvmet_ctrl *ctrl = sq->ctrl;
782 
783 	/*
784 	 * If this is the admin queue, complete all AERs so that our
785 	 * queue doesn't have outstanding requests on it.
786 	 */
787 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
788 		nvmet_async_events_failall(ctrl);
789 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
790 	wait_for_completion(&sq->confirm_done);
791 	wait_for_completion(&sq->free_done);
792 	percpu_ref_exit(&sq->ref);
793 
794 	if (ctrl) {
795 		nvmet_ctrl_put(ctrl);
796 		sq->ctrl = NULL; /* allows reusing the queue later */
797 	}
798 }
799 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
800 
801 static void nvmet_sq_free(struct percpu_ref *ref)
802 {
803 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
804 
805 	complete(&sq->free_done);
806 }
807 
808 int nvmet_sq_init(struct nvmet_sq *sq)
809 {
810 	int ret;
811 
812 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
813 	if (ret) {
814 		pr_err("percpu_ref init failed!\n");
815 		return ret;
816 	}
817 	init_completion(&sq->free_done);
818 	init_completion(&sq->confirm_done);
819 
820 	return 0;
821 }
822 EXPORT_SYMBOL_GPL(nvmet_sq_init);
823 
824 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
825 		struct nvmet_ns *ns)
826 {
827 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
828 
829 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
830 		return NVME_SC_ANA_INACCESSIBLE;
831 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
832 		return NVME_SC_ANA_PERSISTENT_LOSS;
833 	if (unlikely(state == NVME_ANA_CHANGE))
834 		return NVME_SC_ANA_TRANSITION;
835 	return 0;
836 }
837 
838 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
839 {
840 	if (unlikely(req->ns->readonly)) {
841 		switch (req->cmd->common.opcode) {
842 		case nvme_cmd_read:
843 		case nvme_cmd_flush:
844 			break;
845 		default:
846 			return NVME_SC_NS_WRITE_PROTECTED;
847 		}
848 	}
849 
850 	return 0;
851 }
852 
853 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
854 {
855 	struct nvme_command *cmd = req->cmd;
856 	u16 ret;
857 
858 	ret = nvmet_check_ctrl_status(req, cmd);
859 	if (unlikely(ret))
860 		return ret;
861 
862 	if (nvmet_req_passthru_ctrl(req))
863 		return nvmet_parse_passthru_io_cmd(req);
864 
865 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
866 	if (unlikely(!req->ns)) {
867 		req->error_loc = offsetof(struct nvme_common_command, nsid);
868 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
869 	}
870 	ret = nvmet_check_ana_state(req->port, req->ns);
871 	if (unlikely(ret)) {
872 		req->error_loc = offsetof(struct nvme_common_command, nsid);
873 		return ret;
874 	}
875 	ret = nvmet_io_cmd_check_access(req);
876 	if (unlikely(ret)) {
877 		req->error_loc = offsetof(struct nvme_common_command, nsid);
878 		return ret;
879 	}
880 
881 	if (req->ns->file)
882 		return nvmet_file_parse_io_cmd(req);
883 	else
884 		return nvmet_bdev_parse_io_cmd(req);
885 }
886 
887 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
888 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
889 {
890 	u8 flags = req->cmd->common.flags;
891 	u16 status;
892 
893 	req->cq = cq;
894 	req->sq = sq;
895 	req->ops = ops;
896 	req->sg = NULL;
897 	req->metadata_sg = NULL;
898 	req->sg_cnt = 0;
899 	req->metadata_sg_cnt = 0;
900 	req->transfer_len = 0;
901 	req->metadata_len = 0;
902 	req->cqe->status = 0;
903 	req->cqe->sq_head = 0;
904 	req->ns = NULL;
905 	req->error_loc = NVMET_NO_ERROR_LOC;
906 	req->error_slba = 0;
907 
908 	/* no support for fused commands yet */
909 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
910 		req->error_loc = offsetof(struct nvme_common_command, flags);
911 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
912 		goto fail;
913 	}
914 
915 	/*
916 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
917 	 * contains an address of a single contiguous physical buffer that is
918 	 * byte aligned.
919 	 */
920 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
921 		req->error_loc = offsetof(struct nvme_common_command, flags);
922 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
923 		goto fail;
924 	}
925 
926 	if (unlikely(!req->sq->ctrl))
927 		/* will return an error for any non-connect command: */
928 		status = nvmet_parse_connect_cmd(req);
929 	else if (likely(req->sq->qid != 0))
930 		status = nvmet_parse_io_cmd(req);
931 	else
932 		status = nvmet_parse_admin_cmd(req);
933 
934 	if (status)
935 		goto fail;
936 
937 	trace_nvmet_req_init(req, req->cmd);
938 
939 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
940 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
941 		goto fail;
942 	}
943 
944 	if (sq->ctrl)
945 		sq->ctrl->cmd_seen = true;
946 
947 	return true;
948 
949 fail:
950 	__nvmet_req_complete(req, status);
951 	return false;
952 }
953 EXPORT_SYMBOL_GPL(nvmet_req_init);
954 
955 void nvmet_req_uninit(struct nvmet_req *req)
956 {
957 	percpu_ref_put(&req->sq->ref);
958 	if (req->ns)
959 		nvmet_put_namespace(req->ns);
960 }
961 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
962 
963 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
964 {
965 	if (unlikely(len != req->transfer_len)) {
966 		req->error_loc = offsetof(struct nvme_common_command, dptr);
967 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
968 		return false;
969 	}
970 
971 	return true;
972 }
973 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
974 
975 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
976 {
977 	if (unlikely(data_len > req->transfer_len)) {
978 		req->error_loc = offsetof(struct nvme_common_command, dptr);
979 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
980 		return false;
981 	}
982 
983 	return true;
984 }
985 
986 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
987 {
988 	return req->transfer_len - req->metadata_len;
989 }
990 
991 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
992 {
993 	req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
994 			nvmet_data_transfer_len(req));
995 	if (!req->sg)
996 		goto out_err;
997 
998 	if (req->metadata_len) {
999 		req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
1000 				&req->metadata_sg_cnt, req->metadata_len);
1001 		if (!req->metadata_sg)
1002 			goto out_free_sg;
1003 	}
1004 	return 0;
1005 out_free_sg:
1006 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1007 out_err:
1008 	return -ENOMEM;
1009 }
1010 
1011 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
1012 {
1013 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
1014 		return false;
1015 
1016 	if (req->sq->ctrl && req->sq->qid && req->ns) {
1017 		req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
1018 						 req->ns->nsid);
1019 		if (req->p2p_dev)
1020 			return true;
1021 	}
1022 
1023 	req->p2p_dev = NULL;
1024 	return false;
1025 }
1026 
1027 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1028 {
1029 	if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
1030 		return 0;
1031 
1032 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1033 			    &req->sg_cnt);
1034 	if (unlikely(!req->sg))
1035 		goto out;
1036 
1037 	if (req->metadata_len) {
1038 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1039 					     &req->metadata_sg_cnt);
1040 		if (unlikely(!req->metadata_sg))
1041 			goto out_free;
1042 	}
1043 
1044 	return 0;
1045 out_free:
1046 	sgl_free(req->sg);
1047 out:
1048 	return -ENOMEM;
1049 }
1050 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1051 
1052 void nvmet_req_free_sgls(struct nvmet_req *req)
1053 {
1054 	if (req->p2p_dev) {
1055 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1056 		if (req->metadata_sg)
1057 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1058 	} else {
1059 		sgl_free(req->sg);
1060 		if (req->metadata_sg)
1061 			sgl_free(req->metadata_sg);
1062 	}
1063 
1064 	req->sg = NULL;
1065 	req->metadata_sg = NULL;
1066 	req->sg_cnt = 0;
1067 	req->metadata_sg_cnt = 0;
1068 }
1069 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1070 
1071 static inline bool nvmet_cc_en(u32 cc)
1072 {
1073 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1074 }
1075 
1076 static inline u8 nvmet_cc_css(u32 cc)
1077 {
1078 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1079 }
1080 
1081 static inline u8 nvmet_cc_mps(u32 cc)
1082 {
1083 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1084 }
1085 
1086 static inline u8 nvmet_cc_ams(u32 cc)
1087 {
1088 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1089 }
1090 
1091 static inline u8 nvmet_cc_shn(u32 cc)
1092 {
1093 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1094 }
1095 
1096 static inline u8 nvmet_cc_iosqes(u32 cc)
1097 {
1098 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1099 }
1100 
1101 static inline u8 nvmet_cc_iocqes(u32 cc)
1102 {
1103 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1104 }
1105 
1106 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1107 {
1108 	lockdep_assert_held(&ctrl->lock);
1109 
1110 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1111 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1112 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1113 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1114 	    nvmet_cc_css(ctrl->cc) != 0) {
1115 		ctrl->csts = NVME_CSTS_CFS;
1116 		return;
1117 	}
1118 
1119 	ctrl->csts = NVME_CSTS_RDY;
1120 
1121 	/*
1122 	 * Controllers that are not yet enabled should not really enforce the
1123 	 * keep alive timeout, but we still want to track a timeout and cleanup
1124 	 * in case a host died before it enabled the controller.  Hence, simply
1125 	 * reset the keep alive timer when the controller is enabled.
1126 	 */
1127 	if (ctrl->kato)
1128 		mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1129 }
1130 
1131 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1132 {
1133 	lockdep_assert_held(&ctrl->lock);
1134 
1135 	/* XXX: tear down queues? */
1136 	ctrl->csts &= ~NVME_CSTS_RDY;
1137 	ctrl->cc = 0;
1138 }
1139 
1140 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1141 {
1142 	u32 old;
1143 
1144 	mutex_lock(&ctrl->lock);
1145 	old = ctrl->cc;
1146 	ctrl->cc = new;
1147 
1148 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1149 		nvmet_start_ctrl(ctrl);
1150 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1151 		nvmet_clear_ctrl(ctrl);
1152 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1153 		nvmet_clear_ctrl(ctrl);
1154 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1155 	}
1156 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1157 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1158 	mutex_unlock(&ctrl->lock);
1159 }
1160 
1161 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1162 {
1163 	/* command sets supported: NVMe command set: */
1164 	ctrl->cap = (1ULL << 37);
1165 	/* CC.EN timeout in 500msec units: */
1166 	ctrl->cap |= (15ULL << 24);
1167 	/* maximum queue entries supported: */
1168 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1169 }
1170 
1171 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1172 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1173 {
1174 	struct nvmet_subsys *subsys;
1175 	struct nvmet_ctrl *ctrl;
1176 	u16 status = 0;
1177 
1178 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1179 	if (!subsys) {
1180 		pr_warn("connect request for invalid subsystem %s!\n",
1181 			subsysnqn);
1182 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1183 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1184 	}
1185 
1186 	mutex_lock(&subsys->lock);
1187 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1188 		if (ctrl->cntlid == cntlid) {
1189 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1190 				pr_warn("hostnqn mismatch.\n");
1191 				continue;
1192 			}
1193 			if (!kref_get_unless_zero(&ctrl->ref))
1194 				continue;
1195 
1196 			*ret = ctrl;
1197 			goto out;
1198 		}
1199 	}
1200 
1201 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1202 		cntlid, subsysnqn, hostnqn);
1203 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1204 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1205 
1206 out:
1207 	mutex_unlock(&subsys->lock);
1208 	nvmet_subsys_put(subsys);
1209 	return status;
1210 }
1211 
1212 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1213 {
1214 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1215 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1216 		       cmd->common.opcode, req->sq->qid);
1217 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1218 	}
1219 
1220 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1221 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1222 		       cmd->common.opcode, req->sq->qid);
1223 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1224 	}
1225 	return 0;
1226 }
1227 
1228 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1229 {
1230 	struct nvmet_host_link *p;
1231 
1232 	lockdep_assert_held(&nvmet_config_sem);
1233 
1234 	if (subsys->allow_any_host)
1235 		return true;
1236 
1237 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1238 		return true;
1239 
1240 	list_for_each_entry(p, &subsys->hosts, entry) {
1241 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1242 			return true;
1243 	}
1244 
1245 	return false;
1246 }
1247 
1248 /*
1249  * Note: ctrl->subsys->lock should be held when calling this function
1250  */
1251 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1252 		struct nvmet_req *req)
1253 {
1254 	struct nvmet_ns *ns;
1255 	unsigned long idx;
1256 
1257 	if (!req->p2p_client)
1258 		return;
1259 
1260 	ctrl->p2p_client = get_device(req->p2p_client);
1261 
1262 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1263 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1264 }
1265 
1266 /*
1267  * Note: ctrl->subsys->lock should be held when calling this function
1268  */
1269 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1270 {
1271 	struct radix_tree_iter iter;
1272 	void __rcu **slot;
1273 
1274 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1275 		pci_dev_put(radix_tree_deref_slot(slot));
1276 
1277 	put_device(ctrl->p2p_client);
1278 }
1279 
1280 static void nvmet_fatal_error_handler(struct work_struct *work)
1281 {
1282 	struct nvmet_ctrl *ctrl =
1283 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1284 
1285 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1286 	ctrl->ops->delete_ctrl(ctrl);
1287 }
1288 
1289 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1290 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1291 {
1292 	struct nvmet_subsys *subsys;
1293 	struct nvmet_ctrl *ctrl;
1294 	int ret;
1295 	u16 status;
1296 
1297 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1298 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1299 	if (!subsys) {
1300 		pr_warn("connect request for invalid subsystem %s!\n",
1301 			subsysnqn);
1302 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1303 		goto out;
1304 	}
1305 
1306 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1307 	down_read(&nvmet_config_sem);
1308 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1309 		pr_info("connect by host %s for subsystem %s not allowed\n",
1310 			hostnqn, subsysnqn);
1311 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1312 		up_read(&nvmet_config_sem);
1313 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1314 		goto out_put_subsystem;
1315 	}
1316 	up_read(&nvmet_config_sem);
1317 
1318 	status = NVME_SC_INTERNAL;
1319 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1320 	if (!ctrl)
1321 		goto out_put_subsystem;
1322 	mutex_init(&ctrl->lock);
1323 
1324 	nvmet_init_cap(ctrl);
1325 
1326 	ctrl->port = req->port;
1327 
1328 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1329 	INIT_LIST_HEAD(&ctrl->async_events);
1330 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1331 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1332 
1333 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1334 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1335 
1336 	kref_init(&ctrl->ref);
1337 	ctrl->subsys = subsys;
1338 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1339 
1340 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1341 			sizeof(__le32), GFP_KERNEL);
1342 	if (!ctrl->changed_ns_list)
1343 		goto out_free_ctrl;
1344 
1345 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1346 			sizeof(struct nvmet_sq *),
1347 			GFP_KERNEL);
1348 	if (!ctrl->sqs)
1349 		goto out_free_changed_ns_list;
1350 
1351 	if (subsys->cntlid_min > subsys->cntlid_max)
1352 		goto out_free_changed_ns_list;
1353 
1354 	ret = ida_simple_get(&cntlid_ida,
1355 			     subsys->cntlid_min, subsys->cntlid_max,
1356 			     GFP_KERNEL);
1357 	if (ret < 0) {
1358 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1359 		goto out_free_sqs;
1360 	}
1361 	ctrl->cntlid = ret;
1362 
1363 	ctrl->ops = req->ops;
1364 
1365 	/*
1366 	 * Discovery controllers may use some arbitrary high value
1367 	 * in order to cleanup stale discovery sessions
1368 	 */
1369 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1370 		kato = NVMET_DISC_KATO_MS;
1371 
1372 	/* keep-alive timeout in seconds */
1373 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1374 
1375 	ctrl->err_counter = 0;
1376 	spin_lock_init(&ctrl->error_lock);
1377 
1378 	nvmet_start_keep_alive_timer(ctrl);
1379 
1380 	mutex_lock(&subsys->lock);
1381 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1382 	nvmet_setup_p2p_ns_map(ctrl, req);
1383 	mutex_unlock(&subsys->lock);
1384 
1385 	*ctrlp = ctrl;
1386 	return 0;
1387 
1388 out_free_sqs:
1389 	kfree(ctrl->sqs);
1390 out_free_changed_ns_list:
1391 	kfree(ctrl->changed_ns_list);
1392 out_free_ctrl:
1393 	kfree(ctrl);
1394 out_put_subsystem:
1395 	nvmet_subsys_put(subsys);
1396 out:
1397 	return status;
1398 }
1399 
1400 static void nvmet_ctrl_free(struct kref *ref)
1401 {
1402 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1403 	struct nvmet_subsys *subsys = ctrl->subsys;
1404 
1405 	mutex_lock(&subsys->lock);
1406 	nvmet_release_p2p_ns_map(ctrl);
1407 	list_del(&ctrl->subsys_entry);
1408 	mutex_unlock(&subsys->lock);
1409 
1410 	nvmet_stop_keep_alive_timer(ctrl);
1411 
1412 	flush_work(&ctrl->async_event_work);
1413 	cancel_work_sync(&ctrl->fatal_err_work);
1414 
1415 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1416 
1417 	nvmet_async_events_free(ctrl);
1418 	kfree(ctrl->sqs);
1419 	kfree(ctrl->changed_ns_list);
1420 	kfree(ctrl);
1421 
1422 	nvmet_subsys_put(subsys);
1423 }
1424 
1425 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1426 {
1427 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1428 }
1429 
1430 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1431 {
1432 	mutex_lock(&ctrl->lock);
1433 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1434 		ctrl->csts |= NVME_CSTS_CFS;
1435 		schedule_work(&ctrl->fatal_err_work);
1436 	}
1437 	mutex_unlock(&ctrl->lock);
1438 }
1439 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1440 
1441 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1442 		const char *subsysnqn)
1443 {
1444 	struct nvmet_subsys_link *p;
1445 
1446 	if (!port)
1447 		return NULL;
1448 
1449 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1450 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1451 			return NULL;
1452 		return nvmet_disc_subsys;
1453 	}
1454 
1455 	down_read(&nvmet_config_sem);
1456 	list_for_each_entry(p, &port->subsystems, entry) {
1457 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1458 				NVMF_NQN_SIZE)) {
1459 			if (!kref_get_unless_zero(&p->subsys->ref))
1460 				break;
1461 			up_read(&nvmet_config_sem);
1462 			return p->subsys;
1463 		}
1464 	}
1465 	up_read(&nvmet_config_sem);
1466 	return NULL;
1467 }
1468 
1469 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1470 		enum nvme_subsys_type type)
1471 {
1472 	struct nvmet_subsys *subsys;
1473 
1474 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1475 	if (!subsys)
1476 		return ERR_PTR(-ENOMEM);
1477 
1478 	subsys->ver = NVMET_DEFAULT_VS;
1479 	/* generate a random serial number as our controllers are ephemeral: */
1480 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1481 
1482 	switch (type) {
1483 	case NVME_NQN_NVME:
1484 		subsys->max_qid = NVMET_NR_QUEUES;
1485 		break;
1486 	case NVME_NQN_DISC:
1487 		subsys->max_qid = 0;
1488 		break;
1489 	default:
1490 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1491 		kfree(subsys);
1492 		return ERR_PTR(-EINVAL);
1493 	}
1494 	subsys->type = type;
1495 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1496 			GFP_KERNEL);
1497 	if (!subsys->subsysnqn) {
1498 		kfree(subsys);
1499 		return ERR_PTR(-ENOMEM);
1500 	}
1501 	subsys->cntlid_min = NVME_CNTLID_MIN;
1502 	subsys->cntlid_max = NVME_CNTLID_MAX;
1503 	kref_init(&subsys->ref);
1504 
1505 	mutex_init(&subsys->lock);
1506 	xa_init(&subsys->namespaces);
1507 	INIT_LIST_HEAD(&subsys->ctrls);
1508 	INIT_LIST_HEAD(&subsys->hosts);
1509 
1510 	return subsys;
1511 }
1512 
1513 static void nvmet_subsys_free(struct kref *ref)
1514 {
1515 	struct nvmet_subsys *subsys =
1516 		container_of(ref, struct nvmet_subsys, ref);
1517 
1518 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1519 
1520 	xa_destroy(&subsys->namespaces);
1521 	nvmet_passthru_subsys_free(subsys);
1522 
1523 	kfree(subsys->subsysnqn);
1524 	kfree_rcu(subsys->model, rcuhead);
1525 	kfree(subsys);
1526 }
1527 
1528 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1529 {
1530 	struct nvmet_ctrl *ctrl;
1531 
1532 	mutex_lock(&subsys->lock);
1533 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1534 		ctrl->ops->delete_ctrl(ctrl);
1535 	mutex_unlock(&subsys->lock);
1536 }
1537 
1538 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1539 {
1540 	kref_put(&subsys->ref, nvmet_subsys_free);
1541 }
1542 
1543 static int __init nvmet_init(void)
1544 {
1545 	int error;
1546 
1547 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1548 
1549 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1550 			WQ_MEM_RECLAIM, 0);
1551 	if (!buffered_io_wq) {
1552 		error = -ENOMEM;
1553 		goto out;
1554 	}
1555 
1556 	error = nvmet_init_discovery();
1557 	if (error)
1558 		goto out_free_work_queue;
1559 
1560 	error = nvmet_init_configfs();
1561 	if (error)
1562 		goto out_exit_discovery;
1563 	return 0;
1564 
1565 out_exit_discovery:
1566 	nvmet_exit_discovery();
1567 out_free_work_queue:
1568 	destroy_workqueue(buffered_io_wq);
1569 out:
1570 	return error;
1571 }
1572 
1573 static void __exit nvmet_exit(void)
1574 {
1575 	nvmet_exit_configfs();
1576 	nvmet_exit_discovery();
1577 	ida_destroy(&cntlid_ida);
1578 	destroy_workqueue(buffered_io_wq);
1579 
1580 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1581 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1582 }
1583 
1584 module_init(nvmet_init);
1585 module_exit(nvmet_exit);
1586 
1587 MODULE_LICENSE("GPL v2");
1588