xref: /openbmc/linux/drivers/nvme/target/core.c (revision 5ff32883)
1 /*
2  * Common code for the NVMe target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/rculist.h>
18 #include <linux/pci-p2pdma.h>
19 
20 #include "nvmet.h"
21 
22 struct workqueue_struct *buffered_io_wq;
23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24 static DEFINE_IDA(cntlid_ida);
25 
26 /*
27  * This read/write semaphore is used to synchronize access to configuration
28  * information on a target system that will result in discovery log page
29  * information change for at least one host.
30  * The full list of resources to protected by this semaphore is:
31  *
32  *  - subsystems list
33  *  - per-subsystem allowed hosts list
34  *  - allow_any_host subsystem attribute
35  *  - nvmet_genctr
36  *  - the nvmet_transports array
37  *
38  * When updating any of those lists/structures write lock should be obtained,
39  * while when reading (popolating discovery log page or checking host-subsystem
40  * link) read lock is obtained to allow concurrent reads.
41  */
42 DECLARE_RWSEM(nvmet_config_sem);
43 
44 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
45 u64 nvmet_ana_chgcnt;
46 DECLARE_RWSEM(nvmet_ana_sem);
47 
48 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
49 {
50 	u16 status;
51 
52 	switch (errno) {
53 	case -ENOSPC:
54 		req->error_loc = offsetof(struct nvme_rw_command, length);
55 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
56 		break;
57 	case -EREMOTEIO:
58 		req->error_loc = offsetof(struct nvme_rw_command, slba);
59 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
60 		break;
61 	case -EOPNOTSUPP:
62 		req->error_loc = offsetof(struct nvme_common_command, opcode);
63 		switch (req->cmd->common.opcode) {
64 		case nvme_cmd_dsm:
65 		case nvme_cmd_write_zeroes:
66 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
67 			break;
68 		default:
69 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
70 		}
71 		break;
72 	case -ENODATA:
73 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
74 		status = NVME_SC_ACCESS_DENIED;
75 		break;
76 	case -EIO:
77 		/* FALLTHRU */
78 	default:
79 		req->error_loc = offsetof(struct nvme_common_command, opcode);
80 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
81 	}
82 
83 	return status;
84 }
85 
86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
87 		const char *subsysnqn);
88 
89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
90 		size_t len)
91 {
92 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
93 		req->error_loc = offsetof(struct nvme_common_command, dptr);
94 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
95 	}
96 	return 0;
97 }
98 
99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 {
101 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
102 		req->error_loc = offsetof(struct nvme_common_command, dptr);
103 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
104 	}
105 	return 0;
106 }
107 
108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 {
110 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
111 		req->error_loc = offsetof(struct nvme_common_command, dptr);
112 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
113 	}
114 	return 0;
115 }
116 
117 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
118 {
119 	struct nvmet_ns *ns;
120 
121 	if (list_empty(&subsys->namespaces))
122 		return 0;
123 
124 	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
125 	return ns->nsid;
126 }
127 
128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
129 {
130 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
131 }
132 
133 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
134 {
135 	struct nvmet_req *req;
136 
137 	while (1) {
138 		mutex_lock(&ctrl->lock);
139 		if (!ctrl->nr_async_event_cmds) {
140 			mutex_unlock(&ctrl->lock);
141 			return;
142 		}
143 
144 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
145 		mutex_unlock(&ctrl->lock);
146 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
147 	}
148 }
149 
150 static void nvmet_async_event_work(struct work_struct *work)
151 {
152 	struct nvmet_ctrl *ctrl =
153 		container_of(work, struct nvmet_ctrl, async_event_work);
154 	struct nvmet_async_event *aen;
155 	struct nvmet_req *req;
156 
157 	while (1) {
158 		mutex_lock(&ctrl->lock);
159 		aen = list_first_entry_or_null(&ctrl->async_events,
160 				struct nvmet_async_event, entry);
161 		if (!aen || !ctrl->nr_async_event_cmds) {
162 			mutex_unlock(&ctrl->lock);
163 			return;
164 		}
165 
166 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
167 		nvmet_set_result(req, nvmet_async_event_result(aen));
168 
169 		list_del(&aen->entry);
170 		kfree(aen);
171 
172 		mutex_unlock(&ctrl->lock);
173 		nvmet_req_complete(req, 0);
174 	}
175 }
176 
177 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
178 		u8 event_info, u8 log_page)
179 {
180 	struct nvmet_async_event *aen;
181 
182 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
183 	if (!aen)
184 		return;
185 
186 	aen->event_type = event_type;
187 	aen->event_info = event_info;
188 	aen->log_page = log_page;
189 
190 	mutex_lock(&ctrl->lock);
191 	list_add_tail(&aen->entry, &ctrl->async_events);
192 	mutex_unlock(&ctrl->lock);
193 
194 	schedule_work(&ctrl->async_event_work);
195 }
196 
197 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
198 {
199 	u32 i;
200 
201 	mutex_lock(&ctrl->lock);
202 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
203 		goto out_unlock;
204 
205 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
206 		if (ctrl->changed_ns_list[i] == nsid)
207 			goto out_unlock;
208 	}
209 
210 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
211 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
212 		ctrl->nr_changed_ns = U32_MAX;
213 		goto out_unlock;
214 	}
215 
216 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
217 out_unlock:
218 	mutex_unlock(&ctrl->lock);
219 }
220 
221 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
222 {
223 	struct nvmet_ctrl *ctrl;
224 
225 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
226 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
227 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
228 			continue;
229 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
230 				NVME_AER_NOTICE_NS_CHANGED,
231 				NVME_LOG_CHANGED_NS);
232 	}
233 }
234 
235 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
236 		struct nvmet_port *port)
237 {
238 	struct nvmet_ctrl *ctrl;
239 
240 	mutex_lock(&subsys->lock);
241 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 		if (port && ctrl->port != port)
243 			continue;
244 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
245 			continue;
246 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
247 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
248 	}
249 	mutex_unlock(&subsys->lock);
250 }
251 
252 void nvmet_port_send_ana_event(struct nvmet_port *port)
253 {
254 	struct nvmet_subsys_link *p;
255 
256 	down_read(&nvmet_config_sem);
257 	list_for_each_entry(p, &port->subsystems, entry)
258 		nvmet_send_ana_event(p->subsys, port);
259 	up_read(&nvmet_config_sem);
260 }
261 
262 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
263 {
264 	int ret = 0;
265 
266 	down_write(&nvmet_config_sem);
267 	if (nvmet_transports[ops->type])
268 		ret = -EINVAL;
269 	else
270 		nvmet_transports[ops->type] = ops;
271 	up_write(&nvmet_config_sem);
272 
273 	return ret;
274 }
275 EXPORT_SYMBOL_GPL(nvmet_register_transport);
276 
277 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
278 {
279 	down_write(&nvmet_config_sem);
280 	nvmet_transports[ops->type] = NULL;
281 	up_write(&nvmet_config_sem);
282 }
283 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
284 
285 int nvmet_enable_port(struct nvmet_port *port)
286 {
287 	const struct nvmet_fabrics_ops *ops;
288 	int ret;
289 
290 	lockdep_assert_held(&nvmet_config_sem);
291 
292 	ops = nvmet_transports[port->disc_addr.trtype];
293 	if (!ops) {
294 		up_write(&nvmet_config_sem);
295 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
296 		down_write(&nvmet_config_sem);
297 		ops = nvmet_transports[port->disc_addr.trtype];
298 		if (!ops) {
299 			pr_err("transport type %d not supported\n",
300 				port->disc_addr.trtype);
301 			return -EINVAL;
302 		}
303 	}
304 
305 	if (!try_module_get(ops->owner))
306 		return -EINVAL;
307 
308 	ret = ops->add_port(port);
309 	if (ret) {
310 		module_put(ops->owner);
311 		return ret;
312 	}
313 
314 	/* If the transport didn't set inline_data_size, then disable it. */
315 	if (port->inline_data_size < 0)
316 		port->inline_data_size = 0;
317 
318 	port->enabled = true;
319 	return 0;
320 }
321 
322 void nvmet_disable_port(struct nvmet_port *port)
323 {
324 	const struct nvmet_fabrics_ops *ops;
325 
326 	lockdep_assert_held(&nvmet_config_sem);
327 
328 	port->enabled = false;
329 
330 	ops = nvmet_transports[port->disc_addr.trtype];
331 	ops->remove_port(port);
332 	module_put(ops->owner);
333 }
334 
335 static void nvmet_keep_alive_timer(struct work_struct *work)
336 {
337 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
338 			struct nvmet_ctrl, ka_work);
339 	bool cmd_seen = ctrl->cmd_seen;
340 
341 	ctrl->cmd_seen = false;
342 	if (cmd_seen) {
343 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
344 			ctrl->cntlid);
345 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
346 		return;
347 	}
348 
349 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
350 		ctrl->cntlid, ctrl->kato);
351 
352 	nvmet_ctrl_fatal_error(ctrl);
353 }
354 
355 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
356 {
357 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
358 		ctrl->cntlid, ctrl->kato);
359 
360 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
361 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
362 }
363 
364 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
365 {
366 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
367 
368 	cancel_delayed_work_sync(&ctrl->ka_work);
369 }
370 
371 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
372 		__le32 nsid)
373 {
374 	struct nvmet_ns *ns;
375 
376 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
377 		if (ns->nsid == le32_to_cpu(nsid))
378 			return ns;
379 	}
380 
381 	return NULL;
382 }
383 
384 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
385 {
386 	struct nvmet_ns *ns;
387 
388 	rcu_read_lock();
389 	ns = __nvmet_find_namespace(ctrl, nsid);
390 	if (ns)
391 		percpu_ref_get(&ns->ref);
392 	rcu_read_unlock();
393 
394 	return ns;
395 }
396 
397 static void nvmet_destroy_namespace(struct percpu_ref *ref)
398 {
399 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
400 
401 	complete(&ns->disable_done);
402 }
403 
404 void nvmet_put_namespace(struct nvmet_ns *ns)
405 {
406 	percpu_ref_put(&ns->ref);
407 }
408 
409 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
410 {
411 	nvmet_bdev_ns_disable(ns);
412 	nvmet_file_ns_disable(ns);
413 }
414 
415 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
416 {
417 	int ret;
418 	struct pci_dev *p2p_dev;
419 
420 	if (!ns->use_p2pmem)
421 		return 0;
422 
423 	if (!ns->bdev) {
424 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
425 		return -EINVAL;
426 	}
427 
428 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
429 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
430 		       ns->device_path);
431 		return -EINVAL;
432 	}
433 
434 	if (ns->p2p_dev) {
435 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
436 		if (ret < 0)
437 			return -EINVAL;
438 	} else {
439 		/*
440 		 * Right now we just check that there is p2pmem available so
441 		 * we can report an error to the user right away if there
442 		 * is not. We'll find the actual device to use once we
443 		 * setup the controller when the port's device is available.
444 		 */
445 
446 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
447 		if (!p2p_dev) {
448 			pr_err("no peer-to-peer memory is available for %s\n",
449 			       ns->device_path);
450 			return -EINVAL;
451 		}
452 
453 		pci_dev_put(p2p_dev);
454 	}
455 
456 	return 0;
457 }
458 
459 /*
460  * Note: ctrl->subsys->lock should be held when calling this function
461  */
462 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
463 				    struct nvmet_ns *ns)
464 {
465 	struct device *clients[2];
466 	struct pci_dev *p2p_dev;
467 	int ret;
468 
469 	if (!ctrl->p2p_client || !ns->use_p2pmem)
470 		return;
471 
472 	if (ns->p2p_dev) {
473 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
474 		if (ret < 0)
475 			return;
476 
477 		p2p_dev = pci_dev_get(ns->p2p_dev);
478 	} else {
479 		clients[0] = ctrl->p2p_client;
480 		clients[1] = nvmet_ns_dev(ns);
481 
482 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
483 		if (!p2p_dev) {
484 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
485 			       dev_name(ctrl->p2p_client), ns->device_path);
486 			return;
487 		}
488 	}
489 
490 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
491 	if (ret < 0)
492 		pci_dev_put(p2p_dev);
493 
494 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
495 		ns->nsid);
496 }
497 
498 int nvmet_ns_enable(struct nvmet_ns *ns)
499 {
500 	struct nvmet_subsys *subsys = ns->subsys;
501 	struct nvmet_ctrl *ctrl;
502 	int ret;
503 
504 	mutex_lock(&subsys->lock);
505 	ret = -EMFILE;
506 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
507 		goto out_unlock;
508 	ret = 0;
509 	if (ns->enabled)
510 		goto out_unlock;
511 
512 	ret = nvmet_bdev_ns_enable(ns);
513 	if (ret == -ENOTBLK)
514 		ret = nvmet_file_ns_enable(ns);
515 	if (ret)
516 		goto out_unlock;
517 
518 	ret = nvmet_p2pmem_ns_enable(ns);
519 	if (ret)
520 		goto out_unlock;
521 
522 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
523 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
524 
525 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
526 				0, GFP_KERNEL);
527 	if (ret)
528 		goto out_dev_put;
529 
530 	if (ns->nsid > subsys->max_nsid)
531 		subsys->max_nsid = ns->nsid;
532 
533 	/*
534 	 * The namespaces list needs to be sorted to simplify the implementation
535 	 * of the Identify Namepace List subcommand.
536 	 */
537 	if (list_empty(&subsys->namespaces)) {
538 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
539 	} else {
540 		struct nvmet_ns *old;
541 
542 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
543 			BUG_ON(ns->nsid == old->nsid);
544 			if (ns->nsid < old->nsid)
545 				break;
546 		}
547 
548 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
549 	}
550 	subsys->nr_namespaces++;
551 
552 	nvmet_ns_changed(subsys, ns->nsid);
553 	ns->enabled = true;
554 	ret = 0;
555 out_unlock:
556 	mutex_unlock(&subsys->lock);
557 	return ret;
558 out_dev_put:
559 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
560 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
561 
562 	nvmet_ns_dev_disable(ns);
563 	goto out_unlock;
564 }
565 
566 void nvmet_ns_disable(struct nvmet_ns *ns)
567 {
568 	struct nvmet_subsys *subsys = ns->subsys;
569 	struct nvmet_ctrl *ctrl;
570 
571 	mutex_lock(&subsys->lock);
572 	if (!ns->enabled)
573 		goto out_unlock;
574 
575 	ns->enabled = false;
576 	list_del_rcu(&ns->dev_link);
577 	if (ns->nsid == subsys->max_nsid)
578 		subsys->max_nsid = nvmet_max_nsid(subsys);
579 
580 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
581 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
582 
583 	mutex_unlock(&subsys->lock);
584 
585 	/*
586 	 * Now that we removed the namespaces from the lookup list, we
587 	 * can kill the per_cpu ref and wait for any remaining references
588 	 * to be dropped, as well as a RCU grace period for anyone only
589 	 * using the namepace under rcu_read_lock().  Note that we can't
590 	 * use call_rcu here as we need to ensure the namespaces have
591 	 * been fully destroyed before unloading the module.
592 	 */
593 	percpu_ref_kill(&ns->ref);
594 	synchronize_rcu();
595 	wait_for_completion(&ns->disable_done);
596 	percpu_ref_exit(&ns->ref);
597 
598 	mutex_lock(&subsys->lock);
599 
600 	subsys->nr_namespaces--;
601 	nvmet_ns_changed(subsys, ns->nsid);
602 	nvmet_ns_dev_disable(ns);
603 out_unlock:
604 	mutex_unlock(&subsys->lock);
605 }
606 
607 void nvmet_ns_free(struct nvmet_ns *ns)
608 {
609 	nvmet_ns_disable(ns);
610 
611 	down_write(&nvmet_ana_sem);
612 	nvmet_ana_group_enabled[ns->anagrpid]--;
613 	up_write(&nvmet_ana_sem);
614 
615 	kfree(ns->device_path);
616 	kfree(ns);
617 }
618 
619 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
620 {
621 	struct nvmet_ns *ns;
622 
623 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
624 	if (!ns)
625 		return NULL;
626 
627 	INIT_LIST_HEAD(&ns->dev_link);
628 	init_completion(&ns->disable_done);
629 
630 	ns->nsid = nsid;
631 	ns->subsys = subsys;
632 
633 	down_write(&nvmet_ana_sem);
634 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
635 	nvmet_ana_group_enabled[ns->anagrpid]++;
636 	up_write(&nvmet_ana_sem);
637 
638 	uuid_gen(&ns->uuid);
639 	ns->buffered_io = false;
640 
641 	return ns;
642 }
643 
644 static void nvmet_update_sq_head(struct nvmet_req *req)
645 {
646 	if (req->sq->size) {
647 		u32 old_sqhd, new_sqhd;
648 
649 		do {
650 			old_sqhd = req->sq->sqhd;
651 			new_sqhd = (old_sqhd + 1) % req->sq->size;
652 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
653 					old_sqhd);
654 	}
655 	req->rsp->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
656 }
657 
658 static void nvmet_set_error(struct nvmet_req *req, u16 status)
659 {
660 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
661 	struct nvme_error_slot *new_error_slot;
662 	unsigned long flags;
663 
664 	req->rsp->status = cpu_to_le16(status << 1);
665 
666 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
667 		return;
668 
669 	spin_lock_irqsave(&ctrl->error_lock, flags);
670 	ctrl->err_counter++;
671 	new_error_slot =
672 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
673 
674 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
675 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
676 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
677 	new_error_slot->status_field = cpu_to_le16(status << 1);
678 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
679 	new_error_slot->lba = cpu_to_le64(req->error_slba);
680 	new_error_slot->nsid = req->cmd->common.nsid;
681 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
682 
683 	/* set the more bit for this request */
684 	req->rsp->status |= cpu_to_le16(1 << 14);
685 }
686 
687 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
688 {
689 	if (!req->sq->sqhd_disabled)
690 		nvmet_update_sq_head(req);
691 	req->rsp->sq_id = cpu_to_le16(req->sq->qid);
692 	req->rsp->command_id = req->cmd->common.command_id;
693 
694 	if (unlikely(status))
695 		nvmet_set_error(req, status);
696 	if (req->ns)
697 		nvmet_put_namespace(req->ns);
698 	req->ops->queue_response(req);
699 }
700 
701 void nvmet_req_complete(struct nvmet_req *req, u16 status)
702 {
703 	__nvmet_req_complete(req, status);
704 	percpu_ref_put(&req->sq->ref);
705 }
706 EXPORT_SYMBOL_GPL(nvmet_req_complete);
707 
708 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
709 		u16 qid, u16 size)
710 {
711 	cq->qid = qid;
712 	cq->size = size;
713 
714 	ctrl->cqs[qid] = cq;
715 }
716 
717 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
718 		u16 qid, u16 size)
719 {
720 	sq->sqhd = 0;
721 	sq->qid = qid;
722 	sq->size = size;
723 
724 	ctrl->sqs[qid] = sq;
725 }
726 
727 static void nvmet_confirm_sq(struct percpu_ref *ref)
728 {
729 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
730 
731 	complete(&sq->confirm_done);
732 }
733 
734 void nvmet_sq_destroy(struct nvmet_sq *sq)
735 {
736 	/*
737 	 * If this is the admin queue, complete all AERs so that our
738 	 * queue doesn't have outstanding requests on it.
739 	 */
740 	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
741 		nvmet_async_events_free(sq->ctrl);
742 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
743 	wait_for_completion(&sq->confirm_done);
744 	wait_for_completion(&sq->free_done);
745 	percpu_ref_exit(&sq->ref);
746 
747 	if (sq->ctrl) {
748 		nvmet_ctrl_put(sq->ctrl);
749 		sq->ctrl = NULL; /* allows reusing the queue later */
750 	}
751 }
752 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
753 
754 static void nvmet_sq_free(struct percpu_ref *ref)
755 {
756 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
757 
758 	complete(&sq->free_done);
759 }
760 
761 int nvmet_sq_init(struct nvmet_sq *sq)
762 {
763 	int ret;
764 
765 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
766 	if (ret) {
767 		pr_err("percpu_ref init failed!\n");
768 		return ret;
769 	}
770 	init_completion(&sq->free_done);
771 	init_completion(&sq->confirm_done);
772 
773 	return 0;
774 }
775 EXPORT_SYMBOL_GPL(nvmet_sq_init);
776 
777 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
778 		struct nvmet_ns *ns)
779 {
780 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
781 
782 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
783 		return NVME_SC_ANA_INACCESSIBLE;
784 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
785 		return NVME_SC_ANA_PERSISTENT_LOSS;
786 	if (unlikely(state == NVME_ANA_CHANGE))
787 		return NVME_SC_ANA_TRANSITION;
788 	return 0;
789 }
790 
791 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
792 {
793 	if (unlikely(req->ns->readonly)) {
794 		switch (req->cmd->common.opcode) {
795 		case nvme_cmd_read:
796 		case nvme_cmd_flush:
797 			break;
798 		default:
799 			return NVME_SC_NS_WRITE_PROTECTED;
800 		}
801 	}
802 
803 	return 0;
804 }
805 
806 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
807 {
808 	struct nvme_command *cmd = req->cmd;
809 	u16 ret;
810 
811 	ret = nvmet_check_ctrl_status(req, cmd);
812 	if (unlikely(ret))
813 		return ret;
814 
815 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
816 	if (unlikely(!req->ns)) {
817 		req->error_loc = offsetof(struct nvme_common_command, nsid);
818 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
819 	}
820 	ret = nvmet_check_ana_state(req->port, req->ns);
821 	if (unlikely(ret)) {
822 		req->error_loc = offsetof(struct nvme_common_command, nsid);
823 		return ret;
824 	}
825 	ret = nvmet_io_cmd_check_access(req);
826 	if (unlikely(ret)) {
827 		req->error_loc = offsetof(struct nvme_common_command, nsid);
828 		return ret;
829 	}
830 
831 	if (req->ns->file)
832 		return nvmet_file_parse_io_cmd(req);
833 	else
834 		return nvmet_bdev_parse_io_cmd(req);
835 }
836 
837 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
838 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
839 {
840 	u8 flags = req->cmd->common.flags;
841 	u16 status;
842 
843 	req->cq = cq;
844 	req->sq = sq;
845 	req->ops = ops;
846 	req->sg = NULL;
847 	req->sg_cnt = 0;
848 	req->transfer_len = 0;
849 	req->rsp->status = 0;
850 	req->rsp->sq_head = 0;
851 	req->ns = NULL;
852 	req->error_loc = NVMET_NO_ERROR_LOC;
853 	req->error_slba = 0;
854 
855 	/* no support for fused commands yet */
856 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
857 		req->error_loc = offsetof(struct nvme_common_command, flags);
858 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
859 		goto fail;
860 	}
861 
862 	/*
863 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
864 	 * contains an address of a single contiguous physical buffer that is
865 	 * byte aligned.
866 	 */
867 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
868 		req->error_loc = offsetof(struct nvme_common_command, flags);
869 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
870 		goto fail;
871 	}
872 
873 	if (unlikely(!req->sq->ctrl))
874 		/* will return an error for any Non-connect command: */
875 		status = nvmet_parse_connect_cmd(req);
876 	else if (likely(req->sq->qid != 0))
877 		status = nvmet_parse_io_cmd(req);
878 	else if (req->cmd->common.opcode == nvme_fabrics_command)
879 		status = nvmet_parse_fabrics_cmd(req);
880 	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
881 		status = nvmet_parse_discovery_cmd(req);
882 	else
883 		status = nvmet_parse_admin_cmd(req);
884 
885 	if (status)
886 		goto fail;
887 
888 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
889 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
890 		goto fail;
891 	}
892 
893 	if (sq->ctrl)
894 		sq->ctrl->cmd_seen = true;
895 
896 	return true;
897 
898 fail:
899 	__nvmet_req_complete(req, status);
900 	return false;
901 }
902 EXPORT_SYMBOL_GPL(nvmet_req_init);
903 
904 void nvmet_req_uninit(struct nvmet_req *req)
905 {
906 	percpu_ref_put(&req->sq->ref);
907 	if (req->ns)
908 		nvmet_put_namespace(req->ns);
909 }
910 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
911 
912 void nvmet_req_execute(struct nvmet_req *req)
913 {
914 	if (unlikely(req->data_len != req->transfer_len)) {
915 		req->error_loc = offsetof(struct nvme_common_command, dptr);
916 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
917 	} else
918 		req->execute(req);
919 }
920 EXPORT_SYMBOL_GPL(nvmet_req_execute);
921 
922 int nvmet_req_alloc_sgl(struct nvmet_req *req)
923 {
924 	struct pci_dev *p2p_dev = NULL;
925 
926 	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
927 		if (req->sq->ctrl && req->ns)
928 			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
929 						    req->ns->nsid);
930 
931 		req->p2p_dev = NULL;
932 		if (req->sq->qid && p2p_dev) {
933 			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
934 						       req->transfer_len);
935 			if (req->sg) {
936 				req->p2p_dev = p2p_dev;
937 				return 0;
938 			}
939 		}
940 
941 		/*
942 		 * If no P2P memory was available we fallback to using
943 		 * regular memory
944 		 */
945 	}
946 
947 	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
948 	if (!req->sg)
949 		return -ENOMEM;
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
954 
955 void nvmet_req_free_sgl(struct nvmet_req *req)
956 {
957 	if (req->p2p_dev)
958 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
959 	else
960 		sgl_free(req->sg);
961 
962 	req->sg = NULL;
963 	req->sg_cnt = 0;
964 }
965 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
966 
967 static inline bool nvmet_cc_en(u32 cc)
968 {
969 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
970 }
971 
972 static inline u8 nvmet_cc_css(u32 cc)
973 {
974 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
975 }
976 
977 static inline u8 nvmet_cc_mps(u32 cc)
978 {
979 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
980 }
981 
982 static inline u8 nvmet_cc_ams(u32 cc)
983 {
984 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
985 }
986 
987 static inline u8 nvmet_cc_shn(u32 cc)
988 {
989 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
990 }
991 
992 static inline u8 nvmet_cc_iosqes(u32 cc)
993 {
994 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
995 }
996 
997 static inline u8 nvmet_cc_iocqes(u32 cc)
998 {
999 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1000 }
1001 
1002 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1003 {
1004 	lockdep_assert_held(&ctrl->lock);
1005 
1006 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1007 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1008 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1009 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1010 	    nvmet_cc_css(ctrl->cc) != 0) {
1011 		ctrl->csts = NVME_CSTS_CFS;
1012 		return;
1013 	}
1014 
1015 	ctrl->csts = NVME_CSTS_RDY;
1016 
1017 	/*
1018 	 * Controllers that are not yet enabled should not really enforce the
1019 	 * keep alive timeout, but we still want to track a timeout and cleanup
1020 	 * in case a host died before it enabled the controller.  Hence, simply
1021 	 * reset the keep alive timer when the controller is enabled.
1022 	 */
1023 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1024 }
1025 
1026 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1027 {
1028 	lockdep_assert_held(&ctrl->lock);
1029 
1030 	/* XXX: tear down queues? */
1031 	ctrl->csts &= ~NVME_CSTS_RDY;
1032 	ctrl->cc = 0;
1033 }
1034 
1035 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1036 {
1037 	u32 old;
1038 
1039 	mutex_lock(&ctrl->lock);
1040 	old = ctrl->cc;
1041 	ctrl->cc = new;
1042 
1043 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1044 		nvmet_start_ctrl(ctrl);
1045 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1046 		nvmet_clear_ctrl(ctrl);
1047 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1048 		nvmet_clear_ctrl(ctrl);
1049 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1050 	}
1051 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1052 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1053 	mutex_unlock(&ctrl->lock);
1054 }
1055 
1056 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1057 {
1058 	/* command sets supported: NVMe command set: */
1059 	ctrl->cap = (1ULL << 37);
1060 	/* CC.EN timeout in 500msec units: */
1061 	ctrl->cap |= (15ULL << 24);
1062 	/* maximum queue entries supported: */
1063 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1064 }
1065 
1066 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1067 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1068 {
1069 	struct nvmet_subsys *subsys;
1070 	struct nvmet_ctrl *ctrl;
1071 	u16 status = 0;
1072 
1073 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1074 	if (!subsys) {
1075 		pr_warn("connect request for invalid subsystem %s!\n",
1076 			subsysnqn);
1077 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1078 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1079 	}
1080 
1081 	mutex_lock(&subsys->lock);
1082 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1083 		if (ctrl->cntlid == cntlid) {
1084 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1085 				pr_warn("hostnqn mismatch.\n");
1086 				continue;
1087 			}
1088 			if (!kref_get_unless_zero(&ctrl->ref))
1089 				continue;
1090 
1091 			*ret = ctrl;
1092 			goto out;
1093 		}
1094 	}
1095 
1096 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1097 		cntlid, subsysnqn, hostnqn);
1098 	req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1099 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1100 
1101 out:
1102 	mutex_unlock(&subsys->lock);
1103 	nvmet_subsys_put(subsys);
1104 	return status;
1105 }
1106 
1107 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1108 {
1109 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1110 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1111 		       cmd->common.opcode, req->sq->qid);
1112 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1113 	}
1114 
1115 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1116 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1117 		       cmd->common.opcode, req->sq->qid);
1118 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1119 	}
1120 	return 0;
1121 }
1122 
1123 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1124 {
1125 	struct nvmet_host_link *p;
1126 
1127 	lockdep_assert_held(&nvmet_config_sem);
1128 
1129 	if (subsys->allow_any_host)
1130 		return true;
1131 
1132 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1133 		return true;
1134 
1135 	list_for_each_entry(p, &subsys->hosts, entry) {
1136 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1137 			return true;
1138 	}
1139 
1140 	return false;
1141 }
1142 
1143 /*
1144  * Note: ctrl->subsys->lock should be held when calling this function
1145  */
1146 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1147 		struct nvmet_req *req)
1148 {
1149 	struct nvmet_ns *ns;
1150 
1151 	if (!req->p2p_client)
1152 		return;
1153 
1154 	ctrl->p2p_client = get_device(req->p2p_client);
1155 
1156 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1157 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1158 }
1159 
1160 /*
1161  * Note: ctrl->subsys->lock should be held when calling this function
1162  */
1163 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1164 {
1165 	struct radix_tree_iter iter;
1166 	void __rcu **slot;
1167 
1168 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1169 		pci_dev_put(radix_tree_deref_slot(slot));
1170 
1171 	put_device(ctrl->p2p_client);
1172 }
1173 
1174 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1175 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1176 {
1177 	struct nvmet_subsys *subsys;
1178 	struct nvmet_ctrl *ctrl;
1179 	int ret;
1180 	u16 status;
1181 
1182 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1183 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1184 	if (!subsys) {
1185 		pr_warn("connect request for invalid subsystem %s!\n",
1186 			subsysnqn);
1187 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1188 		goto out;
1189 	}
1190 
1191 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1192 	down_read(&nvmet_config_sem);
1193 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1194 		pr_info("connect by host %s for subsystem %s not allowed\n",
1195 			hostnqn, subsysnqn);
1196 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1197 		up_read(&nvmet_config_sem);
1198 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1199 		goto out_put_subsystem;
1200 	}
1201 	up_read(&nvmet_config_sem);
1202 
1203 	status = NVME_SC_INTERNAL;
1204 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1205 	if (!ctrl)
1206 		goto out_put_subsystem;
1207 	mutex_init(&ctrl->lock);
1208 
1209 	nvmet_init_cap(ctrl);
1210 
1211 	ctrl->port = req->port;
1212 
1213 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1214 	INIT_LIST_HEAD(&ctrl->async_events);
1215 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1216 
1217 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1218 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1219 
1220 	kref_init(&ctrl->ref);
1221 	ctrl->subsys = subsys;
1222 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1223 
1224 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1225 			sizeof(__le32), GFP_KERNEL);
1226 	if (!ctrl->changed_ns_list)
1227 		goto out_free_ctrl;
1228 
1229 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1230 			sizeof(struct nvmet_cq *),
1231 			GFP_KERNEL);
1232 	if (!ctrl->cqs)
1233 		goto out_free_changed_ns_list;
1234 
1235 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1236 			sizeof(struct nvmet_sq *),
1237 			GFP_KERNEL);
1238 	if (!ctrl->sqs)
1239 		goto out_free_cqs;
1240 
1241 	ret = ida_simple_get(&cntlid_ida,
1242 			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1243 			     GFP_KERNEL);
1244 	if (ret < 0) {
1245 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1246 		goto out_free_sqs;
1247 	}
1248 	ctrl->cntlid = ret;
1249 
1250 	ctrl->ops = req->ops;
1251 
1252 	/*
1253 	 * Discovery controllers may use some arbitrary high value
1254 	 * in order to cleanup stale discovery sessions
1255 	 */
1256 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1257 		kato = NVMET_DISC_KATO_MS;
1258 
1259 	/* keep-alive timeout in seconds */
1260 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1261 
1262 	ctrl->err_counter = 0;
1263 	spin_lock_init(&ctrl->error_lock);
1264 
1265 	nvmet_start_keep_alive_timer(ctrl);
1266 
1267 	mutex_lock(&subsys->lock);
1268 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1269 	nvmet_setup_p2p_ns_map(ctrl, req);
1270 	mutex_unlock(&subsys->lock);
1271 
1272 	*ctrlp = ctrl;
1273 	return 0;
1274 
1275 out_free_sqs:
1276 	kfree(ctrl->sqs);
1277 out_free_cqs:
1278 	kfree(ctrl->cqs);
1279 out_free_changed_ns_list:
1280 	kfree(ctrl->changed_ns_list);
1281 out_free_ctrl:
1282 	kfree(ctrl);
1283 out_put_subsystem:
1284 	nvmet_subsys_put(subsys);
1285 out:
1286 	return status;
1287 }
1288 
1289 static void nvmet_ctrl_free(struct kref *ref)
1290 {
1291 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1292 	struct nvmet_subsys *subsys = ctrl->subsys;
1293 
1294 	mutex_lock(&subsys->lock);
1295 	nvmet_release_p2p_ns_map(ctrl);
1296 	list_del(&ctrl->subsys_entry);
1297 	mutex_unlock(&subsys->lock);
1298 
1299 	nvmet_stop_keep_alive_timer(ctrl);
1300 
1301 	flush_work(&ctrl->async_event_work);
1302 	cancel_work_sync(&ctrl->fatal_err_work);
1303 
1304 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1305 
1306 	kfree(ctrl->sqs);
1307 	kfree(ctrl->cqs);
1308 	kfree(ctrl->changed_ns_list);
1309 	kfree(ctrl);
1310 
1311 	nvmet_subsys_put(subsys);
1312 }
1313 
1314 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1315 {
1316 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1317 }
1318 
1319 static void nvmet_fatal_error_handler(struct work_struct *work)
1320 {
1321 	struct nvmet_ctrl *ctrl =
1322 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1323 
1324 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1325 	ctrl->ops->delete_ctrl(ctrl);
1326 }
1327 
1328 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1329 {
1330 	mutex_lock(&ctrl->lock);
1331 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1332 		ctrl->csts |= NVME_CSTS_CFS;
1333 		INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1334 		schedule_work(&ctrl->fatal_err_work);
1335 	}
1336 	mutex_unlock(&ctrl->lock);
1337 }
1338 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1339 
1340 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1341 		const char *subsysnqn)
1342 {
1343 	struct nvmet_subsys_link *p;
1344 
1345 	if (!port)
1346 		return NULL;
1347 
1348 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1349 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1350 			return NULL;
1351 		return nvmet_disc_subsys;
1352 	}
1353 
1354 	down_read(&nvmet_config_sem);
1355 	list_for_each_entry(p, &port->subsystems, entry) {
1356 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1357 				NVMF_NQN_SIZE)) {
1358 			if (!kref_get_unless_zero(&p->subsys->ref))
1359 				break;
1360 			up_read(&nvmet_config_sem);
1361 			return p->subsys;
1362 		}
1363 	}
1364 	up_read(&nvmet_config_sem);
1365 	return NULL;
1366 }
1367 
1368 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1369 		enum nvme_subsys_type type)
1370 {
1371 	struct nvmet_subsys *subsys;
1372 
1373 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1374 	if (!subsys)
1375 		return NULL;
1376 
1377 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1378 	/* generate a random serial number as our controllers are ephemeral: */
1379 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1380 
1381 	switch (type) {
1382 	case NVME_NQN_NVME:
1383 		subsys->max_qid = NVMET_NR_QUEUES;
1384 		break;
1385 	case NVME_NQN_DISC:
1386 		subsys->max_qid = 0;
1387 		break;
1388 	default:
1389 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1390 		kfree(subsys);
1391 		return NULL;
1392 	}
1393 	subsys->type = type;
1394 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1395 			GFP_KERNEL);
1396 	if (!subsys->subsysnqn) {
1397 		kfree(subsys);
1398 		return NULL;
1399 	}
1400 
1401 	kref_init(&subsys->ref);
1402 
1403 	mutex_init(&subsys->lock);
1404 	INIT_LIST_HEAD(&subsys->namespaces);
1405 	INIT_LIST_HEAD(&subsys->ctrls);
1406 	INIT_LIST_HEAD(&subsys->hosts);
1407 
1408 	return subsys;
1409 }
1410 
1411 static void nvmet_subsys_free(struct kref *ref)
1412 {
1413 	struct nvmet_subsys *subsys =
1414 		container_of(ref, struct nvmet_subsys, ref);
1415 
1416 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1417 
1418 	kfree(subsys->subsysnqn);
1419 	kfree(subsys);
1420 }
1421 
1422 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1423 {
1424 	struct nvmet_ctrl *ctrl;
1425 
1426 	mutex_lock(&subsys->lock);
1427 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1428 		ctrl->ops->delete_ctrl(ctrl);
1429 	mutex_unlock(&subsys->lock);
1430 }
1431 
1432 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1433 {
1434 	kref_put(&subsys->ref, nvmet_subsys_free);
1435 }
1436 
1437 static int __init nvmet_init(void)
1438 {
1439 	int error;
1440 
1441 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1442 
1443 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1444 			WQ_MEM_RECLAIM, 0);
1445 	if (!buffered_io_wq) {
1446 		error = -ENOMEM;
1447 		goto out;
1448 	}
1449 
1450 	error = nvmet_init_discovery();
1451 	if (error)
1452 		goto out_free_work_queue;
1453 
1454 	error = nvmet_init_configfs();
1455 	if (error)
1456 		goto out_exit_discovery;
1457 	return 0;
1458 
1459 out_exit_discovery:
1460 	nvmet_exit_discovery();
1461 out_free_work_queue:
1462 	destroy_workqueue(buffered_io_wq);
1463 out:
1464 	return error;
1465 }
1466 
1467 static void __exit nvmet_exit(void)
1468 {
1469 	nvmet_exit_configfs();
1470 	nvmet_exit_discovery();
1471 	ida_destroy(&cntlid_ida);
1472 	destroy_workqueue(buffered_io_wq);
1473 
1474 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1475 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1476 }
1477 
1478 module_init(nvmet_init);
1479 module_exit(nvmet_exit);
1480 
1481 MODULE_LICENSE("GPL v2");
1482