xref: /openbmc/linux/drivers/nvme/target/core.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21 
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39 
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43 
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 	u16 status;
47 
48 	switch (errno) {
49 	case 0:
50 		status = NVME_SC_SUCCESS;
51 		break;
52 	case -ENOSPC:
53 		req->error_loc = offsetof(struct nvme_rw_command, length);
54 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 		break;
56 	case -EREMOTEIO:
57 		req->error_loc = offsetof(struct nvme_rw_command, slba);
58 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 		break;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 			break;
67 		default:
68 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 		}
70 		break;
71 	case -ENODATA:
72 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 		status = NVME_SC_ACCESS_DENIED;
74 		break;
75 	case -EIO:
76 		/* FALLTHRU */
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 
82 	return status;
83 }
84 
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 		const char *subsysnqn);
87 
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 		size_t len)
90 {
91 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 		req->error_loc = offsetof(struct nvme_common_command, dptr);
93 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 	}
95 	return 0;
96 }
97 
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 		req->error_loc = offsetof(struct nvme_common_command, dptr);
102 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 	}
104 	return 0;
105 }
106 
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 		req->error_loc = offsetof(struct nvme_common_command, dptr);
111 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 	}
113 	return 0;
114 }
115 
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 	unsigned long nsid = 0;
119 	struct nvmet_ns *cur;
120 	unsigned long idx;
121 
122 	xa_for_each(&subsys->namespaces, idx, cur)
123 		nsid = cur->nsid;
124 
125 	return nsid;
126 }
127 
128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
129 {
130 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
131 }
132 
133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
134 {
135 	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
136 	struct nvmet_req *req;
137 
138 	mutex_lock(&ctrl->lock);
139 	while (ctrl->nr_async_event_cmds) {
140 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 		mutex_unlock(&ctrl->lock);
142 		nvmet_req_complete(req, status);
143 		mutex_lock(&ctrl->lock);
144 	}
145 	mutex_unlock(&ctrl->lock);
146 }
147 
148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 	struct nvmet_async_event *aen;
151 	struct nvmet_req *req;
152 
153 	mutex_lock(&ctrl->lock);
154 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 		aen = list_first_entry(&ctrl->async_events,
156 				       struct nvmet_async_event, entry);
157 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 		nvmet_set_result(req, nvmet_async_event_result(aen));
159 
160 		list_del(&aen->entry);
161 		kfree(aen);
162 
163 		mutex_unlock(&ctrl->lock);
164 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 		nvmet_req_complete(req, 0);
166 		mutex_lock(&ctrl->lock);
167 	}
168 	mutex_unlock(&ctrl->lock);
169 }
170 
171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 	struct nvmet_async_event *aen, *tmp;
174 
175 	mutex_lock(&ctrl->lock);
176 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 		list_del(&aen->entry);
178 		kfree(aen);
179 	}
180 	mutex_unlock(&ctrl->lock);
181 }
182 
183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 	struct nvmet_ctrl *ctrl =
186 		container_of(work, struct nvmet_ctrl, async_event_work);
187 
188 	nvmet_async_events_process(ctrl);
189 }
190 
191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 		u8 event_info, u8 log_page)
193 {
194 	struct nvmet_async_event *aen;
195 
196 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 	if (!aen)
198 		return;
199 
200 	aen->event_type = event_type;
201 	aen->event_info = event_info;
202 	aen->log_page = log_page;
203 
204 	mutex_lock(&ctrl->lock);
205 	list_add_tail(&aen->entry, &ctrl->async_events);
206 	mutex_unlock(&ctrl->lock);
207 
208 	schedule_work(&ctrl->async_event_work);
209 }
210 
211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 	u32 i;
214 
215 	mutex_lock(&ctrl->lock);
216 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 		goto out_unlock;
218 
219 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 		if (ctrl->changed_ns_list[i] == nsid)
221 			goto out_unlock;
222 	}
223 
224 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 		ctrl->nr_changed_ns = U32_MAX;
227 		goto out_unlock;
228 	}
229 
230 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 	mutex_unlock(&ctrl->lock);
233 }
234 
235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 	struct nvmet_ctrl *ctrl;
238 
239 	lockdep_assert_held(&subsys->lock);
240 
241 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 			continue;
245 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 				NVME_AER_NOTICE_NS_CHANGED,
247 				NVME_LOG_CHANGED_NS);
248 	}
249 }
250 
251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 		struct nvmet_port *port)
253 {
254 	struct nvmet_ctrl *ctrl;
255 
256 	mutex_lock(&subsys->lock);
257 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 		if (port && ctrl->port != port)
259 			continue;
260 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 			continue;
262 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 	}
265 	mutex_unlock(&subsys->lock);
266 }
267 
268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 	struct nvmet_subsys_link *p;
271 
272 	down_read(&nvmet_config_sem);
273 	list_for_each_entry(p, &port->subsystems, entry)
274 		nvmet_send_ana_event(p->subsys, port);
275 	up_read(&nvmet_config_sem);
276 }
277 
278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 	int ret = 0;
281 
282 	down_write(&nvmet_config_sem);
283 	if (nvmet_transports[ops->type])
284 		ret = -EINVAL;
285 	else
286 		nvmet_transports[ops->type] = ops;
287 	up_write(&nvmet_config_sem);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292 
293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 	down_write(&nvmet_config_sem);
296 	nvmet_transports[ops->type] = NULL;
297 	up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300 
301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 	struct nvmet_ctrl *ctrl;
304 
305 	mutex_lock(&subsys->lock);
306 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 		if (ctrl->port == port)
308 			ctrl->ops->delete_ctrl(ctrl);
309 	}
310 	mutex_unlock(&subsys->lock);
311 }
312 
313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 	const struct nvmet_fabrics_ops *ops;
316 	int ret;
317 
318 	lockdep_assert_held(&nvmet_config_sem);
319 
320 	ops = nvmet_transports[port->disc_addr.trtype];
321 	if (!ops) {
322 		up_write(&nvmet_config_sem);
323 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 		down_write(&nvmet_config_sem);
325 		ops = nvmet_transports[port->disc_addr.trtype];
326 		if (!ops) {
327 			pr_err("transport type %d not supported\n",
328 				port->disc_addr.trtype);
329 			return -EINVAL;
330 		}
331 	}
332 
333 	if (!try_module_get(ops->owner))
334 		return -EINVAL;
335 
336 	/*
337 	 * If the user requested PI support and the transport isn't pi capable,
338 	 * don't enable the port.
339 	 */
340 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 		pr_err("T10-PI is not supported by transport type %d\n",
342 		       port->disc_addr.trtype);
343 		ret = -EINVAL;
344 		goto out_put;
345 	}
346 
347 	ret = ops->add_port(port);
348 	if (ret)
349 		goto out_put;
350 
351 	/* If the transport didn't set inline_data_size, then disable it. */
352 	if (port->inline_data_size < 0)
353 		port->inline_data_size = 0;
354 
355 	port->enabled = true;
356 	port->tr_ops = ops;
357 	return 0;
358 
359 out_put:
360 	module_put(ops->owner);
361 	return ret;
362 }
363 
364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366 	const struct nvmet_fabrics_ops *ops;
367 
368 	lockdep_assert_held(&nvmet_config_sem);
369 
370 	port->enabled = false;
371 	port->tr_ops = NULL;
372 
373 	ops = nvmet_transports[port->disc_addr.trtype];
374 	ops->remove_port(port);
375 	module_put(ops->owner);
376 }
377 
378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 			struct nvmet_ctrl, ka_work);
382 	bool cmd_seen = ctrl->cmd_seen;
383 
384 	ctrl->cmd_seen = false;
385 	if (cmd_seen) {
386 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 			ctrl->cntlid);
388 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 		return;
390 	}
391 
392 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 		ctrl->cntlid, ctrl->kato);
394 
395 	nvmet_ctrl_fatal_error(ctrl);
396 }
397 
398 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
401 		ctrl->cntlid, ctrl->kato);
402 
403 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
404 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
405 }
406 
407 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
408 {
409 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
410 
411 	cancel_delayed_work_sync(&ctrl->ka_work);
412 }
413 
414 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
415 {
416 	struct nvmet_ns *ns;
417 
418 	ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid));
419 	if (ns)
420 		percpu_ref_get(&ns->ref);
421 
422 	return ns;
423 }
424 
425 static void nvmet_destroy_namespace(struct percpu_ref *ref)
426 {
427 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
428 
429 	complete(&ns->disable_done);
430 }
431 
432 void nvmet_put_namespace(struct nvmet_ns *ns)
433 {
434 	percpu_ref_put(&ns->ref);
435 }
436 
437 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
438 {
439 	nvmet_bdev_ns_disable(ns);
440 	nvmet_file_ns_disable(ns);
441 }
442 
443 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
444 {
445 	int ret;
446 	struct pci_dev *p2p_dev;
447 
448 	if (!ns->use_p2pmem)
449 		return 0;
450 
451 	if (!ns->bdev) {
452 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
453 		return -EINVAL;
454 	}
455 
456 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
457 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
458 		       ns->device_path);
459 		return -EINVAL;
460 	}
461 
462 	if (ns->p2p_dev) {
463 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
464 		if (ret < 0)
465 			return -EINVAL;
466 	} else {
467 		/*
468 		 * Right now we just check that there is p2pmem available so
469 		 * we can report an error to the user right away if there
470 		 * is not. We'll find the actual device to use once we
471 		 * setup the controller when the port's device is available.
472 		 */
473 
474 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
475 		if (!p2p_dev) {
476 			pr_err("no peer-to-peer memory is available for %s\n",
477 			       ns->device_path);
478 			return -EINVAL;
479 		}
480 
481 		pci_dev_put(p2p_dev);
482 	}
483 
484 	return 0;
485 }
486 
487 /*
488  * Note: ctrl->subsys->lock should be held when calling this function
489  */
490 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
491 				    struct nvmet_ns *ns)
492 {
493 	struct device *clients[2];
494 	struct pci_dev *p2p_dev;
495 	int ret;
496 
497 	if (!ctrl->p2p_client || !ns->use_p2pmem)
498 		return;
499 
500 	if (ns->p2p_dev) {
501 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
502 		if (ret < 0)
503 			return;
504 
505 		p2p_dev = pci_dev_get(ns->p2p_dev);
506 	} else {
507 		clients[0] = ctrl->p2p_client;
508 		clients[1] = nvmet_ns_dev(ns);
509 
510 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
511 		if (!p2p_dev) {
512 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
513 			       dev_name(ctrl->p2p_client), ns->device_path);
514 			return;
515 		}
516 	}
517 
518 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
519 	if (ret < 0)
520 		pci_dev_put(p2p_dev);
521 
522 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
523 		ns->nsid);
524 }
525 
526 void nvmet_ns_revalidate(struct nvmet_ns *ns)
527 {
528 	loff_t oldsize = ns->size;
529 
530 	if (ns->bdev)
531 		nvmet_bdev_ns_revalidate(ns);
532 	else
533 		nvmet_file_ns_revalidate(ns);
534 
535 	if (oldsize != ns->size)
536 		nvmet_ns_changed(ns->subsys, ns->nsid);
537 }
538 
539 int nvmet_ns_enable(struct nvmet_ns *ns)
540 {
541 	struct nvmet_subsys *subsys = ns->subsys;
542 	struct nvmet_ctrl *ctrl;
543 	int ret;
544 
545 	mutex_lock(&subsys->lock);
546 	ret = 0;
547 
548 	if (nvmet_passthru_ctrl(subsys)) {
549 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
550 		goto out_unlock;
551 	}
552 
553 	if (ns->enabled)
554 		goto out_unlock;
555 
556 	ret = -EMFILE;
557 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
558 		goto out_unlock;
559 
560 	ret = nvmet_bdev_ns_enable(ns);
561 	if (ret == -ENOTBLK)
562 		ret = nvmet_file_ns_enable(ns);
563 	if (ret)
564 		goto out_unlock;
565 
566 	ret = nvmet_p2pmem_ns_enable(ns);
567 	if (ret)
568 		goto out_dev_disable;
569 
570 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
571 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
572 
573 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
574 				0, GFP_KERNEL);
575 	if (ret)
576 		goto out_dev_put;
577 
578 	if (ns->nsid > subsys->max_nsid)
579 		subsys->max_nsid = ns->nsid;
580 
581 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
582 	if (ret)
583 		goto out_restore_subsys_maxnsid;
584 
585 	subsys->nr_namespaces++;
586 
587 	nvmet_ns_changed(subsys, ns->nsid);
588 	ns->enabled = true;
589 	ret = 0;
590 out_unlock:
591 	mutex_unlock(&subsys->lock);
592 	return ret;
593 
594 out_restore_subsys_maxnsid:
595 	subsys->max_nsid = nvmet_max_nsid(subsys);
596 	percpu_ref_exit(&ns->ref);
597 out_dev_put:
598 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
599 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
600 out_dev_disable:
601 	nvmet_ns_dev_disable(ns);
602 	goto out_unlock;
603 }
604 
605 void nvmet_ns_disable(struct nvmet_ns *ns)
606 {
607 	struct nvmet_subsys *subsys = ns->subsys;
608 	struct nvmet_ctrl *ctrl;
609 
610 	mutex_lock(&subsys->lock);
611 	if (!ns->enabled)
612 		goto out_unlock;
613 
614 	ns->enabled = false;
615 	xa_erase(&ns->subsys->namespaces, ns->nsid);
616 	if (ns->nsid == subsys->max_nsid)
617 		subsys->max_nsid = nvmet_max_nsid(subsys);
618 
619 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
620 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
621 
622 	mutex_unlock(&subsys->lock);
623 
624 	/*
625 	 * Now that we removed the namespaces from the lookup list, we
626 	 * can kill the per_cpu ref and wait for any remaining references
627 	 * to be dropped, as well as a RCU grace period for anyone only
628 	 * using the namepace under rcu_read_lock().  Note that we can't
629 	 * use call_rcu here as we need to ensure the namespaces have
630 	 * been fully destroyed before unloading the module.
631 	 */
632 	percpu_ref_kill(&ns->ref);
633 	synchronize_rcu();
634 	wait_for_completion(&ns->disable_done);
635 	percpu_ref_exit(&ns->ref);
636 
637 	mutex_lock(&subsys->lock);
638 
639 	subsys->nr_namespaces--;
640 	nvmet_ns_changed(subsys, ns->nsid);
641 	nvmet_ns_dev_disable(ns);
642 out_unlock:
643 	mutex_unlock(&subsys->lock);
644 }
645 
646 void nvmet_ns_free(struct nvmet_ns *ns)
647 {
648 	nvmet_ns_disable(ns);
649 
650 	down_write(&nvmet_ana_sem);
651 	nvmet_ana_group_enabled[ns->anagrpid]--;
652 	up_write(&nvmet_ana_sem);
653 
654 	kfree(ns->device_path);
655 	kfree(ns);
656 }
657 
658 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
659 {
660 	struct nvmet_ns *ns;
661 
662 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
663 	if (!ns)
664 		return NULL;
665 
666 	init_completion(&ns->disable_done);
667 
668 	ns->nsid = nsid;
669 	ns->subsys = subsys;
670 
671 	down_write(&nvmet_ana_sem);
672 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
673 	nvmet_ana_group_enabled[ns->anagrpid]++;
674 	up_write(&nvmet_ana_sem);
675 
676 	uuid_gen(&ns->uuid);
677 	ns->buffered_io = false;
678 
679 	return ns;
680 }
681 
682 static void nvmet_update_sq_head(struct nvmet_req *req)
683 {
684 	if (req->sq->size) {
685 		u32 old_sqhd, new_sqhd;
686 
687 		do {
688 			old_sqhd = req->sq->sqhd;
689 			new_sqhd = (old_sqhd + 1) % req->sq->size;
690 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
691 					old_sqhd);
692 	}
693 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
694 }
695 
696 static void nvmet_set_error(struct nvmet_req *req, u16 status)
697 {
698 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
699 	struct nvme_error_slot *new_error_slot;
700 	unsigned long flags;
701 
702 	req->cqe->status = cpu_to_le16(status << 1);
703 
704 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
705 		return;
706 
707 	spin_lock_irqsave(&ctrl->error_lock, flags);
708 	ctrl->err_counter++;
709 	new_error_slot =
710 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
711 
712 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
713 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
714 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
715 	new_error_slot->status_field = cpu_to_le16(status << 1);
716 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
717 	new_error_slot->lba = cpu_to_le64(req->error_slba);
718 	new_error_slot->nsid = req->cmd->common.nsid;
719 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
720 
721 	/* set the more bit for this request */
722 	req->cqe->status |= cpu_to_le16(1 << 14);
723 }
724 
725 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
726 {
727 	if (!req->sq->sqhd_disabled)
728 		nvmet_update_sq_head(req);
729 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
730 	req->cqe->command_id = req->cmd->common.command_id;
731 
732 	if (unlikely(status))
733 		nvmet_set_error(req, status);
734 
735 	trace_nvmet_req_complete(req);
736 
737 	if (req->ns)
738 		nvmet_put_namespace(req->ns);
739 	req->ops->queue_response(req);
740 }
741 
742 void nvmet_req_complete(struct nvmet_req *req, u16 status)
743 {
744 	__nvmet_req_complete(req, status);
745 	percpu_ref_put(&req->sq->ref);
746 }
747 EXPORT_SYMBOL_GPL(nvmet_req_complete);
748 
749 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
750 		u16 qid, u16 size)
751 {
752 	cq->qid = qid;
753 	cq->size = size;
754 
755 	ctrl->cqs[qid] = cq;
756 }
757 
758 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
759 		u16 qid, u16 size)
760 {
761 	sq->sqhd = 0;
762 	sq->qid = qid;
763 	sq->size = size;
764 
765 	ctrl->sqs[qid] = sq;
766 }
767 
768 static void nvmet_confirm_sq(struct percpu_ref *ref)
769 {
770 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
771 
772 	complete(&sq->confirm_done);
773 }
774 
775 void nvmet_sq_destroy(struct nvmet_sq *sq)
776 {
777 	struct nvmet_ctrl *ctrl = sq->ctrl;
778 
779 	/*
780 	 * If this is the admin queue, complete all AERs so that our
781 	 * queue doesn't have outstanding requests on it.
782 	 */
783 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
784 		nvmet_async_events_failall(ctrl);
785 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
786 	wait_for_completion(&sq->confirm_done);
787 	wait_for_completion(&sq->free_done);
788 	percpu_ref_exit(&sq->ref);
789 
790 	if (ctrl) {
791 		nvmet_ctrl_put(ctrl);
792 		sq->ctrl = NULL; /* allows reusing the queue later */
793 	}
794 }
795 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
796 
797 static void nvmet_sq_free(struct percpu_ref *ref)
798 {
799 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
800 
801 	complete(&sq->free_done);
802 }
803 
804 int nvmet_sq_init(struct nvmet_sq *sq)
805 {
806 	int ret;
807 
808 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
809 	if (ret) {
810 		pr_err("percpu_ref init failed!\n");
811 		return ret;
812 	}
813 	init_completion(&sq->free_done);
814 	init_completion(&sq->confirm_done);
815 
816 	return 0;
817 }
818 EXPORT_SYMBOL_GPL(nvmet_sq_init);
819 
820 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
821 		struct nvmet_ns *ns)
822 {
823 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
824 
825 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
826 		return NVME_SC_ANA_INACCESSIBLE;
827 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
828 		return NVME_SC_ANA_PERSISTENT_LOSS;
829 	if (unlikely(state == NVME_ANA_CHANGE))
830 		return NVME_SC_ANA_TRANSITION;
831 	return 0;
832 }
833 
834 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
835 {
836 	if (unlikely(req->ns->readonly)) {
837 		switch (req->cmd->common.opcode) {
838 		case nvme_cmd_read:
839 		case nvme_cmd_flush:
840 			break;
841 		default:
842 			return NVME_SC_NS_WRITE_PROTECTED;
843 		}
844 	}
845 
846 	return 0;
847 }
848 
849 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
850 {
851 	struct nvme_command *cmd = req->cmd;
852 	u16 ret;
853 
854 	ret = nvmet_check_ctrl_status(req, cmd);
855 	if (unlikely(ret))
856 		return ret;
857 
858 	if (nvmet_req_passthru_ctrl(req))
859 		return nvmet_parse_passthru_io_cmd(req);
860 
861 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
862 	if (unlikely(!req->ns)) {
863 		req->error_loc = offsetof(struct nvme_common_command, nsid);
864 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
865 	}
866 	ret = nvmet_check_ana_state(req->port, req->ns);
867 	if (unlikely(ret)) {
868 		req->error_loc = offsetof(struct nvme_common_command, nsid);
869 		return ret;
870 	}
871 	ret = nvmet_io_cmd_check_access(req);
872 	if (unlikely(ret)) {
873 		req->error_loc = offsetof(struct nvme_common_command, nsid);
874 		return ret;
875 	}
876 
877 	if (req->ns->file)
878 		return nvmet_file_parse_io_cmd(req);
879 	else
880 		return nvmet_bdev_parse_io_cmd(req);
881 }
882 
883 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
884 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
885 {
886 	u8 flags = req->cmd->common.flags;
887 	u16 status;
888 
889 	req->cq = cq;
890 	req->sq = sq;
891 	req->ops = ops;
892 	req->sg = NULL;
893 	req->metadata_sg = NULL;
894 	req->sg_cnt = 0;
895 	req->metadata_sg_cnt = 0;
896 	req->transfer_len = 0;
897 	req->metadata_len = 0;
898 	req->cqe->status = 0;
899 	req->cqe->sq_head = 0;
900 	req->ns = NULL;
901 	req->error_loc = NVMET_NO_ERROR_LOC;
902 	req->error_slba = 0;
903 
904 	trace_nvmet_req_init(req, req->cmd);
905 
906 	/* no support for fused commands yet */
907 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
908 		req->error_loc = offsetof(struct nvme_common_command, flags);
909 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
910 		goto fail;
911 	}
912 
913 	/*
914 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
915 	 * contains an address of a single contiguous physical buffer that is
916 	 * byte aligned.
917 	 */
918 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
919 		req->error_loc = offsetof(struct nvme_common_command, flags);
920 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
921 		goto fail;
922 	}
923 
924 	if (unlikely(!req->sq->ctrl))
925 		/* will return an error for any non-connect command: */
926 		status = nvmet_parse_connect_cmd(req);
927 	else if (likely(req->sq->qid != 0))
928 		status = nvmet_parse_io_cmd(req);
929 	else
930 		status = nvmet_parse_admin_cmd(req);
931 
932 	if (status)
933 		goto fail;
934 
935 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
936 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
937 		goto fail;
938 	}
939 
940 	if (sq->ctrl)
941 		sq->ctrl->cmd_seen = true;
942 
943 	return true;
944 
945 fail:
946 	__nvmet_req_complete(req, status);
947 	return false;
948 }
949 EXPORT_SYMBOL_GPL(nvmet_req_init);
950 
951 void nvmet_req_uninit(struct nvmet_req *req)
952 {
953 	percpu_ref_put(&req->sq->ref);
954 	if (req->ns)
955 		nvmet_put_namespace(req->ns);
956 }
957 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
958 
959 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
960 {
961 	if (unlikely(len != req->transfer_len)) {
962 		req->error_loc = offsetof(struct nvme_common_command, dptr);
963 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
964 		return false;
965 	}
966 
967 	return true;
968 }
969 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
970 
971 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
972 {
973 	if (unlikely(data_len > req->transfer_len)) {
974 		req->error_loc = offsetof(struct nvme_common_command, dptr);
975 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
976 		return false;
977 	}
978 
979 	return true;
980 }
981 
982 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
983 {
984 	return req->transfer_len - req->metadata_len;
985 }
986 
987 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
988 {
989 	req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
990 			nvmet_data_transfer_len(req));
991 	if (!req->sg)
992 		goto out_err;
993 
994 	if (req->metadata_len) {
995 		req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
996 				&req->metadata_sg_cnt, req->metadata_len);
997 		if (!req->metadata_sg)
998 			goto out_free_sg;
999 	}
1000 	return 0;
1001 out_free_sg:
1002 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1003 out_err:
1004 	return -ENOMEM;
1005 }
1006 
1007 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
1008 {
1009 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
1010 		return false;
1011 
1012 	if (req->sq->ctrl && req->sq->qid && req->ns) {
1013 		req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
1014 						 req->ns->nsid);
1015 		if (req->p2p_dev)
1016 			return true;
1017 	}
1018 
1019 	req->p2p_dev = NULL;
1020 	return false;
1021 }
1022 
1023 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1024 {
1025 	if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
1026 		return 0;
1027 
1028 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1029 			    &req->sg_cnt);
1030 	if (unlikely(!req->sg))
1031 		goto out;
1032 
1033 	if (req->metadata_len) {
1034 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1035 					     &req->metadata_sg_cnt);
1036 		if (unlikely(!req->metadata_sg))
1037 			goto out_free;
1038 	}
1039 
1040 	return 0;
1041 out_free:
1042 	sgl_free(req->sg);
1043 out:
1044 	return -ENOMEM;
1045 }
1046 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1047 
1048 void nvmet_req_free_sgls(struct nvmet_req *req)
1049 {
1050 	if (req->p2p_dev) {
1051 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1052 		if (req->metadata_sg)
1053 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1054 	} else {
1055 		sgl_free(req->sg);
1056 		if (req->metadata_sg)
1057 			sgl_free(req->metadata_sg);
1058 	}
1059 
1060 	req->sg = NULL;
1061 	req->metadata_sg = NULL;
1062 	req->sg_cnt = 0;
1063 	req->metadata_sg_cnt = 0;
1064 }
1065 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1066 
1067 static inline bool nvmet_cc_en(u32 cc)
1068 {
1069 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1070 }
1071 
1072 static inline u8 nvmet_cc_css(u32 cc)
1073 {
1074 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1075 }
1076 
1077 static inline u8 nvmet_cc_mps(u32 cc)
1078 {
1079 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1080 }
1081 
1082 static inline u8 nvmet_cc_ams(u32 cc)
1083 {
1084 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1085 }
1086 
1087 static inline u8 nvmet_cc_shn(u32 cc)
1088 {
1089 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1090 }
1091 
1092 static inline u8 nvmet_cc_iosqes(u32 cc)
1093 {
1094 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1095 }
1096 
1097 static inline u8 nvmet_cc_iocqes(u32 cc)
1098 {
1099 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1100 }
1101 
1102 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1103 {
1104 	lockdep_assert_held(&ctrl->lock);
1105 
1106 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1107 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1108 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1109 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1110 	    nvmet_cc_css(ctrl->cc) != 0) {
1111 		ctrl->csts = NVME_CSTS_CFS;
1112 		return;
1113 	}
1114 
1115 	ctrl->csts = NVME_CSTS_RDY;
1116 
1117 	/*
1118 	 * Controllers that are not yet enabled should not really enforce the
1119 	 * keep alive timeout, but we still want to track a timeout and cleanup
1120 	 * in case a host died before it enabled the controller.  Hence, simply
1121 	 * reset the keep alive timer when the controller is enabled.
1122 	 */
1123 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1124 }
1125 
1126 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1127 {
1128 	lockdep_assert_held(&ctrl->lock);
1129 
1130 	/* XXX: tear down queues? */
1131 	ctrl->csts &= ~NVME_CSTS_RDY;
1132 	ctrl->cc = 0;
1133 }
1134 
1135 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1136 {
1137 	u32 old;
1138 
1139 	mutex_lock(&ctrl->lock);
1140 	old = ctrl->cc;
1141 	ctrl->cc = new;
1142 
1143 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1144 		nvmet_start_ctrl(ctrl);
1145 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1146 		nvmet_clear_ctrl(ctrl);
1147 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1148 		nvmet_clear_ctrl(ctrl);
1149 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1150 	}
1151 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1152 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1153 	mutex_unlock(&ctrl->lock);
1154 }
1155 
1156 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1157 {
1158 	/* command sets supported: NVMe command set: */
1159 	ctrl->cap = (1ULL << 37);
1160 	/* CC.EN timeout in 500msec units: */
1161 	ctrl->cap |= (15ULL << 24);
1162 	/* maximum queue entries supported: */
1163 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1164 }
1165 
1166 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1167 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1168 {
1169 	struct nvmet_subsys *subsys;
1170 	struct nvmet_ctrl *ctrl;
1171 	u16 status = 0;
1172 
1173 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1174 	if (!subsys) {
1175 		pr_warn("connect request for invalid subsystem %s!\n",
1176 			subsysnqn);
1177 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1178 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1179 	}
1180 
1181 	mutex_lock(&subsys->lock);
1182 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1183 		if (ctrl->cntlid == cntlid) {
1184 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1185 				pr_warn("hostnqn mismatch.\n");
1186 				continue;
1187 			}
1188 			if (!kref_get_unless_zero(&ctrl->ref))
1189 				continue;
1190 
1191 			*ret = ctrl;
1192 			goto out;
1193 		}
1194 	}
1195 
1196 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1197 		cntlid, subsysnqn, hostnqn);
1198 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1199 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1200 
1201 out:
1202 	mutex_unlock(&subsys->lock);
1203 	nvmet_subsys_put(subsys);
1204 	return status;
1205 }
1206 
1207 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1208 {
1209 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1210 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1211 		       cmd->common.opcode, req->sq->qid);
1212 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1213 	}
1214 
1215 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1216 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1217 		       cmd->common.opcode, req->sq->qid);
1218 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1219 	}
1220 	return 0;
1221 }
1222 
1223 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1224 {
1225 	struct nvmet_host_link *p;
1226 
1227 	lockdep_assert_held(&nvmet_config_sem);
1228 
1229 	if (subsys->allow_any_host)
1230 		return true;
1231 
1232 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1233 		return true;
1234 
1235 	list_for_each_entry(p, &subsys->hosts, entry) {
1236 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1237 			return true;
1238 	}
1239 
1240 	return false;
1241 }
1242 
1243 /*
1244  * Note: ctrl->subsys->lock should be held when calling this function
1245  */
1246 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1247 		struct nvmet_req *req)
1248 {
1249 	struct nvmet_ns *ns;
1250 	unsigned long idx;
1251 
1252 	if (!req->p2p_client)
1253 		return;
1254 
1255 	ctrl->p2p_client = get_device(req->p2p_client);
1256 
1257 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1258 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1259 }
1260 
1261 /*
1262  * Note: ctrl->subsys->lock should be held when calling this function
1263  */
1264 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1265 {
1266 	struct radix_tree_iter iter;
1267 	void __rcu **slot;
1268 
1269 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1270 		pci_dev_put(radix_tree_deref_slot(slot));
1271 
1272 	put_device(ctrl->p2p_client);
1273 }
1274 
1275 static void nvmet_fatal_error_handler(struct work_struct *work)
1276 {
1277 	struct nvmet_ctrl *ctrl =
1278 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1279 
1280 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1281 	ctrl->ops->delete_ctrl(ctrl);
1282 }
1283 
1284 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1285 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1286 {
1287 	struct nvmet_subsys *subsys;
1288 	struct nvmet_ctrl *ctrl;
1289 	int ret;
1290 	u16 status;
1291 
1292 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1293 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1294 	if (!subsys) {
1295 		pr_warn("connect request for invalid subsystem %s!\n",
1296 			subsysnqn);
1297 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1298 		goto out;
1299 	}
1300 
1301 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1302 	down_read(&nvmet_config_sem);
1303 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1304 		pr_info("connect by host %s for subsystem %s not allowed\n",
1305 			hostnqn, subsysnqn);
1306 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1307 		up_read(&nvmet_config_sem);
1308 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1309 		goto out_put_subsystem;
1310 	}
1311 	up_read(&nvmet_config_sem);
1312 
1313 	status = NVME_SC_INTERNAL;
1314 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1315 	if (!ctrl)
1316 		goto out_put_subsystem;
1317 	mutex_init(&ctrl->lock);
1318 
1319 	nvmet_init_cap(ctrl);
1320 
1321 	ctrl->port = req->port;
1322 
1323 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1324 	INIT_LIST_HEAD(&ctrl->async_events);
1325 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1326 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1327 
1328 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1329 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1330 
1331 	kref_init(&ctrl->ref);
1332 	ctrl->subsys = subsys;
1333 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1334 
1335 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1336 			sizeof(__le32), GFP_KERNEL);
1337 	if (!ctrl->changed_ns_list)
1338 		goto out_free_ctrl;
1339 
1340 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1341 			sizeof(struct nvmet_cq *),
1342 			GFP_KERNEL);
1343 	if (!ctrl->cqs)
1344 		goto out_free_changed_ns_list;
1345 
1346 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1347 			sizeof(struct nvmet_sq *),
1348 			GFP_KERNEL);
1349 	if (!ctrl->sqs)
1350 		goto out_free_cqs;
1351 
1352 	if (subsys->cntlid_min > subsys->cntlid_max)
1353 		goto out_free_cqs;
1354 
1355 	ret = ida_simple_get(&cntlid_ida,
1356 			     subsys->cntlid_min, subsys->cntlid_max,
1357 			     GFP_KERNEL);
1358 	if (ret < 0) {
1359 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1360 		goto out_free_sqs;
1361 	}
1362 	ctrl->cntlid = ret;
1363 
1364 	ctrl->ops = req->ops;
1365 
1366 	/*
1367 	 * Discovery controllers may use some arbitrary high value
1368 	 * in order to cleanup stale discovery sessions
1369 	 */
1370 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1371 		kato = NVMET_DISC_KATO_MS;
1372 
1373 	/* keep-alive timeout in seconds */
1374 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1375 
1376 	ctrl->err_counter = 0;
1377 	spin_lock_init(&ctrl->error_lock);
1378 
1379 	nvmet_start_keep_alive_timer(ctrl);
1380 
1381 	mutex_lock(&subsys->lock);
1382 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1383 	nvmet_setup_p2p_ns_map(ctrl, req);
1384 	mutex_unlock(&subsys->lock);
1385 
1386 	*ctrlp = ctrl;
1387 	return 0;
1388 
1389 out_free_sqs:
1390 	kfree(ctrl->sqs);
1391 out_free_cqs:
1392 	kfree(ctrl->cqs);
1393 out_free_changed_ns_list:
1394 	kfree(ctrl->changed_ns_list);
1395 out_free_ctrl:
1396 	kfree(ctrl);
1397 out_put_subsystem:
1398 	nvmet_subsys_put(subsys);
1399 out:
1400 	return status;
1401 }
1402 
1403 static void nvmet_ctrl_free(struct kref *ref)
1404 {
1405 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1406 	struct nvmet_subsys *subsys = ctrl->subsys;
1407 
1408 	mutex_lock(&subsys->lock);
1409 	nvmet_release_p2p_ns_map(ctrl);
1410 	list_del(&ctrl->subsys_entry);
1411 	mutex_unlock(&subsys->lock);
1412 
1413 	nvmet_stop_keep_alive_timer(ctrl);
1414 
1415 	flush_work(&ctrl->async_event_work);
1416 	cancel_work_sync(&ctrl->fatal_err_work);
1417 
1418 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1419 
1420 	nvmet_async_events_free(ctrl);
1421 	kfree(ctrl->sqs);
1422 	kfree(ctrl->cqs);
1423 	kfree(ctrl->changed_ns_list);
1424 	kfree(ctrl);
1425 
1426 	nvmet_subsys_put(subsys);
1427 }
1428 
1429 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1430 {
1431 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1432 }
1433 
1434 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1435 {
1436 	mutex_lock(&ctrl->lock);
1437 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1438 		ctrl->csts |= NVME_CSTS_CFS;
1439 		schedule_work(&ctrl->fatal_err_work);
1440 	}
1441 	mutex_unlock(&ctrl->lock);
1442 }
1443 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1444 
1445 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1446 		const char *subsysnqn)
1447 {
1448 	struct nvmet_subsys_link *p;
1449 
1450 	if (!port)
1451 		return NULL;
1452 
1453 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1454 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1455 			return NULL;
1456 		return nvmet_disc_subsys;
1457 	}
1458 
1459 	down_read(&nvmet_config_sem);
1460 	list_for_each_entry(p, &port->subsystems, entry) {
1461 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1462 				NVMF_NQN_SIZE)) {
1463 			if (!kref_get_unless_zero(&p->subsys->ref))
1464 				break;
1465 			up_read(&nvmet_config_sem);
1466 			return p->subsys;
1467 		}
1468 	}
1469 	up_read(&nvmet_config_sem);
1470 	return NULL;
1471 }
1472 
1473 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1474 		enum nvme_subsys_type type)
1475 {
1476 	struct nvmet_subsys *subsys;
1477 
1478 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1479 	if (!subsys)
1480 		return ERR_PTR(-ENOMEM);
1481 
1482 	subsys->ver = NVMET_DEFAULT_VS;
1483 	/* generate a random serial number as our controllers are ephemeral: */
1484 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1485 
1486 	switch (type) {
1487 	case NVME_NQN_NVME:
1488 		subsys->max_qid = NVMET_NR_QUEUES;
1489 		break;
1490 	case NVME_NQN_DISC:
1491 		subsys->max_qid = 0;
1492 		break;
1493 	default:
1494 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1495 		kfree(subsys);
1496 		return ERR_PTR(-EINVAL);
1497 	}
1498 	subsys->type = type;
1499 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1500 			GFP_KERNEL);
1501 	if (!subsys->subsysnqn) {
1502 		kfree(subsys);
1503 		return ERR_PTR(-ENOMEM);
1504 	}
1505 	subsys->cntlid_min = NVME_CNTLID_MIN;
1506 	subsys->cntlid_max = NVME_CNTLID_MAX;
1507 	kref_init(&subsys->ref);
1508 
1509 	mutex_init(&subsys->lock);
1510 	xa_init(&subsys->namespaces);
1511 	INIT_LIST_HEAD(&subsys->ctrls);
1512 	INIT_LIST_HEAD(&subsys->hosts);
1513 
1514 	return subsys;
1515 }
1516 
1517 static void nvmet_subsys_free(struct kref *ref)
1518 {
1519 	struct nvmet_subsys *subsys =
1520 		container_of(ref, struct nvmet_subsys, ref);
1521 
1522 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1523 
1524 	xa_destroy(&subsys->namespaces);
1525 	nvmet_passthru_subsys_free(subsys);
1526 
1527 	kfree(subsys->subsysnqn);
1528 	kfree_rcu(subsys->model, rcuhead);
1529 	kfree(subsys);
1530 }
1531 
1532 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1533 {
1534 	struct nvmet_ctrl *ctrl;
1535 
1536 	mutex_lock(&subsys->lock);
1537 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1538 		ctrl->ops->delete_ctrl(ctrl);
1539 	mutex_unlock(&subsys->lock);
1540 }
1541 
1542 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1543 {
1544 	kref_put(&subsys->ref, nvmet_subsys_free);
1545 }
1546 
1547 static int __init nvmet_init(void)
1548 {
1549 	int error;
1550 
1551 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1552 
1553 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1554 			WQ_MEM_RECLAIM, 0);
1555 	if (!buffered_io_wq) {
1556 		error = -ENOMEM;
1557 		goto out;
1558 	}
1559 
1560 	error = nvmet_init_discovery();
1561 	if (error)
1562 		goto out_free_work_queue;
1563 
1564 	error = nvmet_init_configfs();
1565 	if (error)
1566 		goto out_exit_discovery;
1567 	return 0;
1568 
1569 out_exit_discovery:
1570 	nvmet_exit_discovery();
1571 out_free_work_queue:
1572 	destroy_workqueue(buffered_io_wq);
1573 out:
1574 	return error;
1575 }
1576 
1577 static void __exit nvmet_exit(void)
1578 {
1579 	nvmet_exit_configfs();
1580 	nvmet_exit_discovery();
1581 	ida_destroy(&cntlid_ida);
1582 	destroy_workqueue(buffered_io_wq);
1583 
1584 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1585 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1586 }
1587 
1588 module_init(nvmet_init);
1589 module_exit(nvmet_exit);
1590 
1591 MODULE_LICENSE("GPL v2");
1592