1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 struct workqueue_struct *zbd_wq; 20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 21 static DEFINE_IDA(cntlid_ida); 22 23 /* 24 * This read/write semaphore is used to synchronize access to configuration 25 * information on a target system that will result in discovery log page 26 * information change for at least one host. 27 * The full list of resources to protected by this semaphore is: 28 * 29 * - subsystems list 30 * - per-subsystem allowed hosts list 31 * - allow_any_host subsystem attribute 32 * - nvmet_genctr 33 * - the nvmet_transports array 34 * 35 * When updating any of those lists/structures write lock should be obtained, 36 * while when reading (popolating discovery log page or checking host-subsystem 37 * link) read lock is obtained to allow concurrent reads. 38 */ 39 DECLARE_RWSEM(nvmet_config_sem); 40 41 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 42 u64 nvmet_ana_chgcnt; 43 DECLARE_RWSEM(nvmet_ana_sem); 44 45 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 46 { 47 switch (errno) { 48 case 0: 49 return NVME_SC_SUCCESS; 50 case -ENOSPC: 51 req->error_loc = offsetof(struct nvme_rw_command, length); 52 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 53 case -EREMOTEIO: 54 req->error_loc = offsetof(struct nvme_rw_command, slba); 55 return NVME_SC_LBA_RANGE | NVME_SC_DNR; 56 case -EOPNOTSUPP: 57 req->error_loc = offsetof(struct nvme_common_command, opcode); 58 switch (req->cmd->common.opcode) { 59 case nvme_cmd_dsm: 60 case nvme_cmd_write_zeroes: 61 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 62 default: 63 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 64 } 65 break; 66 case -ENODATA: 67 req->error_loc = offsetof(struct nvme_rw_command, nsid); 68 return NVME_SC_ACCESS_DENIED; 69 case -EIO: 70 fallthrough; 71 default: 72 req->error_loc = offsetof(struct nvme_common_command, opcode); 73 return NVME_SC_INTERNAL | NVME_SC_DNR; 74 } 75 } 76 77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 78 { 79 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 80 req->sq->qid); 81 82 req->error_loc = offsetof(struct nvme_common_command, opcode); 83 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 84 } 85 86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 87 const char *subsysnqn); 88 89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 90 size_t len) 91 { 92 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 93 req->error_loc = offsetof(struct nvme_common_command, dptr); 94 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 95 } 96 return 0; 97 } 98 99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 100 { 101 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 102 req->error_loc = offsetof(struct nvme_common_command, dptr); 103 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 104 } 105 return 0; 106 } 107 108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 109 { 110 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 111 req->error_loc = offsetof(struct nvme_common_command, dptr); 112 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 113 } 114 return 0; 115 } 116 117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 118 { 119 struct nvmet_ns *cur; 120 unsigned long idx; 121 u32 nsid = 0; 122 123 xa_for_each(&subsys->namespaces, idx, cur) 124 nsid = cur->nsid; 125 126 return nsid; 127 } 128 129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 130 { 131 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 132 } 133 134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 135 { 136 struct nvmet_req *req; 137 138 mutex_lock(&ctrl->lock); 139 while (ctrl->nr_async_event_cmds) { 140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 141 mutex_unlock(&ctrl->lock); 142 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); 143 mutex_lock(&ctrl->lock); 144 } 145 mutex_unlock(&ctrl->lock); 146 } 147 148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 149 { 150 struct nvmet_async_event *aen; 151 struct nvmet_req *req; 152 153 mutex_lock(&ctrl->lock); 154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 155 aen = list_first_entry(&ctrl->async_events, 156 struct nvmet_async_event, entry); 157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 158 nvmet_set_result(req, nvmet_async_event_result(aen)); 159 160 list_del(&aen->entry); 161 kfree(aen); 162 163 mutex_unlock(&ctrl->lock); 164 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 165 nvmet_req_complete(req, 0); 166 mutex_lock(&ctrl->lock); 167 } 168 mutex_unlock(&ctrl->lock); 169 } 170 171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 172 { 173 struct nvmet_async_event *aen, *tmp; 174 175 mutex_lock(&ctrl->lock); 176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 177 list_del(&aen->entry); 178 kfree(aen); 179 } 180 mutex_unlock(&ctrl->lock); 181 } 182 183 static void nvmet_async_event_work(struct work_struct *work) 184 { 185 struct nvmet_ctrl *ctrl = 186 container_of(work, struct nvmet_ctrl, async_event_work); 187 188 nvmet_async_events_process(ctrl); 189 } 190 191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 192 u8 event_info, u8 log_page) 193 { 194 struct nvmet_async_event *aen; 195 196 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 197 if (!aen) 198 return; 199 200 aen->event_type = event_type; 201 aen->event_info = event_info; 202 aen->log_page = log_page; 203 204 mutex_lock(&ctrl->lock); 205 list_add_tail(&aen->entry, &ctrl->async_events); 206 mutex_unlock(&ctrl->lock); 207 208 schedule_work(&ctrl->async_event_work); 209 } 210 211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 212 { 213 u32 i; 214 215 mutex_lock(&ctrl->lock); 216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 217 goto out_unlock; 218 219 for (i = 0; i < ctrl->nr_changed_ns; i++) { 220 if (ctrl->changed_ns_list[i] == nsid) 221 goto out_unlock; 222 } 223 224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 226 ctrl->nr_changed_ns = U32_MAX; 227 goto out_unlock; 228 } 229 230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 231 out_unlock: 232 mutex_unlock(&ctrl->lock); 233 } 234 235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 236 { 237 struct nvmet_ctrl *ctrl; 238 239 lockdep_assert_held(&subsys->lock); 240 241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 244 continue; 245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 246 NVME_AER_NOTICE_NS_CHANGED, 247 NVME_LOG_CHANGED_NS); 248 } 249 } 250 251 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 252 struct nvmet_port *port) 253 { 254 struct nvmet_ctrl *ctrl; 255 256 mutex_lock(&subsys->lock); 257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 258 if (port && ctrl->port != port) 259 continue; 260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 261 continue; 262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 264 } 265 mutex_unlock(&subsys->lock); 266 } 267 268 void nvmet_port_send_ana_event(struct nvmet_port *port) 269 { 270 struct nvmet_subsys_link *p; 271 272 down_read(&nvmet_config_sem); 273 list_for_each_entry(p, &port->subsystems, entry) 274 nvmet_send_ana_event(p->subsys, port); 275 up_read(&nvmet_config_sem); 276 } 277 278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 279 { 280 int ret = 0; 281 282 down_write(&nvmet_config_sem); 283 if (nvmet_transports[ops->type]) 284 ret = -EINVAL; 285 else 286 nvmet_transports[ops->type] = ops; 287 up_write(&nvmet_config_sem); 288 289 return ret; 290 } 291 EXPORT_SYMBOL_GPL(nvmet_register_transport); 292 293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 294 { 295 down_write(&nvmet_config_sem); 296 nvmet_transports[ops->type] = NULL; 297 up_write(&nvmet_config_sem); 298 } 299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 300 301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 302 { 303 struct nvmet_ctrl *ctrl; 304 305 mutex_lock(&subsys->lock); 306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 307 if (ctrl->port == port) 308 ctrl->ops->delete_ctrl(ctrl); 309 } 310 mutex_unlock(&subsys->lock); 311 } 312 313 int nvmet_enable_port(struct nvmet_port *port) 314 { 315 const struct nvmet_fabrics_ops *ops; 316 int ret; 317 318 lockdep_assert_held(&nvmet_config_sem); 319 320 ops = nvmet_transports[port->disc_addr.trtype]; 321 if (!ops) { 322 up_write(&nvmet_config_sem); 323 request_module("nvmet-transport-%d", port->disc_addr.trtype); 324 down_write(&nvmet_config_sem); 325 ops = nvmet_transports[port->disc_addr.trtype]; 326 if (!ops) { 327 pr_err("transport type %d not supported\n", 328 port->disc_addr.trtype); 329 return -EINVAL; 330 } 331 } 332 333 if (!try_module_get(ops->owner)) 334 return -EINVAL; 335 336 /* 337 * If the user requested PI support and the transport isn't pi capable, 338 * don't enable the port. 339 */ 340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 341 pr_err("T10-PI is not supported by transport type %d\n", 342 port->disc_addr.trtype); 343 ret = -EINVAL; 344 goto out_put; 345 } 346 347 ret = ops->add_port(port); 348 if (ret) 349 goto out_put; 350 351 /* If the transport didn't set inline_data_size, then disable it. */ 352 if (port->inline_data_size < 0) 353 port->inline_data_size = 0; 354 355 port->enabled = true; 356 port->tr_ops = ops; 357 return 0; 358 359 out_put: 360 module_put(ops->owner); 361 return ret; 362 } 363 364 void nvmet_disable_port(struct nvmet_port *port) 365 { 366 const struct nvmet_fabrics_ops *ops; 367 368 lockdep_assert_held(&nvmet_config_sem); 369 370 port->enabled = false; 371 port->tr_ops = NULL; 372 373 ops = nvmet_transports[port->disc_addr.trtype]; 374 ops->remove_port(port); 375 module_put(ops->owner); 376 } 377 378 static void nvmet_keep_alive_timer(struct work_struct *work) 379 { 380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 381 struct nvmet_ctrl, ka_work); 382 bool reset_tbkas = ctrl->reset_tbkas; 383 384 ctrl->reset_tbkas = false; 385 if (reset_tbkas) { 386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 387 ctrl->cntlid); 388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 389 return; 390 } 391 392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 393 ctrl->cntlid, ctrl->kato); 394 395 nvmet_ctrl_fatal_error(ctrl); 396 } 397 398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 399 { 400 if (unlikely(ctrl->kato == 0)) 401 return; 402 403 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 404 ctrl->cntlid, ctrl->kato); 405 406 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 407 } 408 409 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 410 { 411 if (unlikely(ctrl->kato == 0)) 412 return; 413 414 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 415 416 cancel_delayed_work_sync(&ctrl->ka_work); 417 } 418 419 u16 nvmet_req_find_ns(struct nvmet_req *req) 420 { 421 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 422 423 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid); 424 if (unlikely(!req->ns)) { 425 req->error_loc = offsetof(struct nvme_common_command, nsid); 426 return NVME_SC_INVALID_NS | NVME_SC_DNR; 427 } 428 429 percpu_ref_get(&req->ns->ref); 430 return NVME_SC_SUCCESS; 431 } 432 433 static void nvmet_destroy_namespace(struct percpu_ref *ref) 434 { 435 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 436 437 complete(&ns->disable_done); 438 } 439 440 void nvmet_put_namespace(struct nvmet_ns *ns) 441 { 442 percpu_ref_put(&ns->ref); 443 } 444 445 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 446 { 447 nvmet_bdev_ns_disable(ns); 448 nvmet_file_ns_disable(ns); 449 } 450 451 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 452 { 453 int ret; 454 struct pci_dev *p2p_dev; 455 456 if (!ns->use_p2pmem) 457 return 0; 458 459 if (!ns->bdev) { 460 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 461 return -EINVAL; 462 } 463 464 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 465 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 466 ns->device_path); 467 return -EINVAL; 468 } 469 470 if (ns->p2p_dev) { 471 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 472 if (ret < 0) 473 return -EINVAL; 474 } else { 475 /* 476 * Right now we just check that there is p2pmem available so 477 * we can report an error to the user right away if there 478 * is not. We'll find the actual device to use once we 479 * setup the controller when the port's device is available. 480 */ 481 482 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 483 if (!p2p_dev) { 484 pr_err("no peer-to-peer memory is available for %s\n", 485 ns->device_path); 486 return -EINVAL; 487 } 488 489 pci_dev_put(p2p_dev); 490 } 491 492 return 0; 493 } 494 495 /* 496 * Note: ctrl->subsys->lock should be held when calling this function 497 */ 498 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 499 struct nvmet_ns *ns) 500 { 501 struct device *clients[2]; 502 struct pci_dev *p2p_dev; 503 int ret; 504 505 if (!ctrl->p2p_client || !ns->use_p2pmem) 506 return; 507 508 if (ns->p2p_dev) { 509 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 510 if (ret < 0) 511 return; 512 513 p2p_dev = pci_dev_get(ns->p2p_dev); 514 } else { 515 clients[0] = ctrl->p2p_client; 516 clients[1] = nvmet_ns_dev(ns); 517 518 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 519 if (!p2p_dev) { 520 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 521 dev_name(ctrl->p2p_client), ns->device_path); 522 return; 523 } 524 } 525 526 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 527 if (ret < 0) 528 pci_dev_put(p2p_dev); 529 530 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 531 ns->nsid); 532 } 533 534 void nvmet_ns_revalidate(struct nvmet_ns *ns) 535 { 536 loff_t oldsize = ns->size; 537 538 if (ns->bdev) 539 nvmet_bdev_ns_revalidate(ns); 540 else 541 nvmet_file_ns_revalidate(ns); 542 543 if (oldsize != ns->size) 544 nvmet_ns_changed(ns->subsys, ns->nsid); 545 } 546 547 int nvmet_ns_enable(struct nvmet_ns *ns) 548 { 549 struct nvmet_subsys *subsys = ns->subsys; 550 struct nvmet_ctrl *ctrl; 551 int ret; 552 553 mutex_lock(&subsys->lock); 554 ret = 0; 555 556 if (nvmet_is_passthru_subsys(subsys)) { 557 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 558 goto out_unlock; 559 } 560 561 if (ns->enabled) 562 goto out_unlock; 563 564 ret = -EMFILE; 565 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 566 goto out_unlock; 567 568 ret = nvmet_bdev_ns_enable(ns); 569 if (ret == -ENOTBLK) 570 ret = nvmet_file_ns_enable(ns); 571 if (ret) 572 goto out_unlock; 573 574 ret = nvmet_p2pmem_ns_enable(ns); 575 if (ret) 576 goto out_dev_disable; 577 578 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 579 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 580 581 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 582 0, GFP_KERNEL); 583 if (ret) 584 goto out_dev_put; 585 586 if (ns->nsid > subsys->max_nsid) 587 subsys->max_nsid = ns->nsid; 588 589 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 590 if (ret) 591 goto out_restore_subsys_maxnsid; 592 593 subsys->nr_namespaces++; 594 595 nvmet_ns_changed(subsys, ns->nsid); 596 ns->enabled = true; 597 ret = 0; 598 out_unlock: 599 mutex_unlock(&subsys->lock); 600 return ret; 601 602 out_restore_subsys_maxnsid: 603 subsys->max_nsid = nvmet_max_nsid(subsys); 604 percpu_ref_exit(&ns->ref); 605 out_dev_put: 606 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 607 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 608 out_dev_disable: 609 nvmet_ns_dev_disable(ns); 610 goto out_unlock; 611 } 612 613 void nvmet_ns_disable(struct nvmet_ns *ns) 614 { 615 struct nvmet_subsys *subsys = ns->subsys; 616 struct nvmet_ctrl *ctrl; 617 618 mutex_lock(&subsys->lock); 619 if (!ns->enabled) 620 goto out_unlock; 621 622 ns->enabled = false; 623 xa_erase(&ns->subsys->namespaces, ns->nsid); 624 if (ns->nsid == subsys->max_nsid) 625 subsys->max_nsid = nvmet_max_nsid(subsys); 626 627 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 628 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 629 630 mutex_unlock(&subsys->lock); 631 632 /* 633 * Now that we removed the namespaces from the lookup list, we 634 * can kill the per_cpu ref and wait for any remaining references 635 * to be dropped, as well as a RCU grace period for anyone only 636 * using the namepace under rcu_read_lock(). Note that we can't 637 * use call_rcu here as we need to ensure the namespaces have 638 * been fully destroyed before unloading the module. 639 */ 640 percpu_ref_kill(&ns->ref); 641 synchronize_rcu(); 642 wait_for_completion(&ns->disable_done); 643 percpu_ref_exit(&ns->ref); 644 645 mutex_lock(&subsys->lock); 646 647 subsys->nr_namespaces--; 648 nvmet_ns_changed(subsys, ns->nsid); 649 nvmet_ns_dev_disable(ns); 650 out_unlock: 651 mutex_unlock(&subsys->lock); 652 } 653 654 void nvmet_ns_free(struct nvmet_ns *ns) 655 { 656 nvmet_ns_disable(ns); 657 658 down_write(&nvmet_ana_sem); 659 nvmet_ana_group_enabled[ns->anagrpid]--; 660 up_write(&nvmet_ana_sem); 661 662 kfree(ns->device_path); 663 kfree(ns); 664 } 665 666 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 667 { 668 struct nvmet_ns *ns; 669 670 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 671 if (!ns) 672 return NULL; 673 674 init_completion(&ns->disable_done); 675 676 ns->nsid = nsid; 677 ns->subsys = subsys; 678 679 down_write(&nvmet_ana_sem); 680 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 681 nvmet_ana_group_enabled[ns->anagrpid]++; 682 up_write(&nvmet_ana_sem); 683 684 uuid_gen(&ns->uuid); 685 ns->buffered_io = false; 686 ns->csi = NVME_CSI_NVM; 687 688 return ns; 689 } 690 691 static void nvmet_update_sq_head(struct nvmet_req *req) 692 { 693 if (req->sq->size) { 694 u32 old_sqhd, new_sqhd; 695 696 do { 697 old_sqhd = req->sq->sqhd; 698 new_sqhd = (old_sqhd + 1) % req->sq->size; 699 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 700 old_sqhd); 701 } 702 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 703 } 704 705 static void nvmet_set_error(struct nvmet_req *req, u16 status) 706 { 707 struct nvmet_ctrl *ctrl = req->sq->ctrl; 708 struct nvme_error_slot *new_error_slot; 709 unsigned long flags; 710 711 req->cqe->status = cpu_to_le16(status << 1); 712 713 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 714 return; 715 716 spin_lock_irqsave(&ctrl->error_lock, flags); 717 ctrl->err_counter++; 718 new_error_slot = 719 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 720 721 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 722 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 723 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 724 new_error_slot->status_field = cpu_to_le16(status << 1); 725 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 726 new_error_slot->lba = cpu_to_le64(req->error_slba); 727 new_error_slot->nsid = req->cmd->common.nsid; 728 spin_unlock_irqrestore(&ctrl->error_lock, flags); 729 730 /* set the more bit for this request */ 731 req->cqe->status |= cpu_to_le16(1 << 14); 732 } 733 734 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 735 { 736 if (!req->sq->sqhd_disabled) 737 nvmet_update_sq_head(req); 738 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 739 req->cqe->command_id = req->cmd->common.command_id; 740 741 if (unlikely(status)) 742 nvmet_set_error(req, status); 743 744 trace_nvmet_req_complete(req); 745 746 if (req->ns) 747 nvmet_put_namespace(req->ns); 748 req->ops->queue_response(req); 749 } 750 751 void nvmet_req_complete(struct nvmet_req *req, u16 status) 752 { 753 __nvmet_req_complete(req, status); 754 percpu_ref_put(&req->sq->ref); 755 } 756 EXPORT_SYMBOL_GPL(nvmet_req_complete); 757 758 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 759 u16 qid, u16 size) 760 { 761 cq->qid = qid; 762 cq->size = size; 763 } 764 765 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 766 u16 qid, u16 size) 767 { 768 sq->sqhd = 0; 769 sq->qid = qid; 770 sq->size = size; 771 772 ctrl->sqs[qid] = sq; 773 } 774 775 static void nvmet_confirm_sq(struct percpu_ref *ref) 776 { 777 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 778 779 complete(&sq->confirm_done); 780 } 781 782 void nvmet_sq_destroy(struct nvmet_sq *sq) 783 { 784 struct nvmet_ctrl *ctrl = sq->ctrl; 785 786 /* 787 * If this is the admin queue, complete all AERs so that our 788 * queue doesn't have outstanding requests on it. 789 */ 790 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 791 nvmet_async_events_failall(ctrl); 792 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 793 wait_for_completion(&sq->confirm_done); 794 wait_for_completion(&sq->free_done); 795 percpu_ref_exit(&sq->ref); 796 797 if (ctrl) { 798 /* 799 * The teardown flow may take some time, and the host may not 800 * send us keep-alive during this period, hence reset the 801 * traffic based keep-alive timer so we don't trigger a 802 * controller teardown as a result of a keep-alive expiration. 803 */ 804 ctrl->reset_tbkas = true; 805 sq->ctrl->sqs[sq->qid] = NULL; 806 nvmet_ctrl_put(ctrl); 807 sq->ctrl = NULL; /* allows reusing the queue later */ 808 } 809 } 810 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 811 812 static void nvmet_sq_free(struct percpu_ref *ref) 813 { 814 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 815 816 complete(&sq->free_done); 817 } 818 819 int nvmet_sq_init(struct nvmet_sq *sq) 820 { 821 int ret; 822 823 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 824 if (ret) { 825 pr_err("percpu_ref init failed!\n"); 826 return ret; 827 } 828 init_completion(&sq->free_done); 829 init_completion(&sq->confirm_done); 830 831 return 0; 832 } 833 EXPORT_SYMBOL_GPL(nvmet_sq_init); 834 835 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 836 struct nvmet_ns *ns) 837 { 838 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 839 840 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 841 return NVME_SC_ANA_INACCESSIBLE; 842 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 843 return NVME_SC_ANA_PERSISTENT_LOSS; 844 if (unlikely(state == NVME_ANA_CHANGE)) 845 return NVME_SC_ANA_TRANSITION; 846 return 0; 847 } 848 849 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 850 { 851 if (unlikely(req->ns->readonly)) { 852 switch (req->cmd->common.opcode) { 853 case nvme_cmd_read: 854 case nvme_cmd_flush: 855 break; 856 default: 857 return NVME_SC_NS_WRITE_PROTECTED; 858 } 859 } 860 861 return 0; 862 } 863 864 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 865 { 866 u16 ret; 867 868 ret = nvmet_check_ctrl_status(req); 869 if (unlikely(ret)) 870 return ret; 871 872 if (nvmet_is_passthru_req(req)) 873 return nvmet_parse_passthru_io_cmd(req); 874 875 ret = nvmet_req_find_ns(req); 876 if (unlikely(ret)) 877 return ret; 878 879 ret = nvmet_check_ana_state(req->port, req->ns); 880 if (unlikely(ret)) { 881 req->error_loc = offsetof(struct nvme_common_command, nsid); 882 return ret; 883 } 884 ret = nvmet_io_cmd_check_access(req); 885 if (unlikely(ret)) { 886 req->error_loc = offsetof(struct nvme_common_command, nsid); 887 return ret; 888 } 889 890 switch (req->ns->csi) { 891 case NVME_CSI_NVM: 892 if (req->ns->file) 893 return nvmet_file_parse_io_cmd(req); 894 return nvmet_bdev_parse_io_cmd(req); 895 case NVME_CSI_ZNS: 896 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 897 return nvmet_bdev_zns_parse_io_cmd(req); 898 return NVME_SC_INVALID_IO_CMD_SET; 899 default: 900 return NVME_SC_INVALID_IO_CMD_SET; 901 } 902 } 903 904 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 905 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 906 { 907 u8 flags = req->cmd->common.flags; 908 u16 status; 909 910 req->cq = cq; 911 req->sq = sq; 912 req->ops = ops; 913 req->sg = NULL; 914 req->metadata_sg = NULL; 915 req->sg_cnt = 0; 916 req->metadata_sg_cnt = 0; 917 req->transfer_len = 0; 918 req->metadata_len = 0; 919 req->cqe->status = 0; 920 req->cqe->sq_head = 0; 921 req->ns = NULL; 922 req->error_loc = NVMET_NO_ERROR_LOC; 923 req->error_slba = 0; 924 925 /* no support for fused commands yet */ 926 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 927 req->error_loc = offsetof(struct nvme_common_command, flags); 928 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 929 goto fail; 930 } 931 932 /* 933 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 934 * contains an address of a single contiguous physical buffer that is 935 * byte aligned. 936 */ 937 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 938 req->error_loc = offsetof(struct nvme_common_command, flags); 939 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 940 goto fail; 941 } 942 943 if (unlikely(!req->sq->ctrl)) 944 /* will return an error for any non-connect command: */ 945 status = nvmet_parse_connect_cmd(req); 946 else if (likely(req->sq->qid != 0)) 947 status = nvmet_parse_io_cmd(req); 948 else 949 status = nvmet_parse_admin_cmd(req); 950 951 if (status) 952 goto fail; 953 954 trace_nvmet_req_init(req, req->cmd); 955 956 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 957 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 958 goto fail; 959 } 960 961 if (sq->ctrl) 962 sq->ctrl->reset_tbkas = true; 963 964 return true; 965 966 fail: 967 __nvmet_req_complete(req, status); 968 return false; 969 } 970 EXPORT_SYMBOL_GPL(nvmet_req_init); 971 972 void nvmet_req_uninit(struct nvmet_req *req) 973 { 974 percpu_ref_put(&req->sq->ref); 975 if (req->ns) 976 nvmet_put_namespace(req->ns); 977 } 978 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 979 980 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 981 { 982 if (unlikely(len != req->transfer_len)) { 983 req->error_loc = offsetof(struct nvme_common_command, dptr); 984 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 985 return false; 986 } 987 988 return true; 989 } 990 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 991 992 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 993 { 994 if (unlikely(data_len > req->transfer_len)) { 995 req->error_loc = offsetof(struct nvme_common_command, dptr); 996 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 997 return false; 998 } 999 1000 return true; 1001 } 1002 1003 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1004 { 1005 return req->transfer_len - req->metadata_len; 1006 } 1007 1008 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1009 struct nvmet_req *req) 1010 { 1011 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1012 nvmet_data_transfer_len(req)); 1013 if (!req->sg) 1014 goto out_err; 1015 1016 if (req->metadata_len) { 1017 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1018 &req->metadata_sg_cnt, req->metadata_len); 1019 if (!req->metadata_sg) 1020 goto out_free_sg; 1021 } 1022 1023 req->p2p_dev = p2p_dev; 1024 1025 return 0; 1026 out_free_sg: 1027 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1028 out_err: 1029 return -ENOMEM; 1030 } 1031 1032 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1033 { 1034 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1035 !req->sq->ctrl || !req->sq->qid || !req->ns) 1036 return NULL; 1037 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1038 } 1039 1040 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1041 { 1042 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1043 1044 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1045 return 0; 1046 1047 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1048 &req->sg_cnt); 1049 if (unlikely(!req->sg)) 1050 goto out; 1051 1052 if (req->metadata_len) { 1053 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1054 &req->metadata_sg_cnt); 1055 if (unlikely(!req->metadata_sg)) 1056 goto out_free; 1057 } 1058 1059 return 0; 1060 out_free: 1061 sgl_free(req->sg); 1062 out: 1063 return -ENOMEM; 1064 } 1065 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1066 1067 void nvmet_req_free_sgls(struct nvmet_req *req) 1068 { 1069 if (req->p2p_dev) { 1070 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1071 if (req->metadata_sg) 1072 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1073 req->p2p_dev = NULL; 1074 } else { 1075 sgl_free(req->sg); 1076 if (req->metadata_sg) 1077 sgl_free(req->metadata_sg); 1078 } 1079 1080 req->sg = NULL; 1081 req->metadata_sg = NULL; 1082 req->sg_cnt = 0; 1083 req->metadata_sg_cnt = 0; 1084 } 1085 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1086 1087 static inline bool nvmet_cc_en(u32 cc) 1088 { 1089 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1090 } 1091 1092 static inline u8 nvmet_cc_css(u32 cc) 1093 { 1094 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1095 } 1096 1097 static inline u8 nvmet_cc_mps(u32 cc) 1098 { 1099 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1100 } 1101 1102 static inline u8 nvmet_cc_ams(u32 cc) 1103 { 1104 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1105 } 1106 1107 static inline u8 nvmet_cc_shn(u32 cc) 1108 { 1109 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1110 } 1111 1112 static inline u8 nvmet_cc_iosqes(u32 cc) 1113 { 1114 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1115 } 1116 1117 static inline u8 nvmet_cc_iocqes(u32 cc) 1118 { 1119 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1120 } 1121 1122 static inline bool nvmet_css_supported(u8 cc_css) 1123 { 1124 switch (cc_css <<= NVME_CC_CSS_SHIFT) { 1125 case NVME_CC_CSS_NVM: 1126 case NVME_CC_CSS_CSI: 1127 return true; 1128 default: 1129 return false; 1130 } 1131 } 1132 1133 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1134 { 1135 lockdep_assert_held(&ctrl->lock); 1136 1137 /* 1138 * Only I/O controllers should verify iosqes,iocqes. 1139 * Strictly speaking, the spec says a discovery controller 1140 * should verify iosqes,iocqes are zeroed, however that 1141 * would break backwards compatibility, so don't enforce it. 1142 */ 1143 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1144 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1145 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1146 ctrl->csts = NVME_CSTS_CFS; 1147 return; 1148 } 1149 1150 if (nvmet_cc_mps(ctrl->cc) != 0 || 1151 nvmet_cc_ams(ctrl->cc) != 0 || 1152 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1153 ctrl->csts = NVME_CSTS_CFS; 1154 return; 1155 } 1156 1157 ctrl->csts = NVME_CSTS_RDY; 1158 1159 /* 1160 * Controllers that are not yet enabled should not really enforce the 1161 * keep alive timeout, but we still want to track a timeout and cleanup 1162 * in case a host died before it enabled the controller. Hence, simply 1163 * reset the keep alive timer when the controller is enabled. 1164 */ 1165 if (ctrl->kato) 1166 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1167 } 1168 1169 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1170 { 1171 lockdep_assert_held(&ctrl->lock); 1172 1173 /* XXX: tear down queues? */ 1174 ctrl->csts &= ~NVME_CSTS_RDY; 1175 ctrl->cc = 0; 1176 } 1177 1178 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1179 { 1180 u32 old; 1181 1182 mutex_lock(&ctrl->lock); 1183 old = ctrl->cc; 1184 ctrl->cc = new; 1185 1186 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1187 nvmet_start_ctrl(ctrl); 1188 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1189 nvmet_clear_ctrl(ctrl); 1190 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1191 nvmet_clear_ctrl(ctrl); 1192 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1193 } 1194 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1195 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1196 mutex_unlock(&ctrl->lock); 1197 } 1198 1199 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1200 { 1201 /* command sets supported: NVMe command set: */ 1202 ctrl->cap = (1ULL << 37); 1203 /* Controller supports one or more I/O Command Sets */ 1204 ctrl->cap |= (1ULL << 43); 1205 /* CC.EN timeout in 500msec units: */ 1206 ctrl->cap |= (15ULL << 24); 1207 /* maximum queue entries supported: */ 1208 if (ctrl->ops->get_max_queue_size) 1209 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1; 1210 else 1211 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1212 1213 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1214 nvmet_passthrough_override_cap(ctrl); 1215 } 1216 1217 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1218 const char *hostnqn, u16 cntlid, 1219 struct nvmet_req *req) 1220 { 1221 struct nvmet_ctrl *ctrl = NULL; 1222 struct nvmet_subsys *subsys; 1223 1224 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1225 if (!subsys) { 1226 pr_warn("connect request for invalid subsystem %s!\n", 1227 subsysnqn); 1228 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1229 goto out; 1230 } 1231 1232 mutex_lock(&subsys->lock); 1233 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1234 if (ctrl->cntlid == cntlid) { 1235 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1236 pr_warn("hostnqn mismatch.\n"); 1237 continue; 1238 } 1239 if (!kref_get_unless_zero(&ctrl->ref)) 1240 continue; 1241 1242 /* ctrl found */ 1243 goto found; 1244 } 1245 } 1246 1247 ctrl = NULL; /* ctrl not found */ 1248 pr_warn("could not find controller %d for subsys %s / host %s\n", 1249 cntlid, subsysnqn, hostnqn); 1250 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1251 1252 found: 1253 mutex_unlock(&subsys->lock); 1254 nvmet_subsys_put(subsys); 1255 out: 1256 return ctrl; 1257 } 1258 1259 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1260 { 1261 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1262 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1263 req->cmd->common.opcode, req->sq->qid); 1264 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1265 } 1266 1267 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1268 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1269 req->cmd->common.opcode, req->sq->qid); 1270 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1271 } 1272 return 0; 1273 } 1274 1275 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1276 { 1277 struct nvmet_host_link *p; 1278 1279 lockdep_assert_held(&nvmet_config_sem); 1280 1281 if (subsys->allow_any_host) 1282 return true; 1283 1284 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1285 return true; 1286 1287 list_for_each_entry(p, &subsys->hosts, entry) { 1288 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1289 return true; 1290 } 1291 1292 return false; 1293 } 1294 1295 /* 1296 * Note: ctrl->subsys->lock should be held when calling this function 1297 */ 1298 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1299 struct nvmet_req *req) 1300 { 1301 struct nvmet_ns *ns; 1302 unsigned long idx; 1303 1304 if (!req->p2p_client) 1305 return; 1306 1307 ctrl->p2p_client = get_device(req->p2p_client); 1308 1309 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1310 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1311 } 1312 1313 /* 1314 * Note: ctrl->subsys->lock should be held when calling this function 1315 */ 1316 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1317 { 1318 struct radix_tree_iter iter; 1319 void __rcu **slot; 1320 1321 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1322 pci_dev_put(radix_tree_deref_slot(slot)); 1323 1324 put_device(ctrl->p2p_client); 1325 } 1326 1327 static void nvmet_fatal_error_handler(struct work_struct *work) 1328 { 1329 struct nvmet_ctrl *ctrl = 1330 container_of(work, struct nvmet_ctrl, fatal_err_work); 1331 1332 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1333 ctrl->ops->delete_ctrl(ctrl); 1334 } 1335 1336 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1337 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1338 { 1339 struct nvmet_subsys *subsys; 1340 struct nvmet_ctrl *ctrl; 1341 int ret; 1342 u16 status; 1343 1344 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1345 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1346 if (!subsys) { 1347 pr_warn("connect request for invalid subsystem %s!\n", 1348 subsysnqn); 1349 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1350 req->error_loc = offsetof(struct nvme_common_command, dptr); 1351 goto out; 1352 } 1353 1354 down_read(&nvmet_config_sem); 1355 if (!nvmet_host_allowed(subsys, hostnqn)) { 1356 pr_info("connect by host %s for subsystem %s not allowed\n", 1357 hostnqn, subsysnqn); 1358 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1359 up_read(&nvmet_config_sem); 1360 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1361 req->error_loc = offsetof(struct nvme_common_command, dptr); 1362 goto out_put_subsystem; 1363 } 1364 up_read(&nvmet_config_sem); 1365 1366 status = NVME_SC_INTERNAL; 1367 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1368 if (!ctrl) 1369 goto out_put_subsystem; 1370 mutex_init(&ctrl->lock); 1371 1372 ctrl->port = req->port; 1373 ctrl->ops = req->ops; 1374 1375 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1376 INIT_LIST_HEAD(&ctrl->async_events); 1377 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1378 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1379 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1380 1381 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1382 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1383 1384 kref_init(&ctrl->ref); 1385 ctrl->subsys = subsys; 1386 nvmet_init_cap(ctrl); 1387 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1388 1389 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1390 sizeof(__le32), GFP_KERNEL); 1391 if (!ctrl->changed_ns_list) 1392 goto out_free_ctrl; 1393 1394 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1395 sizeof(struct nvmet_sq *), 1396 GFP_KERNEL); 1397 if (!ctrl->sqs) 1398 goto out_free_changed_ns_list; 1399 1400 if (subsys->cntlid_min > subsys->cntlid_max) 1401 goto out_free_sqs; 1402 1403 ret = ida_simple_get(&cntlid_ida, 1404 subsys->cntlid_min, subsys->cntlid_max, 1405 GFP_KERNEL); 1406 if (ret < 0) { 1407 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1408 goto out_free_sqs; 1409 } 1410 ctrl->cntlid = ret; 1411 1412 /* 1413 * Discovery controllers may use some arbitrary high value 1414 * in order to cleanup stale discovery sessions 1415 */ 1416 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1417 kato = NVMET_DISC_KATO_MS; 1418 1419 /* keep-alive timeout in seconds */ 1420 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1421 1422 ctrl->err_counter = 0; 1423 spin_lock_init(&ctrl->error_lock); 1424 1425 nvmet_start_keep_alive_timer(ctrl); 1426 1427 mutex_lock(&subsys->lock); 1428 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1429 nvmet_setup_p2p_ns_map(ctrl, req); 1430 mutex_unlock(&subsys->lock); 1431 1432 *ctrlp = ctrl; 1433 return 0; 1434 1435 out_free_sqs: 1436 kfree(ctrl->sqs); 1437 out_free_changed_ns_list: 1438 kfree(ctrl->changed_ns_list); 1439 out_free_ctrl: 1440 kfree(ctrl); 1441 out_put_subsystem: 1442 nvmet_subsys_put(subsys); 1443 out: 1444 return status; 1445 } 1446 1447 static void nvmet_ctrl_free(struct kref *ref) 1448 { 1449 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1450 struct nvmet_subsys *subsys = ctrl->subsys; 1451 1452 mutex_lock(&subsys->lock); 1453 nvmet_release_p2p_ns_map(ctrl); 1454 list_del(&ctrl->subsys_entry); 1455 mutex_unlock(&subsys->lock); 1456 1457 nvmet_stop_keep_alive_timer(ctrl); 1458 1459 flush_work(&ctrl->async_event_work); 1460 cancel_work_sync(&ctrl->fatal_err_work); 1461 1462 ida_simple_remove(&cntlid_ida, ctrl->cntlid); 1463 1464 nvmet_async_events_free(ctrl); 1465 kfree(ctrl->sqs); 1466 kfree(ctrl->changed_ns_list); 1467 kfree(ctrl); 1468 1469 nvmet_subsys_put(subsys); 1470 } 1471 1472 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1473 { 1474 kref_put(&ctrl->ref, nvmet_ctrl_free); 1475 } 1476 1477 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1478 { 1479 mutex_lock(&ctrl->lock); 1480 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1481 ctrl->csts |= NVME_CSTS_CFS; 1482 schedule_work(&ctrl->fatal_err_work); 1483 } 1484 mutex_unlock(&ctrl->lock); 1485 } 1486 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1487 1488 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1489 const char *subsysnqn) 1490 { 1491 struct nvmet_subsys_link *p; 1492 1493 if (!port) 1494 return NULL; 1495 1496 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn) || 1497 !strcmp(nvmet_disc_subsys->subsysnqn, subsysnqn)) { 1498 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1499 return NULL; 1500 return nvmet_disc_subsys; 1501 } 1502 1503 down_read(&nvmet_config_sem); 1504 list_for_each_entry(p, &port->subsystems, entry) { 1505 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1506 NVMF_NQN_SIZE)) { 1507 if (!kref_get_unless_zero(&p->subsys->ref)) 1508 break; 1509 up_read(&nvmet_config_sem); 1510 return p->subsys; 1511 } 1512 } 1513 up_read(&nvmet_config_sem); 1514 return NULL; 1515 } 1516 1517 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1518 enum nvme_subsys_type type) 1519 { 1520 struct nvmet_subsys *subsys; 1521 char serial[NVMET_SN_MAX_SIZE / 2]; 1522 int ret; 1523 1524 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1525 if (!subsys) 1526 return ERR_PTR(-ENOMEM); 1527 1528 subsys->ver = NVMET_DEFAULT_VS; 1529 /* generate a random serial number as our controllers are ephemeral: */ 1530 get_random_bytes(&serial, sizeof(serial)); 1531 bin2hex(subsys->serial, &serial, sizeof(serial)); 1532 1533 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1534 if (!subsys->model_number) { 1535 ret = -ENOMEM; 1536 goto free_subsys; 1537 } 1538 1539 switch (type) { 1540 case NVME_NQN_NVME: 1541 subsys->max_qid = NVMET_NR_QUEUES; 1542 break; 1543 case NVME_NQN_DISC: 1544 case NVME_NQN_CURR: 1545 subsys->max_qid = 0; 1546 break; 1547 default: 1548 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1549 ret = -EINVAL; 1550 goto free_mn; 1551 } 1552 subsys->type = type; 1553 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1554 GFP_KERNEL); 1555 if (!subsys->subsysnqn) { 1556 ret = -ENOMEM; 1557 goto free_mn; 1558 } 1559 subsys->cntlid_min = NVME_CNTLID_MIN; 1560 subsys->cntlid_max = NVME_CNTLID_MAX; 1561 kref_init(&subsys->ref); 1562 1563 mutex_init(&subsys->lock); 1564 xa_init(&subsys->namespaces); 1565 INIT_LIST_HEAD(&subsys->ctrls); 1566 INIT_LIST_HEAD(&subsys->hosts); 1567 1568 return subsys; 1569 1570 free_mn: 1571 kfree(subsys->model_number); 1572 free_subsys: 1573 kfree(subsys); 1574 return ERR_PTR(ret); 1575 } 1576 1577 static void nvmet_subsys_free(struct kref *ref) 1578 { 1579 struct nvmet_subsys *subsys = 1580 container_of(ref, struct nvmet_subsys, ref); 1581 1582 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1583 1584 xa_destroy(&subsys->namespaces); 1585 nvmet_passthru_subsys_free(subsys); 1586 1587 kfree(subsys->subsysnqn); 1588 kfree(subsys->model_number); 1589 kfree(subsys); 1590 } 1591 1592 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1593 { 1594 struct nvmet_ctrl *ctrl; 1595 1596 mutex_lock(&subsys->lock); 1597 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1598 ctrl->ops->delete_ctrl(ctrl); 1599 mutex_unlock(&subsys->lock); 1600 } 1601 1602 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1603 { 1604 kref_put(&subsys->ref, nvmet_subsys_free); 1605 } 1606 1607 static int __init nvmet_init(void) 1608 { 1609 int error; 1610 1611 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1612 1613 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1614 if (!zbd_wq) 1615 return -ENOMEM; 1616 1617 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1618 WQ_MEM_RECLAIM, 0); 1619 if (!buffered_io_wq) { 1620 error = -ENOMEM; 1621 goto out_free_zbd_work_queue; 1622 } 1623 1624 error = nvmet_init_discovery(); 1625 if (error) 1626 goto out_free_work_queue; 1627 1628 error = nvmet_init_configfs(); 1629 if (error) 1630 goto out_exit_discovery; 1631 return 0; 1632 1633 out_exit_discovery: 1634 nvmet_exit_discovery(); 1635 out_free_work_queue: 1636 destroy_workqueue(buffered_io_wq); 1637 out_free_zbd_work_queue: 1638 destroy_workqueue(zbd_wq); 1639 return error; 1640 } 1641 1642 static void __exit nvmet_exit(void) 1643 { 1644 nvmet_exit_configfs(); 1645 nvmet_exit_discovery(); 1646 ida_destroy(&cntlid_ida); 1647 destroy_workqueue(buffered_io_wq); 1648 destroy_workqueue(zbd_wq); 1649 1650 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1651 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1652 } 1653 1654 module_init(nvmet_init); 1655 module_exit(nvmet_exit); 1656 1657 MODULE_LICENSE("GPL v2"); 1658