1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 20 static DEFINE_IDA(cntlid_ida); 21 22 /* 23 * This read/write semaphore is used to synchronize access to configuration 24 * information on a target system that will result in discovery log page 25 * information change for at least one host. 26 * The full list of resources to protected by this semaphore is: 27 * 28 * - subsystems list 29 * - per-subsystem allowed hosts list 30 * - allow_any_host subsystem attribute 31 * - nvmet_genctr 32 * - the nvmet_transports array 33 * 34 * When updating any of those lists/structures write lock should be obtained, 35 * while when reading (popolating discovery log page or checking host-subsystem 36 * link) read lock is obtained to allow concurrent reads. 37 */ 38 DECLARE_RWSEM(nvmet_config_sem); 39 40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 41 u64 nvmet_ana_chgcnt; 42 DECLARE_RWSEM(nvmet_ana_sem); 43 44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 45 { 46 u16 status; 47 48 switch (errno) { 49 case 0: 50 status = NVME_SC_SUCCESS; 51 break; 52 case -ENOSPC: 53 req->error_loc = offsetof(struct nvme_rw_command, length); 54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 55 break; 56 case -EREMOTEIO: 57 req->error_loc = offsetof(struct nvme_rw_command, slba); 58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 59 break; 60 case -EOPNOTSUPP: 61 req->error_loc = offsetof(struct nvme_common_command, opcode); 62 switch (req->cmd->common.opcode) { 63 case nvme_cmd_dsm: 64 case nvme_cmd_write_zeroes: 65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 66 break; 67 default: 68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 69 } 70 break; 71 case -ENODATA: 72 req->error_loc = offsetof(struct nvme_rw_command, nsid); 73 status = NVME_SC_ACCESS_DENIED; 74 break; 75 case -EIO: 76 /* FALLTHRU */ 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 status = NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 82 return status; 83 } 84 85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 86 const char *subsysnqn); 87 88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 89 size_t len) 90 { 91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 92 req->error_loc = offsetof(struct nvme_common_command, dptr); 93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 94 } 95 return 0; 96 } 97 98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 99 { 100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 101 req->error_loc = offsetof(struct nvme_common_command, dptr); 102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 103 } 104 return 0; 105 } 106 107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 108 { 109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 110 req->error_loc = offsetof(struct nvme_common_command, dptr); 111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 112 } 113 return 0; 114 } 115 116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys) 117 { 118 unsigned long nsid = 0; 119 struct nvmet_ns *cur; 120 unsigned long idx; 121 122 xa_for_each(&subsys->namespaces, idx, cur) 123 nsid = cur->nsid; 124 125 return nsid; 126 } 127 128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 129 { 130 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 131 } 132 133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 134 { 135 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR; 136 struct nvmet_req *req; 137 138 mutex_lock(&ctrl->lock); 139 while (ctrl->nr_async_event_cmds) { 140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 141 mutex_unlock(&ctrl->lock); 142 nvmet_req_complete(req, status); 143 mutex_lock(&ctrl->lock); 144 } 145 mutex_unlock(&ctrl->lock); 146 } 147 148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 149 { 150 struct nvmet_async_event *aen; 151 struct nvmet_req *req; 152 153 mutex_lock(&ctrl->lock); 154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 155 aen = list_first_entry(&ctrl->async_events, 156 struct nvmet_async_event, entry); 157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 158 nvmet_set_result(req, nvmet_async_event_result(aen)); 159 160 list_del(&aen->entry); 161 kfree(aen); 162 163 mutex_unlock(&ctrl->lock); 164 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 165 nvmet_req_complete(req, 0); 166 mutex_lock(&ctrl->lock); 167 } 168 mutex_unlock(&ctrl->lock); 169 } 170 171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 172 { 173 struct nvmet_async_event *aen, *tmp; 174 175 mutex_lock(&ctrl->lock); 176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 177 list_del(&aen->entry); 178 kfree(aen); 179 } 180 mutex_unlock(&ctrl->lock); 181 } 182 183 static void nvmet_async_event_work(struct work_struct *work) 184 { 185 struct nvmet_ctrl *ctrl = 186 container_of(work, struct nvmet_ctrl, async_event_work); 187 188 nvmet_async_events_process(ctrl); 189 } 190 191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 192 u8 event_info, u8 log_page) 193 { 194 struct nvmet_async_event *aen; 195 196 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 197 if (!aen) 198 return; 199 200 aen->event_type = event_type; 201 aen->event_info = event_info; 202 aen->log_page = log_page; 203 204 mutex_lock(&ctrl->lock); 205 list_add_tail(&aen->entry, &ctrl->async_events); 206 mutex_unlock(&ctrl->lock); 207 208 schedule_work(&ctrl->async_event_work); 209 } 210 211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 212 { 213 u32 i; 214 215 mutex_lock(&ctrl->lock); 216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 217 goto out_unlock; 218 219 for (i = 0; i < ctrl->nr_changed_ns; i++) { 220 if (ctrl->changed_ns_list[i] == nsid) 221 goto out_unlock; 222 } 223 224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 226 ctrl->nr_changed_ns = U32_MAX; 227 goto out_unlock; 228 } 229 230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 231 out_unlock: 232 mutex_unlock(&ctrl->lock); 233 } 234 235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 236 { 237 struct nvmet_ctrl *ctrl; 238 239 lockdep_assert_held(&subsys->lock); 240 241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 244 continue; 245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 246 NVME_AER_NOTICE_NS_CHANGED, 247 NVME_LOG_CHANGED_NS); 248 } 249 } 250 251 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 252 struct nvmet_port *port) 253 { 254 struct nvmet_ctrl *ctrl; 255 256 mutex_lock(&subsys->lock); 257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 258 if (port && ctrl->port != port) 259 continue; 260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 261 continue; 262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 264 } 265 mutex_unlock(&subsys->lock); 266 } 267 268 void nvmet_port_send_ana_event(struct nvmet_port *port) 269 { 270 struct nvmet_subsys_link *p; 271 272 down_read(&nvmet_config_sem); 273 list_for_each_entry(p, &port->subsystems, entry) 274 nvmet_send_ana_event(p->subsys, port); 275 up_read(&nvmet_config_sem); 276 } 277 278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 279 { 280 int ret = 0; 281 282 down_write(&nvmet_config_sem); 283 if (nvmet_transports[ops->type]) 284 ret = -EINVAL; 285 else 286 nvmet_transports[ops->type] = ops; 287 up_write(&nvmet_config_sem); 288 289 return ret; 290 } 291 EXPORT_SYMBOL_GPL(nvmet_register_transport); 292 293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 294 { 295 down_write(&nvmet_config_sem); 296 nvmet_transports[ops->type] = NULL; 297 up_write(&nvmet_config_sem); 298 } 299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 300 301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 302 { 303 struct nvmet_ctrl *ctrl; 304 305 mutex_lock(&subsys->lock); 306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 307 if (ctrl->port == port) 308 ctrl->ops->delete_ctrl(ctrl); 309 } 310 mutex_unlock(&subsys->lock); 311 } 312 313 int nvmet_enable_port(struct nvmet_port *port) 314 { 315 const struct nvmet_fabrics_ops *ops; 316 int ret; 317 318 lockdep_assert_held(&nvmet_config_sem); 319 320 ops = nvmet_transports[port->disc_addr.trtype]; 321 if (!ops) { 322 up_write(&nvmet_config_sem); 323 request_module("nvmet-transport-%d", port->disc_addr.trtype); 324 down_write(&nvmet_config_sem); 325 ops = nvmet_transports[port->disc_addr.trtype]; 326 if (!ops) { 327 pr_err("transport type %d not supported\n", 328 port->disc_addr.trtype); 329 return -EINVAL; 330 } 331 } 332 333 if (!try_module_get(ops->owner)) 334 return -EINVAL; 335 336 /* 337 * If the user requested PI support and the transport isn't pi capable, 338 * don't enable the port. 339 */ 340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 341 pr_err("T10-PI is not supported by transport type %d\n", 342 port->disc_addr.trtype); 343 ret = -EINVAL; 344 goto out_put; 345 } 346 347 ret = ops->add_port(port); 348 if (ret) 349 goto out_put; 350 351 /* If the transport didn't set inline_data_size, then disable it. */ 352 if (port->inline_data_size < 0) 353 port->inline_data_size = 0; 354 355 port->enabled = true; 356 port->tr_ops = ops; 357 return 0; 358 359 out_put: 360 module_put(ops->owner); 361 return ret; 362 } 363 364 void nvmet_disable_port(struct nvmet_port *port) 365 { 366 const struct nvmet_fabrics_ops *ops; 367 368 lockdep_assert_held(&nvmet_config_sem); 369 370 port->enabled = false; 371 port->tr_ops = NULL; 372 373 ops = nvmet_transports[port->disc_addr.trtype]; 374 ops->remove_port(port); 375 module_put(ops->owner); 376 } 377 378 static void nvmet_keep_alive_timer(struct work_struct *work) 379 { 380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 381 struct nvmet_ctrl, ka_work); 382 bool cmd_seen = ctrl->cmd_seen; 383 384 ctrl->cmd_seen = false; 385 if (cmd_seen) { 386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 387 ctrl->cntlid); 388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 389 return; 390 } 391 392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 393 ctrl->cntlid, ctrl->kato); 394 395 nvmet_ctrl_fatal_error(ctrl); 396 } 397 398 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 399 { 400 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 401 ctrl->cntlid, ctrl->kato); 402 403 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 404 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 405 } 406 407 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 408 { 409 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 410 411 cancel_delayed_work_sync(&ctrl->ka_work); 412 } 413 414 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid) 415 { 416 struct nvmet_ns *ns; 417 418 ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid)); 419 if (ns) 420 percpu_ref_get(&ns->ref); 421 422 return ns; 423 } 424 425 static void nvmet_destroy_namespace(struct percpu_ref *ref) 426 { 427 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 428 429 complete(&ns->disable_done); 430 } 431 432 void nvmet_put_namespace(struct nvmet_ns *ns) 433 { 434 percpu_ref_put(&ns->ref); 435 } 436 437 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 438 { 439 nvmet_bdev_ns_disable(ns); 440 nvmet_file_ns_disable(ns); 441 } 442 443 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 444 { 445 int ret; 446 struct pci_dev *p2p_dev; 447 448 if (!ns->use_p2pmem) 449 return 0; 450 451 if (!ns->bdev) { 452 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 453 return -EINVAL; 454 } 455 456 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 457 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 458 ns->device_path); 459 return -EINVAL; 460 } 461 462 if (ns->p2p_dev) { 463 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 464 if (ret < 0) 465 return -EINVAL; 466 } else { 467 /* 468 * Right now we just check that there is p2pmem available so 469 * we can report an error to the user right away if there 470 * is not. We'll find the actual device to use once we 471 * setup the controller when the port's device is available. 472 */ 473 474 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 475 if (!p2p_dev) { 476 pr_err("no peer-to-peer memory is available for %s\n", 477 ns->device_path); 478 return -EINVAL; 479 } 480 481 pci_dev_put(p2p_dev); 482 } 483 484 return 0; 485 } 486 487 /* 488 * Note: ctrl->subsys->lock should be held when calling this function 489 */ 490 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 491 struct nvmet_ns *ns) 492 { 493 struct device *clients[2]; 494 struct pci_dev *p2p_dev; 495 int ret; 496 497 if (!ctrl->p2p_client || !ns->use_p2pmem) 498 return; 499 500 if (ns->p2p_dev) { 501 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 502 if (ret < 0) 503 return; 504 505 p2p_dev = pci_dev_get(ns->p2p_dev); 506 } else { 507 clients[0] = ctrl->p2p_client; 508 clients[1] = nvmet_ns_dev(ns); 509 510 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 511 if (!p2p_dev) { 512 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 513 dev_name(ctrl->p2p_client), ns->device_path); 514 return; 515 } 516 } 517 518 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 519 if (ret < 0) 520 pci_dev_put(p2p_dev); 521 522 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 523 ns->nsid); 524 } 525 526 void nvmet_ns_revalidate(struct nvmet_ns *ns) 527 { 528 loff_t oldsize = ns->size; 529 530 if (ns->bdev) 531 nvmet_bdev_ns_revalidate(ns); 532 else 533 nvmet_file_ns_revalidate(ns); 534 535 if (oldsize != ns->size) 536 nvmet_ns_changed(ns->subsys, ns->nsid); 537 } 538 539 int nvmet_ns_enable(struct nvmet_ns *ns) 540 { 541 struct nvmet_subsys *subsys = ns->subsys; 542 struct nvmet_ctrl *ctrl; 543 int ret; 544 545 mutex_lock(&subsys->lock); 546 ret = 0; 547 548 if (nvmet_passthru_ctrl(subsys)) { 549 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 550 goto out_unlock; 551 } 552 553 if (ns->enabled) 554 goto out_unlock; 555 556 ret = -EMFILE; 557 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 558 goto out_unlock; 559 560 ret = nvmet_bdev_ns_enable(ns); 561 if (ret == -ENOTBLK) 562 ret = nvmet_file_ns_enable(ns); 563 if (ret) 564 goto out_unlock; 565 566 ret = nvmet_p2pmem_ns_enable(ns); 567 if (ret) 568 goto out_dev_disable; 569 570 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 571 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 572 573 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 574 0, GFP_KERNEL); 575 if (ret) 576 goto out_dev_put; 577 578 if (ns->nsid > subsys->max_nsid) 579 subsys->max_nsid = ns->nsid; 580 581 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 582 if (ret) 583 goto out_restore_subsys_maxnsid; 584 585 subsys->nr_namespaces++; 586 587 nvmet_ns_changed(subsys, ns->nsid); 588 ns->enabled = true; 589 ret = 0; 590 out_unlock: 591 mutex_unlock(&subsys->lock); 592 return ret; 593 594 out_restore_subsys_maxnsid: 595 subsys->max_nsid = nvmet_max_nsid(subsys); 596 percpu_ref_exit(&ns->ref); 597 out_dev_put: 598 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 599 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 600 out_dev_disable: 601 nvmet_ns_dev_disable(ns); 602 goto out_unlock; 603 } 604 605 void nvmet_ns_disable(struct nvmet_ns *ns) 606 { 607 struct nvmet_subsys *subsys = ns->subsys; 608 struct nvmet_ctrl *ctrl; 609 610 mutex_lock(&subsys->lock); 611 if (!ns->enabled) 612 goto out_unlock; 613 614 ns->enabled = false; 615 xa_erase(&ns->subsys->namespaces, ns->nsid); 616 if (ns->nsid == subsys->max_nsid) 617 subsys->max_nsid = nvmet_max_nsid(subsys); 618 619 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 620 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 621 622 mutex_unlock(&subsys->lock); 623 624 /* 625 * Now that we removed the namespaces from the lookup list, we 626 * can kill the per_cpu ref and wait for any remaining references 627 * to be dropped, as well as a RCU grace period for anyone only 628 * using the namepace under rcu_read_lock(). Note that we can't 629 * use call_rcu here as we need to ensure the namespaces have 630 * been fully destroyed before unloading the module. 631 */ 632 percpu_ref_kill(&ns->ref); 633 synchronize_rcu(); 634 wait_for_completion(&ns->disable_done); 635 percpu_ref_exit(&ns->ref); 636 637 mutex_lock(&subsys->lock); 638 639 subsys->nr_namespaces--; 640 nvmet_ns_changed(subsys, ns->nsid); 641 nvmet_ns_dev_disable(ns); 642 out_unlock: 643 mutex_unlock(&subsys->lock); 644 } 645 646 void nvmet_ns_free(struct nvmet_ns *ns) 647 { 648 nvmet_ns_disable(ns); 649 650 down_write(&nvmet_ana_sem); 651 nvmet_ana_group_enabled[ns->anagrpid]--; 652 up_write(&nvmet_ana_sem); 653 654 kfree(ns->device_path); 655 kfree(ns); 656 } 657 658 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 659 { 660 struct nvmet_ns *ns; 661 662 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 663 if (!ns) 664 return NULL; 665 666 init_completion(&ns->disable_done); 667 668 ns->nsid = nsid; 669 ns->subsys = subsys; 670 671 down_write(&nvmet_ana_sem); 672 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 673 nvmet_ana_group_enabled[ns->anagrpid]++; 674 up_write(&nvmet_ana_sem); 675 676 uuid_gen(&ns->uuid); 677 ns->buffered_io = false; 678 679 return ns; 680 } 681 682 static void nvmet_update_sq_head(struct nvmet_req *req) 683 { 684 if (req->sq->size) { 685 u32 old_sqhd, new_sqhd; 686 687 do { 688 old_sqhd = req->sq->sqhd; 689 new_sqhd = (old_sqhd + 1) % req->sq->size; 690 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 691 old_sqhd); 692 } 693 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 694 } 695 696 static void nvmet_set_error(struct nvmet_req *req, u16 status) 697 { 698 struct nvmet_ctrl *ctrl = req->sq->ctrl; 699 struct nvme_error_slot *new_error_slot; 700 unsigned long flags; 701 702 req->cqe->status = cpu_to_le16(status << 1); 703 704 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 705 return; 706 707 spin_lock_irqsave(&ctrl->error_lock, flags); 708 ctrl->err_counter++; 709 new_error_slot = 710 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 711 712 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 713 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 714 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 715 new_error_slot->status_field = cpu_to_le16(status << 1); 716 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 717 new_error_slot->lba = cpu_to_le64(req->error_slba); 718 new_error_slot->nsid = req->cmd->common.nsid; 719 spin_unlock_irqrestore(&ctrl->error_lock, flags); 720 721 /* set the more bit for this request */ 722 req->cqe->status |= cpu_to_le16(1 << 14); 723 } 724 725 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 726 { 727 if (!req->sq->sqhd_disabled) 728 nvmet_update_sq_head(req); 729 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 730 req->cqe->command_id = req->cmd->common.command_id; 731 732 if (unlikely(status)) 733 nvmet_set_error(req, status); 734 735 trace_nvmet_req_complete(req); 736 737 if (req->ns) 738 nvmet_put_namespace(req->ns); 739 req->ops->queue_response(req); 740 } 741 742 void nvmet_req_complete(struct nvmet_req *req, u16 status) 743 { 744 __nvmet_req_complete(req, status); 745 percpu_ref_put(&req->sq->ref); 746 } 747 EXPORT_SYMBOL_GPL(nvmet_req_complete); 748 749 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 750 u16 qid, u16 size) 751 { 752 cq->qid = qid; 753 cq->size = size; 754 755 ctrl->cqs[qid] = cq; 756 } 757 758 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 759 u16 qid, u16 size) 760 { 761 sq->sqhd = 0; 762 sq->qid = qid; 763 sq->size = size; 764 765 ctrl->sqs[qid] = sq; 766 } 767 768 static void nvmet_confirm_sq(struct percpu_ref *ref) 769 { 770 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 771 772 complete(&sq->confirm_done); 773 } 774 775 void nvmet_sq_destroy(struct nvmet_sq *sq) 776 { 777 struct nvmet_ctrl *ctrl = sq->ctrl; 778 779 /* 780 * If this is the admin queue, complete all AERs so that our 781 * queue doesn't have outstanding requests on it. 782 */ 783 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 784 nvmet_async_events_failall(ctrl); 785 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 786 wait_for_completion(&sq->confirm_done); 787 wait_for_completion(&sq->free_done); 788 percpu_ref_exit(&sq->ref); 789 790 if (ctrl) { 791 nvmet_ctrl_put(ctrl); 792 sq->ctrl = NULL; /* allows reusing the queue later */ 793 } 794 } 795 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 796 797 static void nvmet_sq_free(struct percpu_ref *ref) 798 { 799 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 800 801 complete(&sq->free_done); 802 } 803 804 int nvmet_sq_init(struct nvmet_sq *sq) 805 { 806 int ret; 807 808 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 809 if (ret) { 810 pr_err("percpu_ref init failed!\n"); 811 return ret; 812 } 813 init_completion(&sq->free_done); 814 init_completion(&sq->confirm_done); 815 816 return 0; 817 } 818 EXPORT_SYMBOL_GPL(nvmet_sq_init); 819 820 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 821 struct nvmet_ns *ns) 822 { 823 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 824 825 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 826 return NVME_SC_ANA_INACCESSIBLE; 827 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 828 return NVME_SC_ANA_PERSISTENT_LOSS; 829 if (unlikely(state == NVME_ANA_CHANGE)) 830 return NVME_SC_ANA_TRANSITION; 831 return 0; 832 } 833 834 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 835 { 836 if (unlikely(req->ns->readonly)) { 837 switch (req->cmd->common.opcode) { 838 case nvme_cmd_read: 839 case nvme_cmd_flush: 840 break; 841 default: 842 return NVME_SC_NS_WRITE_PROTECTED; 843 } 844 } 845 846 return 0; 847 } 848 849 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 850 { 851 struct nvme_command *cmd = req->cmd; 852 u16 ret; 853 854 ret = nvmet_check_ctrl_status(req, cmd); 855 if (unlikely(ret)) 856 return ret; 857 858 if (nvmet_req_passthru_ctrl(req)) 859 return nvmet_parse_passthru_io_cmd(req); 860 861 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid); 862 if (unlikely(!req->ns)) { 863 req->error_loc = offsetof(struct nvme_common_command, nsid); 864 return NVME_SC_INVALID_NS | NVME_SC_DNR; 865 } 866 ret = nvmet_check_ana_state(req->port, req->ns); 867 if (unlikely(ret)) { 868 req->error_loc = offsetof(struct nvme_common_command, nsid); 869 return ret; 870 } 871 ret = nvmet_io_cmd_check_access(req); 872 if (unlikely(ret)) { 873 req->error_loc = offsetof(struct nvme_common_command, nsid); 874 return ret; 875 } 876 877 if (req->ns->file) 878 return nvmet_file_parse_io_cmd(req); 879 else 880 return nvmet_bdev_parse_io_cmd(req); 881 } 882 883 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 884 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 885 { 886 u8 flags = req->cmd->common.flags; 887 u16 status; 888 889 req->cq = cq; 890 req->sq = sq; 891 req->ops = ops; 892 req->sg = NULL; 893 req->metadata_sg = NULL; 894 req->sg_cnt = 0; 895 req->metadata_sg_cnt = 0; 896 req->transfer_len = 0; 897 req->metadata_len = 0; 898 req->cqe->status = 0; 899 req->cqe->sq_head = 0; 900 req->ns = NULL; 901 req->error_loc = NVMET_NO_ERROR_LOC; 902 req->error_slba = 0; 903 904 trace_nvmet_req_init(req, req->cmd); 905 906 /* no support for fused commands yet */ 907 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 908 req->error_loc = offsetof(struct nvme_common_command, flags); 909 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 910 goto fail; 911 } 912 913 /* 914 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 915 * contains an address of a single contiguous physical buffer that is 916 * byte aligned. 917 */ 918 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 919 req->error_loc = offsetof(struct nvme_common_command, flags); 920 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 921 goto fail; 922 } 923 924 if (unlikely(!req->sq->ctrl)) 925 /* will return an error for any non-connect command: */ 926 status = nvmet_parse_connect_cmd(req); 927 else if (likely(req->sq->qid != 0)) 928 status = nvmet_parse_io_cmd(req); 929 else 930 status = nvmet_parse_admin_cmd(req); 931 932 if (status) 933 goto fail; 934 935 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 936 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 937 goto fail; 938 } 939 940 if (sq->ctrl) 941 sq->ctrl->cmd_seen = true; 942 943 return true; 944 945 fail: 946 __nvmet_req_complete(req, status); 947 return false; 948 } 949 EXPORT_SYMBOL_GPL(nvmet_req_init); 950 951 void nvmet_req_uninit(struct nvmet_req *req) 952 { 953 percpu_ref_put(&req->sq->ref); 954 if (req->ns) 955 nvmet_put_namespace(req->ns); 956 } 957 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 958 959 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 960 { 961 if (unlikely(len != req->transfer_len)) { 962 req->error_loc = offsetof(struct nvme_common_command, dptr); 963 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 964 return false; 965 } 966 967 return true; 968 } 969 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 970 971 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 972 { 973 if (unlikely(data_len > req->transfer_len)) { 974 req->error_loc = offsetof(struct nvme_common_command, dptr); 975 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 976 return false; 977 } 978 979 return true; 980 } 981 982 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 983 { 984 return req->transfer_len - req->metadata_len; 985 } 986 987 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req) 988 { 989 req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt, 990 nvmet_data_transfer_len(req)); 991 if (!req->sg) 992 goto out_err; 993 994 if (req->metadata_len) { 995 req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev, 996 &req->metadata_sg_cnt, req->metadata_len); 997 if (!req->metadata_sg) 998 goto out_free_sg; 999 } 1000 return 0; 1001 out_free_sg: 1002 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1003 out_err: 1004 return -ENOMEM; 1005 } 1006 1007 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req) 1008 { 1009 if (!IS_ENABLED(CONFIG_PCI_P2PDMA)) 1010 return false; 1011 1012 if (req->sq->ctrl && req->sq->qid && req->ns) { 1013 req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, 1014 req->ns->nsid); 1015 if (req->p2p_dev) 1016 return true; 1017 } 1018 1019 req->p2p_dev = NULL; 1020 return false; 1021 } 1022 1023 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1024 { 1025 if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req)) 1026 return 0; 1027 1028 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1029 &req->sg_cnt); 1030 if (unlikely(!req->sg)) 1031 goto out; 1032 1033 if (req->metadata_len) { 1034 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1035 &req->metadata_sg_cnt); 1036 if (unlikely(!req->metadata_sg)) 1037 goto out_free; 1038 } 1039 1040 return 0; 1041 out_free: 1042 sgl_free(req->sg); 1043 out: 1044 return -ENOMEM; 1045 } 1046 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1047 1048 void nvmet_req_free_sgls(struct nvmet_req *req) 1049 { 1050 if (req->p2p_dev) { 1051 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1052 if (req->metadata_sg) 1053 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1054 } else { 1055 sgl_free(req->sg); 1056 if (req->metadata_sg) 1057 sgl_free(req->metadata_sg); 1058 } 1059 1060 req->sg = NULL; 1061 req->metadata_sg = NULL; 1062 req->sg_cnt = 0; 1063 req->metadata_sg_cnt = 0; 1064 } 1065 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1066 1067 static inline bool nvmet_cc_en(u32 cc) 1068 { 1069 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1070 } 1071 1072 static inline u8 nvmet_cc_css(u32 cc) 1073 { 1074 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1075 } 1076 1077 static inline u8 nvmet_cc_mps(u32 cc) 1078 { 1079 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1080 } 1081 1082 static inline u8 nvmet_cc_ams(u32 cc) 1083 { 1084 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1085 } 1086 1087 static inline u8 nvmet_cc_shn(u32 cc) 1088 { 1089 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1090 } 1091 1092 static inline u8 nvmet_cc_iosqes(u32 cc) 1093 { 1094 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1095 } 1096 1097 static inline u8 nvmet_cc_iocqes(u32 cc) 1098 { 1099 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1100 } 1101 1102 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1103 { 1104 lockdep_assert_held(&ctrl->lock); 1105 1106 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1107 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES || 1108 nvmet_cc_mps(ctrl->cc) != 0 || 1109 nvmet_cc_ams(ctrl->cc) != 0 || 1110 nvmet_cc_css(ctrl->cc) != 0) { 1111 ctrl->csts = NVME_CSTS_CFS; 1112 return; 1113 } 1114 1115 ctrl->csts = NVME_CSTS_RDY; 1116 1117 /* 1118 * Controllers that are not yet enabled should not really enforce the 1119 * keep alive timeout, but we still want to track a timeout and cleanup 1120 * in case a host died before it enabled the controller. Hence, simply 1121 * reset the keep alive timer when the controller is enabled. 1122 */ 1123 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1124 } 1125 1126 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1127 { 1128 lockdep_assert_held(&ctrl->lock); 1129 1130 /* XXX: tear down queues? */ 1131 ctrl->csts &= ~NVME_CSTS_RDY; 1132 ctrl->cc = 0; 1133 } 1134 1135 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1136 { 1137 u32 old; 1138 1139 mutex_lock(&ctrl->lock); 1140 old = ctrl->cc; 1141 ctrl->cc = new; 1142 1143 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1144 nvmet_start_ctrl(ctrl); 1145 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1146 nvmet_clear_ctrl(ctrl); 1147 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1148 nvmet_clear_ctrl(ctrl); 1149 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1150 } 1151 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1152 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1153 mutex_unlock(&ctrl->lock); 1154 } 1155 1156 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1157 { 1158 /* command sets supported: NVMe command set: */ 1159 ctrl->cap = (1ULL << 37); 1160 /* CC.EN timeout in 500msec units: */ 1161 ctrl->cap |= (15ULL << 24); 1162 /* maximum queue entries supported: */ 1163 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1164 } 1165 1166 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, 1167 struct nvmet_req *req, struct nvmet_ctrl **ret) 1168 { 1169 struct nvmet_subsys *subsys; 1170 struct nvmet_ctrl *ctrl; 1171 u16 status = 0; 1172 1173 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1174 if (!subsys) { 1175 pr_warn("connect request for invalid subsystem %s!\n", 1176 subsysnqn); 1177 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1178 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1179 } 1180 1181 mutex_lock(&subsys->lock); 1182 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1183 if (ctrl->cntlid == cntlid) { 1184 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1185 pr_warn("hostnqn mismatch.\n"); 1186 continue; 1187 } 1188 if (!kref_get_unless_zero(&ctrl->ref)) 1189 continue; 1190 1191 *ret = ctrl; 1192 goto out; 1193 } 1194 } 1195 1196 pr_warn("could not find controller %d for subsys %s / host %s\n", 1197 cntlid, subsysnqn, hostnqn); 1198 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1199 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1200 1201 out: 1202 mutex_unlock(&subsys->lock); 1203 nvmet_subsys_put(subsys); 1204 return status; 1205 } 1206 1207 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd) 1208 { 1209 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1210 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1211 cmd->common.opcode, req->sq->qid); 1212 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1213 } 1214 1215 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1216 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1217 cmd->common.opcode, req->sq->qid); 1218 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1219 } 1220 return 0; 1221 } 1222 1223 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1224 { 1225 struct nvmet_host_link *p; 1226 1227 lockdep_assert_held(&nvmet_config_sem); 1228 1229 if (subsys->allow_any_host) 1230 return true; 1231 1232 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */ 1233 return true; 1234 1235 list_for_each_entry(p, &subsys->hosts, entry) { 1236 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1237 return true; 1238 } 1239 1240 return false; 1241 } 1242 1243 /* 1244 * Note: ctrl->subsys->lock should be held when calling this function 1245 */ 1246 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1247 struct nvmet_req *req) 1248 { 1249 struct nvmet_ns *ns; 1250 unsigned long idx; 1251 1252 if (!req->p2p_client) 1253 return; 1254 1255 ctrl->p2p_client = get_device(req->p2p_client); 1256 1257 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1258 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1259 } 1260 1261 /* 1262 * Note: ctrl->subsys->lock should be held when calling this function 1263 */ 1264 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1265 { 1266 struct radix_tree_iter iter; 1267 void __rcu **slot; 1268 1269 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1270 pci_dev_put(radix_tree_deref_slot(slot)); 1271 1272 put_device(ctrl->p2p_client); 1273 } 1274 1275 static void nvmet_fatal_error_handler(struct work_struct *work) 1276 { 1277 struct nvmet_ctrl *ctrl = 1278 container_of(work, struct nvmet_ctrl, fatal_err_work); 1279 1280 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1281 ctrl->ops->delete_ctrl(ctrl); 1282 } 1283 1284 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1285 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1286 { 1287 struct nvmet_subsys *subsys; 1288 struct nvmet_ctrl *ctrl; 1289 int ret; 1290 u16 status; 1291 1292 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1293 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1294 if (!subsys) { 1295 pr_warn("connect request for invalid subsystem %s!\n", 1296 subsysnqn); 1297 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1298 goto out; 1299 } 1300 1301 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1302 down_read(&nvmet_config_sem); 1303 if (!nvmet_host_allowed(subsys, hostnqn)) { 1304 pr_info("connect by host %s for subsystem %s not allowed\n", 1305 hostnqn, subsysnqn); 1306 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1307 up_read(&nvmet_config_sem); 1308 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1309 goto out_put_subsystem; 1310 } 1311 up_read(&nvmet_config_sem); 1312 1313 status = NVME_SC_INTERNAL; 1314 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1315 if (!ctrl) 1316 goto out_put_subsystem; 1317 mutex_init(&ctrl->lock); 1318 1319 nvmet_init_cap(ctrl); 1320 1321 ctrl->port = req->port; 1322 1323 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1324 INIT_LIST_HEAD(&ctrl->async_events); 1325 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1326 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1327 1328 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1329 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1330 1331 kref_init(&ctrl->ref); 1332 ctrl->subsys = subsys; 1333 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1334 1335 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1336 sizeof(__le32), GFP_KERNEL); 1337 if (!ctrl->changed_ns_list) 1338 goto out_free_ctrl; 1339 1340 ctrl->cqs = kcalloc(subsys->max_qid + 1, 1341 sizeof(struct nvmet_cq *), 1342 GFP_KERNEL); 1343 if (!ctrl->cqs) 1344 goto out_free_changed_ns_list; 1345 1346 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1347 sizeof(struct nvmet_sq *), 1348 GFP_KERNEL); 1349 if (!ctrl->sqs) 1350 goto out_free_cqs; 1351 1352 if (subsys->cntlid_min > subsys->cntlid_max) 1353 goto out_free_cqs; 1354 1355 ret = ida_simple_get(&cntlid_ida, 1356 subsys->cntlid_min, subsys->cntlid_max, 1357 GFP_KERNEL); 1358 if (ret < 0) { 1359 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1360 goto out_free_sqs; 1361 } 1362 ctrl->cntlid = ret; 1363 1364 ctrl->ops = req->ops; 1365 1366 /* 1367 * Discovery controllers may use some arbitrary high value 1368 * in order to cleanup stale discovery sessions 1369 */ 1370 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato) 1371 kato = NVMET_DISC_KATO_MS; 1372 1373 /* keep-alive timeout in seconds */ 1374 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1375 1376 ctrl->err_counter = 0; 1377 spin_lock_init(&ctrl->error_lock); 1378 1379 nvmet_start_keep_alive_timer(ctrl); 1380 1381 mutex_lock(&subsys->lock); 1382 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1383 nvmet_setup_p2p_ns_map(ctrl, req); 1384 mutex_unlock(&subsys->lock); 1385 1386 *ctrlp = ctrl; 1387 return 0; 1388 1389 out_free_sqs: 1390 kfree(ctrl->sqs); 1391 out_free_cqs: 1392 kfree(ctrl->cqs); 1393 out_free_changed_ns_list: 1394 kfree(ctrl->changed_ns_list); 1395 out_free_ctrl: 1396 kfree(ctrl); 1397 out_put_subsystem: 1398 nvmet_subsys_put(subsys); 1399 out: 1400 return status; 1401 } 1402 1403 static void nvmet_ctrl_free(struct kref *ref) 1404 { 1405 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1406 struct nvmet_subsys *subsys = ctrl->subsys; 1407 1408 mutex_lock(&subsys->lock); 1409 nvmet_release_p2p_ns_map(ctrl); 1410 list_del(&ctrl->subsys_entry); 1411 mutex_unlock(&subsys->lock); 1412 1413 nvmet_stop_keep_alive_timer(ctrl); 1414 1415 flush_work(&ctrl->async_event_work); 1416 cancel_work_sync(&ctrl->fatal_err_work); 1417 1418 ida_simple_remove(&cntlid_ida, ctrl->cntlid); 1419 1420 nvmet_async_events_free(ctrl); 1421 kfree(ctrl->sqs); 1422 kfree(ctrl->cqs); 1423 kfree(ctrl->changed_ns_list); 1424 kfree(ctrl); 1425 1426 nvmet_subsys_put(subsys); 1427 } 1428 1429 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1430 { 1431 kref_put(&ctrl->ref, nvmet_ctrl_free); 1432 } 1433 1434 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1435 { 1436 mutex_lock(&ctrl->lock); 1437 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1438 ctrl->csts |= NVME_CSTS_CFS; 1439 schedule_work(&ctrl->fatal_err_work); 1440 } 1441 mutex_unlock(&ctrl->lock); 1442 } 1443 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1444 1445 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1446 const char *subsysnqn) 1447 { 1448 struct nvmet_subsys_link *p; 1449 1450 if (!port) 1451 return NULL; 1452 1453 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1454 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1455 return NULL; 1456 return nvmet_disc_subsys; 1457 } 1458 1459 down_read(&nvmet_config_sem); 1460 list_for_each_entry(p, &port->subsystems, entry) { 1461 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1462 NVMF_NQN_SIZE)) { 1463 if (!kref_get_unless_zero(&p->subsys->ref)) 1464 break; 1465 up_read(&nvmet_config_sem); 1466 return p->subsys; 1467 } 1468 } 1469 up_read(&nvmet_config_sem); 1470 return NULL; 1471 } 1472 1473 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1474 enum nvme_subsys_type type) 1475 { 1476 struct nvmet_subsys *subsys; 1477 1478 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1479 if (!subsys) 1480 return ERR_PTR(-ENOMEM); 1481 1482 subsys->ver = NVMET_DEFAULT_VS; 1483 /* generate a random serial number as our controllers are ephemeral: */ 1484 get_random_bytes(&subsys->serial, sizeof(subsys->serial)); 1485 1486 switch (type) { 1487 case NVME_NQN_NVME: 1488 subsys->max_qid = NVMET_NR_QUEUES; 1489 break; 1490 case NVME_NQN_DISC: 1491 subsys->max_qid = 0; 1492 break; 1493 default: 1494 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1495 kfree(subsys); 1496 return ERR_PTR(-EINVAL); 1497 } 1498 subsys->type = type; 1499 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1500 GFP_KERNEL); 1501 if (!subsys->subsysnqn) { 1502 kfree(subsys); 1503 return ERR_PTR(-ENOMEM); 1504 } 1505 subsys->cntlid_min = NVME_CNTLID_MIN; 1506 subsys->cntlid_max = NVME_CNTLID_MAX; 1507 kref_init(&subsys->ref); 1508 1509 mutex_init(&subsys->lock); 1510 xa_init(&subsys->namespaces); 1511 INIT_LIST_HEAD(&subsys->ctrls); 1512 INIT_LIST_HEAD(&subsys->hosts); 1513 1514 return subsys; 1515 } 1516 1517 static void nvmet_subsys_free(struct kref *ref) 1518 { 1519 struct nvmet_subsys *subsys = 1520 container_of(ref, struct nvmet_subsys, ref); 1521 1522 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1523 1524 xa_destroy(&subsys->namespaces); 1525 nvmet_passthru_subsys_free(subsys); 1526 1527 kfree(subsys->subsysnqn); 1528 kfree_rcu(subsys->model, rcuhead); 1529 kfree(subsys); 1530 } 1531 1532 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1533 { 1534 struct nvmet_ctrl *ctrl; 1535 1536 mutex_lock(&subsys->lock); 1537 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1538 ctrl->ops->delete_ctrl(ctrl); 1539 mutex_unlock(&subsys->lock); 1540 } 1541 1542 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1543 { 1544 kref_put(&subsys->ref, nvmet_subsys_free); 1545 } 1546 1547 static int __init nvmet_init(void) 1548 { 1549 int error; 1550 1551 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1552 1553 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1554 WQ_MEM_RECLAIM, 0); 1555 if (!buffered_io_wq) { 1556 error = -ENOMEM; 1557 goto out; 1558 } 1559 1560 error = nvmet_init_discovery(); 1561 if (error) 1562 goto out_free_work_queue; 1563 1564 error = nvmet_init_configfs(); 1565 if (error) 1566 goto out_exit_discovery; 1567 return 0; 1568 1569 out_exit_discovery: 1570 nvmet_exit_discovery(); 1571 out_free_work_queue: 1572 destroy_workqueue(buffered_io_wq); 1573 out: 1574 return error; 1575 } 1576 1577 static void __exit nvmet_exit(void) 1578 { 1579 nvmet_exit_configfs(); 1580 nvmet_exit_discovery(); 1581 ida_destroy(&cntlid_ida); 1582 destroy_workqueue(buffered_io_wq); 1583 1584 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1585 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1586 } 1587 1588 module_init(nvmet_init); 1589 module_exit(nvmet_exit); 1590 1591 MODULE_LICENSE("GPL v2"); 1592