xref: /openbmc/linux/drivers/nvme/target/core.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include "nvmet.h"
14 
15 struct workqueue_struct *buffered_io_wq;
16 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
17 static DEFINE_IDA(cntlid_ida);
18 
19 /*
20  * This read/write semaphore is used to synchronize access to configuration
21  * information on a target system that will result in discovery log page
22  * information change for at least one host.
23  * The full list of resources to protected by this semaphore is:
24  *
25  *  - subsystems list
26  *  - per-subsystem allowed hosts list
27  *  - allow_any_host subsystem attribute
28  *  - nvmet_genctr
29  *  - the nvmet_transports array
30  *
31  * When updating any of those lists/structures write lock should be obtained,
32  * while when reading (popolating discovery log page or checking host-subsystem
33  * link) read lock is obtained to allow concurrent reads.
34  */
35 DECLARE_RWSEM(nvmet_config_sem);
36 
37 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
38 u64 nvmet_ana_chgcnt;
39 DECLARE_RWSEM(nvmet_ana_sem);
40 
41 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
42 {
43 	u16 status;
44 
45 	switch (errno) {
46 	case -ENOSPC:
47 		req->error_loc = offsetof(struct nvme_rw_command, length);
48 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
49 		break;
50 	case -EREMOTEIO:
51 		req->error_loc = offsetof(struct nvme_rw_command, slba);
52 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
53 		break;
54 	case -EOPNOTSUPP:
55 		req->error_loc = offsetof(struct nvme_common_command, opcode);
56 		switch (req->cmd->common.opcode) {
57 		case nvme_cmd_dsm:
58 		case nvme_cmd_write_zeroes:
59 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
60 			break;
61 		default:
62 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
63 		}
64 		break;
65 	case -ENODATA:
66 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
67 		status = NVME_SC_ACCESS_DENIED;
68 		break;
69 	case -EIO:
70 		/* FALLTHRU */
71 	default:
72 		req->error_loc = offsetof(struct nvme_common_command, opcode);
73 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
74 	}
75 
76 	return status;
77 }
78 
79 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
80 		const char *subsysnqn);
81 
82 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
83 		size_t len)
84 {
85 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
86 		req->error_loc = offsetof(struct nvme_common_command, dptr);
87 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
88 	}
89 	return 0;
90 }
91 
92 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
93 {
94 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
95 		req->error_loc = offsetof(struct nvme_common_command, dptr);
96 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
97 	}
98 	return 0;
99 }
100 
101 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
102 {
103 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
104 		req->error_loc = offsetof(struct nvme_common_command, dptr);
105 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
106 	}
107 	return 0;
108 }
109 
110 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
111 {
112 	struct nvmet_ns *ns;
113 
114 	if (list_empty(&subsys->namespaces))
115 		return 0;
116 
117 	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
118 	return ns->nsid;
119 }
120 
121 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
122 {
123 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
124 }
125 
126 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
127 {
128 	struct nvmet_req *req;
129 
130 	while (1) {
131 		mutex_lock(&ctrl->lock);
132 		if (!ctrl->nr_async_event_cmds) {
133 			mutex_unlock(&ctrl->lock);
134 			return;
135 		}
136 
137 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
138 		mutex_unlock(&ctrl->lock);
139 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
140 	}
141 }
142 
143 static void nvmet_async_event_work(struct work_struct *work)
144 {
145 	struct nvmet_ctrl *ctrl =
146 		container_of(work, struct nvmet_ctrl, async_event_work);
147 	struct nvmet_async_event *aen;
148 	struct nvmet_req *req;
149 
150 	while (1) {
151 		mutex_lock(&ctrl->lock);
152 		aen = list_first_entry_or_null(&ctrl->async_events,
153 				struct nvmet_async_event, entry);
154 		if (!aen || !ctrl->nr_async_event_cmds) {
155 			mutex_unlock(&ctrl->lock);
156 			return;
157 		}
158 
159 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
160 		nvmet_set_result(req, nvmet_async_event_result(aen));
161 
162 		list_del(&aen->entry);
163 		kfree(aen);
164 
165 		mutex_unlock(&ctrl->lock);
166 		nvmet_req_complete(req, 0);
167 	}
168 }
169 
170 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
171 		u8 event_info, u8 log_page)
172 {
173 	struct nvmet_async_event *aen;
174 
175 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
176 	if (!aen)
177 		return;
178 
179 	aen->event_type = event_type;
180 	aen->event_info = event_info;
181 	aen->log_page = log_page;
182 
183 	mutex_lock(&ctrl->lock);
184 	list_add_tail(&aen->entry, &ctrl->async_events);
185 	mutex_unlock(&ctrl->lock);
186 
187 	schedule_work(&ctrl->async_event_work);
188 }
189 
190 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
191 {
192 	u32 i;
193 
194 	mutex_lock(&ctrl->lock);
195 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
196 		goto out_unlock;
197 
198 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
199 		if (ctrl->changed_ns_list[i] == nsid)
200 			goto out_unlock;
201 	}
202 
203 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
204 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
205 		ctrl->nr_changed_ns = U32_MAX;
206 		goto out_unlock;
207 	}
208 
209 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
210 out_unlock:
211 	mutex_unlock(&ctrl->lock);
212 }
213 
214 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
215 {
216 	struct nvmet_ctrl *ctrl;
217 
218 	lockdep_assert_held(&subsys->lock);
219 
220 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
221 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
222 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
223 			continue;
224 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
225 				NVME_AER_NOTICE_NS_CHANGED,
226 				NVME_LOG_CHANGED_NS);
227 	}
228 }
229 
230 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
231 		struct nvmet_port *port)
232 {
233 	struct nvmet_ctrl *ctrl;
234 
235 	mutex_lock(&subsys->lock);
236 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
237 		if (port && ctrl->port != port)
238 			continue;
239 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
240 			continue;
241 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
242 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
243 	}
244 	mutex_unlock(&subsys->lock);
245 }
246 
247 void nvmet_port_send_ana_event(struct nvmet_port *port)
248 {
249 	struct nvmet_subsys_link *p;
250 
251 	down_read(&nvmet_config_sem);
252 	list_for_each_entry(p, &port->subsystems, entry)
253 		nvmet_send_ana_event(p->subsys, port);
254 	up_read(&nvmet_config_sem);
255 }
256 
257 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
258 {
259 	int ret = 0;
260 
261 	down_write(&nvmet_config_sem);
262 	if (nvmet_transports[ops->type])
263 		ret = -EINVAL;
264 	else
265 		nvmet_transports[ops->type] = ops;
266 	up_write(&nvmet_config_sem);
267 
268 	return ret;
269 }
270 EXPORT_SYMBOL_GPL(nvmet_register_transport);
271 
272 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
273 {
274 	down_write(&nvmet_config_sem);
275 	nvmet_transports[ops->type] = NULL;
276 	up_write(&nvmet_config_sem);
277 }
278 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
279 
280 int nvmet_enable_port(struct nvmet_port *port)
281 {
282 	const struct nvmet_fabrics_ops *ops;
283 	int ret;
284 
285 	lockdep_assert_held(&nvmet_config_sem);
286 
287 	ops = nvmet_transports[port->disc_addr.trtype];
288 	if (!ops) {
289 		up_write(&nvmet_config_sem);
290 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
291 		down_write(&nvmet_config_sem);
292 		ops = nvmet_transports[port->disc_addr.trtype];
293 		if (!ops) {
294 			pr_err("transport type %d not supported\n",
295 				port->disc_addr.trtype);
296 			return -EINVAL;
297 		}
298 	}
299 
300 	if (!try_module_get(ops->owner))
301 		return -EINVAL;
302 
303 	ret = ops->add_port(port);
304 	if (ret) {
305 		module_put(ops->owner);
306 		return ret;
307 	}
308 
309 	/* If the transport didn't set inline_data_size, then disable it. */
310 	if (port->inline_data_size < 0)
311 		port->inline_data_size = 0;
312 
313 	port->enabled = true;
314 	return 0;
315 }
316 
317 void nvmet_disable_port(struct nvmet_port *port)
318 {
319 	const struct nvmet_fabrics_ops *ops;
320 
321 	lockdep_assert_held(&nvmet_config_sem);
322 
323 	port->enabled = false;
324 
325 	ops = nvmet_transports[port->disc_addr.trtype];
326 	ops->remove_port(port);
327 	module_put(ops->owner);
328 }
329 
330 static void nvmet_keep_alive_timer(struct work_struct *work)
331 {
332 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
333 			struct nvmet_ctrl, ka_work);
334 	bool cmd_seen = ctrl->cmd_seen;
335 
336 	ctrl->cmd_seen = false;
337 	if (cmd_seen) {
338 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
339 			ctrl->cntlid);
340 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
341 		return;
342 	}
343 
344 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
345 		ctrl->cntlid, ctrl->kato);
346 
347 	nvmet_ctrl_fatal_error(ctrl);
348 }
349 
350 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
351 {
352 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
353 		ctrl->cntlid, ctrl->kato);
354 
355 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
356 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
357 }
358 
359 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
360 {
361 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
362 
363 	cancel_delayed_work_sync(&ctrl->ka_work);
364 }
365 
366 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
367 		__le32 nsid)
368 {
369 	struct nvmet_ns *ns;
370 
371 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
372 		if (ns->nsid == le32_to_cpu(nsid))
373 			return ns;
374 	}
375 
376 	return NULL;
377 }
378 
379 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
380 {
381 	struct nvmet_ns *ns;
382 
383 	rcu_read_lock();
384 	ns = __nvmet_find_namespace(ctrl, nsid);
385 	if (ns)
386 		percpu_ref_get(&ns->ref);
387 	rcu_read_unlock();
388 
389 	return ns;
390 }
391 
392 static void nvmet_destroy_namespace(struct percpu_ref *ref)
393 {
394 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
395 
396 	complete(&ns->disable_done);
397 }
398 
399 void nvmet_put_namespace(struct nvmet_ns *ns)
400 {
401 	percpu_ref_put(&ns->ref);
402 }
403 
404 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
405 {
406 	nvmet_bdev_ns_disable(ns);
407 	nvmet_file_ns_disable(ns);
408 }
409 
410 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
411 {
412 	int ret;
413 	struct pci_dev *p2p_dev;
414 
415 	if (!ns->use_p2pmem)
416 		return 0;
417 
418 	if (!ns->bdev) {
419 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
420 		return -EINVAL;
421 	}
422 
423 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
424 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
425 		       ns->device_path);
426 		return -EINVAL;
427 	}
428 
429 	if (ns->p2p_dev) {
430 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
431 		if (ret < 0)
432 			return -EINVAL;
433 	} else {
434 		/*
435 		 * Right now we just check that there is p2pmem available so
436 		 * we can report an error to the user right away if there
437 		 * is not. We'll find the actual device to use once we
438 		 * setup the controller when the port's device is available.
439 		 */
440 
441 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
442 		if (!p2p_dev) {
443 			pr_err("no peer-to-peer memory is available for %s\n",
444 			       ns->device_path);
445 			return -EINVAL;
446 		}
447 
448 		pci_dev_put(p2p_dev);
449 	}
450 
451 	return 0;
452 }
453 
454 /*
455  * Note: ctrl->subsys->lock should be held when calling this function
456  */
457 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
458 				    struct nvmet_ns *ns)
459 {
460 	struct device *clients[2];
461 	struct pci_dev *p2p_dev;
462 	int ret;
463 
464 	if (!ctrl->p2p_client || !ns->use_p2pmem)
465 		return;
466 
467 	if (ns->p2p_dev) {
468 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
469 		if (ret < 0)
470 			return;
471 
472 		p2p_dev = pci_dev_get(ns->p2p_dev);
473 	} else {
474 		clients[0] = ctrl->p2p_client;
475 		clients[1] = nvmet_ns_dev(ns);
476 
477 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
478 		if (!p2p_dev) {
479 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
480 			       dev_name(ctrl->p2p_client), ns->device_path);
481 			return;
482 		}
483 	}
484 
485 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
486 	if (ret < 0)
487 		pci_dev_put(p2p_dev);
488 
489 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
490 		ns->nsid);
491 }
492 
493 int nvmet_ns_enable(struct nvmet_ns *ns)
494 {
495 	struct nvmet_subsys *subsys = ns->subsys;
496 	struct nvmet_ctrl *ctrl;
497 	int ret;
498 
499 	mutex_lock(&subsys->lock);
500 	ret = 0;
501 	if (ns->enabled)
502 		goto out_unlock;
503 
504 	ret = -EMFILE;
505 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
506 		goto out_unlock;
507 
508 	ret = nvmet_bdev_ns_enable(ns);
509 	if (ret == -ENOTBLK)
510 		ret = nvmet_file_ns_enable(ns);
511 	if (ret)
512 		goto out_unlock;
513 
514 	ret = nvmet_p2pmem_ns_enable(ns);
515 	if (ret)
516 		goto out_dev_disable;
517 
518 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
519 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
520 
521 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
522 				0, GFP_KERNEL);
523 	if (ret)
524 		goto out_dev_put;
525 
526 	if (ns->nsid > subsys->max_nsid)
527 		subsys->max_nsid = ns->nsid;
528 
529 	/*
530 	 * The namespaces list needs to be sorted to simplify the implementation
531 	 * of the Identify Namepace List subcommand.
532 	 */
533 	if (list_empty(&subsys->namespaces)) {
534 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
535 	} else {
536 		struct nvmet_ns *old;
537 
538 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
539 			BUG_ON(ns->nsid == old->nsid);
540 			if (ns->nsid < old->nsid)
541 				break;
542 		}
543 
544 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
545 	}
546 	subsys->nr_namespaces++;
547 
548 	nvmet_ns_changed(subsys, ns->nsid);
549 	ns->enabled = true;
550 	ret = 0;
551 out_unlock:
552 	mutex_unlock(&subsys->lock);
553 	return ret;
554 out_dev_put:
555 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
556 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
557 out_dev_disable:
558 	nvmet_ns_dev_disable(ns);
559 	goto out_unlock;
560 }
561 
562 void nvmet_ns_disable(struct nvmet_ns *ns)
563 {
564 	struct nvmet_subsys *subsys = ns->subsys;
565 	struct nvmet_ctrl *ctrl;
566 
567 	mutex_lock(&subsys->lock);
568 	if (!ns->enabled)
569 		goto out_unlock;
570 
571 	ns->enabled = false;
572 	list_del_rcu(&ns->dev_link);
573 	if (ns->nsid == subsys->max_nsid)
574 		subsys->max_nsid = nvmet_max_nsid(subsys);
575 
576 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
577 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
578 
579 	mutex_unlock(&subsys->lock);
580 
581 	/*
582 	 * Now that we removed the namespaces from the lookup list, we
583 	 * can kill the per_cpu ref and wait for any remaining references
584 	 * to be dropped, as well as a RCU grace period for anyone only
585 	 * using the namepace under rcu_read_lock().  Note that we can't
586 	 * use call_rcu here as we need to ensure the namespaces have
587 	 * been fully destroyed before unloading the module.
588 	 */
589 	percpu_ref_kill(&ns->ref);
590 	synchronize_rcu();
591 	wait_for_completion(&ns->disable_done);
592 	percpu_ref_exit(&ns->ref);
593 
594 	mutex_lock(&subsys->lock);
595 
596 	subsys->nr_namespaces--;
597 	nvmet_ns_changed(subsys, ns->nsid);
598 	nvmet_ns_dev_disable(ns);
599 out_unlock:
600 	mutex_unlock(&subsys->lock);
601 }
602 
603 void nvmet_ns_free(struct nvmet_ns *ns)
604 {
605 	nvmet_ns_disable(ns);
606 
607 	down_write(&nvmet_ana_sem);
608 	nvmet_ana_group_enabled[ns->anagrpid]--;
609 	up_write(&nvmet_ana_sem);
610 
611 	kfree(ns->device_path);
612 	kfree(ns);
613 }
614 
615 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
616 {
617 	struct nvmet_ns *ns;
618 
619 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
620 	if (!ns)
621 		return NULL;
622 
623 	INIT_LIST_HEAD(&ns->dev_link);
624 	init_completion(&ns->disable_done);
625 
626 	ns->nsid = nsid;
627 	ns->subsys = subsys;
628 
629 	down_write(&nvmet_ana_sem);
630 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
631 	nvmet_ana_group_enabled[ns->anagrpid]++;
632 	up_write(&nvmet_ana_sem);
633 
634 	uuid_gen(&ns->uuid);
635 	ns->buffered_io = false;
636 
637 	return ns;
638 }
639 
640 static void nvmet_update_sq_head(struct nvmet_req *req)
641 {
642 	if (req->sq->size) {
643 		u32 old_sqhd, new_sqhd;
644 
645 		do {
646 			old_sqhd = req->sq->sqhd;
647 			new_sqhd = (old_sqhd + 1) % req->sq->size;
648 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
649 					old_sqhd);
650 	}
651 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
652 }
653 
654 static void nvmet_set_error(struct nvmet_req *req, u16 status)
655 {
656 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
657 	struct nvme_error_slot *new_error_slot;
658 	unsigned long flags;
659 
660 	req->cqe->status = cpu_to_le16(status << 1);
661 
662 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
663 		return;
664 
665 	spin_lock_irqsave(&ctrl->error_lock, flags);
666 	ctrl->err_counter++;
667 	new_error_slot =
668 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
669 
670 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
671 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
672 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
673 	new_error_slot->status_field = cpu_to_le16(status << 1);
674 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
675 	new_error_slot->lba = cpu_to_le64(req->error_slba);
676 	new_error_slot->nsid = req->cmd->common.nsid;
677 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
678 
679 	/* set the more bit for this request */
680 	req->cqe->status |= cpu_to_le16(1 << 14);
681 }
682 
683 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
684 {
685 	if (!req->sq->sqhd_disabled)
686 		nvmet_update_sq_head(req);
687 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
688 	req->cqe->command_id = req->cmd->common.command_id;
689 
690 	if (unlikely(status))
691 		nvmet_set_error(req, status);
692 	if (req->ns)
693 		nvmet_put_namespace(req->ns);
694 	req->ops->queue_response(req);
695 }
696 
697 void nvmet_req_complete(struct nvmet_req *req, u16 status)
698 {
699 	__nvmet_req_complete(req, status);
700 	percpu_ref_put(&req->sq->ref);
701 }
702 EXPORT_SYMBOL_GPL(nvmet_req_complete);
703 
704 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
705 		u16 qid, u16 size)
706 {
707 	cq->qid = qid;
708 	cq->size = size;
709 
710 	ctrl->cqs[qid] = cq;
711 }
712 
713 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
714 		u16 qid, u16 size)
715 {
716 	sq->sqhd = 0;
717 	sq->qid = qid;
718 	sq->size = size;
719 
720 	ctrl->sqs[qid] = sq;
721 }
722 
723 static void nvmet_confirm_sq(struct percpu_ref *ref)
724 {
725 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
726 
727 	complete(&sq->confirm_done);
728 }
729 
730 void nvmet_sq_destroy(struct nvmet_sq *sq)
731 {
732 	/*
733 	 * If this is the admin queue, complete all AERs so that our
734 	 * queue doesn't have outstanding requests on it.
735 	 */
736 	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
737 		nvmet_async_events_free(sq->ctrl);
738 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
739 	wait_for_completion(&sq->confirm_done);
740 	wait_for_completion(&sq->free_done);
741 	percpu_ref_exit(&sq->ref);
742 
743 	if (sq->ctrl) {
744 		nvmet_ctrl_put(sq->ctrl);
745 		sq->ctrl = NULL; /* allows reusing the queue later */
746 	}
747 }
748 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
749 
750 static void nvmet_sq_free(struct percpu_ref *ref)
751 {
752 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
753 
754 	complete(&sq->free_done);
755 }
756 
757 int nvmet_sq_init(struct nvmet_sq *sq)
758 {
759 	int ret;
760 
761 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
762 	if (ret) {
763 		pr_err("percpu_ref init failed!\n");
764 		return ret;
765 	}
766 	init_completion(&sq->free_done);
767 	init_completion(&sq->confirm_done);
768 
769 	return 0;
770 }
771 EXPORT_SYMBOL_GPL(nvmet_sq_init);
772 
773 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
774 		struct nvmet_ns *ns)
775 {
776 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
777 
778 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
779 		return NVME_SC_ANA_INACCESSIBLE;
780 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
781 		return NVME_SC_ANA_PERSISTENT_LOSS;
782 	if (unlikely(state == NVME_ANA_CHANGE))
783 		return NVME_SC_ANA_TRANSITION;
784 	return 0;
785 }
786 
787 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
788 {
789 	if (unlikely(req->ns->readonly)) {
790 		switch (req->cmd->common.opcode) {
791 		case nvme_cmd_read:
792 		case nvme_cmd_flush:
793 			break;
794 		default:
795 			return NVME_SC_NS_WRITE_PROTECTED;
796 		}
797 	}
798 
799 	return 0;
800 }
801 
802 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
803 {
804 	struct nvme_command *cmd = req->cmd;
805 	u16 ret;
806 
807 	ret = nvmet_check_ctrl_status(req, cmd);
808 	if (unlikely(ret))
809 		return ret;
810 
811 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
812 	if (unlikely(!req->ns)) {
813 		req->error_loc = offsetof(struct nvme_common_command, nsid);
814 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
815 	}
816 	ret = nvmet_check_ana_state(req->port, req->ns);
817 	if (unlikely(ret)) {
818 		req->error_loc = offsetof(struct nvme_common_command, nsid);
819 		return ret;
820 	}
821 	ret = nvmet_io_cmd_check_access(req);
822 	if (unlikely(ret)) {
823 		req->error_loc = offsetof(struct nvme_common_command, nsid);
824 		return ret;
825 	}
826 
827 	if (req->ns->file)
828 		return nvmet_file_parse_io_cmd(req);
829 	else
830 		return nvmet_bdev_parse_io_cmd(req);
831 }
832 
833 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
834 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
835 {
836 	u8 flags = req->cmd->common.flags;
837 	u16 status;
838 
839 	req->cq = cq;
840 	req->sq = sq;
841 	req->ops = ops;
842 	req->sg = NULL;
843 	req->sg_cnt = 0;
844 	req->transfer_len = 0;
845 	req->cqe->status = 0;
846 	req->cqe->sq_head = 0;
847 	req->ns = NULL;
848 	req->error_loc = NVMET_NO_ERROR_LOC;
849 	req->error_slba = 0;
850 
851 	/* no support for fused commands yet */
852 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
853 		req->error_loc = offsetof(struct nvme_common_command, flags);
854 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
855 		goto fail;
856 	}
857 
858 	/*
859 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
860 	 * contains an address of a single contiguous physical buffer that is
861 	 * byte aligned.
862 	 */
863 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
864 		req->error_loc = offsetof(struct nvme_common_command, flags);
865 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
866 		goto fail;
867 	}
868 
869 	if (unlikely(!req->sq->ctrl))
870 		/* will return an error for any Non-connect command: */
871 		status = nvmet_parse_connect_cmd(req);
872 	else if (likely(req->sq->qid != 0))
873 		status = nvmet_parse_io_cmd(req);
874 	else if (req->cmd->common.opcode == nvme_fabrics_command)
875 		status = nvmet_parse_fabrics_cmd(req);
876 	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
877 		status = nvmet_parse_discovery_cmd(req);
878 	else
879 		status = nvmet_parse_admin_cmd(req);
880 
881 	if (status)
882 		goto fail;
883 
884 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
885 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
886 		goto fail;
887 	}
888 
889 	if (sq->ctrl)
890 		sq->ctrl->cmd_seen = true;
891 
892 	return true;
893 
894 fail:
895 	__nvmet_req_complete(req, status);
896 	return false;
897 }
898 EXPORT_SYMBOL_GPL(nvmet_req_init);
899 
900 void nvmet_req_uninit(struct nvmet_req *req)
901 {
902 	percpu_ref_put(&req->sq->ref);
903 	if (req->ns)
904 		nvmet_put_namespace(req->ns);
905 }
906 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
907 
908 void nvmet_req_execute(struct nvmet_req *req)
909 {
910 	if (unlikely(req->data_len != req->transfer_len)) {
911 		req->error_loc = offsetof(struct nvme_common_command, dptr);
912 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
913 	} else
914 		req->execute(req);
915 }
916 EXPORT_SYMBOL_GPL(nvmet_req_execute);
917 
918 int nvmet_req_alloc_sgl(struct nvmet_req *req)
919 {
920 	struct pci_dev *p2p_dev = NULL;
921 
922 	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
923 		if (req->sq->ctrl && req->ns)
924 			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
925 						    req->ns->nsid);
926 
927 		req->p2p_dev = NULL;
928 		if (req->sq->qid && p2p_dev) {
929 			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
930 						       req->transfer_len);
931 			if (req->sg) {
932 				req->p2p_dev = p2p_dev;
933 				return 0;
934 			}
935 		}
936 
937 		/*
938 		 * If no P2P memory was available we fallback to using
939 		 * regular memory
940 		 */
941 	}
942 
943 	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
944 	if (!req->sg)
945 		return -ENOMEM;
946 
947 	return 0;
948 }
949 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
950 
951 void nvmet_req_free_sgl(struct nvmet_req *req)
952 {
953 	if (req->p2p_dev)
954 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
955 	else
956 		sgl_free(req->sg);
957 
958 	req->sg = NULL;
959 	req->sg_cnt = 0;
960 }
961 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
962 
963 static inline bool nvmet_cc_en(u32 cc)
964 {
965 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
966 }
967 
968 static inline u8 nvmet_cc_css(u32 cc)
969 {
970 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
971 }
972 
973 static inline u8 nvmet_cc_mps(u32 cc)
974 {
975 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
976 }
977 
978 static inline u8 nvmet_cc_ams(u32 cc)
979 {
980 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
981 }
982 
983 static inline u8 nvmet_cc_shn(u32 cc)
984 {
985 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
986 }
987 
988 static inline u8 nvmet_cc_iosqes(u32 cc)
989 {
990 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
991 }
992 
993 static inline u8 nvmet_cc_iocqes(u32 cc)
994 {
995 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
996 }
997 
998 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
999 {
1000 	lockdep_assert_held(&ctrl->lock);
1001 
1002 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1003 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1004 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1005 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1006 	    nvmet_cc_css(ctrl->cc) != 0) {
1007 		ctrl->csts = NVME_CSTS_CFS;
1008 		return;
1009 	}
1010 
1011 	ctrl->csts = NVME_CSTS_RDY;
1012 
1013 	/*
1014 	 * Controllers that are not yet enabled should not really enforce the
1015 	 * keep alive timeout, but we still want to track a timeout and cleanup
1016 	 * in case a host died before it enabled the controller.  Hence, simply
1017 	 * reset the keep alive timer when the controller is enabled.
1018 	 */
1019 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1020 }
1021 
1022 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1023 {
1024 	lockdep_assert_held(&ctrl->lock);
1025 
1026 	/* XXX: tear down queues? */
1027 	ctrl->csts &= ~NVME_CSTS_RDY;
1028 	ctrl->cc = 0;
1029 }
1030 
1031 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1032 {
1033 	u32 old;
1034 
1035 	mutex_lock(&ctrl->lock);
1036 	old = ctrl->cc;
1037 	ctrl->cc = new;
1038 
1039 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1040 		nvmet_start_ctrl(ctrl);
1041 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1042 		nvmet_clear_ctrl(ctrl);
1043 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1044 		nvmet_clear_ctrl(ctrl);
1045 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1046 	}
1047 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1048 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1049 	mutex_unlock(&ctrl->lock);
1050 }
1051 
1052 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1053 {
1054 	/* command sets supported: NVMe command set: */
1055 	ctrl->cap = (1ULL << 37);
1056 	/* CC.EN timeout in 500msec units: */
1057 	ctrl->cap |= (15ULL << 24);
1058 	/* maximum queue entries supported: */
1059 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1060 }
1061 
1062 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1063 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1064 {
1065 	struct nvmet_subsys *subsys;
1066 	struct nvmet_ctrl *ctrl;
1067 	u16 status = 0;
1068 
1069 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1070 	if (!subsys) {
1071 		pr_warn("connect request for invalid subsystem %s!\n",
1072 			subsysnqn);
1073 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1074 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1075 	}
1076 
1077 	mutex_lock(&subsys->lock);
1078 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1079 		if (ctrl->cntlid == cntlid) {
1080 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1081 				pr_warn("hostnqn mismatch.\n");
1082 				continue;
1083 			}
1084 			if (!kref_get_unless_zero(&ctrl->ref))
1085 				continue;
1086 
1087 			*ret = ctrl;
1088 			goto out;
1089 		}
1090 	}
1091 
1092 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1093 		cntlid, subsysnqn, hostnqn);
1094 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1095 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1096 
1097 out:
1098 	mutex_unlock(&subsys->lock);
1099 	nvmet_subsys_put(subsys);
1100 	return status;
1101 }
1102 
1103 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1104 {
1105 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1106 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1107 		       cmd->common.opcode, req->sq->qid);
1108 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1109 	}
1110 
1111 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1112 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1113 		       cmd->common.opcode, req->sq->qid);
1114 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1115 	}
1116 	return 0;
1117 }
1118 
1119 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1120 {
1121 	struct nvmet_host_link *p;
1122 
1123 	lockdep_assert_held(&nvmet_config_sem);
1124 
1125 	if (subsys->allow_any_host)
1126 		return true;
1127 
1128 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1129 		return true;
1130 
1131 	list_for_each_entry(p, &subsys->hosts, entry) {
1132 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1133 			return true;
1134 	}
1135 
1136 	return false;
1137 }
1138 
1139 /*
1140  * Note: ctrl->subsys->lock should be held when calling this function
1141  */
1142 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1143 		struct nvmet_req *req)
1144 {
1145 	struct nvmet_ns *ns;
1146 
1147 	if (!req->p2p_client)
1148 		return;
1149 
1150 	ctrl->p2p_client = get_device(req->p2p_client);
1151 
1152 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1153 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1154 }
1155 
1156 /*
1157  * Note: ctrl->subsys->lock should be held when calling this function
1158  */
1159 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1160 {
1161 	struct radix_tree_iter iter;
1162 	void __rcu **slot;
1163 
1164 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1165 		pci_dev_put(radix_tree_deref_slot(slot));
1166 
1167 	put_device(ctrl->p2p_client);
1168 }
1169 
1170 static void nvmet_fatal_error_handler(struct work_struct *work)
1171 {
1172 	struct nvmet_ctrl *ctrl =
1173 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1174 
1175 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1176 	ctrl->ops->delete_ctrl(ctrl);
1177 }
1178 
1179 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1180 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1181 {
1182 	struct nvmet_subsys *subsys;
1183 	struct nvmet_ctrl *ctrl;
1184 	int ret;
1185 	u16 status;
1186 
1187 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1188 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1189 	if (!subsys) {
1190 		pr_warn("connect request for invalid subsystem %s!\n",
1191 			subsysnqn);
1192 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1193 		goto out;
1194 	}
1195 
1196 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1197 	down_read(&nvmet_config_sem);
1198 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1199 		pr_info("connect by host %s for subsystem %s not allowed\n",
1200 			hostnqn, subsysnqn);
1201 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1202 		up_read(&nvmet_config_sem);
1203 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1204 		goto out_put_subsystem;
1205 	}
1206 	up_read(&nvmet_config_sem);
1207 
1208 	status = NVME_SC_INTERNAL;
1209 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1210 	if (!ctrl)
1211 		goto out_put_subsystem;
1212 	mutex_init(&ctrl->lock);
1213 
1214 	nvmet_init_cap(ctrl);
1215 
1216 	ctrl->port = req->port;
1217 
1218 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1219 	INIT_LIST_HEAD(&ctrl->async_events);
1220 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1221 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1222 
1223 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1224 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1225 
1226 	kref_init(&ctrl->ref);
1227 	ctrl->subsys = subsys;
1228 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1229 
1230 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1231 			sizeof(__le32), GFP_KERNEL);
1232 	if (!ctrl->changed_ns_list)
1233 		goto out_free_ctrl;
1234 
1235 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1236 			sizeof(struct nvmet_cq *),
1237 			GFP_KERNEL);
1238 	if (!ctrl->cqs)
1239 		goto out_free_changed_ns_list;
1240 
1241 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1242 			sizeof(struct nvmet_sq *),
1243 			GFP_KERNEL);
1244 	if (!ctrl->sqs)
1245 		goto out_free_cqs;
1246 
1247 	ret = ida_simple_get(&cntlid_ida,
1248 			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1249 			     GFP_KERNEL);
1250 	if (ret < 0) {
1251 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1252 		goto out_free_sqs;
1253 	}
1254 	ctrl->cntlid = ret;
1255 
1256 	ctrl->ops = req->ops;
1257 
1258 	/*
1259 	 * Discovery controllers may use some arbitrary high value
1260 	 * in order to cleanup stale discovery sessions
1261 	 */
1262 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1263 		kato = NVMET_DISC_KATO_MS;
1264 
1265 	/* keep-alive timeout in seconds */
1266 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1267 
1268 	ctrl->err_counter = 0;
1269 	spin_lock_init(&ctrl->error_lock);
1270 
1271 	nvmet_start_keep_alive_timer(ctrl);
1272 
1273 	mutex_lock(&subsys->lock);
1274 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1275 	nvmet_setup_p2p_ns_map(ctrl, req);
1276 	mutex_unlock(&subsys->lock);
1277 
1278 	*ctrlp = ctrl;
1279 	return 0;
1280 
1281 out_free_sqs:
1282 	kfree(ctrl->sqs);
1283 out_free_cqs:
1284 	kfree(ctrl->cqs);
1285 out_free_changed_ns_list:
1286 	kfree(ctrl->changed_ns_list);
1287 out_free_ctrl:
1288 	kfree(ctrl);
1289 out_put_subsystem:
1290 	nvmet_subsys_put(subsys);
1291 out:
1292 	return status;
1293 }
1294 
1295 static void nvmet_ctrl_free(struct kref *ref)
1296 {
1297 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1298 	struct nvmet_subsys *subsys = ctrl->subsys;
1299 
1300 	mutex_lock(&subsys->lock);
1301 	nvmet_release_p2p_ns_map(ctrl);
1302 	list_del(&ctrl->subsys_entry);
1303 	mutex_unlock(&subsys->lock);
1304 
1305 	nvmet_stop_keep_alive_timer(ctrl);
1306 
1307 	flush_work(&ctrl->async_event_work);
1308 	cancel_work_sync(&ctrl->fatal_err_work);
1309 
1310 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1311 
1312 	kfree(ctrl->sqs);
1313 	kfree(ctrl->cqs);
1314 	kfree(ctrl->changed_ns_list);
1315 	kfree(ctrl);
1316 
1317 	nvmet_subsys_put(subsys);
1318 }
1319 
1320 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1321 {
1322 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1323 }
1324 
1325 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1326 {
1327 	mutex_lock(&ctrl->lock);
1328 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1329 		ctrl->csts |= NVME_CSTS_CFS;
1330 		schedule_work(&ctrl->fatal_err_work);
1331 	}
1332 	mutex_unlock(&ctrl->lock);
1333 }
1334 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1335 
1336 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1337 		const char *subsysnqn)
1338 {
1339 	struct nvmet_subsys_link *p;
1340 
1341 	if (!port)
1342 		return NULL;
1343 
1344 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1345 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1346 			return NULL;
1347 		return nvmet_disc_subsys;
1348 	}
1349 
1350 	down_read(&nvmet_config_sem);
1351 	list_for_each_entry(p, &port->subsystems, entry) {
1352 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1353 				NVMF_NQN_SIZE)) {
1354 			if (!kref_get_unless_zero(&p->subsys->ref))
1355 				break;
1356 			up_read(&nvmet_config_sem);
1357 			return p->subsys;
1358 		}
1359 	}
1360 	up_read(&nvmet_config_sem);
1361 	return NULL;
1362 }
1363 
1364 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1365 		enum nvme_subsys_type type)
1366 {
1367 	struct nvmet_subsys *subsys;
1368 
1369 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1370 	if (!subsys)
1371 		return ERR_PTR(-ENOMEM);
1372 
1373 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1374 	/* generate a random serial number as our controllers are ephemeral: */
1375 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1376 
1377 	switch (type) {
1378 	case NVME_NQN_NVME:
1379 		subsys->max_qid = NVMET_NR_QUEUES;
1380 		break;
1381 	case NVME_NQN_DISC:
1382 		subsys->max_qid = 0;
1383 		break;
1384 	default:
1385 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1386 		kfree(subsys);
1387 		return ERR_PTR(-EINVAL);
1388 	}
1389 	subsys->type = type;
1390 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1391 			GFP_KERNEL);
1392 	if (!subsys->subsysnqn) {
1393 		kfree(subsys);
1394 		return ERR_PTR(-ENOMEM);
1395 	}
1396 
1397 	kref_init(&subsys->ref);
1398 
1399 	mutex_init(&subsys->lock);
1400 	INIT_LIST_HEAD(&subsys->namespaces);
1401 	INIT_LIST_HEAD(&subsys->ctrls);
1402 	INIT_LIST_HEAD(&subsys->hosts);
1403 
1404 	return subsys;
1405 }
1406 
1407 static void nvmet_subsys_free(struct kref *ref)
1408 {
1409 	struct nvmet_subsys *subsys =
1410 		container_of(ref, struct nvmet_subsys, ref);
1411 
1412 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1413 
1414 	kfree(subsys->subsysnqn);
1415 	kfree(subsys);
1416 }
1417 
1418 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1419 {
1420 	struct nvmet_ctrl *ctrl;
1421 
1422 	mutex_lock(&subsys->lock);
1423 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1424 		ctrl->ops->delete_ctrl(ctrl);
1425 	mutex_unlock(&subsys->lock);
1426 }
1427 
1428 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1429 {
1430 	kref_put(&subsys->ref, nvmet_subsys_free);
1431 }
1432 
1433 static int __init nvmet_init(void)
1434 {
1435 	int error;
1436 
1437 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1438 
1439 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1440 			WQ_MEM_RECLAIM, 0);
1441 	if (!buffered_io_wq) {
1442 		error = -ENOMEM;
1443 		goto out;
1444 	}
1445 
1446 	error = nvmet_init_discovery();
1447 	if (error)
1448 		goto out_free_work_queue;
1449 
1450 	error = nvmet_init_configfs();
1451 	if (error)
1452 		goto out_exit_discovery;
1453 	return 0;
1454 
1455 out_exit_discovery:
1456 	nvmet_exit_discovery();
1457 out_free_work_queue:
1458 	destroy_workqueue(buffered_io_wq);
1459 out:
1460 	return error;
1461 }
1462 
1463 static void __exit nvmet_exit(void)
1464 {
1465 	nvmet_exit_configfs();
1466 	nvmet_exit_discovery();
1467 	ida_destroy(&cntlid_ida);
1468 	destroy_workqueue(buffered_io_wq);
1469 
1470 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1471 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1472 }
1473 
1474 module_init(nvmet_init);
1475 module_exit(nvmet_exit);
1476 
1477 MODULE_LICENSE("GPL v2");
1478