1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 struct workqueue_struct *zbd_wq; 20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 21 static DEFINE_IDA(cntlid_ida); 22 23 /* 24 * This read/write semaphore is used to synchronize access to configuration 25 * information on a target system that will result in discovery log page 26 * information change for at least one host. 27 * The full list of resources to protected by this semaphore is: 28 * 29 * - subsystems list 30 * - per-subsystem allowed hosts list 31 * - allow_any_host subsystem attribute 32 * - nvmet_genctr 33 * - the nvmet_transports array 34 * 35 * When updating any of those lists/structures write lock should be obtained, 36 * while when reading (popolating discovery log page or checking host-subsystem 37 * link) read lock is obtained to allow concurrent reads. 38 */ 39 DECLARE_RWSEM(nvmet_config_sem); 40 41 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 42 u64 nvmet_ana_chgcnt; 43 DECLARE_RWSEM(nvmet_ana_sem); 44 45 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 46 { 47 switch (errno) { 48 case 0: 49 return NVME_SC_SUCCESS; 50 case -ENOSPC: 51 req->error_loc = offsetof(struct nvme_rw_command, length); 52 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 53 case -EREMOTEIO: 54 req->error_loc = offsetof(struct nvme_rw_command, slba); 55 return NVME_SC_LBA_RANGE | NVME_SC_DNR; 56 case -EOPNOTSUPP: 57 req->error_loc = offsetof(struct nvme_common_command, opcode); 58 switch (req->cmd->common.opcode) { 59 case nvme_cmd_dsm: 60 case nvme_cmd_write_zeroes: 61 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 62 default: 63 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 64 } 65 break; 66 case -ENODATA: 67 req->error_loc = offsetof(struct nvme_rw_command, nsid); 68 return NVME_SC_ACCESS_DENIED; 69 case -EIO: 70 fallthrough; 71 default: 72 req->error_loc = offsetof(struct nvme_common_command, opcode); 73 return NVME_SC_INTERNAL | NVME_SC_DNR; 74 } 75 } 76 77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 78 { 79 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 80 req->sq->qid); 81 82 req->error_loc = offsetof(struct nvme_common_command, opcode); 83 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 84 } 85 86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 87 const char *subsysnqn); 88 89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 90 size_t len) 91 { 92 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 93 req->error_loc = offsetof(struct nvme_common_command, dptr); 94 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 95 } 96 return 0; 97 } 98 99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 100 { 101 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 102 req->error_loc = offsetof(struct nvme_common_command, dptr); 103 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 104 } 105 return 0; 106 } 107 108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 109 { 110 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 111 req->error_loc = offsetof(struct nvme_common_command, dptr); 112 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 113 } 114 return 0; 115 } 116 117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 118 { 119 struct nvmet_ns *cur; 120 unsigned long idx; 121 u32 nsid = 0; 122 123 xa_for_each(&subsys->namespaces, idx, cur) 124 nsid = cur->nsid; 125 126 return nsid; 127 } 128 129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 130 { 131 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 132 } 133 134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 135 { 136 struct nvmet_req *req; 137 138 mutex_lock(&ctrl->lock); 139 while (ctrl->nr_async_event_cmds) { 140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 141 mutex_unlock(&ctrl->lock); 142 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); 143 mutex_lock(&ctrl->lock); 144 } 145 mutex_unlock(&ctrl->lock); 146 } 147 148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 149 { 150 struct nvmet_async_event *aen; 151 struct nvmet_req *req; 152 153 mutex_lock(&ctrl->lock); 154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 155 aen = list_first_entry(&ctrl->async_events, 156 struct nvmet_async_event, entry); 157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 158 nvmet_set_result(req, nvmet_async_event_result(aen)); 159 160 list_del(&aen->entry); 161 kfree(aen); 162 163 mutex_unlock(&ctrl->lock); 164 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 165 nvmet_req_complete(req, 0); 166 mutex_lock(&ctrl->lock); 167 } 168 mutex_unlock(&ctrl->lock); 169 } 170 171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 172 { 173 struct nvmet_async_event *aen, *tmp; 174 175 mutex_lock(&ctrl->lock); 176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 177 list_del(&aen->entry); 178 kfree(aen); 179 } 180 mutex_unlock(&ctrl->lock); 181 } 182 183 static void nvmet_async_event_work(struct work_struct *work) 184 { 185 struct nvmet_ctrl *ctrl = 186 container_of(work, struct nvmet_ctrl, async_event_work); 187 188 nvmet_async_events_process(ctrl); 189 } 190 191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 192 u8 event_info, u8 log_page) 193 { 194 struct nvmet_async_event *aen; 195 196 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 197 if (!aen) 198 return; 199 200 aen->event_type = event_type; 201 aen->event_info = event_info; 202 aen->log_page = log_page; 203 204 mutex_lock(&ctrl->lock); 205 list_add_tail(&aen->entry, &ctrl->async_events); 206 mutex_unlock(&ctrl->lock); 207 208 schedule_work(&ctrl->async_event_work); 209 } 210 211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 212 { 213 u32 i; 214 215 mutex_lock(&ctrl->lock); 216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 217 goto out_unlock; 218 219 for (i = 0; i < ctrl->nr_changed_ns; i++) { 220 if (ctrl->changed_ns_list[i] == nsid) 221 goto out_unlock; 222 } 223 224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 226 ctrl->nr_changed_ns = U32_MAX; 227 goto out_unlock; 228 } 229 230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 231 out_unlock: 232 mutex_unlock(&ctrl->lock); 233 } 234 235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 236 { 237 struct nvmet_ctrl *ctrl; 238 239 lockdep_assert_held(&subsys->lock); 240 241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 244 continue; 245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 246 NVME_AER_NOTICE_NS_CHANGED, 247 NVME_LOG_CHANGED_NS); 248 } 249 } 250 251 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 252 struct nvmet_port *port) 253 { 254 struct nvmet_ctrl *ctrl; 255 256 mutex_lock(&subsys->lock); 257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 258 if (port && ctrl->port != port) 259 continue; 260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 261 continue; 262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 264 } 265 mutex_unlock(&subsys->lock); 266 } 267 268 void nvmet_port_send_ana_event(struct nvmet_port *port) 269 { 270 struct nvmet_subsys_link *p; 271 272 down_read(&nvmet_config_sem); 273 list_for_each_entry(p, &port->subsystems, entry) 274 nvmet_send_ana_event(p->subsys, port); 275 up_read(&nvmet_config_sem); 276 } 277 278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 279 { 280 int ret = 0; 281 282 down_write(&nvmet_config_sem); 283 if (nvmet_transports[ops->type]) 284 ret = -EINVAL; 285 else 286 nvmet_transports[ops->type] = ops; 287 up_write(&nvmet_config_sem); 288 289 return ret; 290 } 291 EXPORT_SYMBOL_GPL(nvmet_register_transport); 292 293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 294 { 295 down_write(&nvmet_config_sem); 296 nvmet_transports[ops->type] = NULL; 297 up_write(&nvmet_config_sem); 298 } 299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 300 301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 302 { 303 struct nvmet_ctrl *ctrl; 304 305 mutex_lock(&subsys->lock); 306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 307 if (ctrl->port == port) 308 ctrl->ops->delete_ctrl(ctrl); 309 } 310 mutex_unlock(&subsys->lock); 311 } 312 313 int nvmet_enable_port(struct nvmet_port *port) 314 { 315 const struct nvmet_fabrics_ops *ops; 316 int ret; 317 318 lockdep_assert_held(&nvmet_config_sem); 319 320 ops = nvmet_transports[port->disc_addr.trtype]; 321 if (!ops) { 322 up_write(&nvmet_config_sem); 323 request_module("nvmet-transport-%d", port->disc_addr.trtype); 324 down_write(&nvmet_config_sem); 325 ops = nvmet_transports[port->disc_addr.trtype]; 326 if (!ops) { 327 pr_err("transport type %d not supported\n", 328 port->disc_addr.trtype); 329 return -EINVAL; 330 } 331 } 332 333 if (!try_module_get(ops->owner)) 334 return -EINVAL; 335 336 /* 337 * If the user requested PI support and the transport isn't pi capable, 338 * don't enable the port. 339 */ 340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 341 pr_err("T10-PI is not supported by transport type %d\n", 342 port->disc_addr.trtype); 343 ret = -EINVAL; 344 goto out_put; 345 } 346 347 ret = ops->add_port(port); 348 if (ret) 349 goto out_put; 350 351 /* If the transport didn't set inline_data_size, then disable it. */ 352 if (port->inline_data_size < 0) 353 port->inline_data_size = 0; 354 355 port->enabled = true; 356 port->tr_ops = ops; 357 return 0; 358 359 out_put: 360 module_put(ops->owner); 361 return ret; 362 } 363 364 void nvmet_disable_port(struct nvmet_port *port) 365 { 366 const struct nvmet_fabrics_ops *ops; 367 368 lockdep_assert_held(&nvmet_config_sem); 369 370 port->enabled = false; 371 port->tr_ops = NULL; 372 373 ops = nvmet_transports[port->disc_addr.trtype]; 374 ops->remove_port(port); 375 module_put(ops->owner); 376 } 377 378 static void nvmet_keep_alive_timer(struct work_struct *work) 379 { 380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 381 struct nvmet_ctrl, ka_work); 382 bool reset_tbkas = ctrl->reset_tbkas; 383 384 ctrl->reset_tbkas = false; 385 if (reset_tbkas) { 386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 387 ctrl->cntlid); 388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 389 return; 390 } 391 392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 393 ctrl->cntlid, ctrl->kato); 394 395 nvmet_ctrl_fatal_error(ctrl); 396 } 397 398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 399 { 400 if (unlikely(ctrl->kato == 0)) 401 return; 402 403 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 404 ctrl->cntlid, ctrl->kato); 405 406 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 407 } 408 409 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 410 { 411 if (unlikely(ctrl->kato == 0)) 412 return; 413 414 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 415 416 cancel_delayed_work_sync(&ctrl->ka_work); 417 } 418 419 u16 nvmet_req_find_ns(struct nvmet_req *req) 420 { 421 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 422 423 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid); 424 if (unlikely(!req->ns)) { 425 req->error_loc = offsetof(struct nvme_common_command, nsid); 426 return NVME_SC_INVALID_NS | NVME_SC_DNR; 427 } 428 429 percpu_ref_get(&req->ns->ref); 430 return NVME_SC_SUCCESS; 431 } 432 433 static void nvmet_destroy_namespace(struct percpu_ref *ref) 434 { 435 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 436 437 complete(&ns->disable_done); 438 } 439 440 void nvmet_put_namespace(struct nvmet_ns *ns) 441 { 442 percpu_ref_put(&ns->ref); 443 } 444 445 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 446 { 447 nvmet_bdev_ns_disable(ns); 448 nvmet_file_ns_disable(ns); 449 } 450 451 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 452 { 453 int ret; 454 struct pci_dev *p2p_dev; 455 456 if (!ns->use_p2pmem) 457 return 0; 458 459 if (!ns->bdev) { 460 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 461 return -EINVAL; 462 } 463 464 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 465 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 466 ns->device_path); 467 return -EINVAL; 468 } 469 470 if (ns->p2p_dev) { 471 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 472 if (ret < 0) 473 return -EINVAL; 474 } else { 475 /* 476 * Right now we just check that there is p2pmem available so 477 * we can report an error to the user right away if there 478 * is not. We'll find the actual device to use once we 479 * setup the controller when the port's device is available. 480 */ 481 482 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 483 if (!p2p_dev) { 484 pr_err("no peer-to-peer memory is available for %s\n", 485 ns->device_path); 486 return -EINVAL; 487 } 488 489 pci_dev_put(p2p_dev); 490 } 491 492 return 0; 493 } 494 495 /* 496 * Note: ctrl->subsys->lock should be held when calling this function 497 */ 498 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 499 struct nvmet_ns *ns) 500 { 501 struct device *clients[2]; 502 struct pci_dev *p2p_dev; 503 int ret; 504 505 if (!ctrl->p2p_client || !ns->use_p2pmem) 506 return; 507 508 if (ns->p2p_dev) { 509 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 510 if (ret < 0) 511 return; 512 513 p2p_dev = pci_dev_get(ns->p2p_dev); 514 } else { 515 clients[0] = ctrl->p2p_client; 516 clients[1] = nvmet_ns_dev(ns); 517 518 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 519 if (!p2p_dev) { 520 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 521 dev_name(ctrl->p2p_client), ns->device_path); 522 return; 523 } 524 } 525 526 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 527 if (ret < 0) 528 pci_dev_put(p2p_dev); 529 530 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 531 ns->nsid); 532 } 533 534 bool nvmet_ns_revalidate(struct nvmet_ns *ns) 535 { 536 loff_t oldsize = ns->size; 537 538 if (ns->bdev) 539 nvmet_bdev_ns_revalidate(ns); 540 else 541 nvmet_file_ns_revalidate(ns); 542 543 return oldsize != ns->size; 544 } 545 546 int nvmet_ns_enable(struct nvmet_ns *ns) 547 { 548 struct nvmet_subsys *subsys = ns->subsys; 549 struct nvmet_ctrl *ctrl; 550 int ret; 551 552 mutex_lock(&subsys->lock); 553 ret = 0; 554 555 if (nvmet_is_passthru_subsys(subsys)) { 556 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 557 goto out_unlock; 558 } 559 560 if (ns->enabled) 561 goto out_unlock; 562 563 ret = -EMFILE; 564 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 565 goto out_unlock; 566 567 ret = nvmet_bdev_ns_enable(ns); 568 if (ret == -ENOTBLK) 569 ret = nvmet_file_ns_enable(ns); 570 if (ret) 571 goto out_unlock; 572 573 ret = nvmet_p2pmem_ns_enable(ns); 574 if (ret) 575 goto out_dev_disable; 576 577 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 578 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 579 580 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 581 0, GFP_KERNEL); 582 if (ret) 583 goto out_dev_put; 584 585 if (ns->nsid > subsys->max_nsid) 586 subsys->max_nsid = ns->nsid; 587 588 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 589 if (ret) 590 goto out_restore_subsys_maxnsid; 591 592 subsys->nr_namespaces++; 593 594 nvmet_ns_changed(subsys, ns->nsid); 595 ns->enabled = true; 596 ret = 0; 597 out_unlock: 598 mutex_unlock(&subsys->lock); 599 return ret; 600 601 out_restore_subsys_maxnsid: 602 subsys->max_nsid = nvmet_max_nsid(subsys); 603 percpu_ref_exit(&ns->ref); 604 out_dev_put: 605 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 606 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 607 out_dev_disable: 608 nvmet_ns_dev_disable(ns); 609 goto out_unlock; 610 } 611 612 void nvmet_ns_disable(struct nvmet_ns *ns) 613 { 614 struct nvmet_subsys *subsys = ns->subsys; 615 struct nvmet_ctrl *ctrl; 616 617 mutex_lock(&subsys->lock); 618 if (!ns->enabled) 619 goto out_unlock; 620 621 ns->enabled = false; 622 xa_erase(&ns->subsys->namespaces, ns->nsid); 623 if (ns->nsid == subsys->max_nsid) 624 subsys->max_nsid = nvmet_max_nsid(subsys); 625 626 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 627 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 628 629 mutex_unlock(&subsys->lock); 630 631 /* 632 * Now that we removed the namespaces from the lookup list, we 633 * can kill the per_cpu ref and wait for any remaining references 634 * to be dropped, as well as a RCU grace period for anyone only 635 * using the namepace under rcu_read_lock(). Note that we can't 636 * use call_rcu here as we need to ensure the namespaces have 637 * been fully destroyed before unloading the module. 638 */ 639 percpu_ref_kill(&ns->ref); 640 synchronize_rcu(); 641 wait_for_completion(&ns->disable_done); 642 percpu_ref_exit(&ns->ref); 643 644 mutex_lock(&subsys->lock); 645 646 subsys->nr_namespaces--; 647 nvmet_ns_changed(subsys, ns->nsid); 648 nvmet_ns_dev_disable(ns); 649 out_unlock: 650 mutex_unlock(&subsys->lock); 651 } 652 653 void nvmet_ns_free(struct nvmet_ns *ns) 654 { 655 nvmet_ns_disable(ns); 656 657 down_write(&nvmet_ana_sem); 658 nvmet_ana_group_enabled[ns->anagrpid]--; 659 up_write(&nvmet_ana_sem); 660 661 kfree(ns->device_path); 662 kfree(ns); 663 } 664 665 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 666 { 667 struct nvmet_ns *ns; 668 669 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 670 if (!ns) 671 return NULL; 672 673 init_completion(&ns->disable_done); 674 675 ns->nsid = nsid; 676 ns->subsys = subsys; 677 678 down_write(&nvmet_ana_sem); 679 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 680 nvmet_ana_group_enabled[ns->anagrpid]++; 681 up_write(&nvmet_ana_sem); 682 683 uuid_gen(&ns->uuid); 684 ns->buffered_io = false; 685 ns->csi = NVME_CSI_NVM; 686 687 return ns; 688 } 689 690 static void nvmet_update_sq_head(struct nvmet_req *req) 691 { 692 if (req->sq->size) { 693 u32 old_sqhd, new_sqhd; 694 695 do { 696 old_sqhd = req->sq->sqhd; 697 new_sqhd = (old_sqhd + 1) % req->sq->size; 698 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 699 old_sqhd); 700 } 701 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 702 } 703 704 static void nvmet_set_error(struct nvmet_req *req, u16 status) 705 { 706 struct nvmet_ctrl *ctrl = req->sq->ctrl; 707 struct nvme_error_slot *new_error_slot; 708 unsigned long flags; 709 710 req->cqe->status = cpu_to_le16(status << 1); 711 712 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 713 return; 714 715 spin_lock_irqsave(&ctrl->error_lock, flags); 716 ctrl->err_counter++; 717 new_error_slot = 718 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 719 720 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 721 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 722 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 723 new_error_slot->status_field = cpu_to_le16(status << 1); 724 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 725 new_error_slot->lba = cpu_to_le64(req->error_slba); 726 new_error_slot->nsid = req->cmd->common.nsid; 727 spin_unlock_irqrestore(&ctrl->error_lock, flags); 728 729 /* set the more bit for this request */ 730 req->cqe->status |= cpu_to_le16(1 << 14); 731 } 732 733 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 734 { 735 if (!req->sq->sqhd_disabled) 736 nvmet_update_sq_head(req); 737 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 738 req->cqe->command_id = req->cmd->common.command_id; 739 740 if (unlikely(status)) 741 nvmet_set_error(req, status); 742 743 trace_nvmet_req_complete(req); 744 745 if (req->ns) 746 nvmet_put_namespace(req->ns); 747 req->ops->queue_response(req); 748 } 749 750 void nvmet_req_complete(struct nvmet_req *req, u16 status) 751 { 752 __nvmet_req_complete(req, status); 753 percpu_ref_put(&req->sq->ref); 754 } 755 EXPORT_SYMBOL_GPL(nvmet_req_complete); 756 757 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 758 u16 qid, u16 size) 759 { 760 cq->qid = qid; 761 cq->size = size; 762 } 763 764 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 765 u16 qid, u16 size) 766 { 767 sq->sqhd = 0; 768 sq->qid = qid; 769 sq->size = size; 770 771 ctrl->sqs[qid] = sq; 772 } 773 774 static void nvmet_confirm_sq(struct percpu_ref *ref) 775 { 776 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 777 778 complete(&sq->confirm_done); 779 } 780 781 void nvmet_sq_destroy(struct nvmet_sq *sq) 782 { 783 struct nvmet_ctrl *ctrl = sq->ctrl; 784 785 /* 786 * If this is the admin queue, complete all AERs so that our 787 * queue doesn't have outstanding requests on it. 788 */ 789 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 790 nvmet_async_events_failall(ctrl); 791 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 792 wait_for_completion(&sq->confirm_done); 793 wait_for_completion(&sq->free_done); 794 percpu_ref_exit(&sq->ref); 795 796 if (ctrl) { 797 /* 798 * The teardown flow may take some time, and the host may not 799 * send us keep-alive during this period, hence reset the 800 * traffic based keep-alive timer so we don't trigger a 801 * controller teardown as a result of a keep-alive expiration. 802 */ 803 ctrl->reset_tbkas = true; 804 sq->ctrl->sqs[sq->qid] = NULL; 805 nvmet_ctrl_put(ctrl); 806 sq->ctrl = NULL; /* allows reusing the queue later */ 807 } 808 } 809 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 810 811 static void nvmet_sq_free(struct percpu_ref *ref) 812 { 813 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 814 815 complete(&sq->free_done); 816 } 817 818 int nvmet_sq_init(struct nvmet_sq *sq) 819 { 820 int ret; 821 822 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 823 if (ret) { 824 pr_err("percpu_ref init failed!\n"); 825 return ret; 826 } 827 init_completion(&sq->free_done); 828 init_completion(&sq->confirm_done); 829 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(nvmet_sq_init); 833 834 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 835 struct nvmet_ns *ns) 836 { 837 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 838 839 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 840 return NVME_SC_ANA_INACCESSIBLE; 841 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 842 return NVME_SC_ANA_PERSISTENT_LOSS; 843 if (unlikely(state == NVME_ANA_CHANGE)) 844 return NVME_SC_ANA_TRANSITION; 845 return 0; 846 } 847 848 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 849 { 850 if (unlikely(req->ns->readonly)) { 851 switch (req->cmd->common.opcode) { 852 case nvme_cmd_read: 853 case nvme_cmd_flush: 854 break; 855 default: 856 return NVME_SC_NS_WRITE_PROTECTED; 857 } 858 } 859 860 return 0; 861 } 862 863 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 864 { 865 u16 ret; 866 867 ret = nvmet_check_ctrl_status(req); 868 if (unlikely(ret)) 869 return ret; 870 871 if (nvmet_is_passthru_req(req)) 872 return nvmet_parse_passthru_io_cmd(req); 873 874 ret = nvmet_req_find_ns(req); 875 if (unlikely(ret)) 876 return ret; 877 878 ret = nvmet_check_ana_state(req->port, req->ns); 879 if (unlikely(ret)) { 880 req->error_loc = offsetof(struct nvme_common_command, nsid); 881 return ret; 882 } 883 ret = nvmet_io_cmd_check_access(req); 884 if (unlikely(ret)) { 885 req->error_loc = offsetof(struct nvme_common_command, nsid); 886 return ret; 887 } 888 889 switch (req->ns->csi) { 890 case NVME_CSI_NVM: 891 if (req->ns->file) 892 return nvmet_file_parse_io_cmd(req); 893 return nvmet_bdev_parse_io_cmd(req); 894 case NVME_CSI_ZNS: 895 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 896 return nvmet_bdev_zns_parse_io_cmd(req); 897 return NVME_SC_INVALID_IO_CMD_SET; 898 default: 899 return NVME_SC_INVALID_IO_CMD_SET; 900 } 901 } 902 903 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 904 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 905 { 906 u8 flags = req->cmd->common.flags; 907 u16 status; 908 909 req->cq = cq; 910 req->sq = sq; 911 req->ops = ops; 912 req->sg = NULL; 913 req->metadata_sg = NULL; 914 req->sg_cnt = 0; 915 req->metadata_sg_cnt = 0; 916 req->transfer_len = 0; 917 req->metadata_len = 0; 918 req->cqe->status = 0; 919 req->cqe->sq_head = 0; 920 req->ns = NULL; 921 req->error_loc = NVMET_NO_ERROR_LOC; 922 req->error_slba = 0; 923 924 /* no support for fused commands yet */ 925 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 926 req->error_loc = offsetof(struct nvme_common_command, flags); 927 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 928 goto fail; 929 } 930 931 /* 932 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 933 * contains an address of a single contiguous physical buffer that is 934 * byte aligned. 935 */ 936 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 937 req->error_loc = offsetof(struct nvme_common_command, flags); 938 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 939 goto fail; 940 } 941 942 if (unlikely(!req->sq->ctrl)) 943 /* will return an error for any non-connect command: */ 944 status = nvmet_parse_connect_cmd(req); 945 else if (likely(req->sq->qid != 0)) 946 status = nvmet_parse_io_cmd(req); 947 else 948 status = nvmet_parse_admin_cmd(req); 949 950 if (status) 951 goto fail; 952 953 trace_nvmet_req_init(req, req->cmd); 954 955 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 956 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 957 goto fail; 958 } 959 960 if (sq->ctrl) 961 sq->ctrl->reset_tbkas = true; 962 963 return true; 964 965 fail: 966 __nvmet_req_complete(req, status); 967 return false; 968 } 969 EXPORT_SYMBOL_GPL(nvmet_req_init); 970 971 void nvmet_req_uninit(struct nvmet_req *req) 972 { 973 percpu_ref_put(&req->sq->ref); 974 if (req->ns) 975 nvmet_put_namespace(req->ns); 976 } 977 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 978 979 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 980 { 981 if (unlikely(len != req->transfer_len)) { 982 req->error_loc = offsetof(struct nvme_common_command, dptr); 983 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 984 return false; 985 } 986 987 return true; 988 } 989 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 990 991 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 992 { 993 if (unlikely(data_len > req->transfer_len)) { 994 req->error_loc = offsetof(struct nvme_common_command, dptr); 995 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 996 return false; 997 } 998 999 return true; 1000 } 1001 1002 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1003 { 1004 return req->transfer_len - req->metadata_len; 1005 } 1006 1007 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1008 struct nvmet_req *req) 1009 { 1010 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1011 nvmet_data_transfer_len(req)); 1012 if (!req->sg) 1013 goto out_err; 1014 1015 if (req->metadata_len) { 1016 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1017 &req->metadata_sg_cnt, req->metadata_len); 1018 if (!req->metadata_sg) 1019 goto out_free_sg; 1020 } 1021 1022 req->p2p_dev = p2p_dev; 1023 1024 return 0; 1025 out_free_sg: 1026 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1027 out_err: 1028 return -ENOMEM; 1029 } 1030 1031 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1032 { 1033 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1034 !req->sq->ctrl || !req->sq->qid || !req->ns) 1035 return NULL; 1036 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1037 } 1038 1039 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1040 { 1041 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1042 1043 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1044 return 0; 1045 1046 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1047 &req->sg_cnt); 1048 if (unlikely(!req->sg)) 1049 goto out; 1050 1051 if (req->metadata_len) { 1052 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1053 &req->metadata_sg_cnt); 1054 if (unlikely(!req->metadata_sg)) 1055 goto out_free; 1056 } 1057 1058 return 0; 1059 out_free: 1060 sgl_free(req->sg); 1061 out: 1062 return -ENOMEM; 1063 } 1064 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1065 1066 void nvmet_req_free_sgls(struct nvmet_req *req) 1067 { 1068 if (req->p2p_dev) { 1069 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1070 if (req->metadata_sg) 1071 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1072 req->p2p_dev = NULL; 1073 } else { 1074 sgl_free(req->sg); 1075 if (req->metadata_sg) 1076 sgl_free(req->metadata_sg); 1077 } 1078 1079 req->sg = NULL; 1080 req->metadata_sg = NULL; 1081 req->sg_cnt = 0; 1082 req->metadata_sg_cnt = 0; 1083 } 1084 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1085 1086 static inline bool nvmet_cc_en(u32 cc) 1087 { 1088 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1089 } 1090 1091 static inline u8 nvmet_cc_css(u32 cc) 1092 { 1093 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1094 } 1095 1096 static inline u8 nvmet_cc_mps(u32 cc) 1097 { 1098 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1099 } 1100 1101 static inline u8 nvmet_cc_ams(u32 cc) 1102 { 1103 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1104 } 1105 1106 static inline u8 nvmet_cc_shn(u32 cc) 1107 { 1108 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1109 } 1110 1111 static inline u8 nvmet_cc_iosqes(u32 cc) 1112 { 1113 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1114 } 1115 1116 static inline u8 nvmet_cc_iocqes(u32 cc) 1117 { 1118 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1119 } 1120 1121 static inline bool nvmet_css_supported(u8 cc_css) 1122 { 1123 switch (cc_css <<= NVME_CC_CSS_SHIFT) { 1124 case NVME_CC_CSS_NVM: 1125 case NVME_CC_CSS_CSI: 1126 return true; 1127 default: 1128 return false; 1129 } 1130 } 1131 1132 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1133 { 1134 lockdep_assert_held(&ctrl->lock); 1135 1136 /* 1137 * Only I/O controllers should verify iosqes,iocqes. 1138 * Strictly speaking, the spec says a discovery controller 1139 * should verify iosqes,iocqes are zeroed, however that 1140 * would break backwards compatibility, so don't enforce it. 1141 */ 1142 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1143 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1144 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1145 ctrl->csts = NVME_CSTS_CFS; 1146 return; 1147 } 1148 1149 if (nvmet_cc_mps(ctrl->cc) != 0 || 1150 nvmet_cc_ams(ctrl->cc) != 0 || 1151 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1152 ctrl->csts = NVME_CSTS_CFS; 1153 return; 1154 } 1155 1156 ctrl->csts = NVME_CSTS_RDY; 1157 1158 /* 1159 * Controllers that are not yet enabled should not really enforce the 1160 * keep alive timeout, but we still want to track a timeout and cleanup 1161 * in case a host died before it enabled the controller. Hence, simply 1162 * reset the keep alive timer when the controller is enabled. 1163 */ 1164 if (ctrl->kato) 1165 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1166 } 1167 1168 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1169 { 1170 lockdep_assert_held(&ctrl->lock); 1171 1172 /* XXX: tear down queues? */ 1173 ctrl->csts &= ~NVME_CSTS_RDY; 1174 ctrl->cc = 0; 1175 } 1176 1177 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1178 { 1179 u32 old; 1180 1181 mutex_lock(&ctrl->lock); 1182 old = ctrl->cc; 1183 ctrl->cc = new; 1184 1185 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1186 nvmet_start_ctrl(ctrl); 1187 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1188 nvmet_clear_ctrl(ctrl); 1189 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1190 nvmet_clear_ctrl(ctrl); 1191 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1192 } 1193 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1194 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1195 mutex_unlock(&ctrl->lock); 1196 } 1197 1198 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1199 { 1200 /* command sets supported: NVMe command set: */ 1201 ctrl->cap = (1ULL << 37); 1202 /* Controller supports one or more I/O Command Sets */ 1203 ctrl->cap |= (1ULL << 43); 1204 /* CC.EN timeout in 500msec units: */ 1205 ctrl->cap |= (15ULL << 24); 1206 /* maximum queue entries supported: */ 1207 if (ctrl->ops->get_max_queue_size) 1208 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1; 1209 else 1210 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1211 1212 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1213 nvmet_passthrough_override_cap(ctrl); 1214 } 1215 1216 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1217 const char *hostnqn, u16 cntlid, 1218 struct nvmet_req *req) 1219 { 1220 struct nvmet_ctrl *ctrl = NULL; 1221 struct nvmet_subsys *subsys; 1222 1223 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1224 if (!subsys) { 1225 pr_warn("connect request for invalid subsystem %s!\n", 1226 subsysnqn); 1227 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1228 goto out; 1229 } 1230 1231 mutex_lock(&subsys->lock); 1232 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1233 if (ctrl->cntlid == cntlid) { 1234 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1235 pr_warn("hostnqn mismatch.\n"); 1236 continue; 1237 } 1238 if (!kref_get_unless_zero(&ctrl->ref)) 1239 continue; 1240 1241 /* ctrl found */ 1242 goto found; 1243 } 1244 } 1245 1246 ctrl = NULL; /* ctrl not found */ 1247 pr_warn("could not find controller %d for subsys %s / host %s\n", 1248 cntlid, subsysnqn, hostnqn); 1249 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1250 1251 found: 1252 mutex_unlock(&subsys->lock); 1253 nvmet_subsys_put(subsys); 1254 out: 1255 return ctrl; 1256 } 1257 1258 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1259 { 1260 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1261 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1262 req->cmd->common.opcode, req->sq->qid); 1263 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1264 } 1265 1266 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1267 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1268 req->cmd->common.opcode, req->sq->qid); 1269 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1270 } 1271 return 0; 1272 } 1273 1274 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1275 { 1276 struct nvmet_host_link *p; 1277 1278 lockdep_assert_held(&nvmet_config_sem); 1279 1280 if (subsys->allow_any_host) 1281 return true; 1282 1283 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1284 return true; 1285 1286 list_for_each_entry(p, &subsys->hosts, entry) { 1287 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1288 return true; 1289 } 1290 1291 return false; 1292 } 1293 1294 /* 1295 * Note: ctrl->subsys->lock should be held when calling this function 1296 */ 1297 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1298 struct nvmet_req *req) 1299 { 1300 struct nvmet_ns *ns; 1301 unsigned long idx; 1302 1303 if (!req->p2p_client) 1304 return; 1305 1306 ctrl->p2p_client = get_device(req->p2p_client); 1307 1308 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1309 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1310 } 1311 1312 /* 1313 * Note: ctrl->subsys->lock should be held when calling this function 1314 */ 1315 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1316 { 1317 struct radix_tree_iter iter; 1318 void __rcu **slot; 1319 1320 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1321 pci_dev_put(radix_tree_deref_slot(slot)); 1322 1323 put_device(ctrl->p2p_client); 1324 } 1325 1326 static void nvmet_fatal_error_handler(struct work_struct *work) 1327 { 1328 struct nvmet_ctrl *ctrl = 1329 container_of(work, struct nvmet_ctrl, fatal_err_work); 1330 1331 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1332 ctrl->ops->delete_ctrl(ctrl); 1333 } 1334 1335 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1336 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1337 { 1338 struct nvmet_subsys *subsys; 1339 struct nvmet_ctrl *ctrl; 1340 int ret; 1341 u16 status; 1342 1343 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1344 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1345 if (!subsys) { 1346 pr_warn("connect request for invalid subsystem %s!\n", 1347 subsysnqn); 1348 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1349 req->error_loc = offsetof(struct nvme_common_command, dptr); 1350 goto out; 1351 } 1352 1353 down_read(&nvmet_config_sem); 1354 if (!nvmet_host_allowed(subsys, hostnqn)) { 1355 pr_info("connect by host %s for subsystem %s not allowed\n", 1356 hostnqn, subsysnqn); 1357 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1358 up_read(&nvmet_config_sem); 1359 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1360 req->error_loc = offsetof(struct nvme_common_command, dptr); 1361 goto out_put_subsystem; 1362 } 1363 up_read(&nvmet_config_sem); 1364 1365 status = NVME_SC_INTERNAL; 1366 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1367 if (!ctrl) 1368 goto out_put_subsystem; 1369 mutex_init(&ctrl->lock); 1370 1371 ctrl->port = req->port; 1372 ctrl->ops = req->ops; 1373 1374 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1375 INIT_LIST_HEAD(&ctrl->async_events); 1376 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1377 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1378 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1379 1380 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1381 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1382 1383 kref_init(&ctrl->ref); 1384 ctrl->subsys = subsys; 1385 nvmet_init_cap(ctrl); 1386 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1387 1388 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1389 sizeof(__le32), GFP_KERNEL); 1390 if (!ctrl->changed_ns_list) 1391 goto out_free_ctrl; 1392 1393 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1394 sizeof(struct nvmet_sq *), 1395 GFP_KERNEL); 1396 if (!ctrl->sqs) 1397 goto out_free_changed_ns_list; 1398 1399 if (subsys->cntlid_min > subsys->cntlid_max) 1400 goto out_free_sqs; 1401 1402 ret = ida_alloc_range(&cntlid_ida, 1403 subsys->cntlid_min, subsys->cntlid_max, 1404 GFP_KERNEL); 1405 if (ret < 0) { 1406 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1407 goto out_free_sqs; 1408 } 1409 ctrl->cntlid = ret; 1410 1411 /* 1412 * Discovery controllers may use some arbitrary high value 1413 * in order to cleanup stale discovery sessions 1414 */ 1415 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1416 kato = NVMET_DISC_KATO_MS; 1417 1418 /* keep-alive timeout in seconds */ 1419 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1420 1421 ctrl->err_counter = 0; 1422 spin_lock_init(&ctrl->error_lock); 1423 1424 nvmet_start_keep_alive_timer(ctrl); 1425 1426 mutex_lock(&subsys->lock); 1427 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1428 nvmet_setup_p2p_ns_map(ctrl, req); 1429 mutex_unlock(&subsys->lock); 1430 1431 *ctrlp = ctrl; 1432 return 0; 1433 1434 out_free_sqs: 1435 kfree(ctrl->sqs); 1436 out_free_changed_ns_list: 1437 kfree(ctrl->changed_ns_list); 1438 out_free_ctrl: 1439 kfree(ctrl); 1440 out_put_subsystem: 1441 nvmet_subsys_put(subsys); 1442 out: 1443 return status; 1444 } 1445 1446 static void nvmet_ctrl_free(struct kref *ref) 1447 { 1448 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1449 struct nvmet_subsys *subsys = ctrl->subsys; 1450 1451 mutex_lock(&subsys->lock); 1452 nvmet_release_p2p_ns_map(ctrl); 1453 list_del(&ctrl->subsys_entry); 1454 mutex_unlock(&subsys->lock); 1455 1456 nvmet_stop_keep_alive_timer(ctrl); 1457 1458 flush_work(&ctrl->async_event_work); 1459 cancel_work_sync(&ctrl->fatal_err_work); 1460 1461 ida_free(&cntlid_ida, ctrl->cntlid); 1462 1463 nvmet_async_events_free(ctrl); 1464 kfree(ctrl->sqs); 1465 kfree(ctrl->changed_ns_list); 1466 kfree(ctrl); 1467 1468 nvmet_subsys_put(subsys); 1469 } 1470 1471 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1472 { 1473 kref_put(&ctrl->ref, nvmet_ctrl_free); 1474 } 1475 1476 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1477 { 1478 mutex_lock(&ctrl->lock); 1479 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1480 ctrl->csts |= NVME_CSTS_CFS; 1481 schedule_work(&ctrl->fatal_err_work); 1482 } 1483 mutex_unlock(&ctrl->lock); 1484 } 1485 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1486 1487 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1488 const char *subsysnqn) 1489 { 1490 struct nvmet_subsys_link *p; 1491 1492 if (!port) 1493 return NULL; 1494 1495 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1496 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1497 return NULL; 1498 return nvmet_disc_subsys; 1499 } 1500 1501 down_read(&nvmet_config_sem); 1502 list_for_each_entry(p, &port->subsystems, entry) { 1503 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1504 NVMF_NQN_SIZE)) { 1505 if (!kref_get_unless_zero(&p->subsys->ref)) 1506 break; 1507 up_read(&nvmet_config_sem); 1508 return p->subsys; 1509 } 1510 } 1511 up_read(&nvmet_config_sem); 1512 return NULL; 1513 } 1514 1515 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1516 enum nvme_subsys_type type) 1517 { 1518 struct nvmet_subsys *subsys; 1519 char serial[NVMET_SN_MAX_SIZE / 2]; 1520 int ret; 1521 1522 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1523 if (!subsys) 1524 return ERR_PTR(-ENOMEM); 1525 1526 subsys->ver = NVMET_DEFAULT_VS; 1527 /* generate a random serial number as our controllers are ephemeral: */ 1528 get_random_bytes(&serial, sizeof(serial)); 1529 bin2hex(subsys->serial, &serial, sizeof(serial)); 1530 1531 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1532 if (!subsys->model_number) { 1533 ret = -ENOMEM; 1534 goto free_subsys; 1535 } 1536 1537 switch (type) { 1538 case NVME_NQN_NVME: 1539 subsys->max_qid = NVMET_NR_QUEUES; 1540 break; 1541 case NVME_NQN_DISC: 1542 case NVME_NQN_CURR: 1543 subsys->max_qid = 0; 1544 break; 1545 default: 1546 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1547 ret = -EINVAL; 1548 goto free_mn; 1549 } 1550 subsys->type = type; 1551 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1552 GFP_KERNEL); 1553 if (!subsys->subsysnqn) { 1554 ret = -ENOMEM; 1555 goto free_mn; 1556 } 1557 subsys->cntlid_min = NVME_CNTLID_MIN; 1558 subsys->cntlid_max = NVME_CNTLID_MAX; 1559 kref_init(&subsys->ref); 1560 1561 mutex_init(&subsys->lock); 1562 xa_init(&subsys->namespaces); 1563 INIT_LIST_HEAD(&subsys->ctrls); 1564 INIT_LIST_HEAD(&subsys->hosts); 1565 1566 return subsys; 1567 1568 free_mn: 1569 kfree(subsys->model_number); 1570 free_subsys: 1571 kfree(subsys); 1572 return ERR_PTR(ret); 1573 } 1574 1575 static void nvmet_subsys_free(struct kref *ref) 1576 { 1577 struct nvmet_subsys *subsys = 1578 container_of(ref, struct nvmet_subsys, ref); 1579 1580 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1581 1582 xa_destroy(&subsys->namespaces); 1583 nvmet_passthru_subsys_free(subsys); 1584 1585 kfree(subsys->subsysnqn); 1586 kfree(subsys->model_number); 1587 kfree(subsys); 1588 } 1589 1590 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1591 { 1592 struct nvmet_ctrl *ctrl; 1593 1594 mutex_lock(&subsys->lock); 1595 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1596 ctrl->ops->delete_ctrl(ctrl); 1597 mutex_unlock(&subsys->lock); 1598 } 1599 1600 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1601 { 1602 kref_put(&subsys->ref, nvmet_subsys_free); 1603 } 1604 1605 static int __init nvmet_init(void) 1606 { 1607 int error; 1608 1609 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1610 1611 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1612 if (!zbd_wq) 1613 return -ENOMEM; 1614 1615 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1616 WQ_MEM_RECLAIM, 0); 1617 if (!buffered_io_wq) { 1618 error = -ENOMEM; 1619 goto out_free_zbd_work_queue; 1620 } 1621 1622 error = nvmet_init_discovery(); 1623 if (error) 1624 goto out_free_work_queue; 1625 1626 error = nvmet_init_configfs(); 1627 if (error) 1628 goto out_exit_discovery; 1629 return 0; 1630 1631 out_exit_discovery: 1632 nvmet_exit_discovery(); 1633 out_free_work_queue: 1634 destroy_workqueue(buffered_io_wq); 1635 out_free_zbd_work_queue: 1636 destroy_workqueue(zbd_wq); 1637 return error; 1638 } 1639 1640 static void __exit nvmet_exit(void) 1641 { 1642 nvmet_exit_configfs(); 1643 nvmet_exit_discovery(); 1644 ida_destroy(&cntlid_ida); 1645 destroy_workqueue(buffered_io_wq); 1646 destroy_workqueue(zbd_wq); 1647 1648 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1649 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1650 } 1651 1652 module_init(nvmet_init); 1653 module_exit(nvmet_exit); 1654 1655 MODULE_LICENSE("GPL v2"); 1656