1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe admin command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/rculist.h> 9 #include <linux/part_stat.h> 10 11 #include <generated/utsrelease.h> 12 #include <asm/unaligned.h> 13 #include "nvmet.h" 14 15 u32 nvmet_get_log_page_len(struct nvme_command *cmd) 16 { 17 u32 len = le16_to_cpu(cmd->get_log_page.numdu); 18 19 len <<= 16; 20 len += le16_to_cpu(cmd->get_log_page.numdl); 21 /* NUMD is a 0's based value */ 22 len += 1; 23 len *= sizeof(u32); 24 25 return len; 26 } 27 28 static u32 nvmet_feat_data_len(struct nvmet_req *req, u32 cdw10) 29 { 30 switch (cdw10 & 0xff) { 31 case NVME_FEAT_HOST_ID: 32 return sizeof(req->sq->ctrl->hostid); 33 default: 34 return 0; 35 } 36 } 37 38 u64 nvmet_get_log_page_offset(struct nvme_command *cmd) 39 { 40 return le64_to_cpu(cmd->get_log_page.lpo); 41 } 42 43 static void nvmet_execute_get_log_page_noop(struct nvmet_req *req) 44 { 45 nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->transfer_len)); 46 } 47 48 static void nvmet_execute_get_log_page_error(struct nvmet_req *req) 49 { 50 struct nvmet_ctrl *ctrl = req->sq->ctrl; 51 unsigned long flags; 52 off_t offset = 0; 53 u64 slot; 54 u64 i; 55 56 spin_lock_irqsave(&ctrl->error_lock, flags); 57 slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS; 58 59 for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) { 60 if (nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot], 61 sizeof(struct nvme_error_slot))) 62 break; 63 64 if (slot == 0) 65 slot = NVMET_ERROR_LOG_SLOTS - 1; 66 else 67 slot--; 68 offset += sizeof(struct nvme_error_slot); 69 } 70 spin_unlock_irqrestore(&ctrl->error_lock, flags); 71 nvmet_req_complete(req, 0); 72 } 73 74 static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req, 75 struct nvme_smart_log *slog) 76 { 77 u64 host_reads, host_writes, data_units_read, data_units_written; 78 u16 status; 79 80 status = nvmet_req_find_ns(req); 81 if (status) 82 return status; 83 84 /* we don't have the right data for file backed ns */ 85 if (!req->ns->bdev) 86 return NVME_SC_SUCCESS; 87 88 host_reads = part_stat_read(req->ns->bdev, ios[READ]); 89 data_units_read = 90 DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[READ]), 1000); 91 host_writes = part_stat_read(req->ns->bdev, ios[WRITE]); 92 data_units_written = 93 DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[WRITE]), 1000); 94 95 put_unaligned_le64(host_reads, &slog->host_reads[0]); 96 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 97 put_unaligned_le64(host_writes, &slog->host_writes[0]); 98 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 99 100 return NVME_SC_SUCCESS; 101 } 102 103 static u16 nvmet_get_smart_log_all(struct nvmet_req *req, 104 struct nvme_smart_log *slog) 105 { 106 u64 host_reads = 0, host_writes = 0; 107 u64 data_units_read = 0, data_units_written = 0; 108 struct nvmet_ns *ns; 109 struct nvmet_ctrl *ctrl; 110 unsigned long idx; 111 112 ctrl = req->sq->ctrl; 113 xa_for_each(&ctrl->subsys->namespaces, idx, ns) { 114 /* we don't have the right data for file backed ns */ 115 if (!ns->bdev) 116 continue; 117 host_reads += part_stat_read(ns->bdev, ios[READ]); 118 data_units_read += DIV_ROUND_UP( 119 part_stat_read(ns->bdev, sectors[READ]), 1000); 120 host_writes += part_stat_read(ns->bdev, ios[WRITE]); 121 data_units_written += DIV_ROUND_UP( 122 part_stat_read(ns->bdev, sectors[WRITE]), 1000); 123 } 124 125 put_unaligned_le64(host_reads, &slog->host_reads[0]); 126 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 127 put_unaligned_le64(host_writes, &slog->host_writes[0]); 128 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 129 130 return NVME_SC_SUCCESS; 131 } 132 133 static void nvmet_execute_get_log_page_smart(struct nvmet_req *req) 134 { 135 struct nvme_smart_log *log; 136 u16 status = NVME_SC_INTERNAL; 137 unsigned long flags; 138 139 if (req->transfer_len != sizeof(*log)) 140 goto out; 141 142 log = kzalloc(sizeof(*log), GFP_KERNEL); 143 if (!log) 144 goto out; 145 146 if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL)) 147 status = nvmet_get_smart_log_all(req, log); 148 else 149 status = nvmet_get_smart_log_nsid(req, log); 150 if (status) 151 goto out_free_log; 152 153 spin_lock_irqsave(&req->sq->ctrl->error_lock, flags); 154 put_unaligned_le64(req->sq->ctrl->err_counter, 155 &log->num_err_log_entries); 156 spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags); 157 158 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 159 out_free_log: 160 kfree(log); 161 out: 162 nvmet_req_complete(req, status); 163 } 164 165 static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req) 166 { 167 u16 status = NVME_SC_INTERNAL; 168 struct nvme_effects_log *log; 169 170 log = kzalloc(sizeof(*log), GFP_KERNEL); 171 if (!log) 172 goto out; 173 174 log->acs[nvme_admin_get_log_page] = cpu_to_le32(1 << 0); 175 log->acs[nvme_admin_identify] = cpu_to_le32(1 << 0); 176 log->acs[nvme_admin_abort_cmd] = cpu_to_le32(1 << 0); 177 log->acs[nvme_admin_set_features] = cpu_to_le32(1 << 0); 178 log->acs[nvme_admin_get_features] = cpu_to_le32(1 << 0); 179 log->acs[nvme_admin_async_event] = cpu_to_le32(1 << 0); 180 log->acs[nvme_admin_keep_alive] = cpu_to_le32(1 << 0); 181 182 log->iocs[nvme_cmd_read] = cpu_to_le32(1 << 0); 183 log->iocs[nvme_cmd_write] = cpu_to_le32(1 << 0); 184 log->iocs[nvme_cmd_flush] = cpu_to_le32(1 << 0); 185 log->iocs[nvme_cmd_dsm] = cpu_to_le32(1 << 0); 186 log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(1 << 0); 187 188 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 189 190 kfree(log); 191 out: 192 nvmet_req_complete(req, status); 193 } 194 195 static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req) 196 { 197 struct nvmet_ctrl *ctrl = req->sq->ctrl; 198 u16 status = NVME_SC_INTERNAL; 199 size_t len; 200 201 if (req->transfer_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32)) 202 goto out; 203 204 mutex_lock(&ctrl->lock); 205 if (ctrl->nr_changed_ns == U32_MAX) 206 len = sizeof(__le32); 207 else 208 len = ctrl->nr_changed_ns * sizeof(__le32); 209 status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len); 210 if (!status) 211 status = nvmet_zero_sgl(req, len, req->transfer_len - len); 212 ctrl->nr_changed_ns = 0; 213 nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR); 214 mutex_unlock(&ctrl->lock); 215 out: 216 nvmet_req_complete(req, status); 217 } 218 219 static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid, 220 struct nvme_ana_group_desc *desc) 221 { 222 struct nvmet_ctrl *ctrl = req->sq->ctrl; 223 struct nvmet_ns *ns; 224 unsigned long idx; 225 u32 count = 0; 226 227 if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) { 228 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 229 if (ns->anagrpid == grpid) 230 desc->nsids[count++] = cpu_to_le32(ns->nsid); 231 } 232 233 desc->grpid = cpu_to_le32(grpid); 234 desc->nnsids = cpu_to_le32(count); 235 desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 236 desc->state = req->port->ana_state[grpid]; 237 memset(desc->rsvd17, 0, sizeof(desc->rsvd17)); 238 return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32); 239 } 240 241 static void nvmet_execute_get_log_page_ana(struct nvmet_req *req) 242 { 243 struct nvme_ana_rsp_hdr hdr = { 0, }; 244 struct nvme_ana_group_desc *desc; 245 size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */ 246 size_t len; 247 u32 grpid; 248 u16 ngrps = 0; 249 u16 status; 250 251 status = NVME_SC_INTERNAL; 252 desc = kmalloc(sizeof(struct nvme_ana_group_desc) + 253 NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL); 254 if (!desc) 255 goto out; 256 257 down_read(&nvmet_ana_sem); 258 for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 259 if (!nvmet_ana_group_enabled[grpid]) 260 continue; 261 len = nvmet_format_ana_group(req, grpid, desc); 262 status = nvmet_copy_to_sgl(req, offset, desc, len); 263 if (status) 264 break; 265 offset += len; 266 ngrps++; 267 } 268 for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 269 if (nvmet_ana_group_enabled[grpid]) 270 ngrps++; 271 } 272 273 hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 274 hdr.ngrps = cpu_to_le16(ngrps); 275 nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE); 276 up_read(&nvmet_ana_sem); 277 278 kfree(desc); 279 280 /* copy the header last once we know the number of groups */ 281 status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr)); 282 out: 283 nvmet_req_complete(req, status); 284 } 285 286 static void nvmet_execute_get_log_page(struct nvmet_req *req) 287 { 288 if (!nvmet_check_transfer_len(req, nvmet_get_log_page_len(req->cmd))) 289 return; 290 291 switch (req->cmd->get_log_page.lid) { 292 case NVME_LOG_ERROR: 293 return nvmet_execute_get_log_page_error(req); 294 case NVME_LOG_SMART: 295 return nvmet_execute_get_log_page_smart(req); 296 case NVME_LOG_FW_SLOT: 297 /* 298 * We only support a single firmware slot which always is 299 * active, so we can zero out the whole firmware slot log and 300 * still claim to fully implement this mandatory log page. 301 */ 302 return nvmet_execute_get_log_page_noop(req); 303 case NVME_LOG_CHANGED_NS: 304 return nvmet_execute_get_log_changed_ns(req); 305 case NVME_LOG_CMD_EFFECTS: 306 return nvmet_execute_get_log_cmd_effects_ns(req); 307 case NVME_LOG_ANA: 308 return nvmet_execute_get_log_page_ana(req); 309 } 310 pr_err("unhandled lid %d on qid %d\n", 311 req->cmd->get_log_page.lid, req->sq->qid); 312 req->error_loc = offsetof(struct nvme_get_log_page_command, lid); 313 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 314 } 315 316 static u16 nvmet_set_model_number(struct nvmet_subsys *subsys) 317 { 318 u16 status = 0; 319 320 mutex_lock(&subsys->lock); 321 if (!subsys->model_number) { 322 subsys->model_number = 323 kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 324 if (!subsys->model_number) 325 status = NVME_SC_INTERNAL; 326 } 327 mutex_unlock(&subsys->lock); 328 329 return status; 330 } 331 332 static void nvmet_execute_identify_ctrl(struct nvmet_req *req) 333 { 334 struct nvmet_ctrl *ctrl = req->sq->ctrl; 335 struct nvmet_subsys *subsys = ctrl->subsys; 336 struct nvme_id_ctrl *id; 337 u32 cmd_capsule_size; 338 u16 status = 0; 339 340 /* 341 * If there is no model number yet, set it now. It will then remain 342 * stable for the life time of the subsystem. 343 */ 344 if (!subsys->model_number) { 345 status = nvmet_set_model_number(subsys); 346 if (status) 347 goto out; 348 } 349 350 id = kzalloc(sizeof(*id), GFP_KERNEL); 351 if (!id) { 352 status = NVME_SC_INTERNAL; 353 goto out; 354 } 355 356 /* XXX: figure out how to assign real vendors IDs. */ 357 id->vid = 0; 358 id->ssvid = 0; 359 360 memset(id->sn, ' ', sizeof(id->sn)); 361 bin2hex(id->sn, &ctrl->subsys->serial, 362 min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2)); 363 memcpy_and_pad(id->mn, sizeof(id->mn), subsys->model_number, 364 strlen(subsys->model_number), ' '); 365 memcpy_and_pad(id->fr, sizeof(id->fr), 366 UTS_RELEASE, strlen(UTS_RELEASE), ' '); 367 368 id->rab = 6; 369 370 /* 371 * XXX: figure out how we can assign a IEEE OUI, but until then 372 * the safest is to leave it as zeroes. 373 */ 374 375 /* we support multiple ports, multiples hosts and ANA: */ 376 id->cmic = (1 << 0) | (1 << 1) | (1 << 3); 377 378 /* Limit MDTS according to transport capability */ 379 if (ctrl->ops->get_mdts) 380 id->mdts = ctrl->ops->get_mdts(ctrl); 381 else 382 id->mdts = 0; 383 384 id->cntlid = cpu_to_le16(ctrl->cntlid); 385 id->ver = cpu_to_le32(ctrl->subsys->ver); 386 387 /* XXX: figure out what to do about RTD3R/RTD3 */ 388 id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL); 389 id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT | 390 NVME_CTRL_ATTR_TBKAS); 391 392 id->oacs = 0; 393 394 /* 395 * We don't really have a practical limit on the number of abort 396 * comands. But we don't do anything useful for abort either, so 397 * no point in allowing more abort commands than the spec requires. 398 */ 399 id->acl = 3; 400 401 id->aerl = NVMET_ASYNC_EVENTS - 1; 402 403 /* first slot is read-only, only one slot supported */ 404 id->frmw = (1 << 0) | (1 << 1); 405 id->lpa = (1 << 0) | (1 << 1) | (1 << 2); 406 id->elpe = NVMET_ERROR_LOG_SLOTS - 1; 407 id->npss = 0; 408 409 /* We support keep-alive timeout in granularity of seconds */ 410 id->kas = cpu_to_le16(NVMET_KAS); 411 412 id->sqes = (0x6 << 4) | 0x6; 413 id->cqes = (0x4 << 4) | 0x4; 414 415 /* no enforcement soft-limit for maxcmd - pick arbitrary high value */ 416 id->maxcmd = cpu_to_le16(NVMET_MAX_CMD); 417 418 id->nn = cpu_to_le32(ctrl->subsys->max_nsid); 419 id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES); 420 id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM | 421 NVME_CTRL_ONCS_WRITE_ZEROES); 422 423 /* XXX: don't report vwc if the underlying device is write through */ 424 id->vwc = NVME_CTRL_VWC_PRESENT; 425 426 /* 427 * We can't support atomic writes bigger than a LBA without support 428 * from the backend device. 429 */ 430 id->awun = 0; 431 id->awupf = 0; 432 433 id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */ 434 if (ctrl->ops->flags & NVMF_KEYED_SGLS) 435 id->sgls |= cpu_to_le32(1 << 2); 436 if (req->port->inline_data_size) 437 id->sgls |= cpu_to_le32(1 << 20); 438 439 strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn)); 440 441 /* 442 * Max command capsule size is sqe + in-capsule data size. 443 * Disable in-capsule data for Metadata capable controllers. 444 */ 445 cmd_capsule_size = sizeof(struct nvme_command); 446 if (!ctrl->pi_support) 447 cmd_capsule_size += req->port->inline_data_size; 448 id->ioccsz = cpu_to_le32(cmd_capsule_size / 16); 449 450 /* Max response capsule size is cqe */ 451 id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16); 452 453 id->msdbd = ctrl->ops->msdbd; 454 455 id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4); 456 id->anatt = 10; /* random value */ 457 id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS); 458 id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS); 459 460 /* 461 * Meh, we don't really support any power state. Fake up the same 462 * values that qemu does. 463 */ 464 id->psd[0].max_power = cpu_to_le16(0x9c4); 465 id->psd[0].entry_lat = cpu_to_le32(0x10); 466 id->psd[0].exit_lat = cpu_to_le32(0x4); 467 468 id->nwpc = 1 << 0; /* write protect and no write protect */ 469 470 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 471 472 kfree(id); 473 out: 474 nvmet_req_complete(req, status); 475 } 476 477 static void nvmet_execute_identify_ns(struct nvmet_req *req) 478 { 479 struct nvme_id_ns *id; 480 u16 status; 481 482 if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) { 483 req->error_loc = offsetof(struct nvme_identify, nsid); 484 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 485 goto out; 486 } 487 488 id = kzalloc(sizeof(*id), GFP_KERNEL); 489 if (!id) { 490 status = NVME_SC_INTERNAL; 491 goto out; 492 } 493 494 /* return an all zeroed buffer if we can't find an active namespace */ 495 status = nvmet_req_find_ns(req); 496 if (status) { 497 status = 0; 498 goto done; 499 } 500 501 nvmet_ns_revalidate(req->ns); 502 503 /* 504 * nuse = ncap = nsze isn't always true, but we have no way to find 505 * that out from the underlying device. 506 */ 507 id->ncap = id->nsze = 508 cpu_to_le64(req->ns->size >> req->ns->blksize_shift); 509 switch (req->port->ana_state[req->ns->anagrpid]) { 510 case NVME_ANA_INACCESSIBLE: 511 case NVME_ANA_PERSISTENT_LOSS: 512 break; 513 default: 514 id->nuse = id->nsze; 515 break; 516 } 517 518 if (req->ns->bdev) 519 nvmet_bdev_set_limits(req->ns->bdev, id); 520 521 /* 522 * We just provide a single LBA format that matches what the 523 * underlying device reports. 524 */ 525 id->nlbaf = 0; 526 id->flbas = 0; 527 528 /* 529 * Our namespace might always be shared. Not just with other 530 * controllers, but also with any other user of the block device. 531 */ 532 id->nmic = (1 << 0); 533 id->anagrpid = cpu_to_le32(req->ns->anagrpid); 534 535 memcpy(&id->nguid, &req->ns->nguid, sizeof(id->nguid)); 536 537 id->lbaf[0].ds = req->ns->blksize_shift; 538 539 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) { 540 id->dpc = NVME_NS_DPC_PI_FIRST | NVME_NS_DPC_PI_LAST | 541 NVME_NS_DPC_PI_TYPE1 | NVME_NS_DPC_PI_TYPE2 | 542 NVME_NS_DPC_PI_TYPE3; 543 id->mc = NVME_MC_EXTENDED_LBA; 544 id->dps = req->ns->pi_type; 545 id->flbas = NVME_NS_FLBAS_META_EXT; 546 id->lbaf[0].ms = cpu_to_le16(req->ns->metadata_size); 547 } 548 549 if (req->ns->readonly) 550 id->nsattr |= (1 << 0); 551 done: 552 if (!status) 553 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 554 555 kfree(id); 556 out: 557 nvmet_req_complete(req, status); 558 } 559 560 static void nvmet_execute_identify_nslist(struct nvmet_req *req) 561 { 562 static const int buf_size = NVME_IDENTIFY_DATA_SIZE; 563 struct nvmet_ctrl *ctrl = req->sq->ctrl; 564 struct nvmet_ns *ns; 565 unsigned long idx; 566 u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid); 567 __le32 *list; 568 u16 status = 0; 569 int i = 0; 570 571 list = kzalloc(buf_size, GFP_KERNEL); 572 if (!list) { 573 status = NVME_SC_INTERNAL; 574 goto out; 575 } 576 577 xa_for_each(&ctrl->subsys->namespaces, idx, ns) { 578 if (ns->nsid <= min_nsid) 579 continue; 580 list[i++] = cpu_to_le32(ns->nsid); 581 if (i == buf_size / sizeof(__le32)) 582 break; 583 } 584 585 status = nvmet_copy_to_sgl(req, 0, list, buf_size); 586 587 kfree(list); 588 out: 589 nvmet_req_complete(req, status); 590 } 591 592 static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len, 593 void *id, off_t *off) 594 { 595 struct nvme_ns_id_desc desc = { 596 .nidt = type, 597 .nidl = len, 598 }; 599 u16 status; 600 601 status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc)); 602 if (status) 603 return status; 604 *off += sizeof(desc); 605 606 status = nvmet_copy_to_sgl(req, *off, id, len); 607 if (status) 608 return status; 609 *off += len; 610 611 return 0; 612 } 613 614 static void nvmet_execute_identify_desclist(struct nvmet_req *req) 615 { 616 off_t off = 0; 617 u16 status; 618 619 status = nvmet_req_find_ns(req); 620 if (status) 621 goto out; 622 623 if (memchr_inv(&req->ns->uuid, 0, sizeof(req->ns->uuid))) { 624 status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID, 625 NVME_NIDT_UUID_LEN, 626 &req->ns->uuid, &off); 627 if (status) 628 goto out; 629 } 630 if (memchr_inv(req->ns->nguid, 0, sizeof(req->ns->nguid))) { 631 status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID, 632 NVME_NIDT_NGUID_LEN, 633 &req->ns->nguid, &off); 634 if (status) 635 goto out; 636 } 637 638 if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off, 639 off) != NVME_IDENTIFY_DATA_SIZE - off) 640 status = NVME_SC_INTERNAL | NVME_SC_DNR; 641 642 out: 643 nvmet_req_complete(req, status); 644 } 645 646 static void nvmet_execute_identify(struct nvmet_req *req) 647 { 648 if (!nvmet_check_transfer_len(req, NVME_IDENTIFY_DATA_SIZE)) 649 return; 650 651 switch (req->cmd->identify.cns) { 652 case NVME_ID_CNS_NS: 653 return nvmet_execute_identify_ns(req); 654 case NVME_ID_CNS_CTRL: 655 return nvmet_execute_identify_ctrl(req); 656 case NVME_ID_CNS_NS_ACTIVE_LIST: 657 return nvmet_execute_identify_nslist(req); 658 case NVME_ID_CNS_NS_DESC_LIST: 659 return nvmet_execute_identify_desclist(req); 660 } 661 662 pr_err("unhandled identify cns %d on qid %d\n", 663 req->cmd->identify.cns, req->sq->qid); 664 req->error_loc = offsetof(struct nvme_identify, cns); 665 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 666 } 667 668 /* 669 * A "minimum viable" abort implementation: the command is mandatory in the 670 * spec, but we are not required to do any useful work. We couldn't really 671 * do a useful abort, so don't bother even with waiting for the command 672 * to be exectuted and return immediately telling the command to abort 673 * wasn't found. 674 */ 675 static void nvmet_execute_abort(struct nvmet_req *req) 676 { 677 if (!nvmet_check_transfer_len(req, 0)) 678 return; 679 nvmet_set_result(req, 1); 680 nvmet_req_complete(req, 0); 681 } 682 683 static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req) 684 { 685 u16 status; 686 687 if (req->ns->file) 688 status = nvmet_file_flush(req); 689 else 690 status = nvmet_bdev_flush(req); 691 692 if (status) 693 pr_err("write protect flush failed nsid: %u\n", req->ns->nsid); 694 return status; 695 } 696 697 static u16 nvmet_set_feat_write_protect(struct nvmet_req *req) 698 { 699 u32 write_protect = le32_to_cpu(req->cmd->common.cdw11); 700 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 701 u16 status; 702 703 status = nvmet_req_find_ns(req); 704 if (status) 705 return status; 706 707 mutex_lock(&subsys->lock); 708 switch (write_protect) { 709 case NVME_NS_WRITE_PROTECT: 710 req->ns->readonly = true; 711 status = nvmet_write_protect_flush_sync(req); 712 if (status) 713 req->ns->readonly = false; 714 break; 715 case NVME_NS_NO_WRITE_PROTECT: 716 req->ns->readonly = false; 717 status = 0; 718 break; 719 default: 720 break; 721 } 722 723 if (!status) 724 nvmet_ns_changed(subsys, req->ns->nsid); 725 mutex_unlock(&subsys->lock); 726 return status; 727 } 728 729 u16 nvmet_set_feat_kato(struct nvmet_req *req) 730 { 731 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 732 733 nvmet_stop_keep_alive_timer(req->sq->ctrl); 734 req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000); 735 nvmet_start_keep_alive_timer(req->sq->ctrl); 736 737 nvmet_set_result(req, req->sq->ctrl->kato); 738 739 return 0; 740 } 741 742 u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask) 743 { 744 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 745 746 if (val32 & ~mask) { 747 req->error_loc = offsetof(struct nvme_common_command, cdw11); 748 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 749 } 750 751 WRITE_ONCE(req->sq->ctrl->aen_enabled, val32); 752 nvmet_set_result(req, val32); 753 754 return 0; 755 } 756 757 void nvmet_execute_set_features(struct nvmet_req *req) 758 { 759 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 760 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 761 u32 cdw11 = le32_to_cpu(req->cmd->common.cdw11); 762 u16 status = 0; 763 u16 nsqr; 764 u16 ncqr; 765 766 if (!nvmet_check_transfer_len(req, 0)) 767 return; 768 769 switch (cdw10 & 0xff) { 770 case NVME_FEAT_NUM_QUEUES: 771 ncqr = (cdw11 >> 16) & 0xffff; 772 nsqr = cdw11 & 0xffff; 773 if (ncqr == 0xffff || nsqr == 0xffff) { 774 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 775 break; 776 } 777 nvmet_set_result(req, 778 (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16)); 779 break; 780 case NVME_FEAT_KATO: 781 status = nvmet_set_feat_kato(req); 782 break; 783 case NVME_FEAT_ASYNC_EVENT: 784 status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL); 785 break; 786 case NVME_FEAT_HOST_ID: 787 status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 788 break; 789 case NVME_FEAT_WRITE_PROTECT: 790 status = nvmet_set_feat_write_protect(req); 791 break; 792 default: 793 req->error_loc = offsetof(struct nvme_common_command, cdw10); 794 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 795 break; 796 } 797 798 nvmet_req_complete(req, status); 799 } 800 801 static u16 nvmet_get_feat_write_protect(struct nvmet_req *req) 802 { 803 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 804 u32 result; 805 806 result = nvmet_req_find_ns(req); 807 if (result) 808 return result; 809 810 mutex_lock(&subsys->lock); 811 if (req->ns->readonly == true) 812 result = NVME_NS_WRITE_PROTECT; 813 else 814 result = NVME_NS_NO_WRITE_PROTECT; 815 nvmet_set_result(req, result); 816 mutex_unlock(&subsys->lock); 817 818 return 0; 819 } 820 821 void nvmet_get_feat_kato(struct nvmet_req *req) 822 { 823 nvmet_set_result(req, req->sq->ctrl->kato * 1000); 824 } 825 826 void nvmet_get_feat_async_event(struct nvmet_req *req) 827 { 828 nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled)); 829 } 830 831 void nvmet_execute_get_features(struct nvmet_req *req) 832 { 833 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 834 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 835 u16 status = 0; 836 837 if (!nvmet_check_transfer_len(req, nvmet_feat_data_len(req, cdw10))) 838 return; 839 840 switch (cdw10 & 0xff) { 841 /* 842 * These features are mandatory in the spec, but we don't 843 * have a useful way to implement them. We'll eventually 844 * need to come up with some fake values for these. 845 */ 846 #if 0 847 case NVME_FEAT_ARBITRATION: 848 break; 849 case NVME_FEAT_POWER_MGMT: 850 break; 851 case NVME_FEAT_TEMP_THRESH: 852 break; 853 case NVME_FEAT_ERR_RECOVERY: 854 break; 855 case NVME_FEAT_IRQ_COALESCE: 856 break; 857 case NVME_FEAT_IRQ_CONFIG: 858 break; 859 case NVME_FEAT_WRITE_ATOMIC: 860 break; 861 #endif 862 case NVME_FEAT_ASYNC_EVENT: 863 nvmet_get_feat_async_event(req); 864 break; 865 case NVME_FEAT_VOLATILE_WC: 866 nvmet_set_result(req, 1); 867 break; 868 case NVME_FEAT_NUM_QUEUES: 869 nvmet_set_result(req, 870 (subsys->max_qid-1) | ((subsys->max_qid-1) << 16)); 871 break; 872 case NVME_FEAT_KATO: 873 nvmet_get_feat_kato(req); 874 break; 875 case NVME_FEAT_HOST_ID: 876 /* need 128-bit host identifier flag */ 877 if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) { 878 req->error_loc = 879 offsetof(struct nvme_common_command, cdw11); 880 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 881 break; 882 } 883 884 status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid, 885 sizeof(req->sq->ctrl->hostid)); 886 break; 887 case NVME_FEAT_WRITE_PROTECT: 888 status = nvmet_get_feat_write_protect(req); 889 break; 890 default: 891 req->error_loc = 892 offsetof(struct nvme_common_command, cdw10); 893 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 894 break; 895 } 896 897 nvmet_req_complete(req, status); 898 } 899 900 void nvmet_execute_async_event(struct nvmet_req *req) 901 { 902 struct nvmet_ctrl *ctrl = req->sq->ctrl; 903 904 if (!nvmet_check_transfer_len(req, 0)) 905 return; 906 907 mutex_lock(&ctrl->lock); 908 if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) { 909 mutex_unlock(&ctrl->lock); 910 nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR); 911 return; 912 } 913 ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req; 914 mutex_unlock(&ctrl->lock); 915 916 schedule_work(&ctrl->async_event_work); 917 } 918 919 void nvmet_execute_keep_alive(struct nvmet_req *req) 920 { 921 struct nvmet_ctrl *ctrl = req->sq->ctrl; 922 923 if (!nvmet_check_transfer_len(req, 0)) 924 return; 925 926 pr_debug("ctrl %d update keep-alive timer for %d secs\n", 927 ctrl->cntlid, ctrl->kato); 928 929 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 930 nvmet_req_complete(req, 0); 931 } 932 933 u16 nvmet_parse_admin_cmd(struct nvmet_req *req) 934 { 935 struct nvme_command *cmd = req->cmd; 936 u16 ret; 937 938 if (nvme_is_fabrics(cmd)) 939 return nvmet_parse_fabrics_cmd(req); 940 if (nvmet_req_subsys(req)->type == NVME_NQN_DISC) 941 return nvmet_parse_discovery_cmd(req); 942 943 ret = nvmet_check_ctrl_status(req, cmd); 944 if (unlikely(ret)) 945 return ret; 946 947 if (nvmet_req_passthru_ctrl(req)) 948 return nvmet_parse_passthru_admin_cmd(req); 949 950 switch (cmd->common.opcode) { 951 case nvme_admin_get_log_page: 952 req->execute = nvmet_execute_get_log_page; 953 return 0; 954 case nvme_admin_identify: 955 req->execute = nvmet_execute_identify; 956 return 0; 957 case nvme_admin_abort_cmd: 958 req->execute = nvmet_execute_abort; 959 return 0; 960 case nvme_admin_set_features: 961 req->execute = nvmet_execute_set_features; 962 return 0; 963 case nvme_admin_get_features: 964 req->execute = nvmet_execute_get_features; 965 return 0; 966 case nvme_admin_async_event: 967 req->execute = nvmet_execute_async_event; 968 return 0; 969 case nvme_admin_keep_alive: 970 req->execute = nvmet_execute_keep_alive; 971 return 0; 972 } 973 974 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 975 req->sq->qid); 976 req->error_loc = offsetof(struct nvme_common_command, opcode); 977 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 978 } 979