1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe admin command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/rculist.h> 9 10 #include <generated/utsrelease.h> 11 #include <asm/unaligned.h> 12 #include "nvmet.h" 13 14 u32 nvmet_get_log_page_len(struct nvme_command *cmd) 15 { 16 u32 len = le16_to_cpu(cmd->get_log_page.numdu); 17 18 len <<= 16; 19 len += le16_to_cpu(cmd->get_log_page.numdl); 20 /* NUMD is a 0's based value */ 21 len += 1; 22 len *= sizeof(u32); 23 24 return len; 25 } 26 27 u64 nvmet_get_log_page_offset(struct nvme_command *cmd) 28 { 29 return le64_to_cpu(cmd->get_log_page.lpo); 30 } 31 32 static void nvmet_execute_get_log_page_noop(struct nvmet_req *req) 33 { 34 nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->data_len)); 35 } 36 37 static void nvmet_execute_get_log_page_error(struct nvmet_req *req) 38 { 39 struct nvmet_ctrl *ctrl = req->sq->ctrl; 40 u16 status = NVME_SC_SUCCESS; 41 unsigned long flags; 42 off_t offset = 0; 43 u64 slot; 44 u64 i; 45 46 spin_lock_irqsave(&ctrl->error_lock, flags); 47 slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS; 48 49 for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) { 50 status = nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot], 51 sizeof(struct nvme_error_slot)); 52 if (status) 53 break; 54 55 if (slot == 0) 56 slot = NVMET_ERROR_LOG_SLOTS - 1; 57 else 58 slot--; 59 offset += sizeof(struct nvme_error_slot); 60 } 61 spin_unlock_irqrestore(&ctrl->error_lock, flags); 62 nvmet_req_complete(req, status); 63 } 64 65 static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req, 66 struct nvme_smart_log *slog) 67 { 68 struct nvmet_ns *ns; 69 u64 host_reads, host_writes, data_units_read, data_units_written; 70 71 ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->get_log_page.nsid); 72 if (!ns) { 73 pr_err("Could not find namespace id : %d\n", 74 le32_to_cpu(req->cmd->get_log_page.nsid)); 75 req->error_loc = offsetof(struct nvme_rw_command, nsid); 76 return NVME_SC_INVALID_NS; 77 } 78 79 /* we don't have the right data for file backed ns */ 80 if (!ns->bdev) 81 goto out; 82 83 host_reads = part_stat_read(ns->bdev->bd_part, ios[READ]); 84 data_units_read = part_stat_read(ns->bdev->bd_part, sectors[READ]); 85 host_writes = part_stat_read(ns->bdev->bd_part, ios[WRITE]); 86 data_units_written = part_stat_read(ns->bdev->bd_part, sectors[WRITE]); 87 88 put_unaligned_le64(host_reads, &slog->host_reads[0]); 89 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 90 put_unaligned_le64(host_writes, &slog->host_writes[0]); 91 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 92 out: 93 nvmet_put_namespace(ns); 94 95 return NVME_SC_SUCCESS; 96 } 97 98 static u16 nvmet_get_smart_log_all(struct nvmet_req *req, 99 struct nvme_smart_log *slog) 100 { 101 u64 host_reads = 0, host_writes = 0; 102 u64 data_units_read = 0, data_units_written = 0; 103 struct nvmet_ns *ns; 104 struct nvmet_ctrl *ctrl; 105 106 ctrl = req->sq->ctrl; 107 108 rcu_read_lock(); 109 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { 110 /* we don't have the right data for file backed ns */ 111 if (!ns->bdev) 112 continue; 113 host_reads += part_stat_read(ns->bdev->bd_part, ios[READ]); 114 data_units_read += 115 part_stat_read(ns->bdev->bd_part, sectors[READ]); 116 host_writes += part_stat_read(ns->bdev->bd_part, ios[WRITE]); 117 data_units_written += 118 part_stat_read(ns->bdev->bd_part, sectors[WRITE]); 119 120 } 121 rcu_read_unlock(); 122 123 put_unaligned_le64(host_reads, &slog->host_reads[0]); 124 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 125 put_unaligned_le64(host_writes, &slog->host_writes[0]); 126 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 127 128 return NVME_SC_SUCCESS; 129 } 130 131 static void nvmet_execute_get_log_page_smart(struct nvmet_req *req) 132 { 133 struct nvme_smart_log *log; 134 u16 status = NVME_SC_INTERNAL; 135 unsigned long flags; 136 137 if (req->data_len != sizeof(*log)) 138 goto out; 139 140 log = kzalloc(sizeof(*log), GFP_KERNEL); 141 if (!log) 142 goto out; 143 144 if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL)) 145 status = nvmet_get_smart_log_all(req, log); 146 else 147 status = nvmet_get_smart_log_nsid(req, log); 148 if (status) 149 goto out_free_log; 150 151 spin_lock_irqsave(&req->sq->ctrl->error_lock, flags); 152 put_unaligned_le64(req->sq->ctrl->err_counter, 153 &log->num_err_log_entries); 154 spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags); 155 156 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 157 out_free_log: 158 kfree(log); 159 out: 160 nvmet_req_complete(req, status); 161 } 162 163 static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req) 164 { 165 u16 status = NVME_SC_INTERNAL; 166 struct nvme_effects_log *log; 167 168 log = kzalloc(sizeof(*log), GFP_KERNEL); 169 if (!log) 170 goto out; 171 172 log->acs[nvme_admin_get_log_page] = cpu_to_le32(1 << 0); 173 log->acs[nvme_admin_identify] = cpu_to_le32(1 << 0); 174 log->acs[nvme_admin_abort_cmd] = cpu_to_le32(1 << 0); 175 log->acs[nvme_admin_set_features] = cpu_to_le32(1 << 0); 176 log->acs[nvme_admin_get_features] = cpu_to_le32(1 << 0); 177 log->acs[nvme_admin_async_event] = cpu_to_le32(1 << 0); 178 log->acs[nvme_admin_keep_alive] = cpu_to_le32(1 << 0); 179 180 log->iocs[nvme_cmd_read] = cpu_to_le32(1 << 0); 181 log->iocs[nvme_cmd_write] = cpu_to_le32(1 << 0); 182 log->iocs[nvme_cmd_flush] = cpu_to_le32(1 << 0); 183 log->iocs[nvme_cmd_dsm] = cpu_to_le32(1 << 0); 184 log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(1 << 0); 185 186 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 187 188 kfree(log); 189 out: 190 nvmet_req_complete(req, status); 191 } 192 193 static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req) 194 { 195 struct nvmet_ctrl *ctrl = req->sq->ctrl; 196 u16 status = NVME_SC_INTERNAL; 197 size_t len; 198 199 if (req->data_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32)) 200 goto out; 201 202 mutex_lock(&ctrl->lock); 203 if (ctrl->nr_changed_ns == U32_MAX) 204 len = sizeof(__le32); 205 else 206 len = ctrl->nr_changed_ns * sizeof(__le32); 207 status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len); 208 if (!status) 209 status = nvmet_zero_sgl(req, len, req->data_len - len); 210 ctrl->nr_changed_ns = 0; 211 nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR); 212 mutex_unlock(&ctrl->lock); 213 out: 214 nvmet_req_complete(req, status); 215 } 216 217 static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid, 218 struct nvme_ana_group_desc *desc) 219 { 220 struct nvmet_ctrl *ctrl = req->sq->ctrl; 221 struct nvmet_ns *ns; 222 u32 count = 0; 223 224 if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) { 225 rcu_read_lock(); 226 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) 227 if (ns->anagrpid == grpid) 228 desc->nsids[count++] = cpu_to_le32(ns->nsid); 229 rcu_read_unlock(); 230 } 231 232 desc->grpid = cpu_to_le32(grpid); 233 desc->nnsids = cpu_to_le32(count); 234 desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 235 desc->state = req->port->ana_state[grpid]; 236 memset(desc->rsvd17, 0, sizeof(desc->rsvd17)); 237 return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32); 238 } 239 240 static void nvmet_execute_get_log_page_ana(struct nvmet_req *req) 241 { 242 struct nvme_ana_rsp_hdr hdr = { 0, }; 243 struct nvme_ana_group_desc *desc; 244 size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */ 245 size_t len; 246 u32 grpid; 247 u16 ngrps = 0; 248 u16 status; 249 250 status = NVME_SC_INTERNAL; 251 desc = kmalloc(sizeof(struct nvme_ana_group_desc) + 252 NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL); 253 if (!desc) 254 goto out; 255 256 down_read(&nvmet_ana_sem); 257 for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 258 if (!nvmet_ana_group_enabled[grpid]) 259 continue; 260 len = nvmet_format_ana_group(req, grpid, desc); 261 status = nvmet_copy_to_sgl(req, offset, desc, len); 262 if (status) 263 break; 264 offset += len; 265 ngrps++; 266 } 267 for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 268 if (nvmet_ana_group_enabled[grpid]) 269 ngrps++; 270 } 271 272 hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 273 hdr.ngrps = cpu_to_le16(ngrps); 274 nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE); 275 up_read(&nvmet_ana_sem); 276 277 kfree(desc); 278 279 /* copy the header last once we know the number of groups */ 280 status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr)); 281 out: 282 nvmet_req_complete(req, status); 283 } 284 285 static void nvmet_execute_identify_ctrl(struct nvmet_req *req) 286 { 287 struct nvmet_ctrl *ctrl = req->sq->ctrl; 288 struct nvme_id_ctrl *id; 289 u16 status = 0; 290 const char model[] = "Linux"; 291 292 id = kzalloc(sizeof(*id), GFP_KERNEL); 293 if (!id) { 294 status = NVME_SC_INTERNAL; 295 goto out; 296 } 297 298 /* XXX: figure out how to assign real vendors IDs. */ 299 id->vid = 0; 300 id->ssvid = 0; 301 302 memset(id->sn, ' ', sizeof(id->sn)); 303 bin2hex(id->sn, &ctrl->subsys->serial, 304 min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2)); 305 memcpy_and_pad(id->mn, sizeof(id->mn), model, sizeof(model) - 1, ' '); 306 memcpy_and_pad(id->fr, sizeof(id->fr), 307 UTS_RELEASE, strlen(UTS_RELEASE), ' '); 308 309 id->rab = 6; 310 311 /* 312 * XXX: figure out how we can assign a IEEE OUI, but until then 313 * the safest is to leave it as zeroes. 314 */ 315 316 /* we support multiple ports, multiples hosts and ANA: */ 317 id->cmic = (1 << 0) | (1 << 1) | (1 << 3); 318 319 /* no limit on data transfer sizes for now */ 320 id->mdts = 0; 321 id->cntlid = cpu_to_le16(ctrl->cntlid); 322 id->ver = cpu_to_le32(ctrl->subsys->ver); 323 324 /* XXX: figure out what to do about RTD3R/RTD3 */ 325 id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL); 326 id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT | 327 NVME_CTRL_ATTR_TBKAS); 328 329 id->oacs = 0; 330 331 /* 332 * We don't really have a practical limit on the number of abort 333 * comands. But we don't do anything useful for abort either, so 334 * no point in allowing more abort commands than the spec requires. 335 */ 336 id->acl = 3; 337 338 id->aerl = NVMET_ASYNC_EVENTS - 1; 339 340 /* first slot is read-only, only one slot supported */ 341 id->frmw = (1 << 0) | (1 << 1); 342 id->lpa = (1 << 0) | (1 << 1) | (1 << 2); 343 id->elpe = NVMET_ERROR_LOG_SLOTS - 1; 344 id->npss = 0; 345 346 /* We support keep-alive timeout in granularity of seconds */ 347 id->kas = cpu_to_le16(NVMET_KAS); 348 349 id->sqes = (0x6 << 4) | 0x6; 350 id->cqes = (0x4 << 4) | 0x4; 351 352 /* no enforcement soft-limit for maxcmd - pick arbitrary high value */ 353 id->maxcmd = cpu_to_le16(NVMET_MAX_CMD); 354 355 id->nn = cpu_to_le32(ctrl->subsys->max_nsid); 356 id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES); 357 id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM | 358 NVME_CTRL_ONCS_WRITE_ZEROES); 359 360 /* XXX: don't report vwc if the underlying device is write through */ 361 id->vwc = NVME_CTRL_VWC_PRESENT; 362 363 /* 364 * We can't support atomic writes bigger than a LBA without support 365 * from the backend device. 366 */ 367 id->awun = 0; 368 id->awupf = 0; 369 370 id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */ 371 if (ctrl->ops->has_keyed_sgls) 372 id->sgls |= cpu_to_le32(1 << 2); 373 if (req->port->inline_data_size) 374 id->sgls |= cpu_to_le32(1 << 20); 375 376 strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn)); 377 378 /* Max command capsule size is sqe + single page of in-capsule data */ 379 id->ioccsz = cpu_to_le32((sizeof(struct nvme_command) + 380 req->port->inline_data_size) / 16); 381 /* Max response capsule size is cqe */ 382 id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16); 383 384 id->msdbd = ctrl->ops->msdbd; 385 386 id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4); 387 id->anatt = 10; /* random value */ 388 id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS); 389 id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS); 390 391 /* 392 * Meh, we don't really support any power state. Fake up the same 393 * values that qemu does. 394 */ 395 id->psd[0].max_power = cpu_to_le16(0x9c4); 396 id->psd[0].entry_lat = cpu_to_le32(0x10); 397 id->psd[0].exit_lat = cpu_to_le32(0x4); 398 399 id->nwpc = 1 << 0; /* write protect and no write protect */ 400 401 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 402 403 kfree(id); 404 out: 405 nvmet_req_complete(req, status); 406 } 407 408 static void nvmet_execute_identify_ns(struct nvmet_req *req) 409 { 410 struct nvmet_ns *ns; 411 struct nvme_id_ns *id; 412 u16 status = 0; 413 414 if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) { 415 req->error_loc = offsetof(struct nvme_identify, nsid); 416 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 417 goto out; 418 } 419 420 id = kzalloc(sizeof(*id), GFP_KERNEL); 421 if (!id) { 422 status = NVME_SC_INTERNAL; 423 goto out; 424 } 425 426 /* return an all zeroed buffer if we can't find an active namespace */ 427 ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid); 428 if (!ns) 429 goto done; 430 431 /* 432 * nuse = ncap = nsze isn't always true, but we have no way to find 433 * that out from the underlying device. 434 */ 435 id->ncap = id->nsze = cpu_to_le64(ns->size >> ns->blksize_shift); 436 switch (req->port->ana_state[ns->anagrpid]) { 437 case NVME_ANA_INACCESSIBLE: 438 case NVME_ANA_PERSISTENT_LOSS: 439 break; 440 default: 441 id->nuse = id->nsze; 442 break; 443 } 444 445 /* 446 * We just provide a single LBA format that matches what the 447 * underlying device reports. 448 */ 449 id->nlbaf = 0; 450 id->flbas = 0; 451 452 /* 453 * Our namespace might always be shared. Not just with other 454 * controllers, but also with any other user of the block device. 455 */ 456 id->nmic = (1 << 0); 457 id->anagrpid = cpu_to_le32(ns->anagrpid); 458 459 memcpy(&id->nguid, &ns->nguid, sizeof(id->nguid)); 460 461 id->lbaf[0].ds = ns->blksize_shift; 462 463 if (ns->readonly) 464 id->nsattr |= (1 << 0); 465 nvmet_put_namespace(ns); 466 done: 467 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 468 kfree(id); 469 out: 470 nvmet_req_complete(req, status); 471 } 472 473 static void nvmet_execute_identify_nslist(struct nvmet_req *req) 474 { 475 static const int buf_size = NVME_IDENTIFY_DATA_SIZE; 476 struct nvmet_ctrl *ctrl = req->sq->ctrl; 477 struct nvmet_ns *ns; 478 u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid); 479 __le32 *list; 480 u16 status = 0; 481 int i = 0; 482 483 list = kzalloc(buf_size, GFP_KERNEL); 484 if (!list) { 485 status = NVME_SC_INTERNAL; 486 goto out; 487 } 488 489 rcu_read_lock(); 490 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { 491 if (ns->nsid <= min_nsid) 492 continue; 493 list[i++] = cpu_to_le32(ns->nsid); 494 if (i == buf_size / sizeof(__le32)) 495 break; 496 } 497 rcu_read_unlock(); 498 499 status = nvmet_copy_to_sgl(req, 0, list, buf_size); 500 501 kfree(list); 502 out: 503 nvmet_req_complete(req, status); 504 } 505 506 static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len, 507 void *id, off_t *off) 508 { 509 struct nvme_ns_id_desc desc = { 510 .nidt = type, 511 .nidl = len, 512 }; 513 u16 status; 514 515 status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc)); 516 if (status) 517 return status; 518 *off += sizeof(desc); 519 520 status = nvmet_copy_to_sgl(req, *off, id, len); 521 if (status) 522 return status; 523 *off += len; 524 525 return 0; 526 } 527 528 static void nvmet_execute_identify_desclist(struct nvmet_req *req) 529 { 530 struct nvmet_ns *ns; 531 u16 status = 0; 532 off_t off = 0; 533 534 ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid); 535 if (!ns) { 536 req->error_loc = offsetof(struct nvme_identify, nsid); 537 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 538 goto out; 539 } 540 541 if (memchr_inv(&ns->uuid, 0, sizeof(ns->uuid))) { 542 status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID, 543 NVME_NIDT_UUID_LEN, 544 &ns->uuid, &off); 545 if (status) 546 goto out_put_ns; 547 } 548 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) { 549 status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID, 550 NVME_NIDT_NGUID_LEN, 551 &ns->nguid, &off); 552 if (status) 553 goto out_put_ns; 554 } 555 556 if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off, 557 off) != NVME_IDENTIFY_DATA_SIZE - off) 558 status = NVME_SC_INTERNAL | NVME_SC_DNR; 559 out_put_ns: 560 nvmet_put_namespace(ns); 561 out: 562 nvmet_req_complete(req, status); 563 } 564 565 /* 566 * A "minimum viable" abort implementation: the command is mandatory in the 567 * spec, but we are not required to do any useful work. We couldn't really 568 * do a useful abort, so don't bother even with waiting for the command 569 * to be exectuted and return immediately telling the command to abort 570 * wasn't found. 571 */ 572 static void nvmet_execute_abort(struct nvmet_req *req) 573 { 574 nvmet_set_result(req, 1); 575 nvmet_req_complete(req, 0); 576 } 577 578 static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req) 579 { 580 u16 status; 581 582 if (req->ns->file) 583 status = nvmet_file_flush(req); 584 else 585 status = nvmet_bdev_flush(req); 586 587 if (status) 588 pr_err("write protect flush failed nsid: %u\n", req->ns->nsid); 589 return status; 590 } 591 592 static u16 nvmet_set_feat_write_protect(struct nvmet_req *req) 593 { 594 u32 write_protect = le32_to_cpu(req->cmd->common.cdw11); 595 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 596 u16 status = NVME_SC_FEATURE_NOT_CHANGEABLE; 597 598 req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->rw.nsid); 599 if (unlikely(!req->ns)) { 600 req->error_loc = offsetof(struct nvme_common_command, nsid); 601 return status; 602 } 603 604 mutex_lock(&subsys->lock); 605 switch (write_protect) { 606 case NVME_NS_WRITE_PROTECT: 607 req->ns->readonly = true; 608 status = nvmet_write_protect_flush_sync(req); 609 if (status) 610 req->ns->readonly = false; 611 break; 612 case NVME_NS_NO_WRITE_PROTECT: 613 req->ns->readonly = false; 614 status = 0; 615 break; 616 default: 617 break; 618 } 619 620 if (!status) 621 nvmet_ns_changed(subsys, req->ns->nsid); 622 mutex_unlock(&subsys->lock); 623 return status; 624 } 625 626 u16 nvmet_set_feat_kato(struct nvmet_req *req) 627 { 628 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 629 630 req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000); 631 632 nvmet_set_result(req, req->sq->ctrl->kato); 633 634 return 0; 635 } 636 637 u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask) 638 { 639 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 640 641 if (val32 & ~mask) { 642 req->error_loc = offsetof(struct nvme_common_command, cdw11); 643 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 644 } 645 646 WRITE_ONCE(req->sq->ctrl->aen_enabled, val32); 647 nvmet_set_result(req, val32); 648 649 return 0; 650 } 651 652 static void nvmet_execute_set_features(struct nvmet_req *req) 653 { 654 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 655 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 656 u16 status = 0; 657 658 switch (cdw10 & 0xff) { 659 case NVME_FEAT_NUM_QUEUES: 660 nvmet_set_result(req, 661 (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16)); 662 break; 663 case NVME_FEAT_KATO: 664 status = nvmet_set_feat_kato(req); 665 break; 666 case NVME_FEAT_ASYNC_EVENT: 667 status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL); 668 break; 669 case NVME_FEAT_HOST_ID: 670 status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 671 break; 672 case NVME_FEAT_WRITE_PROTECT: 673 status = nvmet_set_feat_write_protect(req); 674 break; 675 default: 676 req->error_loc = offsetof(struct nvme_common_command, cdw10); 677 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 678 break; 679 } 680 681 nvmet_req_complete(req, status); 682 } 683 684 static u16 nvmet_get_feat_write_protect(struct nvmet_req *req) 685 { 686 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 687 u32 result; 688 689 req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->common.nsid); 690 if (!req->ns) { 691 req->error_loc = offsetof(struct nvme_common_command, nsid); 692 return NVME_SC_INVALID_NS | NVME_SC_DNR; 693 } 694 mutex_lock(&subsys->lock); 695 if (req->ns->readonly == true) 696 result = NVME_NS_WRITE_PROTECT; 697 else 698 result = NVME_NS_NO_WRITE_PROTECT; 699 nvmet_set_result(req, result); 700 mutex_unlock(&subsys->lock); 701 702 return 0; 703 } 704 705 void nvmet_get_feat_kato(struct nvmet_req *req) 706 { 707 nvmet_set_result(req, req->sq->ctrl->kato * 1000); 708 } 709 710 void nvmet_get_feat_async_event(struct nvmet_req *req) 711 { 712 nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled)); 713 } 714 715 static void nvmet_execute_get_features(struct nvmet_req *req) 716 { 717 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 718 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 719 u16 status = 0; 720 721 switch (cdw10 & 0xff) { 722 /* 723 * These features are mandatory in the spec, but we don't 724 * have a useful way to implement them. We'll eventually 725 * need to come up with some fake values for these. 726 */ 727 #if 0 728 case NVME_FEAT_ARBITRATION: 729 break; 730 case NVME_FEAT_POWER_MGMT: 731 break; 732 case NVME_FEAT_TEMP_THRESH: 733 break; 734 case NVME_FEAT_ERR_RECOVERY: 735 break; 736 case NVME_FEAT_IRQ_COALESCE: 737 break; 738 case NVME_FEAT_IRQ_CONFIG: 739 break; 740 case NVME_FEAT_WRITE_ATOMIC: 741 break; 742 #endif 743 case NVME_FEAT_ASYNC_EVENT: 744 nvmet_get_feat_async_event(req); 745 break; 746 case NVME_FEAT_VOLATILE_WC: 747 nvmet_set_result(req, 1); 748 break; 749 case NVME_FEAT_NUM_QUEUES: 750 nvmet_set_result(req, 751 (subsys->max_qid-1) | ((subsys->max_qid-1) << 16)); 752 break; 753 case NVME_FEAT_KATO: 754 nvmet_get_feat_kato(req); 755 break; 756 case NVME_FEAT_HOST_ID: 757 /* need 128-bit host identifier flag */ 758 if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) { 759 req->error_loc = 760 offsetof(struct nvme_common_command, cdw11); 761 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 762 break; 763 } 764 765 status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid, 766 sizeof(req->sq->ctrl->hostid)); 767 break; 768 case NVME_FEAT_WRITE_PROTECT: 769 status = nvmet_get_feat_write_protect(req); 770 break; 771 default: 772 req->error_loc = 773 offsetof(struct nvme_common_command, cdw10); 774 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 775 break; 776 } 777 778 nvmet_req_complete(req, status); 779 } 780 781 void nvmet_execute_async_event(struct nvmet_req *req) 782 { 783 struct nvmet_ctrl *ctrl = req->sq->ctrl; 784 785 mutex_lock(&ctrl->lock); 786 if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) { 787 mutex_unlock(&ctrl->lock); 788 nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR); 789 return; 790 } 791 ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req; 792 mutex_unlock(&ctrl->lock); 793 794 schedule_work(&ctrl->async_event_work); 795 } 796 797 void nvmet_execute_keep_alive(struct nvmet_req *req) 798 { 799 struct nvmet_ctrl *ctrl = req->sq->ctrl; 800 801 pr_debug("ctrl %d update keep-alive timer for %d secs\n", 802 ctrl->cntlid, ctrl->kato); 803 804 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 805 nvmet_req_complete(req, 0); 806 } 807 808 u16 nvmet_parse_admin_cmd(struct nvmet_req *req) 809 { 810 struct nvme_command *cmd = req->cmd; 811 u16 ret; 812 813 ret = nvmet_check_ctrl_status(req, cmd); 814 if (unlikely(ret)) 815 return ret; 816 817 switch (cmd->common.opcode) { 818 case nvme_admin_get_log_page: 819 req->data_len = nvmet_get_log_page_len(cmd); 820 821 switch (cmd->get_log_page.lid) { 822 case NVME_LOG_ERROR: 823 req->execute = nvmet_execute_get_log_page_error; 824 return 0; 825 case NVME_LOG_SMART: 826 req->execute = nvmet_execute_get_log_page_smart; 827 return 0; 828 case NVME_LOG_FW_SLOT: 829 /* 830 * We only support a single firmware slot which always 831 * is active, so we can zero out the whole firmware slot 832 * log and still claim to fully implement this mandatory 833 * log page. 834 */ 835 req->execute = nvmet_execute_get_log_page_noop; 836 return 0; 837 case NVME_LOG_CHANGED_NS: 838 req->execute = nvmet_execute_get_log_changed_ns; 839 return 0; 840 case NVME_LOG_CMD_EFFECTS: 841 req->execute = nvmet_execute_get_log_cmd_effects_ns; 842 return 0; 843 case NVME_LOG_ANA: 844 req->execute = nvmet_execute_get_log_page_ana; 845 return 0; 846 } 847 break; 848 case nvme_admin_identify: 849 req->data_len = NVME_IDENTIFY_DATA_SIZE; 850 switch (cmd->identify.cns) { 851 case NVME_ID_CNS_NS: 852 req->execute = nvmet_execute_identify_ns; 853 return 0; 854 case NVME_ID_CNS_CTRL: 855 req->execute = nvmet_execute_identify_ctrl; 856 return 0; 857 case NVME_ID_CNS_NS_ACTIVE_LIST: 858 req->execute = nvmet_execute_identify_nslist; 859 return 0; 860 case NVME_ID_CNS_NS_DESC_LIST: 861 req->execute = nvmet_execute_identify_desclist; 862 return 0; 863 } 864 break; 865 case nvme_admin_abort_cmd: 866 req->execute = nvmet_execute_abort; 867 req->data_len = 0; 868 return 0; 869 case nvme_admin_set_features: 870 req->execute = nvmet_execute_set_features; 871 req->data_len = 0; 872 return 0; 873 case nvme_admin_get_features: 874 req->execute = nvmet_execute_get_features; 875 req->data_len = 0; 876 return 0; 877 case nvme_admin_async_event: 878 req->execute = nvmet_execute_async_event; 879 req->data_len = 0; 880 return 0; 881 case nvme_admin_keep_alive: 882 req->execute = nvmet_execute_keep_alive; 883 req->data_len = 0; 884 return 0; 885 } 886 887 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 888 req->sq->qid); 889 req->error_loc = offsetof(struct nvme_common_command, opcode); 890 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 891 } 892