1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe admin command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/rculist.h> 9 #include <linux/part_stat.h> 10 11 #include <generated/utsrelease.h> 12 #include <asm/unaligned.h> 13 #include "nvmet.h" 14 15 u32 nvmet_get_log_page_len(struct nvme_command *cmd) 16 { 17 u32 len = le16_to_cpu(cmd->get_log_page.numdu); 18 19 len <<= 16; 20 len += le16_to_cpu(cmd->get_log_page.numdl); 21 /* NUMD is a 0's based value */ 22 len += 1; 23 len *= sizeof(u32); 24 25 return len; 26 } 27 28 static u32 nvmet_feat_data_len(struct nvmet_req *req, u32 cdw10) 29 { 30 switch (cdw10 & 0xff) { 31 case NVME_FEAT_HOST_ID: 32 return sizeof(req->sq->ctrl->hostid); 33 default: 34 return 0; 35 } 36 } 37 38 u64 nvmet_get_log_page_offset(struct nvme_command *cmd) 39 { 40 return le64_to_cpu(cmd->get_log_page.lpo); 41 } 42 43 static void nvmet_execute_get_log_page_noop(struct nvmet_req *req) 44 { 45 nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->transfer_len)); 46 } 47 48 static void nvmet_execute_get_log_page_error(struct nvmet_req *req) 49 { 50 struct nvmet_ctrl *ctrl = req->sq->ctrl; 51 unsigned long flags; 52 off_t offset = 0; 53 u64 slot; 54 u64 i; 55 56 spin_lock_irqsave(&ctrl->error_lock, flags); 57 slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS; 58 59 for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) { 60 if (nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot], 61 sizeof(struct nvme_error_slot))) 62 break; 63 64 if (slot == 0) 65 slot = NVMET_ERROR_LOG_SLOTS - 1; 66 else 67 slot--; 68 offset += sizeof(struct nvme_error_slot); 69 } 70 spin_unlock_irqrestore(&ctrl->error_lock, flags); 71 nvmet_req_complete(req, 0); 72 } 73 74 static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req, 75 struct nvme_smart_log *slog) 76 { 77 struct nvmet_ns *ns; 78 u64 host_reads, host_writes, data_units_read, data_units_written; 79 80 ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->get_log_page.nsid); 81 if (!ns) { 82 pr_err("Could not find namespace id : %d\n", 83 le32_to_cpu(req->cmd->get_log_page.nsid)); 84 req->error_loc = offsetof(struct nvme_rw_command, nsid); 85 return NVME_SC_INVALID_NS; 86 } 87 88 /* we don't have the right data for file backed ns */ 89 if (!ns->bdev) 90 goto out; 91 92 host_reads = part_stat_read(ns->bdev->bd_part, ios[READ]); 93 data_units_read = DIV_ROUND_UP(part_stat_read(ns->bdev->bd_part, 94 sectors[READ]), 1000); 95 host_writes = part_stat_read(ns->bdev->bd_part, ios[WRITE]); 96 data_units_written = DIV_ROUND_UP(part_stat_read(ns->bdev->bd_part, 97 sectors[WRITE]), 1000); 98 99 put_unaligned_le64(host_reads, &slog->host_reads[0]); 100 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 101 put_unaligned_le64(host_writes, &slog->host_writes[0]); 102 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 103 out: 104 nvmet_put_namespace(ns); 105 106 return NVME_SC_SUCCESS; 107 } 108 109 static u16 nvmet_get_smart_log_all(struct nvmet_req *req, 110 struct nvme_smart_log *slog) 111 { 112 u64 host_reads = 0, host_writes = 0; 113 u64 data_units_read = 0, data_units_written = 0; 114 struct nvmet_ns *ns; 115 struct nvmet_ctrl *ctrl; 116 117 ctrl = req->sq->ctrl; 118 119 rcu_read_lock(); 120 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { 121 /* we don't have the right data for file backed ns */ 122 if (!ns->bdev) 123 continue; 124 host_reads += part_stat_read(ns->bdev->bd_part, ios[READ]); 125 data_units_read += DIV_ROUND_UP( 126 part_stat_read(ns->bdev->bd_part, sectors[READ]), 1000); 127 host_writes += part_stat_read(ns->bdev->bd_part, ios[WRITE]); 128 data_units_written += DIV_ROUND_UP( 129 part_stat_read(ns->bdev->bd_part, sectors[WRITE]), 1000); 130 131 } 132 rcu_read_unlock(); 133 134 put_unaligned_le64(host_reads, &slog->host_reads[0]); 135 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 136 put_unaligned_le64(host_writes, &slog->host_writes[0]); 137 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 138 139 return NVME_SC_SUCCESS; 140 } 141 142 static void nvmet_execute_get_log_page_smart(struct nvmet_req *req) 143 { 144 struct nvme_smart_log *log; 145 u16 status = NVME_SC_INTERNAL; 146 unsigned long flags; 147 148 if (req->transfer_len != sizeof(*log)) 149 goto out; 150 151 log = kzalloc(sizeof(*log), GFP_KERNEL); 152 if (!log) 153 goto out; 154 155 if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL)) 156 status = nvmet_get_smart_log_all(req, log); 157 else 158 status = nvmet_get_smart_log_nsid(req, log); 159 if (status) 160 goto out_free_log; 161 162 spin_lock_irqsave(&req->sq->ctrl->error_lock, flags); 163 put_unaligned_le64(req->sq->ctrl->err_counter, 164 &log->num_err_log_entries); 165 spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags); 166 167 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 168 out_free_log: 169 kfree(log); 170 out: 171 nvmet_req_complete(req, status); 172 } 173 174 static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req) 175 { 176 u16 status = NVME_SC_INTERNAL; 177 struct nvme_effects_log *log; 178 179 log = kzalloc(sizeof(*log), GFP_KERNEL); 180 if (!log) 181 goto out; 182 183 log->acs[nvme_admin_get_log_page] = cpu_to_le32(1 << 0); 184 log->acs[nvme_admin_identify] = cpu_to_le32(1 << 0); 185 log->acs[nvme_admin_abort_cmd] = cpu_to_le32(1 << 0); 186 log->acs[nvme_admin_set_features] = cpu_to_le32(1 << 0); 187 log->acs[nvme_admin_get_features] = cpu_to_le32(1 << 0); 188 log->acs[nvme_admin_async_event] = cpu_to_le32(1 << 0); 189 log->acs[nvme_admin_keep_alive] = cpu_to_le32(1 << 0); 190 191 log->iocs[nvme_cmd_read] = cpu_to_le32(1 << 0); 192 log->iocs[nvme_cmd_write] = cpu_to_le32(1 << 0); 193 log->iocs[nvme_cmd_flush] = cpu_to_le32(1 << 0); 194 log->iocs[nvme_cmd_dsm] = cpu_to_le32(1 << 0); 195 log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(1 << 0); 196 197 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 198 199 kfree(log); 200 out: 201 nvmet_req_complete(req, status); 202 } 203 204 static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req) 205 { 206 struct nvmet_ctrl *ctrl = req->sq->ctrl; 207 u16 status = NVME_SC_INTERNAL; 208 size_t len; 209 210 if (req->transfer_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32)) 211 goto out; 212 213 mutex_lock(&ctrl->lock); 214 if (ctrl->nr_changed_ns == U32_MAX) 215 len = sizeof(__le32); 216 else 217 len = ctrl->nr_changed_ns * sizeof(__le32); 218 status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len); 219 if (!status) 220 status = nvmet_zero_sgl(req, len, req->transfer_len - len); 221 ctrl->nr_changed_ns = 0; 222 nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR); 223 mutex_unlock(&ctrl->lock); 224 out: 225 nvmet_req_complete(req, status); 226 } 227 228 static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid, 229 struct nvme_ana_group_desc *desc) 230 { 231 struct nvmet_ctrl *ctrl = req->sq->ctrl; 232 struct nvmet_ns *ns; 233 u32 count = 0; 234 235 if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) { 236 rcu_read_lock(); 237 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) 238 if (ns->anagrpid == grpid) 239 desc->nsids[count++] = cpu_to_le32(ns->nsid); 240 rcu_read_unlock(); 241 } 242 243 desc->grpid = cpu_to_le32(grpid); 244 desc->nnsids = cpu_to_le32(count); 245 desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 246 desc->state = req->port->ana_state[grpid]; 247 memset(desc->rsvd17, 0, sizeof(desc->rsvd17)); 248 return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32); 249 } 250 251 static void nvmet_execute_get_log_page_ana(struct nvmet_req *req) 252 { 253 struct nvme_ana_rsp_hdr hdr = { 0, }; 254 struct nvme_ana_group_desc *desc; 255 size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */ 256 size_t len; 257 u32 grpid; 258 u16 ngrps = 0; 259 u16 status; 260 261 status = NVME_SC_INTERNAL; 262 desc = kmalloc(sizeof(struct nvme_ana_group_desc) + 263 NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL); 264 if (!desc) 265 goto out; 266 267 down_read(&nvmet_ana_sem); 268 for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 269 if (!nvmet_ana_group_enabled[grpid]) 270 continue; 271 len = nvmet_format_ana_group(req, grpid, desc); 272 status = nvmet_copy_to_sgl(req, offset, desc, len); 273 if (status) 274 break; 275 offset += len; 276 ngrps++; 277 } 278 for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 279 if (nvmet_ana_group_enabled[grpid]) 280 ngrps++; 281 } 282 283 hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 284 hdr.ngrps = cpu_to_le16(ngrps); 285 nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE); 286 up_read(&nvmet_ana_sem); 287 288 kfree(desc); 289 290 /* copy the header last once we know the number of groups */ 291 status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr)); 292 out: 293 nvmet_req_complete(req, status); 294 } 295 296 static void nvmet_execute_get_log_page(struct nvmet_req *req) 297 { 298 if (!nvmet_check_transfer_len(req, nvmet_get_log_page_len(req->cmd))) 299 return; 300 301 switch (req->cmd->get_log_page.lid) { 302 case NVME_LOG_ERROR: 303 return nvmet_execute_get_log_page_error(req); 304 case NVME_LOG_SMART: 305 return nvmet_execute_get_log_page_smart(req); 306 case NVME_LOG_FW_SLOT: 307 /* 308 * We only support a single firmware slot which always is 309 * active, so we can zero out the whole firmware slot log and 310 * still claim to fully implement this mandatory log page. 311 */ 312 return nvmet_execute_get_log_page_noop(req); 313 case NVME_LOG_CHANGED_NS: 314 return nvmet_execute_get_log_changed_ns(req); 315 case NVME_LOG_CMD_EFFECTS: 316 return nvmet_execute_get_log_cmd_effects_ns(req); 317 case NVME_LOG_ANA: 318 return nvmet_execute_get_log_page_ana(req); 319 } 320 pr_err("unhandled lid %d on qid %d\n", 321 req->cmd->get_log_page.lid, req->sq->qid); 322 req->error_loc = offsetof(struct nvme_get_log_page_command, lid); 323 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 324 } 325 326 static void nvmet_id_set_model_number(struct nvme_id_ctrl *id, 327 struct nvmet_subsys *subsys) 328 { 329 const char *model = NVMET_DEFAULT_CTRL_MODEL; 330 struct nvmet_subsys_model *subsys_model; 331 332 rcu_read_lock(); 333 subsys_model = rcu_dereference(subsys->model); 334 if (subsys_model) 335 model = subsys_model->number; 336 memcpy_and_pad(id->mn, sizeof(id->mn), model, strlen(model), ' '); 337 rcu_read_unlock(); 338 } 339 340 static void nvmet_execute_identify_ctrl(struct nvmet_req *req) 341 { 342 struct nvmet_ctrl *ctrl = req->sq->ctrl; 343 struct nvme_id_ctrl *id; 344 u32 cmd_capsule_size; 345 u16 status = 0; 346 347 id = kzalloc(sizeof(*id), GFP_KERNEL); 348 if (!id) { 349 status = NVME_SC_INTERNAL; 350 goto out; 351 } 352 353 /* XXX: figure out how to assign real vendors IDs. */ 354 id->vid = 0; 355 id->ssvid = 0; 356 357 memset(id->sn, ' ', sizeof(id->sn)); 358 bin2hex(id->sn, &ctrl->subsys->serial, 359 min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2)); 360 nvmet_id_set_model_number(id, ctrl->subsys); 361 memcpy_and_pad(id->fr, sizeof(id->fr), 362 UTS_RELEASE, strlen(UTS_RELEASE), ' '); 363 364 id->rab = 6; 365 366 /* 367 * XXX: figure out how we can assign a IEEE OUI, but until then 368 * the safest is to leave it as zeroes. 369 */ 370 371 /* we support multiple ports, multiples hosts and ANA: */ 372 id->cmic = (1 << 0) | (1 << 1) | (1 << 3); 373 374 /* Limit MDTS according to transport capability */ 375 if (ctrl->ops->get_mdts) 376 id->mdts = ctrl->ops->get_mdts(ctrl); 377 else 378 id->mdts = 0; 379 380 id->cntlid = cpu_to_le16(ctrl->cntlid); 381 id->ver = cpu_to_le32(ctrl->subsys->ver); 382 383 /* XXX: figure out what to do about RTD3R/RTD3 */ 384 id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL); 385 id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT | 386 NVME_CTRL_ATTR_TBKAS); 387 388 id->oacs = 0; 389 390 /* 391 * We don't really have a practical limit on the number of abort 392 * comands. But we don't do anything useful for abort either, so 393 * no point in allowing more abort commands than the spec requires. 394 */ 395 id->acl = 3; 396 397 id->aerl = NVMET_ASYNC_EVENTS - 1; 398 399 /* first slot is read-only, only one slot supported */ 400 id->frmw = (1 << 0) | (1 << 1); 401 id->lpa = (1 << 0) | (1 << 1) | (1 << 2); 402 id->elpe = NVMET_ERROR_LOG_SLOTS - 1; 403 id->npss = 0; 404 405 /* We support keep-alive timeout in granularity of seconds */ 406 id->kas = cpu_to_le16(NVMET_KAS); 407 408 id->sqes = (0x6 << 4) | 0x6; 409 id->cqes = (0x4 << 4) | 0x4; 410 411 /* no enforcement soft-limit for maxcmd - pick arbitrary high value */ 412 id->maxcmd = cpu_to_le16(NVMET_MAX_CMD); 413 414 id->nn = cpu_to_le32(ctrl->subsys->max_nsid); 415 id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES); 416 id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM | 417 NVME_CTRL_ONCS_WRITE_ZEROES); 418 419 /* XXX: don't report vwc if the underlying device is write through */ 420 id->vwc = NVME_CTRL_VWC_PRESENT; 421 422 /* 423 * We can't support atomic writes bigger than a LBA without support 424 * from the backend device. 425 */ 426 id->awun = 0; 427 id->awupf = 0; 428 429 id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */ 430 if (ctrl->ops->has_keyed_sgls) 431 id->sgls |= cpu_to_le32(1 << 2); 432 if (req->port->inline_data_size) 433 id->sgls |= cpu_to_le32(1 << 20); 434 435 strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn)); 436 437 /* 438 * Max command capsule size is sqe + in-capsule data size. 439 * Disable in-capsule data for Metadata capable controllers. 440 */ 441 cmd_capsule_size = sizeof(struct nvme_command); 442 if (!ctrl->pi_support) 443 cmd_capsule_size += req->port->inline_data_size; 444 id->ioccsz = cpu_to_le32(cmd_capsule_size / 16); 445 446 /* Max response capsule size is cqe */ 447 id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16); 448 449 id->msdbd = ctrl->ops->msdbd; 450 451 id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4); 452 id->anatt = 10; /* random value */ 453 id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS); 454 id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS); 455 456 /* 457 * Meh, we don't really support any power state. Fake up the same 458 * values that qemu does. 459 */ 460 id->psd[0].max_power = cpu_to_le16(0x9c4); 461 id->psd[0].entry_lat = cpu_to_le32(0x10); 462 id->psd[0].exit_lat = cpu_to_le32(0x4); 463 464 id->nwpc = 1 << 0; /* write protect and no write protect */ 465 466 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 467 468 kfree(id); 469 out: 470 nvmet_req_complete(req, status); 471 } 472 473 static void nvmet_execute_identify_ns(struct nvmet_req *req) 474 { 475 struct nvmet_ctrl *ctrl = req->sq->ctrl; 476 struct nvmet_ns *ns; 477 struct nvme_id_ns *id; 478 u16 status = 0; 479 480 if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) { 481 req->error_loc = offsetof(struct nvme_identify, nsid); 482 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 483 goto out; 484 } 485 486 id = kzalloc(sizeof(*id), GFP_KERNEL); 487 if (!id) { 488 status = NVME_SC_INTERNAL; 489 goto out; 490 } 491 492 /* return an all zeroed buffer if we can't find an active namespace */ 493 ns = nvmet_find_namespace(ctrl, req->cmd->identify.nsid); 494 if (!ns) 495 goto done; 496 497 nvmet_ns_revalidate(ns); 498 499 /* 500 * nuse = ncap = nsze isn't always true, but we have no way to find 501 * that out from the underlying device. 502 */ 503 id->ncap = id->nsze = cpu_to_le64(ns->size >> ns->blksize_shift); 504 switch (req->port->ana_state[ns->anagrpid]) { 505 case NVME_ANA_INACCESSIBLE: 506 case NVME_ANA_PERSISTENT_LOSS: 507 break; 508 default: 509 id->nuse = id->nsze; 510 break; 511 } 512 513 if (ns->bdev) 514 nvmet_bdev_set_limits(ns->bdev, id); 515 516 /* 517 * We just provide a single LBA format that matches what the 518 * underlying device reports. 519 */ 520 id->nlbaf = 0; 521 id->flbas = 0; 522 523 /* 524 * Our namespace might always be shared. Not just with other 525 * controllers, but also with any other user of the block device. 526 */ 527 id->nmic = (1 << 0); 528 id->anagrpid = cpu_to_le32(ns->anagrpid); 529 530 memcpy(&id->nguid, &ns->nguid, sizeof(id->nguid)); 531 532 id->lbaf[0].ds = ns->blksize_shift; 533 534 if (ctrl->pi_support && nvmet_ns_has_pi(ns)) { 535 id->dpc = NVME_NS_DPC_PI_FIRST | NVME_NS_DPC_PI_LAST | 536 NVME_NS_DPC_PI_TYPE1 | NVME_NS_DPC_PI_TYPE2 | 537 NVME_NS_DPC_PI_TYPE3; 538 id->mc = NVME_MC_EXTENDED_LBA; 539 id->dps = ns->pi_type; 540 id->flbas = NVME_NS_FLBAS_META_EXT; 541 id->lbaf[0].ms = cpu_to_le16(ns->metadata_size); 542 } 543 544 if (ns->readonly) 545 id->nsattr |= (1 << 0); 546 nvmet_put_namespace(ns); 547 done: 548 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 549 kfree(id); 550 out: 551 nvmet_req_complete(req, status); 552 } 553 554 static void nvmet_execute_identify_nslist(struct nvmet_req *req) 555 { 556 static const int buf_size = NVME_IDENTIFY_DATA_SIZE; 557 struct nvmet_ctrl *ctrl = req->sq->ctrl; 558 struct nvmet_ns *ns; 559 u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid); 560 __le32 *list; 561 u16 status = 0; 562 int i = 0; 563 564 list = kzalloc(buf_size, GFP_KERNEL); 565 if (!list) { 566 status = NVME_SC_INTERNAL; 567 goto out; 568 } 569 570 rcu_read_lock(); 571 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { 572 if (ns->nsid <= min_nsid) 573 continue; 574 list[i++] = cpu_to_le32(ns->nsid); 575 if (i == buf_size / sizeof(__le32)) 576 break; 577 } 578 rcu_read_unlock(); 579 580 status = nvmet_copy_to_sgl(req, 0, list, buf_size); 581 582 kfree(list); 583 out: 584 nvmet_req_complete(req, status); 585 } 586 587 static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len, 588 void *id, off_t *off) 589 { 590 struct nvme_ns_id_desc desc = { 591 .nidt = type, 592 .nidl = len, 593 }; 594 u16 status; 595 596 status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc)); 597 if (status) 598 return status; 599 *off += sizeof(desc); 600 601 status = nvmet_copy_to_sgl(req, *off, id, len); 602 if (status) 603 return status; 604 *off += len; 605 606 return 0; 607 } 608 609 static void nvmet_execute_identify_desclist(struct nvmet_req *req) 610 { 611 struct nvmet_ns *ns; 612 u16 status = 0; 613 off_t off = 0; 614 615 ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid); 616 if (!ns) { 617 req->error_loc = offsetof(struct nvme_identify, nsid); 618 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 619 goto out; 620 } 621 622 if (memchr_inv(&ns->uuid, 0, sizeof(ns->uuid))) { 623 status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID, 624 NVME_NIDT_UUID_LEN, 625 &ns->uuid, &off); 626 if (status) 627 goto out_put_ns; 628 } 629 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) { 630 status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID, 631 NVME_NIDT_NGUID_LEN, 632 &ns->nguid, &off); 633 if (status) 634 goto out_put_ns; 635 } 636 637 if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off, 638 off) != NVME_IDENTIFY_DATA_SIZE - off) 639 status = NVME_SC_INTERNAL | NVME_SC_DNR; 640 out_put_ns: 641 nvmet_put_namespace(ns); 642 out: 643 nvmet_req_complete(req, status); 644 } 645 646 static void nvmet_execute_identify(struct nvmet_req *req) 647 { 648 if (!nvmet_check_transfer_len(req, NVME_IDENTIFY_DATA_SIZE)) 649 return; 650 651 switch (req->cmd->identify.cns) { 652 case NVME_ID_CNS_NS: 653 return nvmet_execute_identify_ns(req); 654 case NVME_ID_CNS_CTRL: 655 return nvmet_execute_identify_ctrl(req); 656 case NVME_ID_CNS_NS_ACTIVE_LIST: 657 return nvmet_execute_identify_nslist(req); 658 case NVME_ID_CNS_NS_DESC_LIST: 659 return nvmet_execute_identify_desclist(req); 660 } 661 662 pr_err("unhandled identify cns %d on qid %d\n", 663 req->cmd->identify.cns, req->sq->qid); 664 req->error_loc = offsetof(struct nvme_identify, cns); 665 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 666 } 667 668 /* 669 * A "minimum viable" abort implementation: the command is mandatory in the 670 * spec, but we are not required to do any useful work. We couldn't really 671 * do a useful abort, so don't bother even with waiting for the command 672 * to be exectuted and return immediately telling the command to abort 673 * wasn't found. 674 */ 675 static void nvmet_execute_abort(struct nvmet_req *req) 676 { 677 if (!nvmet_check_transfer_len(req, 0)) 678 return; 679 nvmet_set_result(req, 1); 680 nvmet_req_complete(req, 0); 681 } 682 683 static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req) 684 { 685 u16 status; 686 687 if (req->ns->file) 688 status = nvmet_file_flush(req); 689 else 690 status = nvmet_bdev_flush(req); 691 692 if (status) 693 pr_err("write protect flush failed nsid: %u\n", req->ns->nsid); 694 return status; 695 } 696 697 static u16 nvmet_set_feat_write_protect(struct nvmet_req *req) 698 { 699 u32 write_protect = le32_to_cpu(req->cmd->common.cdw11); 700 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 701 u16 status = NVME_SC_FEATURE_NOT_CHANGEABLE; 702 703 req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->rw.nsid); 704 if (unlikely(!req->ns)) { 705 req->error_loc = offsetof(struct nvme_common_command, nsid); 706 return status; 707 } 708 709 mutex_lock(&subsys->lock); 710 switch (write_protect) { 711 case NVME_NS_WRITE_PROTECT: 712 req->ns->readonly = true; 713 status = nvmet_write_protect_flush_sync(req); 714 if (status) 715 req->ns->readonly = false; 716 break; 717 case NVME_NS_NO_WRITE_PROTECT: 718 req->ns->readonly = false; 719 status = 0; 720 break; 721 default: 722 break; 723 } 724 725 if (!status) 726 nvmet_ns_changed(subsys, req->ns->nsid); 727 mutex_unlock(&subsys->lock); 728 return status; 729 } 730 731 u16 nvmet_set_feat_kato(struct nvmet_req *req) 732 { 733 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 734 735 req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000); 736 737 nvmet_set_result(req, req->sq->ctrl->kato); 738 739 return 0; 740 } 741 742 u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask) 743 { 744 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 745 746 if (val32 & ~mask) { 747 req->error_loc = offsetof(struct nvme_common_command, cdw11); 748 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 749 } 750 751 WRITE_ONCE(req->sq->ctrl->aen_enabled, val32); 752 nvmet_set_result(req, val32); 753 754 return 0; 755 } 756 757 static void nvmet_execute_set_features(struct nvmet_req *req) 758 { 759 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 760 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 761 u32 cdw11 = le32_to_cpu(req->cmd->common.cdw11); 762 u16 status = 0; 763 u16 nsqr; 764 u16 ncqr; 765 766 if (!nvmet_check_transfer_len(req, 0)) 767 return; 768 769 switch (cdw10 & 0xff) { 770 case NVME_FEAT_NUM_QUEUES: 771 ncqr = (cdw11 >> 16) & 0xffff; 772 nsqr = cdw11 & 0xffff; 773 if (ncqr == 0xffff || nsqr == 0xffff) { 774 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 775 break; 776 } 777 nvmet_set_result(req, 778 (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16)); 779 break; 780 case NVME_FEAT_KATO: 781 status = nvmet_set_feat_kato(req); 782 break; 783 case NVME_FEAT_ASYNC_EVENT: 784 status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL); 785 break; 786 case NVME_FEAT_HOST_ID: 787 status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 788 break; 789 case NVME_FEAT_WRITE_PROTECT: 790 status = nvmet_set_feat_write_protect(req); 791 break; 792 default: 793 req->error_loc = offsetof(struct nvme_common_command, cdw10); 794 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 795 break; 796 } 797 798 nvmet_req_complete(req, status); 799 } 800 801 static u16 nvmet_get_feat_write_protect(struct nvmet_req *req) 802 { 803 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 804 u32 result; 805 806 req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->common.nsid); 807 if (!req->ns) { 808 req->error_loc = offsetof(struct nvme_common_command, nsid); 809 return NVME_SC_INVALID_NS | NVME_SC_DNR; 810 } 811 mutex_lock(&subsys->lock); 812 if (req->ns->readonly == true) 813 result = NVME_NS_WRITE_PROTECT; 814 else 815 result = NVME_NS_NO_WRITE_PROTECT; 816 nvmet_set_result(req, result); 817 mutex_unlock(&subsys->lock); 818 819 return 0; 820 } 821 822 void nvmet_get_feat_kato(struct nvmet_req *req) 823 { 824 nvmet_set_result(req, req->sq->ctrl->kato * 1000); 825 } 826 827 void nvmet_get_feat_async_event(struct nvmet_req *req) 828 { 829 nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled)); 830 } 831 832 static void nvmet_execute_get_features(struct nvmet_req *req) 833 { 834 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 835 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 836 u16 status = 0; 837 838 if (!nvmet_check_transfer_len(req, nvmet_feat_data_len(req, cdw10))) 839 return; 840 841 switch (cdw10 & 0xff) { 842 /* 843 * These features are mandatory in the spec, but we don't 844 * have a useful way to implement them. We'll eventually 845 * need to come up with some fake values for these. 846 */ 847 #if 0 848 case NVME_FEAT_ARBITRATION: 849 break; 850 case NVME_FEAT_POWER_MGMT: 851 break; 852 case NVME_FEAT_TEMP_THRESH: 853 break; 854 case NVME_FEAT_ERR_RECOVERY: 855 break; 856 case NVME_FEAT_IRQ_COALESCE: 857 break; 858 case NVME_FEAT_IRQ_CONFIG: 859 break; 860 case NVME_FEAT_WRITE_ATOMIC: 861 break; 862 #endif 863 case NVME_FEAT_ASYNC_EVENT: 864 nvmet_get_feat_async_event(req); 865 break; 866 case NVME_FEAT_VOLATILE_WC: 867 nvmet_set_result(req, 1); 868 break; 869 case NVME_FEAT_NUM_QUEUES: 870 nvmet_set_result(req, 871 (subsys->max_qid-1) | ((subsys->max_qid-1) << 16)); 872 break; 873 case NVME_FEAT_KATO: 874 nvmet_get_feat_kato(req); 875 break; 876 case NVME_FEAT_HOST_ID: 877 /* need 128-bit host identifier flag */ 878 if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) { 879 req->error_loc = 880 offsetof(struct nvme_common_command, cdw11); 881 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 882 break; 883 } 884 885 status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid, 886 sizeof(req->sq->ctrl->hostid)); 887 break; 888 case NVME_FEAT_WRITE_PROTECT: 889 status = nvmet_get_feat_write_protect(req); 890 break; 891 default: 892 req->error_loc = 893 offsetof(struct nvme_common_command, cdw10); 894 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 895 break; 896 } 897 898 nvmet_req_complete(req, status); 899 } 900 901 void nvmet_execute_async_event(struct nvmet_req *req) 902 { 903 struct nvmet_ctrl *ctrl = req->sq->ctrl; 904 905 if (!nvmet_check_transfer_len(req, 0)) 906 return; 907 908 mutex_lock(&ctrl->lock); 909 if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) { 910 mutex_unlock(&ctrl->lock); 911 nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR); 912 return; 913 } 914 ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req; 915 mutex_unlock(&ctrl->lock); 916 917 schedule_work(&ctrl->async_event_work); 918 } 919 920 void nvmet_execute_keep_alive(struct nvmet_req *req) 921 { 922 struct nvmet_ctrl *ctrl = req->sq->ctrl; 923 924 if (!nvmet_check_transfer_len(req, 0)) 925 return; 926 927 pr_debug("ctrl %d update keep-alive timer for %d secs\n", 928 ctrl->cntlid, ctrl->kato); 929 930 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 931 nvmet_req_complete(req, 0); 932 } 933 934 u16 nvmet_parse_admin_cmd(struct nvmet_req *req) 935 { 936 struct nvme_command *cmd = req->cmd; 937 u16 ret; 938 939 if (nvme_is_fabrics(cmd)) 940 return nvmet_parse_fabrics_cmd(req); 941 if (req->sq->ctrl->subsys->type == NVME_NQN_DISC) 942 return nvmet_parse_discovery_cmd(req); 943 944 ret = nvmet_check_ctrl_status(req, cmd); 945 if (unlikely(ret)) 946 return ret; 947 948 switch (cmd->common.opcode) { 949 case nvme_admin_get_log_page: 950 req->execute = nvmet_execute_get_log_page; 951 return 0; 952 case nvme_admin_identify: 953 req->execute = nvmet_execute_identify; 954 return 0; 955 case nvme_admin_abort_cmd: 956 req->execute = nvmet_execute_abort; 957 return 0; 958 case nvme_admin_set_features: 959 req->execute = nvmet_execute_set_features; 960 return 0; 961 case nvme_admin_get_features: 962 req->execute = nvmet_execute_get_features; 963 return 0; 964 case nvme_admin_async_event: 965 req->execute = nvmet_execute_async_event; 966 return 0; 967 case nvme_admin_keep_alive: 968 req->execute = nvmet_execute_keep_alive; 969 return 0; 970 } 971 972 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 973 req->sq->qid); 974 req->error_loc = offsetof(struct nvme_common_command, opcode); 975 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 976 } 977