1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe admin command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/rculist.h> 9 #include <linux/part_stat.h> 10 11 #include <generated/utsrelease.h> 12 #include <asm/unaligned.h> 13 #include "nvmet.h" 14 15 u32 nvmet_get_log_page_len(struct nvme_command *cmd) 16 { 17 u32 len = le16_to_cpu(cmd->get_log_page.numdu); 18 19 len <<= 16; 20 len += le16_to_cpu(cmd->get_log_page.numdl); 21 /* NUMD is a 0's based value */ 22 len += 1; 23 len *= sizeof(u32); 24 25 return len; 26 } 27 28 static u32 nvmet_feat_data_len(struct nvmet_req *req, u32 cdw10) 29 { 30 switch (cdw10 & 0xff) { 31 case NVME_FEAT_HOST_ID: 32 return sizeof(req->sq->ctrl->hostid); 33 default: 34 return 0; 35 } 36 } 37 38 u64 nvmet_get_log_page_offset(struct nvme_command *cmd) 39 { 40 return le64_to_cpu(cmd->get_log_page.lpo); 41 } 42 43 static void nvmet_execute_get_log_page_noop(struct nvmet_req *req) 44 { 45 nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->transfer_len)); 46 } 47 48 static void nvmet_execute_get_log_page_error(struct nvmet_req *req) 49 { 50 struct nvmet_ctrl *ctrl = req->sq->ctrl; 51 unsigned long flags; 52 off_t offset = 0; 53 u64 slot; 54 u64 i; 55 56 spin_lock_irqsave(&ctrl->error_lock, flags); 57 slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS; 58 59 for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) { 60 if (nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot], 61 sizeof(struct nvme_error_slot))) 62 break; 63 64 if (slot == 0) 65 slot = NVMET_ERROR_LOG_SLOTS - 1; 66 else 67 slot--; 68 offset += sizeof(struct nvme_error_slot); 69 } 70 spin_unlock_irqrestore(&ctrl->error_lock, flags); 71 nvmet_req_complete(req, 0); 72 } 73 74 static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req, 75 struct nvme_smart_log *slog) 76 { 77 struct nvmet_ns *ns; 78 u64 host_reads, host_writes, data_units_read, data_units_written; 79 80 ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->get_log_page.nsid); 81 if (!ns) { 82 pr_err("Could not find namespace id : %d\n", 83 le32_to_cpu(req->cmd->get_log_page.nsid)); 84 req->error_loc = offsetof(struct nvme_rw_command, nsid); 85 return NVME_SC_INVALID_NS; 86 } 87 88 /* we don't have the right data for file backed ns */ 89 if (!ns->bdev) 90 goto out; 91 92 host_reads = part_stat_read(ns->bdev, ios[READ]); 93 data_units_read = 94 DIV_ROUND_UP(part_stat_read(ns->bdev, sectors[READ]), 1000); 95 host_writes = part_stat_read(ns->bdev, ios[WRITE]); 96 data_units_written = 97 DIV_ROUND_UP(part_stat_read(ns->bdev, sectors[WRITE]), 1000); 98 99 put_unaligned_le64(host_reads, &slog->host_reads[0]); 100 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 101 put_unaligned_le64(host_writes, &slog->host_writes[0]); 102 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 103 out: 104 nvmet_put_namespace(ns); 105 106 return NVME_SC_SUCCESS; 107 } 108 109 static u16 nvmet_get_smart_log_all(struct nvmet_req *req, 110 struct nvme_smart_log *slog) 111 { 112 u64 host_reads = 0, host_writes = 0; 113 u64 data_units_read = 0, data_units_written = 0; 114 struct nvmet_ns *ns; 115 struct nvmet_ctrl *ctrl; 116 unsigned long idx; 117 118 ctrl = req->sq->ctrl; 119 xa_for_each(&ctrl->subsys->namespaces, idx, ns) { 120 /* we don't have the right data for file backed ns */ 121 if (!ns->bdev) 122 continue; 123 host_reads += part_stat_read(ns->bdev, ios[READ]); 124 data_units_read += DIV_ROUND_UP( 125 part_stat_read(ns->bdev, sectors[READ]), 1000); 126 host_writes += part_stat_read(ns->bdev, ios[WRITE]); 127 data_units_written += DIV_ROUND_UP( 128 part_stat_read(ns->bdev, sectors[WRITE]), 1000); 129 } 130 131 put_unaligned_le64(host_reads, &slog->host_reads[0]); 132 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 133 put_unaligned_le64(host_writes, &slog->host_writes[0]); 134 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 135 136 return NVME_SC_SUCCESS; 137 } 138 139 static void nvmet_execute_get_log_page_smart(struct nvmet_req *req) 140 { 141 struct nvme_smart_log *log; 142 u16 status = NVME_SC_INTERNAL; 143 unsigned long flags; 144 145 if (req->transfer_len != sizeof(*log)) 146 goto out; 147 148 log = kzalloc(sizeof(*log), GFP_KERNEL); 149 if (!log) 150 goto out; 151 152 if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL)) 153 status = nvmet_get_smart_log_all(req, log); 154 else 155 status = nvmet_get_smart_log_nsid(req, log); 156 if (status) 157 goto out_free_log; 158 159 spin_lock_irqsave(&req->sq->ctrl->error_lock, flags); 160 put_unaligned_le64(req->sq->ctrl->err_counter, 161 &log->num_err_log_entries); 162 spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags); 163 164 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 165 out_free_log: 166 kfree(log); 167 out: 168 nvmet_req_complete(req, status); 169 } 170 171 static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req) 172 { 173 u16 status = NVME_SC_INTERNAL; 174 struct nvme_effects_log *log; 175 176 log = kzalloc(sizeof(*log), GFP_KERNEL); 177 if (!log) 178 goto out; 179 180 log->acs[nvme_admin_get_log_page] = cpu_to_le32(1 << 0); 181 log->acs[nvme_admin_identify] = cpu_to_le32(1 << 0); 182 log->acs[nvme_admin_abort_cmd] = cpu_to_le32(1 << 0); 183 log->acs[nvme_admin_set_features] = cpu_to_le32(1 << 0); 184 log->acs[nvme_admin_get_features] = cpu_to_le32(1 << 0); 185 log->acs[nvme_admin_async_event] = cpu_to_le32(1 << 0); 186 log->acs[nvme_admin_keep_alive] = cpu_to_le32(1 << 0); 187 188 log->iocs[nvme_cmd_read] = cpu_to_le32(1 << 0); 189 log->iocs[nvme_cmd_write] = cpu_to_le32(1 << 0); 190 log->iocs[nvme_cmd_flush] = cpu_to_le32(1 << 0); 191 log->iocs[nvme_cmd_dsm] = cpu_to_le32(1 << 0); 192 log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(1 << 0); 193 194 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 195 196 kfree(log); 197 out: 198 nvmet_req_complete(req, status); 199 } 200 201 static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req) 202 { 203 struct nvmet_ctrl *ctrl = req->sq->ctrl; 204 u16 status = NVME_SC_INTERNAL; 205 size_t len; 206 207 if (req->transfer_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32)) 208 goto out; 209 210 mutex_lock(&ctrl->lock); 211 if (ctrl->nr_changed_ns == U32_MAX) 212 len = sizeof(__le32); 213 else 214 len = ctrl->nr_changed_ns * sizeof(__le32); 215 status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len); 216 if (!status) 217 status = nvmet_zero_sgl(req, len, req->transfer_len - len); 218 ctrl->nr_changed_ns = 0; 219 nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR); 220 mutex_unlock(&ctrl->lock); 221 out: 222 nvmet_req_complete(req, status); 223 } 224 225 static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid, 226 struct nvme_ana_group_desc *desc) 227 { 228 struct nvmet_ctrl *ctrl = req->sq->ctrl; 229 struct nvmet_ns *ns; 230 unsigned long idx; 231 u32 count = 0; 232 233 if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) { 234 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 235 if (ns->anagrpid == grpid) 236 desc->nsids[count++] = cpu_to_le32(ns->nsid); 237 } 238 239 desc->grpid = cpu_to_le32(grpid); 240 desc->nnsids = cpu_to_le32(count); 241 desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 242 desc->state = req->port->ana_state[grpid]; 243 memset(desc->rsvd17, 0, sizeof(desc->rsvd17)); 244 return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32); 245 } 246 247 static void nvmet_execute_get_log_page_ana(struct nvmet_req *req) 248 { 249 struct nvme_ana_rsp_hdr hdr = { 0, }; 250 struct nvme_ana_group_desc *desc; 251 size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */ 252 size_t len; 253 u32 grpid; 254 u16 ngrps = 0; 255 u16 status; 256 257 status = NVME_SC_INTERNAL; 258 desc = kmalloc(sizeof(struct nvme_ana_group_desc) + 259 NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL); 260 if (!desc) 261 goto out; 262 263 down_read(&nvmet_ana_sem); 264 for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 265 if (!nvmet_ana_group_enabled[grpid]) 266 continue; 267 len = nvmet_format_ana_group(req, grpid, desc); 268 status = nvmet_copy_to_sgl(req, offset, desc, len); 269 if (status) 270 break; 271 offset += len; 272 ngrps++; 273 } 274 for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 275 if (nvmet_ana_group_enabled[grpid]) 276 ngrps++; 277 } 278 279 hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 280 hdr.ngrps = cpu_to_le16(ngrps); 281 nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE); 282 up_read(&nvmet_ana_sem); 283 284 kfree(desc); 285 286 /* copy the header last once we know the number of groups */ 287 status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr)); 288 out: 289 nvmet_req_complete(req, status); 290 } 291 292 static void nvmet_execute_get_log_page(struct nvmet_req *req) 293 { 294 if (!nvmet_check_transfer_len(req, nvmet_get_log_page_len(req->cmd))) 295 return; 296 297 switch (req->cmd->get_log_page.lid) { 298 case NVME_LOG_ERROR: 299 return nvmet_execute_get_log_page_error(req); 300 case NVME_LOG_SMART: 301 return nvmet_execute_get_log_page_smart(req); 302 case NVME_LOG_FW_SLOT: 303 /* 304 * We only support a single firmware slot which always is 305 * active, so we can zero out the whole firmware slot log and 306 * still claim to fully implement this mandatory log page. 307 */ 308 return nvmet_execute_get_log_page_noop(req); 309 case NVME_LOG_CHANGED_NS: 310 return nvmet_execute_get_log_changed_ns(req); 311 case NVME_LOG_CMD_EFFECTS: 312 return nvmet_execute_get_log_cmd_effects_ns(req); 313 case NVME_LOG_ANA: 314 return nvmet_execute_get_log_page_ana(req); 315 } 316 pr_err("unhandled lid %d on qid %d\n", 317 req->cmd->get_log_page.lid, req->sq->qid); 318 req->error_loc = offsetof(struct nvme_get_log_page_command, lid); 319 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 320 } 321 322 static void nvmet_id_set_model_number(struct nvme_id_ctrl *id, 323 struct nvmet_subsys *subsys) 324 { 325 const char *model = NVMET_DEFAULT_CTRL_MODEL; 326 struct nvmet_subsys_model *subsys_model; 327 328 rcu_read_lock(); 329 subsys_model = rcu_dereference(subsys->model); 330 if (subsys_model) 331 model = subsys_model->number; 332 memcpy_and_pad(id->mn, sizeof(id->mn), model, strlen(model), ' '); 333 rcu_read_unlock(); 334 } 335 336 static void nvmet_execute_identify_ctrl(struct nvmet_req *req) 337 { 338 struct nvmet_ctrl *ctrl = req->sq->ctrl; 339 struct nvme_id_ctrl *id; 340 u32 cmd_capsule_size; 341 u16 status = 0; 342 343 id = kzalloc(sizeof(*id), GFP_KERNEL); 344 if (!id) { 345 status = NVME_SC_INTERNAL; 346 goto out; 347 } 348 349 /* XXX: figure out how to assign real vendors IDs. */ 350 id->vid = 0; 351 id->ssvid = 0; 352 353 memset(id->sn, ' ', sizeof(id->sn)); 354 bin2hex(id->sn, &ctrl->subsys->serial, 355 min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2)); 356 nvmet_id_set_model_number(id, ctrl->subsys); 357 memcpy_and_pad(id->fr, sizeof(id->fr), 358 UTS_RELEASE, strlen(UTS_RELEASE), ' '); 359 360 id->rab = 6; 361 362 /* 363 * XXX: figure out how we can assign a IEEE OUI, but until then 364 * the safest is to leave it as zeroes. 365 */ 366 367 /* we support multiple ports, multiples hosts and ANA: */ 368 id->cmic = (1 << 0) | (1 << 1) | (1 << 3); 369 370 /* Limit MDTS according to transport capability */ 371 if (ctrl->ops->get_mdts) 372 id->mdts = ctrl->ops->get_mdts(ctrl); 373 else 374 id->mdts = 0; 375 376 id->cntlid = cpu_to_le16(ctrl->cntlid); 377 id->ver = cpu_to_le32(ctrl->subsys->ver); 378 379 /* XXX: figure out what to do about RTD3R/RTD3 */ 380 id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL); 381 id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT | 382 NVME_CTRL_ATTR_TBKAS); 383 384 id->oacs = 0; 385 386 /* 387 * We don't really have a practical limit on the number of abort 388 * comands. But we don't do anything useful for abort either, so 389 * no point in allowing more abort commands than the spec requires. 390 */ 391 id->acl = 3; 392 393 id->aerl = NVMET_ASYNC_EVENTS - 1; 394 395 /* first slot is read-only, only one slot supported */ 396 id->frmw = (1 << 0) | (1 << 1); 397 id->lpa = (1 << 0) | (1 << 1) | (1 << 2); 398 id->elpe = NVMET_ERROR_LOG_SLOTS - 1; 399 id->npss = 0; 400 401 /* We support keep-alive timeout in granularity of seconds */ 402 id->kas = cpu_to_le16(NVMET_KAS); 403 404 id->sqes = (0x6 << 4) | 0x6; 405 id->cqes = (0x4 << 4) | 0x4; 406 407 /* no enforcement soft-limit for maxcmd - pick arbitrary high value */ 408 id->maxcmd = cpu_to_le16(NVMET_MAX_CMD); 409 410 id->nn = cpu_to_le32(ctrl->subsys->max_nsid); 411 id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES); 412 id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM | 413 NVME_CTRL_ONCS_WRITE_ZEROES); 414 415 /* XXX: don't report vwc if the underlying device is write through */ 416 id->vwc = NVME_CTRL_VWC_PRESENT; 417 418 /* 419 * We can't support atomic writes bigger than a LBA without support 420 * from the backend device. 421 */ 422 id->awun = 0; 423 id->awupf = 0; 424 425 id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */ 426 if (ctrl->ops->flags & NVMF_KEYED_SGLS) 427 id->sgls |= cpu_to_le32(1 << 2); 428 if (req->port->inline_data_size) 429 id->sgls |= cpu_to_le32(1 << 20); 430 431 strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn)); 432 433 /* 434 * Max command capsule size is sqe + in-capsule data size. 435 * Disable in-capsule data for Metadata capable controllers. 436 */ 437 cmd_capsule_size = sizeof(struct nvme_command); 438 if (!ctrl->pi_support) 439 cmd_capsule_size += req->port->inline_data_size; 440 id->ioccsz = cpu_to_le32(cmd_capsule_size / 16); 441 442 /* Max response capsule size is cqe */ 443 id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16); 444 445 id->msdbd = ctrl->ops->msdbd; 446 447 id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4); 448 id->anatt = 10; /* random value */ 449 id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS); 450 id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS); 451 452 /* 453 * Meh, we don't really support any power state. Fake up the same 454 * values that qemu does. 455 */ 456 id->psd[0].max_power = cpu_to_le16(0x9c4); 457 id->psd[0].entry_lat = cpu_to_le32(0x10); 458 id->psd[0].exit_lat = cpu_to_le32(0x4); 459 460 id->nwpc = 1 << 0; /* write protect and no write protect */ 461 462 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 463 464 kfree(id); 465 out: 466 nvmet_req_complete(req, status); 467 } 468 469 static void nvmet_execute_identify_ns(struct nvmet_req *req) 470 { 471 struct nvmet_ctrl *ctrl = req->sq->ctrl; 472 struct nvmet_ns *ns; 473 struct nvme_id_ns *id; 474 u16 status = 0; 475 476 if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) { 477 req->error_loc = offsetof(struct nvme_identify, nsid); 478 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 479 goto out; 480 } 481 482 id = kzalloc(sizeof(*id), GFP_KERNEL); 483 if (!id) { 484 status = NVME_SC_INTERNAL; 485 goto out; 486 } 487 488 /* return an all zeroed buffer if we can't find an active namespace */ 489 ns = nvmet_find_namespace(ctrl, req->cmd->identify.nsid); 490 if (!ns) 491 goto done; 492 493 nvmet_ns_revalidate(ns); 494 495 /* 496 * nuse = ncap = nsze isn't always true, but we have no way to find 497 * that out from the underlying device. 498 */ 499 id->ncap = id->nsze = cpu_to_le64(ns->size >> ns->blksize_shift); 500 switch (req->port->ana_state[ns->anagrpid]) { 501 case NVME_ANA_INACCESSIBLE: 502 case NVME_ANA_PERSISTENT_LOSS: 503 break; 504 default: 505 id->nuse = id->nsze; 506 break; 507 } 508 509 if (ns->bdev) 510 nvmet_bdev_set_limits(ns->bdev, id); 511 512 /* 513 * We just provide a single LBA format that matches what the 514 * underlying device reports. 515 */ 516 id->nlbaf = 0; 517 id->flbas = 0; 518 519 /* 520 * Our namespace might always be shared. Not just with other 521 * controllers, but also with any other user of the block device. 522 */ 523 id->nmic = (1 << 0); 524 id->anagrpid = cpu_to_le32(ns->anagrpid); 525 526 memcpy(&id->nguid, &ns->nguid, sizeof(id->nguid)); 527 528 id->lbaf[0].ds = ns->blksize_shift; 529 530 if (ctrl->pi_support && nvmet_ns_has_pi(ns)) { 531 id->dpc = NVME_NS_DPC_PI_FIRST | NVME_NS_DPC_PI_LAST | 532 NVME_NS_DPC_PI_TYPE1 | NVME_NS_DPC_PI_TYPE2 | 533 NVME_NS_DPC_PI_TYPE3; 534 id->mc = NVME_MC_EXTENDED_LBA; 535 id->dps = ns->pi_type; 536 id->flbas = NVME_NS_FLBAS_META_EXT; 537 id->lbaf[0].ms = cpu_to_le16(ns->metadata_size); 538 } 539 540 if (ns->readonly) 541 id->nsattr |= (1 << 0); 542 nvmet_put_namespace(ns); 543 done: 544 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 545 kfree(id); 546 out: 547 nvmet_req_complete(req, status); 548 } 549 550 static void nvmet_execute_identify_nslist(struct nvmet_req *req) 551 { 552 static const int buf_size = NVME_IDENTIFY_DATA_SIZE; 553 struct nvmet_ctrl *ctrl = req->sq->ctrl; 554 struct nvmet_ns *ns; 555 unsigned long idx; 556 u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid); 557 __le32 *list; 558 u16 status = 0; 559 int i = 0; 560 561 list = kzalloc(buf_size, GFP_KERNEL); 562 if (!list) { 563 status = NVME_SC_INTERNAL; 564 goto out; 565 } 566 567 xa_for_each(&ctrl->subsys->namespaces, idx, ns) { 568 if (ns->nsid <= min_nsid) 569 continue; 570 list[i++] = cpu_to_le32(ns->nsid); 571 if (i == buf_size / sizeof(__le32)) 572 break; 573 } 574 575 status = nvmet_copy_to_sgl(req, 0, list, buf_size); 576 577 kfree(list); 578 out: 579 nvmet_req_complete(req, status); 580 } 581 582 static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len, 583 void *id, off_t *off) 584 { 585 struct nvme_ns_id_desc desc = { 586 .nidt = type, 587 .nidl = len, 588 }; 589 u16 status; 590 591 status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc)); 592 if (status) 593 return status; 594 *off += sizeof(desc); 595 596 status = nvmet_copy_to_sgl(req, *off, id, len); 597 if (status) 598 return status; 599 *off += len; 600 601 return 0; 602 } 603 604 static void nvmet_execute_identify_desclist(struct nvmet_req *req) 605 { 606 struct nvmet_ns *ns; 607 u16 status = 0; 608 off_t off = 0; 609 610 ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid); 611 if (!ns) { 612 req->error_loc = offsetof(struct nvme_identify, nsid); 613 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 614 goto out; 615 } 616 617 if (memchr_inv(&ns->uuid, 0, sizeof(ns->uuid))) { 618 status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID, 619 NVME_NIDT_UUID_LEN, 620 &ns->uuid, &off); 621 if (status) 622 goto out_put_ns; 623 } 624 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) { 625 status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID, 626 NVME_NIDT_NGUID_LEN, 627 &ns->nguid, &off); 628 if (status) 629 goto out_put_ns; 630 } 631 632 if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off, 633 off) != NVME_IDENTIFY_DATA_SIZE - off) 634 status = NVME_SC_INTERNAL | NVME_SC_DNR; 635 out_put_ns: 636 nvmet_put_namespace(ns); 637 out: 638 nvmet_req_complete(req, status); 639 } 640 641 static void nvmet_execute_identify(struct nvmet_req *req) 642 { 643 if (!nvmet_check_transfer_len(req, NVME_IDENTIFY_DATA_SIZE)) 644 return; 645 646 switch (req->cmd->identify.cns) { 647 case NVME_ID_CNS_NS: 648 return nvmet_execute_identify_ns(req); 649 case NVME_ID_CNS_CTRL: 650 return nvmet_execute_identify_ctrl(req); 651 case NVME_ID_CNS_NS_ACTIVE_LIST: 652 return nvmet_execute_identify_nslist(req); 653 case NVME_ID_CNS_NS_DESC_LIST: 654 return nvmet_execute_identify_desclist(req); 655 } 656 657 pr_err("unhandled identify cns %d on qid %d\n", 658 req->cmd->identify.cns, req->sq->qid); 659 req->error_loc = offsetof(struct nvme_identify, cns); 660 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 661 } 662 663 /* 664 * A "minimum viable" abort implementation: the command is mandatory in the 665 * spec, but we are not required to do any useful work. We couldn't really 666 * do a useful abort, so don't bother even with waiting for the command 667 * to be exectuted and return immediately telling the command to abort 668 * wasn't found. 669 */ 670 static void nvmet_execute_abort(struct nvmet_req *req) 671 { 672 if (!nvmet_check_transfer_len(req, 0)) 673 return; 674 nvmet_set_result(req, 1); 675 nvmet_req_complete(req, 0); 676 } 677 678 static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req) 679 { 680 u16 status; 681 682 if (req->ns->file) 683 status = nvmet_file_flush(req); 684 else 685 status = nvmet_bdev_flush(req); 686 687 if (status) 688 pr_err("write protect flush failed nsid: %u\n", req->ns->nsid); 689 return status; 690 } 691 692 static u16 nvmet_set_feat_write_protect(struct nvmet_req *req) 693 { 694 u32 write_protect = le32_to_cpu(req->cmd->common.cdw11); 695 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 696 u16 status = NVME_SC_FEATURE_NOT_CHANGEABLE; 697 698 req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->rw.nsid); 699 if (unlikely(!req->ns)) { 700 req->error_loc = offsetof(struct nvme_common_command, nsid); 701 return status; 702 } 703 704 mutex_lock(&subsys->lock); 705 switch (write_protect) { 706 case NVME_NS_WRITE_PROTECT: 707 req->ns->readonly = true; 708 status = nvmet_write_protect_flush_sync(req); 709 if (status) 710 req->ns->readonly = false; 711 break; 712 case NVME_NS_NO_WRITE_PROTECT: 713 req->ns->readonly = false; 714 status = 0; 715 break; 716 default: 717 break; 718 } 719 720 if (!status) 721 nvmet_ns_changed(subsys, req->ns->nsid); 722 mutex_unlock(&subsys->lock); 723 return status; 724 } 725 726 u16 nvmet_set_feat_kato(struct nvmet_req *req) 727 { 728 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 729 730 nvmet_stop_keep_alive_timer(req->sq->ctrl); 731 req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000); 732 nvmet_start_keep_alive_timer(req->sq->ctrl); 733 734 nvmet_set_result(req, req->sq->ctrl->kato); 735 736 return 0; 737 } 738 739 u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask) 740 { 741 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 742 743 if (val32 & ~mask) { 744 req->error_loc = offsetof(struct nvme_common_command, cdw11); 745 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 746 } 747 748 WRITE_ONCE(req->sq->ctrl->aen_enabled, val32); 749 nvmet_set_result(req, val32); 750 751 return 0; 752 } 753 754 void nvmet_execute_set_features(struct nvmet_req *req) 755 { 756 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 757 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 758 u32 cdw11 = le32_to_cpu(req->cmd->common.cdw11); 759 u16 status = 0; 760 u16 nsqr; 761 u16 ncqr; 762 763 if (!nvmet_check_transfer_len(req, 0)) 764 return; 765 766 switch (cdw10 & 0xff) { 767 case NVME_FEAT_NUM_QUEUES: 768 ncqr = (cdw11 >> 16) & 0xffff; 769 nsqr = cdw11 & 0xffff; 770 if (ncqr == 0xffff || nsqr == 0xffff) { 771 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 772 break; 773 } 774 nvmet_set_result(req, 775 (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16)); 776 break; 777 case NVME_FEAT_KATO: 778 status = nvmet_set_feat_kato(req); 779 break; 780 case NVME_FEAT_ASYNC_EVENT: 781 status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL); 782 break; 783 case NVME_FEAT_HOST_ID: 784 status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 785 break; 786 case NVME_FEAT_WRITE_PROTECT: 787 status = nvmet_set_feat_write_protect(req); 788 break; 789 default: 790 req->error_loc = offsetof(struct nvme_common_command, cdw10); 791 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 792 break; 793 } 794 795 nvmet_req_complete(req, status); 796 } 797 798 static u16 nvmet_get_feat_write_protect(struct nvmet_req *req) 799 { 800 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 801 u32 result; 802 803 req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->common.nsid); 804 if (!req->ns) { 805 req->error_loc = offsetof(struct nvme_common_command, nsid); 806 return NVME_SC_INVALID_NS | NVME_SC_DNR; 807 } 808 mutex_lock(&subsys->lock); 809 if (req->ns->readonly == true) 810 result = NVME_NS_WRITE_PROTECT; 811 else 812 result = NVME_NS_NO_WRITE_PROTECT; 813 nvmet_set_result(req, result); 814 mutex_unlock(&subsys->lock); 815 816 return 0; 817 } 818 819 void nvmet_get_feat_kato(struct nvmet_req *req) 820 { 821 nvmet_set_result(req, req->sq->ctrl->kato * 1000); 822 } 823 824 void nvmet_get_feat_async_event(struct nvmet_req *req) 825 { 826 nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled)); 827 } 828 829 void nvmet_execute_get_features(struct nvmet_req *req) 830 { 831 struct nvmet_subsys *subsys = req->sq->ctrl->subsys; 832 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 833 u16 status = 0; 834 835 if (!nvmet_check_transfer_len(req, nvmet_feat_data_len(req, cdw10))) 836 return; 837 838 switch (cdw10 & 0xff) { 839 /* 840 * These features are mandatory in the spec, but we don't 841 * have a useful way to implement them. We'll eventually 842 * need to come up with some fake values for these. 843 */ 844 #if 0 845 case NVME_FEAT_ARBITRATION: 846 break; 847 case NVME_FEAT_POWER_MGMT: 848 break; 849 case NVME_FEAT_TEMP_THRESH: 850 break; 851 case NVME_FEAT_ERR_RECOVERY: 852 break; 853 case NVME_FEAT_IRQ_COALESCE: 854 break; 855 case NVME_FEAT_IRQ_CONFIG: 856 break; 857 case NVME_FEAT_WRITE_ATOMIC: 858 break; 859 #endif 860 case NVME_FEAT_ASYNC_EVENT: 861 nvmet_get_feat_async_event(req); 862 break; 863 case NVME_FEAT_VOLATILE_WC: 864 nvmet_set_result(req, 1); 865 break; 866 case NVME_FEAT_NUM_QUEUES: 867 nvmet_set_result(req, 868 (subsys->max_qid-1) | ((subsys->max_qid-1) << 16)); 869 break; 870 case NVME_FEAT_KATO: 871 nvmet_get_feat_kato(req); 872 break; 873 case NVME_FEAT_HOST_ID: 874 /* need 128-bit host identifier flag */ 875 if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) { 876 req->error_loc = 877 offsetof(struct nvme_common_command, cdw11); 878 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 879 break; 880 } 881 882 status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid, 883 sizeof(req->sq->ctrl->hostid)); 884 break; 885 case NVME_FEAT_WRITE_PROTECT: 886 status = nvmet_get_feat_write_protect(req); 887 break; 888 default: 889 req->error_loc = 890 offsetof(struct nvme_common_command, cdw10); 891 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 892 break; 893 } 894 895 nvmet_req_complete(req, status); 896 } 897 898 void nvmet_execute_async_event(struct nvmet_req *req) 899 { 900 struct nvmet_ctrl *ctrl = req->sq->ctrl; 901 902 if (!nvmet_check_transfer_len(req, 0)) 903 return; 904 905 mutex_lock(&ctrl->lock); 906 if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) { 907 mutex_unlock(&ctrl->lock); 908 nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR); 909 return; 910 } 911 ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req; 912 mutex_unlock(&ctrl->lock); 913 914 schedule_work(&ctrl->async_event_work); 915 } 916 917 void nvmet_execute_keep_alive(struct nvmet_req *req) 918 { 919 struct nvmet_ctrl *ctrl = req->sq->ctrl; 920 921 if (!nvmet_check_transfer_len(req, 0)) 922 return; 923 924 pr_debug("ctrl %d update keep-alive timer for %d secs\n", 925 ctrl->cntlid, ctrl->kato); 926 927 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 928 nvmet_req_complete(req, 0); 929 } 930 931 u16 nvmet_parse_admin_cmd(struct nvmet_req *req) 932 { 933 struct nvme_command *cmd = req->cmd; 934 u16 ret; 935 936 if (nvme_is_fabrics(cmd)) 937 return nvmet_parse_fabrics_cmd(req); 938 if (req->sq->ctrl->subsys->type == NVME_NQN_DISC) 939 return nvmet_parse_discovery_cmd(req); 940 941 ret = nvmet_check_ctrl_status(req, cmd); 942 if (unlikely(ret)) 943 return ret; 944 945 if (nvmet_req_passthru_ctrl(req)) 946 return nvmet_parse_passthru_admin_cmd(req); 947 948 switch (cmd->common.opcode) { 949 case nvme_admin_get_log_page: 950 req->execute = nvmet_execute_get_log_page; 951 return 0; 952 case nvme_admin_identify: 953 req->execute = nvmet_execute_identify; 954 return 0; 955 case nvme_admin_abort_cmd: 956 req->execute = nvmet_execute_abort; 957 return 0; 958 case nvme_admin_set_features: 959 req->execute = nvmet_execute_set_features; 960 return 0; 961 case nvme_admin_get_features: 962 req->execute = nvmet_execute_get_features; 963 return 0; 964 case nvme_admin_async_event: 965 req->execute = nvmet_execute_async_event; 966 return 0; 967 case nvme_admin_keep_alive: 968 req->execute = nvmet_execute_keep_alive; 969 return 0; 970 } 971 972 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 973 req->sq->qid); 974 req->error_loc = offsetof(struct nvme_common_command, opcode); 975 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 976 } 977