xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision ffe0c491)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42 
43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 	struct sock *sk = sock->sk;
46 
47 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 		return;
49 
50 	switch (sk->sk_family) {
51 	case AF_INET:
52 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 					      &nvme_tcp_slock_key[0],
54 					      "sk_lock-AF_INET-NVME",
55 					      &nvme_tcp_sk_key[0]);
56 		break;
57 	case AF_INET6:
58 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 					      &nvme_tcp_slock_key[1],
60 					      "sk_lock-AF_INET6-NVME",
61 					      &nvme_tcp_sk_key[1]);
62 		break;
63 	default:
64 		WARN_ON_ONCE(1);
65 	}
66 }
67 #else
68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70 
71 enum nvme_tcp_send_state {
72 	NVME_TCP_SEND_CMD_PDU = 0,
73 	NVME_TCP_SEND_H2C_PDU,
74 	NVME_TCP_SEND_DATA,
75 	NVME_TCP_SEND_DDGST,
76 };
77 
78 struct nvme_tcp_request {
79 	struct nvme_request	req;
80 	void			*pdu;
81 	struct nvme_tcp_queue	*queue;
82 	u32			data_len;
83 	u32			pdu_len;
84 	u32			pdu_sent;
85 	u16			ttag;
86 	__le16			status;
87 	struct list_head	entry;
88 	struct llist_node	lentry;
89 	__le32			ddgst;
90 
91 	struct bio		*curr_bio;
92 	struct iov_iter		iter;
93 
94 	/* send state */
95 	size_t			offset;
96 	size_t			data_sent;
97 	enum nvme_tcp_send_state state;
98 };
99 
100 enum nvme_tcp_queue_flags {
101 	NVME_TCP_Q_ALLOCATED	= 0,
102 	NVME_TCP_Q_LIVE		= 1,
103 	NVME_TCP_Q_POLLING	= 2,
104 };
105 
106 enum nvme_tcp_recv_state {
107 	NVME_TCP_RECV_PDU = 0,
108 	NVME_TCP_RECV_DATA,
109 	NVME_TCP_RECV_DDGST,
110 };
111 
112 struct nvme_tcp_ctrl;
113 struct nvme_tcp_queue {
114 	struct socket		*sock;
115 	struct work_struct	io_work;
116 	int			io_cpu;
117 
118 	struct mutex		queue_lock;
119 	struct mutex		send_mutex;
120 	struct llist_head	req_list;
121 	struct list_head	send_list;
122 	bool			more_requests;
123 
124 	/* recv state */
125 	void			*pdu;
126 	int			pdu_remaining;
127 	int			pdu_offset;
128 	size_t			data_remaining;
129 	size_t			ddgst_remaining;
130 	unsigned int		nr_cqe;
131 
132 	/* send state */
133 	struct nvme_tcp_request *request;
134 
135 	int			queue_size;
136 	size_t			cmnd_capsule_len;
137 	struct nvme_tcp_ctrl	*ctrl;
138 	unsigned long		flags;
139 	bool			rd_enabled;
140 
141 	bool			hdr_digest;
142 	bool			data_digest;
143 	struct ahash_request	*rcv_hash;
144 	struct ahash_request	*snd_hash;
145 	__le32			exp_ddgst;
146 	__le32			recv_ddgst;
147 
148 	struct page_frag_cache	pf_cache;
149 
150 	void (*state_change)(struct sock *);
151 	void (*data_ready)(struct sock *);
152 	void (*write_space)(struct sock *);
153 };
154 
155 struct nvme_tcp_ctrl {
156 	/* read only in the hot path */
157 	struct nvme_tcp_queue	*queues;
158 	struct blk_mq_tag_set	tag_set;
159 
160 	/* other member variables */
161 	struct list_head	list;
162 	struct blk_mq_tag_set	admin_tag_set;
163 	struct sockaddr_storage addr;
164 	struct sockaddr_storage src_addr;
165 	struct nvme_ctrl	ctrl;
166 
167 	struct work_struct	err_work;
168 	struct delayed_work	connect_work;
169 	struct nvme_tcp_request async_req;
170 	u32			io_queues[HCTX_MAX_TYPES];
171 };
172 
173 static LIST_HEAD(nvme_tcp_ctrl_list);
174 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
175 static struct workqueue_struct *nvme_tcp_wq;
176 static const struct blk_mq_ops nvme_tcp_mq_ops;
177 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
178 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
179 
180 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
183 }
184 
185 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
186 {
187 	return queue - queue->ctrl->queues;
188 }
189 
190 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
191 {
192 	u32 queue_idx = nvme_tcp_queue_id(queue);
193 
194 	if (queue_idx == 0)
195 		return queue->ctrl->admin_tag_set.tags[queue_idx];
196 	return queue->ctrl->tag_set.tags[queue_idx - 1];
197 }
198 
199 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
200 {
201 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
202 }
203 
204 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
205 {
206 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
207 }
208 
209 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
210 {
211 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
212 }
213 
214 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
215 {
216 	return req == &req->queue->ctrl->async_req;
217 }
218 
219 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
220 {
221 	struct request *rq;
222 
223 	if (unlikely(nvme_tcp_async_req(req)))
224 		return false; /* async events don't have a request */
225 
226 	rq = blk_mq_rq_from_pdu(req);
227 
228 	return rq_data_dir(rq) == WRITE && req->data_len &&
229 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
230 }
231 
232 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
233 {
234 	return req->iter.bvec->bv_page;
235 }
236 
237 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
238 {
239 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
240 }
241 
242 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
243 {
244 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
245 			req->pdu_len - req->pdu_sent);
246 }
247 
248 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
249 {
250 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
251 			req->pdu_len - req->pdu_sent : 0;
252 }
253 
254 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
255 		int len)
256 {
257 	return nvme_tcp_pdu_data_left(req) <= len;
258 }
259 
260 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
261 		unsigned int dir)
262 {
263 	struct request *rq = blk_mq_rq_from_pdu(req);
264 	struct bio_vec *vec;
265 	unsigned int size;
266 	int nr_bvec;
267 	size_t offset;
268 
269 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
270 		vec = &rq->special_vec;
271 		nr_bvec = 1;
272 		size = blk_rq_payload_bytes(rq);
273 		offset = 0;
274 	} else {
275 		struct bio *bio = req->curr_bio;
276 		struct bvec_iter bi;
277 		struct bio_vec bv;
278 
279 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
280 		nr_bvec = 0;
281 		bio_for_each_bvec(bv, bio, bi) {
282 			nr_bvec++;
283 		}
284 		size = bio->bi_iter.bi_size;
285 		offset = bio->bi_iter.bi_bvec_done;
286 	}
287 
288 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
289 	req->iter.iov_offset = offset;
290 }
291 
292 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
293 		int len)
294 {
295 	req->data_sent += len;
296 	req->pdu_sent += len;
297 	iov_iter_advance(&req->iter, len);
298 	if (!iov_iter_count(&req->iter) &&
299 	    req->data_sent < req->data_len) {
300 		req->curr_bio = req->curr_bio->bi_next;
301 		nvme_tcp_init_iter(req, WRITE);
302 	}
303 }
304 
305 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
306 {
307 	int ret;
308 
309 	/* drain the send queue as much as we can... */
310 	do {
311 		ret = nvme_tcp_try_send(queue);
312 	} while (ret > 0);
313 }
314 
315 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
316 {
317 	return !list_empty(&queue->send_list) ||
318 		!llist_empty(&queue->req_list) || queue->more_requests;
319 }
320 
321 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
322 		bool sync, bool last)
323 {
324 	struct nvme_tcp_queue *queue = req->queue;
325 	bool empty;
326 
327 	empty = llist_add(&req->lentry, &queue->req_list) &&
328 		list_empty(&queue->send_list) && !queue->request;
329 
330 	/*
331 	 * if we're the first on the send_list and we can try to send
332 	 * directly, otherwise queue io_work. Also, only do that if we
333 	 * are on the same cpu, so we don't introduce contention.
334 	 */
335 	if (queue->io_cpu == raw_smp_processor_id() &&
336 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
337 		queue->more_requests = !last;
338 		nvme_tcp_send_all(queue);
339 		queue->more_requests = false;
340 		mutex_unlock(&queue->send_mutex);
341 	}
342 
343 	if (last && nvme_tcp_queue_more(queue))
344 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
345 }
346 
347 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
348 {
349 	struct nvme_tcp_request *req;
350 	struct llist_node *node;
351 
352 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
353 		req = llist_entry(node, struct nvme_tcp_request, lentry);
354 		list_add(&req->entry, &queue->send_list);
355 	}
356 }
357 
358 static inline struct nvme_tcp_request *
359 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
360 {
361 	struct nvme_tcp_request *req;
362 
363 	req = list_first_entry_or_null(&queue->send_list,
364 			struct nvme_tcp_request, entry);
365 	if (!req) {
366 		nvme_tcp_process_req_list(queue);
367 		req = list_first_entry_or_null(&queue->send_list,
368 				struct nvme_tcp_request, entry);
369 		if (unlikely(!req))
370 			return NULL;
371 	}
372 
373 	list_del(&req->entry);
374 	return req;
375 }
376 
377 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
378 		__le32 *dgst)
379 {
380 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
381 	crypto_ahash_final(hash);
382 }
383 
384 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
385 		struct page *page, off_t off, size_t len)
386 {
387 	struct scatterlist sg;
388 
389 	sg_init_marker(&sg, 1);
390 	sg_set_page(&sg, page, len, off);
391 	ahash_request_set_crypt(hash, &sg, NULL, len);
392 	crypto_ahash_update(hash);
393 }
394 
395 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
396 		void *pdu, size_t len)
397 {
398 	struct scatterlist sg;
399 
400 	sg_init_one(&sg, pdu, len);
401 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
402 	crypto_ahash_digest(hash);
403 }
404 
405 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
406 		void *pdu, size_t pdu_len)
407 {
408 	struct nvme_tcp_hdr *hdr = pdu;
409 	__le32 recv_digest;
410 	__le32 exp_digest;
411 
412 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
413 		dev_err(queue->ctrl->ctrl.device,
414 			"queue %d: header digest flag is cleared\n",
415 			nvme_tcp_queue_id(queue));
416 		return -EPROTO;
417 	}
418 
419 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
420 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
421 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
422 	if (recv_digest != exp_digest) {
423 		dev_err(queue->ctrl->ctrl.device,
424 			"header digest error: recv %#x expected %#x\n",
425 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
426 		return -EIO;
427 	}
428 
429 	return 0;
430 }
431 
432 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
433 {
434 	struct nvme_tcp_hdr *hdr = pdu;
435 	u8 digest_len = nvme_tcp_hdgst_len(queue);
436 	u32 len;
437 
438 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
439 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
440 
441 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
442 		dev_err(queue->ctrl->ctrl.device,
443 			"queue %d: data digest flag is cleared\n",
444 		nvme_tcp_queue_id(queue));
445 		return -EPROTO;
446 	}
447 	crypto_ahash_init(queue->rcv_hash);
448 
449 	return 0;
450 }
451 
452 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
453 		struct request *rq, unsigned int hctx_idx)
454 {
455 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
456 
457 	page_frag_free(req->pdu);
458 }
459 
460 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
461 		struct request *rq, unsigned int hctx_idx,
462 		unsigned int numa_node)
463 {
464 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
465 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
466 	struct nvme_tcp_cmd_pdu *pdu;
467 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
468 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
469 	u8 hdgst = nvme_tcp_hdgst_len(queue);
470 
471 	req->pdu = page_frag_alloc(&queue->pf_cache,
472 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
473 		GFP_KERNEL | __GFP_ZERO);
474 	if (!req->pdu)
475 		return -ENOMEM;
476 
477 	pdu = req->pdu;
478 	req->queue = queue;
479 	nvme_req(rq)->ctrl = &ctrl->ctrl;
480 	nvme_req(rq)->cmd = &pdu->cmd;
481 
482 	return 0;
483 }
484 
485 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
486 		unsigned int hctx_idx)
487 {
488 	struct nvme_tcp_ctrl *ctrl = data;
489 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
490 
491 	hctx->driver_data = queue;
492 	return 0;
493 }
494 
495 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
496 		unsigned int hctx_idx)
497 {
498 	struct nvme_tcp_ctrl *ctrl = data;
499 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
500 
501 	hctx->driver_data = queue;
502 	return 0;
503 }
504 
505 static enum nvme_tcp_recv_state
506 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
507 {
508 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
509 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
510 		NVME_TCP_RECV_DATA;
511 }
512 
513 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
514 {
515 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
516 				nvme_tcp_hdgst_len(queue);
517 	queue->pdu_offset = 0;
518 	queue->data_remaining = -1;
519 	queue->ddgst_remaining = 0;
520 }
521 
522 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
523 {
524 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
525 		return;
526 
527 	dev_warn(ctrl->device, "starting error recovery\n");
528 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
529 }
530 
531 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
532 		struct nvme_completion *cqe)
533 {
534 	struct nvme_tcp_request *req;
535 	struct request *rq;
536 
537 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
538 	if (!rq) {
539 		dev_err(queue->ctrl->ctrl.device,
540 			"got bad cqe.command_id %#x on queue %d\n",
541 			cqe->command_id, nvme_tcp_queue_id(queue));
542 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
543 		return -EINVAL;
544 	}
545 
546 	req = blk_mq_rq_to_pdu(rq);
547 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
548 		req->status = cqe->status;
549 
550 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
551 		nvme_complete_rq(rq);
552 	queue->nr_cqe++;
553 
554 	return 0;
555 }
556 
557 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
558 		struct nvme_tcp_data_pdu *pdu)
559 {
560 	struct request *rq;
561 
562 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
563 	if (!rq) {
564 		dev_err(queue->ctrl->ctrl.device,
565 			"got bad c2hdata.command_id %#x on queue %d\n",
566 			pdu->command_id, nvme_tcp_queue_id(queue));
567 		return -ENOENT;
568 	}
569 
570 	if (!blk_rq_payload_bytes(rq)) {
571 		dev_err(queue->ctrl->ctrl.device,
572 			"queue %d tag %#x unexpected data\n",
573 			nvme_tcp_queue_id(queue), rq->tag);
574 		return -EIO;
575 	}
576 
577 	queue->data_remaining = le32_to_cpu(pdu->data_length);
578 
579 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
580 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
581 		dev_err(queue->ctrl->ctrl.device,
582 			"queue %d tag %#x SUCCESS set but not last PDU\n",
583 			nvme_tcp_queue_id(queue), rq->tag);
584 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
585 		return -EPROTO;
586 	}
587 
588 	return 0;
589 }
590 
591 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
592 		struct nvme_tcp_rsp_pdu *pdu)
593 {
594 	struct nvme_completion *cqe = &pdu->cqe;
595 	int ret = 0;
596 
597 	/*
598 	 * AEN requests are special as they don't time out and can
599 	 * survive any kind of queue freeze and often don't respond to
600 	 * aborts.  We don't even bother to allocate a struct request
601 	 * for them but rather special case them here.
602 	 */
603 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
604 				     cqe->command_id)))
605 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
606 				&cqe->result);
607 	else
608 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
609 
610 	return ret;
611 }
612 
613 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
614 		struct nvme_tcp_r2t_pdu *pdu)
615 {
616 	struct nvme_tcp_data_pdu *data = req->pdu;
617 	struct nvme_tcp_queue *queue = req->queue;
618 	struct request *rq = blk_mq_rq_from_pdu(req);
619 	u8 hdgst = nvme_tcp_hdgst_len(queue);
620 	u8 ddgst = nvme_tcp_ddgst_len(queue);
621 
622 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
623 	req->pdu_sent = 0;
624 
625 	if (unlikely(!req->pdu_len)) {
626 		dev_err(queue->ctrl->ctrl.device,
627 			"req %d r2t len is %u, probably a bug...\n",
628 			rq->tag, req->pdu_len);
629 		return -EPROTO;
630 	}
631 
632 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
633 		dev_err(queue->ctrl->ctrl.device,
634 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
635 			rq->tag, req->pdu_len, req->data_len,
636 			req->data_sent);
637 		return -EPROTO;
638 	}
639 
640 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
641 		dev_err(queue->ctrl->ctrl.device,
642 			"req %d unexpected r2t offset %u (expected %zu)\n",
643 			rq->tag, le32_to_cpu(pdu->r2t_offset),
644 			req->data_sent);
645 		return -EPROTO;
646 	}
647 
648 	memset(data, 0, sizeof(*data));
649 	data->hdr.type = nvme_tcp_h2c_data;
650 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
651 	if (queue->hdr_digest)
652 		data->hdr.flags |= NVME_TCP_F_HDGST;
653 	if (queue->data_digest)
654 		data->hdr.flags |= NVME_TCP_F_DDGST;
655 	data->hdr.hlen = sizeof(*data);
656 	data->hdr.pdo = data->hdr.hlen + hdgst;
657 	data->hdr.plen =
658 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
659 	data->ttag = pdu->ttag;
660 	data->command_id = nvme_cid(rq);
661 	data->data_offset = pdu->r2t_offset;
662 	data->data_length = cpu_to_le32(req->pdu_len);
663 	return 0;
664 }
665 
666 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
667 		struct nvme_tcp_r2t_pdu *pdu)
668 {
669 	struct nvme_tcp_request *req;
670 	struct request *rq;
671 	int ret;
672 
673 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
674 	if (!rq) {
675 		dev_err(queue->ctrl->ctrl.device,
676 			"got bad r2t.command_id %#x on queue %d\n",
677 			pdu->command_id, nvme_tcp_queue_id(queue));
678 		return -ENOENT;
679 	}
680 	req = blk_mq_rq_to_pdu(rq);
681 
682 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
683 	if (unlikely(ret))
684 		return ret;
685 
686 	req->state = NVME_TCP_SEND_H2C_PDU;
687 	req->offset = 0;
688 
689 	nvme_tcp_queue_request(req, false, true);
690 
691 	return 0;
692 }
693 
694 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
695 		unsigned int *offset, size_t *len)
696 {
697 	struct nvme_tcp_hdr *hdr;
698 	char *pdu = queue->pdu;
699 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
700 	int ret;
701 
702 	ret = skb_copy_bits(skb, *offset,
703 		&pdu[queue->pdu_offset], rcv_len);
704 	if (unlikely(ret))
705 		return ret;
706 
707 	queue->pdu_remaining -= rcv_len;
708 	queue->pdu_offset += rcv_len;
709 	*offset += rcv_len;
710 	*len -= rcv_len;
711 	if (queue->pdu_remaining)
712 		return 0;
713 
714 	hdr = queue->pdu;
715 	if (queue->hdr_digest) {
716 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
717 		if (unlikely(ret))
718 			return ret;
719 	}
720 
721 
722 	if (queue->data_digest) {
723 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
724 		if (unlikely(ret))
725 			return ret;
726 	}
727 
728 	switch (hdr->type) {
729 	case nvme_tcp_c2h_data:
730 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
731 	case nvme_tcp_rsp:
732 		nvme_tcp_init_recv_ctx(queue);
733 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
734 	case nvme_tcp_r2t:
735 		nvme_tcp_init_recv_ctx(queue);
736 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
737 	default:
738 		dev_err(queue->ctrl->ctrl.device,
739 			"unsupported pdu type (%d)\n", hdr->type);
740 		return -EINVAL;
741 	}
742 }
743 
744 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
745 {
746 	union nvme_result res = {};
747 
748 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
749 		nvme_complete_rq(rq);
750 }
751 
752 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
753 			      unsigned int *offset, size_t *len)
754 {
755 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
756 	struct request *rq =
757 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
758 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
759 
760 	while (true) {
761 		int recv_len, ret;
762 
763 		recv_len = min_t(size_t, *len, queue->data_remaining);
764 		if (!recv_len)
765 			break;
766 
767 		if (!iov_iter_count(&req->iter)) {
768 			req->curr_bio = req->curr_bio->bi_next;
769 
770 			/*
771 			 * If we don`t have any bios it means that controller
772 			 * sent more data than we requested, hence error
773 			 */
774 			if (!req->curr_bio) {
775 				dev_err(queue->ctrl->ctrl.device,
776 					"queue %d no space in request %#x",
777 					nvme_tcp_queue_id(queue), rq->tag);
778 				nvme_tcp_init_recv_ctx(queue);
779 				return -EIO;
780 			}
781 			nvme_tcp_init_iter(req, READ);
782 		}
783 
784 		/* we can read only from what is left in this bio */
785 		recv_len = min_t(size_t, recv_len,
786 				iov_iter_count(&req->iter));
787 
788 		if (queue->data_digest)
789 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
790 				&req->iter, recv_len, queue->rcv_hash);
791 		else
792 			ret = skb_copy_datagram_iter(skb, *offset,
793 					&req->iter, recv_len);
794 		if (ret) {
795 			dev_err(queue->ctrl->ctrl.device,
796 				"queue %d failed to copy request %#x data",
797 				nvme_tcp_queue_id(queue), rq->tag);
798 			return ret;
799 		}
800 
801 		*len -= recv_len;
802 		*offset += recv_len;
803 		queue->data_remaining -= recv_len;
804 	}
805 
806 	if (!queue->data_remaining) {
807 		if (queue->data_digest) {
808 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
809 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
810 		} else {
811 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
812 				nvme_tcp_end_request(rq,
813 						le16_to_cpu(req->status));
814 				queue->nr_cqe++;
815 			}
816 			nvme_tcp_init_recv_ctx(queue);
817 		}
818 	}
819 
820 	return 0;
821 }
822 
823 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
824 		struct sk_buff *skb, unsigned int *offset, size_t *len)
825 {
826 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
827 	char *ddgst = (char *)&queue->recv_ddgst;
828 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
829 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
830 	int ret;
831 
832 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
833 	if (unlikely(ret))
834 		return ret;
835 
836 	queue->ddgst_remaining -= recv_len;
837 	*offset += recv_len;
838 	*len -= recv_len;
839 	if (queue->ddgst_remaining)
840 		return 0;
841 
842 	if (queue->recv_ddgst != queue->exp_ddgst) {
843 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
844 					pdu->command_id);
845 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
846 
847 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
848 
849 		dev_err(queue->ctrl->ctrl.device,
850 			"data digest error: recv %#x expected %#x\n",
851 			le32_to_cpu(queue->recv_ddgst),
852 			le32_to_cpu(queue->exp_ddgst));
853 	}
854 
855 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
856 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
857 					pdu->command_id);
858 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
859 
860 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
861 		queue->nr_cqe++;
862 	}
863 
864 	nvme_tcp_init_recv_ctx(queue);
865 	return 0;
866 }
867 
868 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
869 			     unsigned int offset, size_t len)
870 {
871 	struct nvme_tcp_queue *queue = desc->arg.data;
872 	size_t consumed = len;
873 	int result;
874 
875 	while (len) {
876 		switch (nvme_tcp_recv_state(queue)) {
877 		case NVME_TCP_RECV_PDU:
878 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
879 			break;
880 		case NVME_TCP_RECV_DATA:
881 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
882 			break;
883 		case NVME_TCP_RECV_DDGST:
884 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
885 			break;
886 		default:
887 			result = -EFAULT;
888 		}
889 		if (result) {
890 			dev_err(queue->ctrl->ctrl.device,
891 				"receive failed:  %d\n", result);
892 			queue->rd_enabled = false;
893 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
894 			return result;
895 		}
896 	}
897 
898 	return consumed;
899 }
900 
901 static void nvme_tcp_data_ready(struct sock *sk)
902 {
903 	struct nvme_tcp_queue *queue;
904 
905 	read_lock_bh(&sk->sk_callback_lock);
906 	queue = sk->sk_user_data;
907 	if (likely(queue && queue->rd_enabled) &&
908 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
909 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
910 	read_unlock_bh(&sk->sk_callback_lock);
911 }
912 
913 static void nvme_tcp_write_space(struct sock *sk)
914 {
915 	struct nvme_tcp_queue *queue;
916 
917 	read_lock_bh(&sk->sk_callback_lock);
918 	queue = sk->sk_user_data;
919 	if (likely(queue && sk_stream_is_writeable(sk))) {
920 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
921 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
922 	}
923 	read_unlock_bh(&sk->sk_callback_lock);
924 }
925 
926 static void nvme_tcp_state_change(struct sock *sk)
927 {
928 	struct nvme_tcp_queue *queue;
929 
930 	read_lock_bh(&sk->sk_callback_lock);
931 	queue = sk->sk_user_data;
932 	if (!queue)
933 		goto done;
934 
935 	switch (sk->sk_state) {
936 	case TCP_CLOSE:
937 	case TCP_CLOSE_WAIT:
938 	case TCP_LAST_ACK:
939 	case TCP_FIN_WAIT1:
940 	case TCP_FIN_WAIT2:
941 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
942 		break;
943 	default:
944 		dev_info(queue->ctrl->ctrl.device,
945 			"queue %d socket state %d\n",
946 			nvme_tcp_queue_id(queue), sk->sk_state);
947 	}
948 
949 	queue->state_change(sk);
950 done:
951 	read_unlock_bh(&sk->sk_callback_lock);
952 }
953 
954 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
955 {
956 	queue->request = NULL;
957 }
958 
959 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
960 {
961 	if (nvme_tcp_async_req(req)) {
962 		union nvme_result res = {};
963 
964 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
965 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
966 	} else {
967 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
968 				NVME_SC_HOST_PATH_ERROR);
969 	}
970 }
971 
972 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
973 {
974 	struct nvme_tcp_queue *queue = req->queue;
975 	int req_data_len = req->data_len;
976 
977 	while (true) {
978 		struct page *page = nvme_tcp_req_cur_page(req);
979 		size_t offset = nvme_tcp_req_cur_offset(req);
980 		size_t len = nvme_tcp_req_cur_length(req);
981 		bool last = nvme_tcp_pdu_last_send(req, len);
982 		int req_data_sent = req->data_sent;
983 		int ret, flags = MSG_DONTWAIT;
984 
985 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
986 			flags |= MSG_EOR;
987 		else
988 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
989 
990 		if (sendpage_ok(page)) {
991 			ret = kernel_sendpage(queue->sock, page, offset, len,
992 					flags);
993 		} else {
994 			ret = sock_no_sendpage(queue->sock, page, offset, len,
995 					flags);
996 		}
997 		if (ret <= 0)
998 			return ret;
999 
1000 		if (queue->data_digest)
1001 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1002 					offset, ret);
1003 
1004 		/*
1005 		 * update the request iterator except for the last payload send
1006 		 * in the request where we don't want to modify it as we may
1007 		 * compete with the RX path completing the request.
1008 		 */
1009 		if (req_data_sent + ret < req_data_len)
1010 			nvme_tcp_advance_req(req, ret);
1011 
1012 		/* fully successful last send in current PDU */
1013 		if (last && ret == len) {
1014 			if (queue->data_digest) {
1015 				nvme_tcp_ddgst_final(queue->snd_hash,
1016 					&req->ddgst);
1017 				req->state = NVME_TCP_SEND_DDGST;
1018 				req->offset = 0;
1019 			} else {
1020 				nvme_tcp_done_send_req(queue);
1021 			}
1022 			return 1;
1023 		}
1024 	}
1025 	return -EAGAIN;
1026 }
1027 
1028 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1029 {
1030 	struct nvme_tcp_queue *queue = req->queue;
1031 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1032 	bool inline_data = nvme_tcp_has_inline_data(req);
1033 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1034 	int len = sizeof(*pdu) + hdgst - req->offset;
1035 	int flags = MSG_DONTWAIT;
1036 	int ret;
1037 
1038 	if (inline_data || nvme_tcp_queue_more(queue))
1039 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1040 	else
1041 		flags |= MSG_EOR;
1042 
1043 	if (queue->hdr_digest && !req->offset)
1044 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1045 
1046 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1047 			offset_in_page(pdu) + req->offset, len,  flags);
1048 	if (unlikely(ret <= 0))
1049 		return ret;
1050 
1051 	len -= ret;
1052 	if (!len) {
1053 		if (inline_data) {
1054 			req->state = NVME_TCP_SEND_DATA;
1055 			if (queue->data_digest)
1056 				crypto_ahash_init(queue->snd_hash);
1057 		} else {
1058 			nvme_tcp_done_send_req(queue);
1059 		}
1060 		return 1;
1061 	}
1062 	req->offset += ret;
1063 
1064 	return -EAGAIN;
1065 }
1066 
1067 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1068 {
1069 	struct nvme_tcp_queue *queue = req->queue;
1070 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1071 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1072 	int len = sizeof(*pdu) - req->offset + hdgst;
1073 	int ret;
1074 
1075 	if (queue->hdr_digest && !req->offset)
1076 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1077 
1078 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1079 			offset_in_page(pdu) + req->offset, len,
1080 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1081 	if (unlikely(ret <= 0))
1082 		return ret;
1083 
1084 	len -= ret;
1085 	if (!len) {
1086 		req->state = NVME_TCP_SEND_DATA;
1087 		if (queue->data_digest)
1088 			crypto_ahash_init(queue->snd_hash);
1089 		return 1;
1090 	}
1091 	req->offset += ret;
1092 
1093 	return -EAGAIN;
1094 }
1095 
1096 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1097 {
1098 	struct nvme_tcp_queue *queue = req->queue;
1099 	size_t offset = req->offset;
1100 	int ret;
1101 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1102 	struct kvec iov = {
1103 		.iov_base = (u8 *)&req->ddgst + req->offset,
1104 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1105 	};
1106 
1107 	if (nvme_tcp_queue_more(queue))
1108 		msg.msg_flags |= MSG_MORE;
1109 	else
1110 		msg.msg_flags |= MSG_EOR;
1111 
1112 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1113 	if (unlikely(ret <= 0))
1114 		return ret;
1115 
1116 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1117 		nvme_tcp_done_send_req(queue);
1118 		return 1;
1119 	}
1120 
1121 	req->offset += ret;
1122 	return -EAGAIN;
1123 }
1124 
1125 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1126 {
1127 	struct nvme_tcp_request *req;
1128 	int ret = 1;
1129 
1130 	if (!queue->request) {
1131 		queue->request = nvme_tcp_fetch_request(queue);
1132 		if (!queue->request)
1133 			return 0;
1134 	}
1135 	req = queue->request;
1136 
1137 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1138 		ret = nvme_tcp_try_send_cmd_pdu(req);
1139 		if (ret <= 0)
1140 			goto done;
1141 		if (!nvme_tcp_has_inline_data(req))
1142 			return ret;
1143 	}
1144 
1145 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1146 		ret = nvme_tcp_try_send_data_pdu(req);
1147 		if (ret <= 0)
1148 			goto done;
1149 	}
1150 
1151 	if (req->state == NVME_TCP_SEND_DATA) {
1152 		ret = nvme_tcp_try_send_data(req);
1153 		if (ret <= 0)
1154 			goto done;
1155 	}
1156 
1157 	if (req->state == NVME_TCP_SEND_DDGST)
1158 		ret = nvme_tcp_try_send_ddgst(req);
1159 done:
1160 	if (ret == -EAGAIN) {
1161 		ret = 0;
1162 	} else if (ret < 0) {
1163 		dev_err(queue->ctrl->ctrl.device,
1164 			"failed to send request %d\n", ret);
1165 		if (ret != -EPIPE && ret != -ECONNRESET)
1166 			nvme_tcp_fail_request(queue->request);
1167 		nvme_tcp_done_send_req(queue);
1168 	}
1169 	return ret;
1170 }
1171 
1172 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1173 {
1174 	struct socket *sock = queue->sock;
1175 	struct sock *sk = sock->sk;
1176 	read_descriptor_t rd_desc;
1177 	int consumed;
1178 
1179 	rd_desc.arg.data = queue;
1180 	rd_desc.count = 1;
1181 	lock_sock(sk);
1182 	queue->nr_cqe = 0;
1183 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1184 	release_sock(sk);
1185 	return consumed;
1186 }
1187 
1188 static void nvme_tcp_io_work(struct work_struct *w)
1189 {
1190 	struct nvme_tcp_queue *queue =
1191 		container_of(w, struct nvme_tcp_queue, io_work);
1192 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1193 
1194 	do {
1195 		bool pending = false;
1196 		int result;
1197 
1198 		if (mutex_trylock(&queue->send_mutex)) {
1199 			result = nvme_tcp_try_send(queue);
1200 			mutex_unlock(&queue->send_mutex);
1201 			if (result > 0)
1202 				pending = true;
1203 			else if (unlikely(result < 0))
1204 				break;
1205 		}
1206 
1207 		result = nvme_tcp_try_recv(queue);
1208 		if (result > 0)
1209 			pending = true;
1210 		else if (unlikely(result < 0))
1211 			return;
1212 
1213 		if (!pending)
1214 			return;
1215 
1216 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1217 
1218 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1219 }
1220 
1221 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1222 {
1223 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1224 
1225 	ahash_request_free(queue->rcv_hash);
1226 	ahash_request_free(queue->snd_hash);
1227 	crypto_free_ahash(tfm);
1228 }
1229 
1230 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1231 {
1232 	struct crypto_ahash *tfm;
1233 
1234 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1235 	if (IS_ERR(tfm))
1236 		return PTR_ERR(tfm);
1237 
1238 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1239 	if (!queue->snd_hash)
1240 		goto free_tfm;
1241 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1242 
1243 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1244 	if (!queue->rcv_hash)
1245 		goto free_snd_hash;
1246 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1247 
1248 	return 0;
1249 free_snd_hash:
1250 	ahash_request_free(queue->snd_hash);
1251 free_tfm:
1252 	crypto_free_ahash(tfm);
1253 	return -ENOMEM;
1254 }
1255 
1256 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1257 {
1258 	struct nvme_tcp_request *async = &ctrl->async_req;
1259 
1260 	page_frag_free(async->pdu);
1261 }
1262 
1263 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1264 {
1265 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1266 	struct nvme_tcp_request *async = &ctrl->async_req;
1267 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1268 
1269 	async->pdu = page_frag_alloc(&queue->pf_cache,
1270 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1271 		GFP_KERNEL | __GFP_ZERO);
1272 	if (!async->pdu)
1273 		return -ENOMEM;
1274 
1275 	async->queue = &ctrl->queues[0];
1276 	return 0;
1277 }
1278 
1279 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1280 {
1281 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1282 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1283 
1284 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1285 		return;
1286 
1287 	if (queue->hdr_digest || queue->data_digest)
1288 		nvme_tcp_free_crypto(queue);
1289 
1290 	sock_release(queue->sock);
1291 	kfree(queue->pdu);
1292 	mutex_destroy(&queue->send_mutex);
1293 	mutex_destroy(&queue->queue_lock);
1294 }
1295 
1296 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1297 {
1298 	struct nvme_tcp_icreq_pdu *icreq;
1299 	struct nvme_tcp_icresp_pdu *icresp;
1300 	struct msghdr msg = {};
1301 	struct kvec iov;
1302 	bool ctrl_hdgst, ctrl_ddgst;
1303 	int ret;
1304 
1305 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1306 	if (!icreq)
1307 		return -ENOMEM;
1308 
1309 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1310 	if (!icresp) {
1311 		ret = -ENOMEM;
1312 		goto free_icreq;
1313 	}
1314 
1315 	icreq->hdr.type = nvme_tcp_icreq;
1316 	icreq->hdr.hlen = sizeof(*icreq);
1317 	icreq->hdr.pdo = 0;
1318 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1319 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1320 	icreq->maxr2t = 0; /* single inflight r2t supported */
1321 	icreq->hpda = 0; /* no alignment constraint */
1322 	if (queue->hdr_digest)
1323 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1324 	if (queue->data_digest)
1325 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1326 
1327 	iov.iov_base = icreq;
1328 	iov.iov_len = sizeof(*icreq);
1329 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1330 	if (ret < 0)
1331 		goto free_icresp;
1332 
1333 	memset(&msg, 0, sizeof(msg));
1334 	iov.iov_base = icresp;
1335 	iov.iov_len = sizeof(*icresp);
1336 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1337 			iov.iov_len, msg.msg_flags);
1338 	if (ret < 0)
1339 		goto free_icresp;
1340 
1341 	ret = -EINVAL;
1342 	if (icresp->hdr.type != nvme_tcp_icresp) {
1343 		pr_err("queue %d: bad type returned %d\n",
1344 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1345 		goto free_icresp;
1346 	}
1347 
1348 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1349 		pr_err("queue %d: bad pdu length returned %d\n",
1350 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1351 		goto free_icresp;
1352 	}
1353 
1354 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1355 		pr_err("queue %d: bad pfv returned %d\n",
1356 			nvme_tcp_queue_id(queue), icresp->pfv);
1357 		goto free_icresp;
1358 	}
1359 
1360 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1361 	if ((queue->data_digest && !ctrl_ddgst) ||
1362 	    (!queue->data_digest && ctrl_ddgst)) {
1363 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1364 			nvme_tcp_queue_id(queue),
1365 			queue->data_digest ? "enabled" : "disabled",
1366 			ctrl_ddgst ? "enabled" : "disabled");
1367 		goto free_icresp;
1368 	}
1369 
1370 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1371 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1372 	    (!queue->hdr_digest && ctrl_hdgst)) {
1373 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1374 			nvme_tcp_queue_id(queue),
1375 			queue->hdr_digest ? "enabled" : "disabled",
1376 			ctrl_hdgst ? "enabled" : "disabled");
1377 		goto free_icresp;
1378 	}
1379 
1380 	if (icresp->cpda != 0) {
1381 		pr_err("queue %d: unsupported cpda returned %d\n",
1382 			nvme_tcp_queue_id(queue), icresp->cpda);
1383 		goto free_icresp;
1384 	}
1385 
1386 	ret = 0;
1387 free_icresp:
1388 	kfree(icresp);
1389 free_icreq:
1390 	kfree(icreq);
1391 	return ret;
1392 }
1393 
1394 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1395 {
1396 	return nvme_tcp_queue_id(queue) == 0;
1397 }
1398 
1399 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1400 {
1401 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1402 	int qid = nvme_tcp_queue_id(queue);
1403 
1404 	return !nvme_tcp_admin_queue(queue) &&
1405 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1406 }
1407 
1408 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1409 {
1410 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1411 	int qid = nvme_tcp_queue_id(queue);
1412 
1413 	return !nvme_tcp_admin_queue(queue) &&
1414 		!nvme_tcp_default_queue(queue) &&
1415 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1416 			  ctrl->io_queues[HCTX_TYPE_READ];
1417 }
1418 
1419 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1420 {
1421 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1422 	int qid = nvme_tcp_queue_id(queue);
1423 
1424 	return !nvme_tcp_admin_queue(queue) &&
1425 		!nvme_tcp_default_queue(queue) &&
1426 		!nvme_tcp_read_queue(queue) &&
1427 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1428 			  ctrl->io_queues[HCTX_TYPE_READ] +
1429 			  ctrl->io_queues[HCTX_TYPE_POLL];
1430 }
1431 
1432 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1433 {
1434 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1435 	int qid = nvme_tcp_queue_id(queue);
1436 	int n = 0;
1437 
1438 	if (nvme_tcp_default_queue(queue))
1439 		n = qid - 1;
1440 	else if (nvme_tcp_read_queue(queue))
1441 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1442 	else if (nvme_tcp_poll_queue(queue))
1443 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1444 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1445 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1446 }
1447 
1448 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1449 		int qid, size_t queue_size)
1450 {
1451 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1452 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1453 	int ret, rcv_pdu_size;
1454 
1455 	mutex_init(&queue->queue_lock);
1456 	queue->ctrl = ctrl;
1457 	init_llist_head(&queue->req_list);
1458 	INIT_LIST_HEAD(&queue->send_list);
1459 	mutex_init(&queue->send_mutex);
1460 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1461 	queue->queue_size = queue_size;
1462 
1463 	if (qid > 0)
1464 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1465 	else
1466 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1467 						NVME_TCP_ADMIN_CCSZ;
1468 
1469 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1470 			IPPROTO_TCP, &queue->sock);
1471 	if (ret) {
1472 		dev_err(nctrl->device,
1473 			"failed to create socket: %d\n", ret);
1474 		goto err_destroy_mutex;
1475 	}
1476 
1477 	nvme_tcp_reclassify_socket(queue->sock);
1478 
1479 	/* Single syn retry */
1480 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1481 
1482 	/* Set TCP no delay */
1483 	tcp_sock_set_nodelay(queue->sock->sk);
1484 
1485 	/*
1486 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1487 	 * close. This is done to prevent stale data from being sent should
1488 	 * the network connection be restored before TCP times out.
1489 	 */
1490 	sock_no_linger(queue->sock->sk);
1491 
1492 	if (so_priority > 0)
1493 		sock_set_priority(queue->sock->sk, so_priority);
1494 
1495 	/* Set socket type of service */
1496 	if (nctrl->opts->tos >= 0)
1497 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1498 
1499 	/* Set 10 seconds timeout for icresp recvmsg */
1500 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1501 
1502 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1503 	nvme_tcp_set_queue_io_cpu(queue);
1504 	queue->request = NULL;
1505 	queue->data_remaining = 0;
1506 	queue->ddgst_remaining = 0;
1507 	queue->pdu_remaining = 0;
1508 	queue->pdu_offset = 0;
1509 	sk_set_memalloc(queue->sock->sk);
1510 
1511 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1512 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1513 			sizeof(ctrl->src_addr));
1514 		if (ret) {
1515 			dev_err(nctrl->device,
1516 				"failed to bind queue %d socket %d\n",
1517 				qid, ret);
1518 			goto err_sock;
1519 		}
1520 	}
1521 
1522 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1523 		char *iface = nctrl->opts->host_iface;
1524 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1525 
1526 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1527 				      optval, strlen(iface));
1528 		if (ret) {
1529 			dev_err(nctrl->device,
1530 			  "failed to bind to interface %s queue %d err %d\n",
1531 			  iface, qid, ret);
1532 			goto err_sock;
1533 		}
1534 	}
1535 
1536 	queue->hdr_digest = nctrl->opts->hdr_digest;
1537 	queue->data_digest = nctrl->opts->data_digest;
1538 	if (queue->hdr_digest || queue->data_digest) {
1539 		ret = nvme_tcp_alloc_crypto(queue);
1540 		if (ret) {
1541 			dev_err(nctrl->device,
1542 				"failed to allocate queue %d crypto\n", qid);
1543 			goto err_sock;
1544 		}
1545 	}
1546 
1547 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1548 			nvme_tcp_hdgst_len(queue);
1549 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1550 	if (!queue->pdu) {
1551 		ret = -ENOMEM;
1552 		goto err_crypto;
1553 	}
1554 
1555 	dev_dbg(nctrl->device, "connecting queue %d\n",
1556 			nvme_tcp_queue_id(queue));
1557 
1558 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1559 		sizeof(ctrl->addr), 0);
1560 	if (ret) {
1561 		dev_err(nctrl->device,
1562 			"failed to connect socket: %d\n", ret);
1563 		goto err_rcv_pdu;
1564 	}
1565 
1566 	ret = nvme_tcp_init_connection(queue);
1567 	if (ret)
1568 		goto err_init_connect;
1569 
1570 	queue->rd_enabled = true;
1571 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1572 	nvme_tcp_init_recv_ctx(queue);
1573 
1574 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1575 	queue->sock->sk->sk_user_data = queue;
1576 	queue->state_change = queue->sock->sk->sk_state_change;
1577 	queue->data_ready = queue->sock->sk->sk_data_ready;
1578 	queue->write_space = queue->sock->sk->sk_write_space;
1579 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1580 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1581 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1582 #ifdef CONFIG_NET_RX_BUSY_POLL
1583 	queue->sock->sk->sk_ll_usec = 1;
1584 #endif
1585 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1586 
1587 	return 0;
1588 
1589 err_init_connect:
1590 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1591 err_rcv_pdu:
1592 	kfree(queue->pdu);
1593 err_crypto:
1594 	if (queue->hdr_digest || queue->data_digest)
1595 		nvme_tcp_free_crypto(queue);
1596 err_sock:
1597 	sock_release(queue->sock);
1598 	queue->sock = NULL;
1599 err_destroy_mutex:
1600 	mutex_destroy(&queue->send_mutex);
1601 	mutex_destroy(&queue->queue_lock);
1602 	return ret;
1603 }
1604 
1605 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1606 {
1607 	struct socket *sock = queue->sock;
1608 
1609 	write_lock_bh(&sock->sk->sk_callback_lock);
1610 	sock->sk->sk_user_data  = NULL;
1611 	sock->sk->sk_data_ready = queue->data_ready;
1612 	sock->sk->sk_state_change = queue->state_change;
1613 	sock->sk->sk_write_space  = queue->write_space;
1614 	write_unlock_bh(&sock->sk->sk_callback_lock);
1615 }
1616 
1617 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1618 {
1619 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1620 	nvme_tcp_restore_sock_calls(queue);
1621 	cancel_work_sync(&queue->io_work);
1622 }
1623 
1624 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1625 {
1626 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1627 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1628 
1629 	mutex_lock(&queue->queue_lock);
1630 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1631 		__nvme_tcp_stop_queue(queue);
1632 	mutex_unlock(&queue->queue_lock);
1633 }
1634 
1635 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1636 {
1637 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1638 	int ret;
1639 
1640 	if (idx)
1641 		ret = nvmf_connect_io_queue(nctrl, idx);
1642 	else
1643 		ret = nvmf_connect_admin_queue(nctrl);
1644 
1645 	if (!ret) {
1646 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1647 	} else {
1648 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1649 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1650 		dev_err(nctrl->device,
1651 			"failed to connect queue: %d ret=%d\n", idx, ret);
1652 	}
1653 	return ret;
1654 }
1655 
1656 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1657 		bool admin)
1658 {
1659 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1660 	struct blk_mq_tag_set *set;
1661 	int ret;
1662 
1663 	if (admin) {
1664 		set = &ctrl->admin_tag_set;
1665 		memset(set, 0, sizeof(*set));
1666 		set->ops = &nvme_tcp_admin_mq_ops;
1667 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1668 		set->reserved_tags = NVMF_RESERVED_TAGS;
1669 		set->numa_node = nctrl->numa_node;
1670 		set->flags = BLK_MQ_F_BLOCKING;
1671 		set->cmd_size = sizeof(struct nvme_tcp_request);
1672 		set->driver_data = ctrl;
1673 		set->nr_hw_queues = 1;
1674 		set->timeout = NVME_ADMIN_TIMEOUT;
1675 	} else {
1676 		set = &ctrl->tag_set;
1677 		memset(set, 0, sizeof(*set));
1678 		set->ops = &nvme_tcp_mq_ops;
1679 		set->queue_depth = nctrl->sqsize + 1;
1680 		set->reserved_tags = NVMF_RESERVED_TAGS;
1681 		set->numa_node = nctrl->numa_node;
1682 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1683 		set->cmd_size = sizeof(struct nvme_tcp_request);
1684 		set->driver_data = ctrl;
1685 		set->nr_hw_queues = nctrl->queue_count - 1;
1686 		set->timeout = NVME_IO_TIMEOUT;
1687 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1688 	}
1689 
1690 	ret = blk_mq_alloc_tag_set(set);
1691 	if (ret)
1692 		return ERR_PTR(ret);
1693 
1694 	return set;
1695 }
1696 
1697 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1698 {
1699 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1700 		cancel_work_sync(&ctrl->async_event_work);
1701 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1702 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1703 	}
1704 
1705 	nvme_tcp_free_queue(ctrl, 0);
1706 }
1707 
1708 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1709 {
1710 	int i;
1711 
1712 	for (i = 1; i < ctrl->queue_count; i++)
1713 		nvme_tcp_free_queue(ctrl, i);
1714 }
1715 
1716 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1717 {
1718 	int i;
1719 
1720 	for (i = 1; i < ctrl->queue_count; i++)
1721 		nvme_tcp_stop_queue(ctrl, i);
1722 }
1723 
1724 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1725 {
1726 	int i, ret = 0;
1727 
1728 	for (i = 1; i < ctrl->queue_count; i++) {
1729 		ret = nvme_tcp_start_queue(ctrl, i);
1730 		if (ret)
1731 			goto out_stop_queues;
1732 	}
1733 
1734 	return 0;
1735 
1736 out_stop_queues:
1737 	for (i--; i >= 1; i--)
1738 		nvme_tcp_stop_queue(ctrl, i);
1739 	return ret;
1740 }
1741 
1742 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1743 {
1744 	int ret;
1745 
1746 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1747 	if (ret)
1748 		return ret;
1749 
1750 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1751 	if (ret)
1752 		goto out_free_queue;
1753 
1754 	return 0;
1755 
1756 out_free_queue:
1757 	nvme_tcp_free_queue(ctrl, 0);
1758 	return ret;
1759 }
1760 
1761 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1762 {
1763 	int i, ret;
1764 
1765 	for (i = 1; i < ctrl->queue_count; i++) {
1766 		ret = nvme_tcp_alloc_queue(ctrl, i,
1767 				ctrl->sqsize + 1);
1768 		if (ret)
1769 			goto out_free_queues;
1770 	}
1771 
1772 	return 0;
1773 
1774 out_free_queues:
1775 	for (i--; i >= 1; i--)
1776 		nvme_tcp_free_queue(ctrl, i);
1777 
1778 	return ret;
1779 }
1780 
1781 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1782 {
1783 	unsigned int nr_io_queues;
1784 
1785 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1786 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1787 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1788 
1789 	return nr_io_queues;
1790 }
1791 
1792 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1793 		unsigned int nr_io_queues)
1794 {
1795 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1796 	struct nvmf_ctrl_options *opts = nctrl->opts;
1797 
1798 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1799 		/*
1800 		 * separate read/write queues
1801 		 * hand out dedicated default queues only after we have
1802 		 * sufficient read queues.
1803 		 */
1804 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1805 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1806 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1807 			min(opts->nr_write_queues, nr_io_queues);
1808 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1809 	} else {
1810 		/*
1811 		 * shared read/write queues
1812 		 * either no write queues were requested, or we don't have
1813 		 * sufficient queue count to have dedicated default queues.
1814 		 */
1815 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1816 			min(opts->nr_io_queues, nr_io_queues);
1817 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1818 	}
1819 
1820 	if (opts->nr_poll_queues && nr_io_queues) {
1821 		/* map dedicated poll queues only if we have queues left */
1822 		ctrl->io_queues[HCTX_TYPE_POLL] =
1823 			min(opts->nr_poll_queues, nr_io_queues);
1824 	}
1825 }
1826 
1827 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1828 {
1829 	unsigned int nr_io_queues;
1830 	int ret;
1831 
1832 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1833 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1834 	if (ret)
1835 		return ret;
1836 
1837 	if (nr_io_queues == 0) {
1838 		dev_err(ctrl->device,
1839 			"unable to set any I/O queues\n");
1840 		return -ENOMEM;
1841 	}
1842 
1843 	ctrl->queue_count = nr_io_queues + 1;
1844 	dev_info(ctrl->device,
1845 		"creating %d I/O queues.\n", nr_io_queues);
1846 
1847 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1848 
1849 	return __nvme_tcp_alloc_io_queues(ctrl);
1850 }
1851 
1852 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1853 {
1854 	nvme_tcp_stop_io_queues(ctrl);
1855 	if (remove) {
1856 		blk_cleanup_queue(ctrl->connect_q);
1857 		blk_mq_free_tag_set(ctrl->tagset);
1858 	}
1859 	nvme_tcp_free_io_queues(ctrl);
1860 }
1861 
1862 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1863 {
1864 	int ret;
1865 
1866 	ret = nvme_tcp_alloc_io_queues(ctrl);
1867 	if (ret)
1868 		return ret;
1869 
1870 	if (new) {
1871 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1872 		if (IS_ERR(ctrl->tagset)) {
1873 			ret = PTR_ERR(ctrl->tagset);
1874 			goto out_free_io_queues;
1875 		}
1876 
1877 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1878 		if (IS_ERR(ctrl->connect_q)) {
1879 			ret = PTR_ERR(ctrl->connect_q);
1880 			goto out_free_tag_set;
1881 		}
1882 	}
1883 
1884 	ret = nvme_tcp_start_io_queues(ctrl);
1885 	if (ret)
1886 		goto out_cleanup_connect_q;
1887 
1888 	if (!new) {
1889 		nvme_start_queues(ctrl);
1890 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1891 			/*
1892 			 * If we timed out waiting for freeze we are likely to
1893 			 * be stuck.  Fail the controller initialization just
1894 			 * to be safe.
1895 			 */
1896 			ret = -ENODEV;
1897 			goto out_wait_freeze_timed_out;
1898 		}
1899 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1900 			ctrl->queue_count - 1);
1901 		nvme_unfreeze(ctrl);
1902 	}
1903 
1904 	return 0;
1905 
1906 out_wait_freeze_timed_out:
1907 	nvme_stop_queues(ctrl);
1908 	nvme_sync_io_queues(ctrl);
1909 	nvme_tcp_stop_io_queues(ctrl);
1910 out_cleanup_connect_q:
1911 	nvme_cancel_tagset(ctrl);
1912 	if (new)
1913 		blk_cleanup_queue(ctrl->connect_q);
1914 out_free_tag_set:
1915 	if (new)
1916 		blk_mq_free_tag_set(ctrl->tagset);
1917 out_free_io_queues:
1918 	nvme_tcp_free_io_queues(ctrl);
1919 	return ret;
1920 }
1921 
1922 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1923 {
1924 	nvme_tcp_stop_queue(ctrl, 0);
1925 	if (remove) {
1926 		blk_cleanup_queue(ctrl->admin_q);
1927 		blk_cleanup_queue(ctrl->fabrics_q);
1928 		blk_mq_free_tag_set(ctrl->admin_tagset);
1929 	}
1930 	nvme_tcp_free_admin_queue(ctrl);
1931 }
1932 
1933 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1934 {
1935 	int error;
1936 
1937 	error = nvme_tcp_alloc_admin_queue(ctrl);
1938 	if (error)
1939 		return error;
1940 
1941 	if (new) {
1942 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1943 		if (IS_ERR(ctrl->admin_tagset)) {
1944 			error = PTR_ERR(ctrl->admin_tagset);
1945 			goto out_free_queue;
1946 		}
1947 
1948 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1949 		if (IS_ERR(ctrl->fabrics_q)) {
1950 			error = PTR_ERR(ctrl->fabrics_q);
1951 			goto out_free_tagset;
1952 		}
1953 
1954 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1955 		if (IS_ERR(ctrl->admin_q)) {
1956 			error = PTR_ERR(ctrl->admin_q);
1957 			goto out_cleanup_fabrics_q;
1958 		}
1959 	}
1960 
1961 	error = nvme_tcp_start_queue(ctrl, 0);
1962 	if (error)
1963 		goto out_cleanup_queue;
1964 
1965 	error = nvme_enable_ctrl(ctrl);
1966 	if (error)
1967 		goto out_stop_queue;
1968 
1969 	blk_mq_unquiesce_queue(ctrl->admin_q);
1970 
1971 	error = nvme_init_ctrl_finish(ctrl);
1972 	if (error)
1973 		goto out_quiesce_queue;
1974 
1975 	return 0;
1976 
1977 out_quiesce_queue:
1978 	blk_mq_quiesce_queue(ctrl->admin_q);
1979 	blk_sync_queue(ctrl->admin_q);
1980 out_stop_queue:
1981 	nvme_tcp_stop_queue(ctrl, 0);
1982 	nvme_cancel_admin_tagset(ctrl);
1983 out_cleanup_queue:
1984 	if (new)
1985 		blk_cleanup_queue(ctrl->admin_q);
1986 out_cleanup_fabrics_q:
1987 	if (new)
1988 		blk_cleanup_queue(ctrl->fabrics_q);
1989 out_free_tagset:
1990 	if (new)
1991 		blk_mq_free_tag_set(ctrl->admin_tagset);
1992 out_free_queue:
1993 	nvme_tcp_free_admin_queue(ctrl);
1994 	return error;
1995 }
1996 
1997 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1998 		bool remove)
1999 {
2000 	blk_mq_quiesce_queue(ctrl->admin_q);
2001 	blk_sync_queue(ctrl->admin_q);
2002 	nvme_tcp_stop_queue(ctrl, 0);
2003 	nvme_cancel_admin_tagset(ctrl);
2004 	if (remove)
2005 		blk_mq_unquiesce_queue(ctrl->admin_q);
2006 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2007 }
2008 
2009 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2010 		bool remove)
2011 {
2012 	if (ctrl->queue_count <= 1)
2013 		return;
2014 	blk_mq_quiesce_queue(ctrl->admin_q);
2015 	nvme_start_freeze(ctrl);
2016 	nvme_stop_queues(ctrl);
2017 	nvme_sync_io_queues(ctrl);
2018 	nvme_tcp_stop_io_queues(ctrl);
2019 	nvme_cancel_tagset(ctrl);
2020 	if (remove)
2021 		nvme_start_queues(ctrl);
2022 	nvme_tcp_destroy_io_queues(ctrl, remove);
2023 }
2024 
2025 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2026 {
2027 	/* If we are resetting/deleting then do nothing */
2028 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2029 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2030 			ctrl->state == NVME_CTRL_LIVE);
2031 		return;
2032 	}
2033 
2034 	if (nvmf_should_reconnect(ctrl)) {
2035 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2036 			ctrl->opts->reconnect_delay);
2037 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2038 				ctrl->opts->reconnect_delay * HZ);
2039 	} else {
2040 		dev_info(ctrl->device, "Removing controller...\n");
2041 		nvme_delete_ctrl(ctrl);
2042 	}
2043 }
2044 
2045 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2046 {
2047 	struct nvmf_ctrl_options *opts = ctrl->opts;
2048 	int ret;
2049 
2050 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2051 	if (ret)
2052 		return ret;
2053 
2054 	if (ctrl->icdoff) {
2055 		ret = -EOPNOTSUPP;
2056 		dev_err(ctrl->device, "icdoff is not supported!\n");
2057 		goto destroy_admin;
2058 	}
2059 
2060 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2061 		ret = -EOPNOTSUPP;
2062 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2063 		goto destroy_admin;
2064 	}
2065 
2066 	if (opts->queue_size > ctrl->sqsize + 1)
2067 		dev_warn(ctrl->device,
2068 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2069 			opts->queue_size, ctrl->sqsize + 1);
2070 
2071 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2072 		dev_warn(ctrl->device,
2073 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2074 			ctrl->sqsize + 1, ctrl->maxcmd);
2075 		ctrl->sqsize = ctrl->maxcmd - 1;
2076 	}
2077 
2078 	if (ctrl->queue_count > 1) {
2079 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2080 		if (ret)
2081 			goto destroy_admin;
2082 	}
2083 
2084 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2085 		/*
2086 		 * state change failure is ok if we started ctrl delete,
2087 		 * unless we're during creation of a new controller to
2088 		 * avoid races with teardown flow.
2089 		 */
2090 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2091 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2092 		WARN_ON_ONCE(new);
2093 		ret = -EINVAL;
2094 		goto destroy_io;
2095 	}
2096 
2097 	nvme_start_ctrl(ctrl);
2098 	return 0;
2099 
2100 destroy_io:
2101 	if (ctrl->queue_count > 1) {
2102 		nvme_stop_queues(ctrl);
2103 		nvme_sync_io_queues(ctrl);
2104 		nvme_tcp_stop_io_queues(ctrl);
2105 		nvme_cancel_tagset(ctrl);
2106 		nvme_tcp_destroy_io_queues(ctrl, new);
2107 	}
2108 destroy_admin:
2109 	blk_mq_quiesce_queue(ctrl->admin_q);
2110 	blk_sync_queue(ctrl->admin_q);
2111 	nvme_tcp_stop_queue(ctrl, 0);
2112 	nvme_cancel_admin_tagset(ctrl);
2113 	nvme_tcp_destroy_admin_queue(ctrl, new);
2114 	return ret;
2115 }
2116 
2117 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2118 {
2119 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2120 			struct nvme_tcp_ctrl, connect_work);
2121 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2122 
2123 	++ctrl->nr_reconnects;
2124 
2125 	if (nvme_tcp_setup_ctrl(ctrl, false))
2126 		goto requeue;
2127 
2128 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2129 			ctrl->nr_reconnects);
2130 
2131 	ctrl->nr_reconnects = 0;
2132 
2133 	return;
2134 
2135 requeue:
2136 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2137 			ctrl->nr_reconnects);
2138 	nvme_tcp_reconnect_or_remove(ctrl);
2139 }
2140 
2141 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2142 {
2143 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2144 				struct nvme_tcp_ctrl, err_work);
2145 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2146 
2147 	nvme_stop_keep_alive(ctrl);
2148 	flush_work(&ctrl->async_event_work);
2149 	nvme_tcp_teardown_io_queues(ctrl, false);
2150 	/* unquiesce to fail fast pending requests */
2151 	nvme_start_queues(ctrl);
2152 	nvme_tcp_teardown_admin_queue(ctrl, false);
2153 	blk_mq_unquiesce_queue(ctrl->admin_q);
2154 
2155 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2156 		/* state change failure is ok if we started ctrl delete */
2157 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2158 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2159 		return;
2160 	}
2161 
2162 	nvme_tcp_reconnect_or_remove(ctrl);
2163 }
2164 
2165 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2166 {
2167 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2168 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2169 
2170 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2171 	blk_mq_quiesce_queue(ctrl->admin_q);
2172 	if (shutdown)
2173 		nvme_shutdown_ctrl(ctrl);
2174 	else
2175 		nvme_disable_ctrl(ctrl);
2176 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2177 }
2178 
2179 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2180 {
2181 	nvme_tcp_teardown_ctrl(ctrl, true);
2182 }
2183 
2184 static void nvme_reset_ctrl_work(struct work_struct *work)
2185 {
2186 	struct nvme_ctrl *ctrl =
2187 		container_of(work, struct nvme_ctrl, reset_work);
2188 
2189 	nvme_stop_ctrl(ctrl);
2190 	nvme_tcp_teardown_ctrl(ctrl, false);
2191 
2192 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2193 		/* state change failure is ok if we started ctrl delete */
2194 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2195 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2196 		return;
2197 	}
2198 
2199 	if (nvme_tcp_setup_ctrl(ctrl, false))
2200 		goto out_fail;
2201 
2202 	return;
2203 
2204 out_fail:
2205 	++ctrl->nr_reconnects;
2206 	nvme_tcp_reconnect_or_remove(ctrl);
2207 }
2208 
2209 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2210 {
2211 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2212 
2213 	if (list_empty(&ctrl->list))
2214 		goto free_ctrl;
2215 
2216 	mutex_lock(&nvme_tcp_ctrl_mutex);
2217 	list_del(&ctrl->list);
2218 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2219 
2220 	nvmf_free_options(nctrl->opts);
2221 free_ctrl:
2222 	kfree(ctrl->queues);
2223 	kfree(ctrl);
2224 }
2225 
2226 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2227 {
2228 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2229 
2230 	sg->addr = 0;
2231 	sg->length = 0;
2232 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2233 			NVME_SGL_FMT_TRANSPORT_A;
2234 }
2235 
2236 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2237 		struct nvme_command *c, u32 data_len)
2238 {
2239 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2240 
2241 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2242 	sg->length = cpu_to_le32(data_len);
2243 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2244 }
2245 
2246 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2247 		u32 data_len)
2248 {
2249 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2250 
2251 	sg->addr = 0;
2252 	sg->length = cpu_to_le32(data_len);
2253 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2254 			NVME_SGL_FMT_TRANSPORT_A;
2255 }
2256 
2257 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2258 {
2259 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2260 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2261 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2262 	struct nvme_command *cmd = &pdu->cmd;
2263 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2264 
2265 	memset(pdu, 0, sizeof(*pdu));
2266 	pdu->hdr.type = nvme_tcp_cmd;
2267 	if (queue->hdr_digest)
2268 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2269 	pdu->hdr.hlen = sizeof(*pdu);
2270 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2271 
2272 	cmd->common.opcode = nvme_admin_async_event;
2273 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2274 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2275 	nvme_tcp_set_sg_null(cmd);
2276 
2277 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2278 	ctrl->async_req.offset = 0;
2279 	ctrl->async_req.curr_bio = NULL;
2280 	ctrl->async_req.data_len = 0;
2281 
2282 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2283 }
2284 
2285 static void nvme_tcp_complete_timed_out(struct request *rq)
2286 {
2287 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2288 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2289 
2290 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2291 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2292 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2293 		blk_mq_complete_request(rq);
2294 	}
2295 }
2296 
2297 static enum blk_eh_timer_return
2298 nvme_tcp_timeout(struct request *rq, bool reserved)
2299 {
2300 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2301 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2302 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2303 
2304 	dev_warn(ctrl->device,
2305 		"queue %d: timeout request %#x type %d\n",
2306 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2307 
2308 	if (ctrl->state != NVME_CTRL_LIVE) {
2309 		/*
2310 		 * If we are resetting, connecting or deleting we should
2311 		 * complete immediately because we may block controller
2312 		 * teardown or setup sequence
2313 		 * - ctrl disable/shutdown fabrics requests
2314 		 * - connect requests
2315 		 * - initialization admin requests
2316 		 * - I/O requests that entered after unquiescing and
2317 		 *   the controller stopped responding
2318 		 *
2319 		 * All other requests should be cancelled by the error
2320 		 * recovery work, so it's fine that we fail it here.
2321 		 */
2322 		nvme_tcp_complete_timed_out(rq);
2323 		return BLK_EH_DONE;
2324 	}
2325 
2326 	/*
2327 	 * LIVE state should trigger the normal error recovery which will
2328 	 * handle completing this request.
2329 	 */
2330 	nvme_tcp_error_recovery(ctrl);
2331 	return BLK_EH_RESET_TIMER;
2332 }
2333 
2334 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2335 			struct request *rq)
2336 {
2337 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2338 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2339 	struct nvme_command *c = &pdu->cmd;
2340 
2341 	c->common.flags |= NVME_CMD_SGL_METABUF;
2342 
2343 	if (!blk_rq_nr_phys_segments(rq))
2344 		nvme_tcp_set_sg_null(c);
2345 	else if (rq_data_dir(rq) == WRITE &&
2346 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2347 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2348 	else
2349 		nvme_tcp_set_sg_host_data(c, req->data_len);
2350 
2351 	return 0;
2352 }
2353 
2354 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2355 		struct request *rq)
2356 {
2357 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2358 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2359 	struct nvme_tcp_queue *queue = req->queue;
2360 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2361 	blk_status_t ret;
2362 
2363 	ret = nvme_setup_cmd(ns, rq);
2364 	if (ret)
2365 		return ret;
2366 
2367 	req->state = NVME_TCP_SEND_CMD_PDU;
2368 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2369 	req->offset = 0;
2370 	req->data_sent = 0;
2371 	req->pdu_len = 0;
2372 	req->pdu_sent = 0;
2373 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2374 				blk_rq_payload_bytes(rq) : 0;
2375 	req->curr_bio = rq->bio;
2376 	if (req->curr_bio && req->data_len)
2377 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2378 
2379 	if (rq_data_dir(rq) == WRITE &&
2380 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2381 		req->pdu_len = req->data_len;
2382 
2383 	pdu->hdr.type = nvme_tcp_cmd;
2384 	pdu->hdr.flags = 0;
2385 	if (queue->hdr_digest)
2386 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2387 	if (queue->data_digest && req->pdu_len) {
2388 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2389 		ddgst = nvme_tcp_ddgst_len(queue);
2390 	}
2391 	pdu->hdr.hlen = sizeof(*pdu);
2392 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2393 	pdu->hdr.plen =
2394 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2395 
2396 	ret = nvme_tcp_map_data(queue, rq);
2397 	if (unlikely(ret)) {
2398 		nvme_cleanup_cmd(rq);
2399 		dev_err(queue->ctrl->ctrl.device,
2400 			"Failed to map data (%d)\n", ret);
2401 		return ret;
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2408 {
2409 	struct nvme_tcp_queue *queue = hctx->driver_data;
2410 
2411 	if (!llist_empty(&queue->req_list))
2412 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2413 }
2414 
2415 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2416 		const struct blk_mq_queue_data *bd)
2417 {
2418 	struct nvme_ns *ns = hctx->queue->queuedata;
2419 	struct nvme_tcp_queue *queue = hctx->driver_data;
2420 	struct request *rq = bd->rq;
2421 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2422 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2423 	blk_status_t ret;
2424 
2425 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2426 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2427 
2428 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2429 	if (unlikely(ret))
2430 		return ret;
2431 
2432 	blk_mq_start_request(rq);
2433 
2434 	nvme_tcp_queue_request(req, true, bd->last);
2435 
2436 	return BLK_STS_OK;
2437 }
2438 
2439 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2440 {
2441 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2442 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2443 
2444 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2445 		/* separate read/write queues */
2446 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2447 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2448 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2449 		set->map[HCTX_TYPE_READ].nr_queues =
2450 			ctrl->io_queues[HCTX_TYPE_READ];
2451 		set->map[HCTX_TYPE_READ].queue_offset =
2452 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2453 	} else {
2454 		/* shared read/write queues */
2455 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2456 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2457 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2458 		set->map[HCTX_TYPE_READ].nr_queues =
2459 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2460 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2461 	}
2462 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2463 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2464 
2465 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2466 		/* map dedicated poll queues only if we have queues left */
2467 		set->map[HCTX_TYPE_POLL].nr_queues =
2468 				ctrl->io_queues[HCTX_TYPE_POLL];
2469 		set->map[HCTX_TYPE_POLL].queue_offset =
2470 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2471 			ctrl->io_queues[HCTX_TYPE_READ];
2472 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2473 	}
2474 
2475 	dev_info(ctrl->ctrl.device,
2476 		"mapped %d/%d/%d default/read/poll queues.\n",
2477 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2478 		ctrl->io_queues[HCTX_TYPE_READ],
2479 		ctrl->io_queues[HCTX_TYPE_POLL]);
2480 
2481 	return 0;
2482 }
2483 
2484 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2485 {
2486 	struct nvme_tcp_queue *queue = hctx->driver_data;
2487 	struct sock *sk = queue->sock->sk;
2488 
2489 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2490 		return 0;
2491 
2492 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2493 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2494 		sk_busy_loop(sk, true);
2495 	nvme_tcp_try_recv(queue);
2496 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2497 	return queue->nr_cqe;
2498 }
2499 
2500 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2501 	.queue_rq	= nvme_tcp_queue_rq,
2502 	.commit_rqs	= nvme_tcp_commit_rqs,
2503 	.complete	= nvme_complete_rq,
2504 	.init_request	= nvme_tcp_init_request,
2505 	.exit_request	= nvme_tcp_exit_request,
2506 	.init_hctx	= nvme_tcp_init_hctx,
2507 	.timeout	= nvme_tcp_timeout,
2508 	.map_queues	= nvme_tcp_map_queues,
2509 	.poll		= nvme_tcp_poll,
2510 };
2511 
2512 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2513 	.queue_rq	= nvme_tcp_queue_rq,
2514 	.complete	= nvme_complete_rq,
2515 	.init_request	= nvme_tcp_init_request,
2516 	.exit_request	= nvme_tcp_exit_request,
2517 	.init_hctx	= nvme_tcp_init_admin_hctx,
2518 	.timeout	= nvme_tcp_timeout,
2519 };
2520 
2521 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2522 	.name			= "tcp",
2523 	.module			= THIS_MODULE,
2524 	.flags			= NVME_F_FABRICS,
2525 	.reg_read32		= nvmf_reg_read32,
2526 	.reg_read64		= nvmf_reg_read64,
2527 	.reg_write32		= nvmf_reg_write32,
2528 	.free_ctrl		= nvme_tcp_free_ctrl,
2529 	.submit_async_event	= nvme_tcp_submit_async_event,
2530 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2531 	.get_address		= nvmf_get_address,
2532 };
2533 
2534 static bool
2535 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2536 {
2537 	struct nvme_tcp_ctrl *ctrl;
2538 	bool found = false;
2539 
2540 	mutex_lock(&nvme_tcp_ctrl_mutex);
2541 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2542 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2543 		if (found)
2544 			break;
2545 	}
2546 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2547 
2548 	return found;
2549 }
2550 
2551 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2552 		struct nvmf_ctrl_options *opts)
2553 {
2554 	struct nvme_tcp_ctrl *ctrl;
2555 	int ret;
2556 
2557 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2558 	if (!ctrl)
2559 		return ERR_PTR(-ENOMEM);
2560 
2561 	INIT_LIST_HEAD(&ctrl->list);
2562 	ctrl->ctrl.opts = opts;
2563 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2564 				opts->nr_poll_queues + 1;
2565 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2566 	ctrl->ctrl.kato = opts->kato;
2567 
2568 	INIT_DELAYED_WORK(&ctrl->connect_work,
2569 			nvme_tcp_reconnect_ctrl_work);
2570 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2571 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2572 
2573 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2574 		opts->trsvcid =
2575 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2576 		if (!opts->trsvcid) {
2577 			ret = -ENOMEM;
2578 			goto out_free_ctrl;
2579 		}
2580 		opts->mask |= NVMF_OPT_TRSVCID;
2581 	}
2582 
2583 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2584 			opts->traddr, opts->trsvcid, &ctrl->addr);
2585 	if (ret) {
2586 		pr_err("malformed address passed: %s:%s\n",
2587 			opts->traddr, opts->trsvcid);
2588 		goto out_free_ctrl;
2589 	}
2590 
2591 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2592 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2593 			opts->host_traddr, NULL, &ctrl->src_addr);
2594 		if (ret) {
2595 			pr_err("malformed src address passed: %s\n",
2596 			       opts->host_traddr);
2597 			goto out_free_ctrl;
2598 		}
2599 	}
2600 
2601 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2602 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2603 			pr_err("invalid interface passed: %s\n",
2604 			       opts->host_iface);
2605 			ret = -ENODEV;
2606 			goto out_free_ctrl;
2607 		}
2608 	}
2609 
2610 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2611 		ret = -EALREADY;
2612 		goto out_free_ctrl;
2613 	}
2614 
2615 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2616 				GFP_KERNEL);
2617 	if (!ctrl->queues) {
2618 		ret = -ENOMEM;
2619 		goto out_free_ctrl;
2620 	}
2621 
2622 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2623 	if (ret)
2624 		goto out_kfree_queues;
2625 
2626 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2627 		WARN_ON_ONCE(1);
2628 		ret = -EINTR;
2629 		goto out_uninit_ctrl;
2630 	}
2631 
2632 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2633 	if (ret)
2634 		goto out_uninit_ctrl;
2635 
2636 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2637 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2638 
2639 	mutex_lock(&nvme_tcp_ctrl_mutex);
2640 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2641 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2642 
2643 	return &ctrl->ctrl;
2644 
2645 out_uninit_ctrl:
2646 	nvme_uninit_ctrl(&ctrl->ctrl);
2647 	nvme_put_ctrl(&ctrl->ctrl);
2648 	if (ret > 0)
2649 		ret = -EIO;
2650 	return ERR_PTR(ret);
2651 out_kfree_queues:
2652 	kfree(ctrl->queues);
2653 out_free_ctrl:
2654 	kfree(ctrl);
2655 	return ERR_PTR(ret);
2656 }
2657 
2658 static struct nvmf_transport_ops nvme_tcp_transport = {
2659 	.name		= "tcp",
2660 	.module		= THIS_MODULE,
2661 	.required_opts	= NVMF_OPT_TRADDR,
2662 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2663 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2664 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2665 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2666 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2667 	.create_ctrl	= nvme_tcp_create_ctrl,
2668 };
2669 
2670 static int __init nvme_tcp_init_module(void)
2671 {
2672 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2673 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2674 	if (!nvme_tcp_wq)
2675 		return -ENOMEM;
2676 
2677 	nvmf_register_transport(&nvme_tcp_transport);
2678 	return 0;
2679 }
2680 
2681 static void __exit nvme_tcp_cleanup_module(void)
2682 {
2683 	struct nvme_tcp_ctrl *ctrl;
2684 
2685 	nvmf_unregister_transport(&nvme_tcp_transport);
2686 
2687 	mutex_lock(&nvme_tcp_ctrl_mutex);
2688 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2689 		nvme_delete_ctrl(&ctrl->ctrl);
2690 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2691 	flush_workqueue(nvme_delete_wq);
2692 
2693 	destroy_workqueue(nvme_tcp_wq);
2694 }
2695 
2696 module_init(nvme_tcp_init_module);
2697 module_exit(nvme_tcp_cleanup_module);
2698 
2699 MODULE_LICENSE("GPL v2");
2700