1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 #include <trace/events/sock.h> 18 19 #include "nvme.h" 20 #include "fabrics.h" 21 22 struct nvme_tcp_queue; 23 24 /* Define the socket priority to use for connections were it is desirable 25 * that the NIC consider performing optimized packet processing or filtering. 26 * A non-zero value being sufficient to indicate general consideration of any 27 * possible optimization. Making it a module param allows for alternative 28 * values that may be unique for some NIC implementations. 29 */ 30 static int so_priority; 31 module_param(so_priority, int, 0644); 32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 33 34 #ifdef CONFIG_DEBUG_LOCK_ALLOC 35 /* lockdep can detect a circular dependency of the form 36 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 37 * because dependencies are tracked for both nvme-tcp and user contexts. Using 38 * a separate class prevents lockdep from conflating nvme-tcp socket use with 39 * user-space socket API use. 40 */ 41 static struct lock_class_key nvme_tcp_sk_key[2]; 42 static struct lock_class_key nvme_tcp_slock_key[2]; 43 44 static void nvme_tcp_reclassify_socket(struct socket *sock) 45 { 46 struct sock *sk = sock->sk; 47 48 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 49 return; 50 51 switch (sk->sk_family) { 52 case AF_INET: 53 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 54 &nvme_tcp_slock_key[0], 55 "sk_lock-AF_INET-NVME", 56 &nvme_tcp_sk_key[0]); 57 break; 58 case AF_INET6: 59 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 60 &nvme_tcp_slock_key[1], 61 "sk_lock-AF_INET6-NVME", 62 &nvme_tcp_sk_key[1]); 63 break; 64 default: 65 WARN_ON_ONCE(1); 66 } 67 } 68 #else 69 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 70 #endif 71 72 enum nvme_tcp_send_state { 73 NVME_TCP_SEND_CMD_PDU = 0, 74 NVME_TCP_SEND_H2C_PDU, 75 NVME_TCP_SEND_DATA, 76 NVME_TCP_SEND_DDGST, 77 }; 78 79 struct nvme_tcp_request { 80 struct nvme_request req; 81 void *pdu; 82 struct nvme_tcp_queue *queue; 83 u32 data_len; 84 u32 pdu_len; 85 u32 pdu_sent; 86 u32 h2cdata_left; 87 u32 h2cdata_offset; 88 u16 ttag; 89 __le16 status; 90 struct list_head entry; 91 struct llist_node lentry; 92 __le32 ddgst; 93 94 struct bio *curr_bio; 95 struct iov_iter iter; 96 97 /* send state */ 98 size_t offset; 99 size_t data_sent; 100 enum nvme_tcp_send_state state; 101 }; 102 103 enum nvme_tcp_queue_flags { 104 NVME_TCP_Q_ALLOCATED = 0, 105 NVME_TCP_Q_LIVE = 1, 106 NVME_TCP_Q_POLLING = 2, 107 }; 108 109 enum nvme_tcp_recv_state { 110 NVME_TCP_RECV_PDU = 0, 111 NVME_TCP_RECV_DATA, 112 NVME_TCP_RECV_DDGST, 113 }; 114 115 struct nvme_tcp_ctrl; 116 struct nvme_tcp_queue { 117 struct socket *sock; 118 struct work_struct io_work; 119 int io_cpu; 120 121 struct mutex queue_lock; 122 struct mutex send_mutex; 123 struct llist_head req_list; 124 struct list_head send_list; 125 126 /* recv state */ 127 void *pdu; 128 int pdu_remaining; 129 int pdu_offset; 130 size_t data_remaining; 131 size_t ddgst_remaining; 132 unsigned int nr_cqe; 133 134 /* send state */ 135 struct nvme_tcp_request *request; 136 137 u32 maxh2cdata; 138 size_t cmnd_capsule_len; 139 struct nvme_tcp_ctrl *ctrl; 140 unsigned long flags; 141 bool rd_enabled; 142 143 bool hdr_digest; 144 bool data_digest; 145 struct ahash_request *rcv_hash; 146 struct ahash_request *snd_hash; 147 __le32 exp_ddgst; 148 __le32 recv_ddgst; 149 150 struct page_frag_cache pf_cache; 151 152 void (*state_change)(struct sock *); 153 void (*data_ready)(struct sock *); 154 void (*write_space)(struct sock *); 155 }; 156 157 struct nvme_tcp_ctrl { 158 /* read only in the hot path */ 159 struct nvme_tcp_queue *queues; 160 struct blk_mq_tag_set tag_set; 161 162 /* other member variables */ 163 struct list_head list; 164 struct blk_mq_tag_set admin_tag_set; 165 struct sockaddr_storage addr; 166 struct sockaddr_storage src_addr; 167 struct nvme_ctrl ctrl; 168 169 struct work_struct err_work; 170 struct delayed_work connect_work; 171 struct nvme_tcp_request async_req; 172 u32 io_queues[HCTX_MAX_TYPES]; 173 }; 174 175 static LIST_HEAD(nvme_tcp_ctrl_list); 176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 177 static struct workqueue_struct *nvme_tcp_wq; 178 static const struct blk_mq_ops nvme_tcp_mq_ops; 179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 181 182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 183 { 184 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 185 } 186 187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 188 { 189 return queue - queue->ctrl->queues; 190 } 191 192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 193 { 194 u32 queue_idx = nvme_tcp_queue_id(queue); 195 196 if (queue_idx == 0) 197 return queue->ctrl->admin_tag_set.tags[queue_idx]; 198 return queue->ctrl->tag_set.tags[queue_idx - 1]; 199 } 200 201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 202 { 203 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 204 } 205 206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 207 { 208 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 209 } 210 211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 212 { 213 return req->pdu; 214 } 215 216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 217 { 218 /* use the pdu space in the back for the data pdu */ 219 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 220 sizeof(struct nvme_tcp_data_pdu); 221 } 222 223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 224 { 225 if (nvme_is_fabrics(req->req.cmd)) 226 return NVME_TCP_ADMIN_CCSZ; 227 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 228 } 229 230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 231 { 232 return req == &req->queue->ctrl->async_req; 233 } 234 235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 236 { 237 struct request *rq; 238 239 if (unlikely(nvme_tcp_async_req(req))) 240 return false; /* async events don't have a request */ 241 242 rq = blk_mq_rq_from_pdu(req); 243 244 return rq_data_dir(rq) == WRITE && req->data_len && 245 req->data_len <= nvme_tcp_inline_data_size(req); 246 } 247 248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 249 { 250 return req->iter.bvec->bv_page; 251 } 252 253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 254 { 255 return req->iter.bvec->bv_offset + req->iter.iov_offset; 256 } 257 258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 259 { 260 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 261 req->pdu_len - req->pdu_sent); 262 } 263 264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 265 { 266 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 267 req->pdu_len - req->pdu_sent : 0; 268 } 269 270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 271 int len) 272 { 273 return nvme_tcp_pdu_data_left(req) <= len; 274 } 275 276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 277 unsigned int dir) 278 { 279 struct request *rq = blk_mq_rq_from_pdu(req); 280 struct bio_vec *vec; 281 unsigned int size; 282 int nr_bvec; 283 size_t offset; 284 285 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 286 vec = &rq->special_vec; 287 nr_bvec = 1; 288 size = blk_rq_payload_bytes(rq); 289 offset = 0; 290 } else { 291 struct bio *bio = req->curr_bio; 292 struct bvec_iter bi; 293 struct bio_vec bv; 294 295 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 296 nr_bvec = 0; 297 bio_for_each_bvec(bv, bio, bi) { 298 nr_bvec++; 299 } 300 size = bio->bi_iter.bi_size; 301 offset = bio->bi_iter.bi_bvec_done; 302 } 303 304 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 305 req->iter.iov_offset = offset; 306 } 307 308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 309 int len) 310 { 311 req->data_sent += len; 312 req->pdu_sent += len; 313 iov_iter_advance(&req->iter, len); 314 if (!iov_iter_count(&req->iter) && 315 req->data_sent < req->data_len) { 316 req->curr_bio = req->curr_bio->bi_next; 317 nvme_tcp_init_iter(req, ITER_SOURCE); 318 } 319 } 320 321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 322 { 323 int ret; 324 325 /* drain the send queue as much as we can... */ 326 do { 327 ret = nvme_tcp_try_send(queue); 328 } while (ret > 0); 329 } 330 331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 332 { 333 return !list_empty(&queue->send_list) || 334 !llist_empty(&queue->req_list); 335 } 336 337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 338 bool sync, bool last) 339 { 340 struct nvme_tcp_queue *queue = req->queue; 341 bool empty; 342 343 empty = llist_add(&req->lentry, &queue->req_list) && 344 list_empty(&queue->send_list) && !queue->request; 345 346 /* 347 * if we're the first on the send_list and we can try to send 348 * directly, otherwise queue io_work. Also, only do that if we 349 * are on the same cpu, so we don't introduce contention. 350 */ 351 if (queue->io_cpu == raw_smp_processor_id() && 352 sync && empty && mutex_trylock(&queue->send_mutex)) { 353 nvme_tcp_send_all(queue); 354 mutex_unlock(&queue->send_mutex); 355 } 356 357 if (last && nvme_tcp_queue_more(queue)) 358 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 359 } 360 361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 362 { 363 struct nvme_tcp_request *req; 364 struct llist_node *node; 365 366 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 367 req = llist_entry(node, struct nvme_tcp_request, lentry); 368 list_add(&req->entry, &queue->send_list); 369 } 370 } 371 372 static inline struct nvme_tcp_request * 373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 374 { 375 struct nvme_tcp_request *req; 376 377 req = list_first_entry_or_null(&queue->send_list, 378 struct nvme_tcp_request, entry); 379 if (!req) { 380 nvme_tcp_process_req_list(queue); 381 req = list_first_entry_or_null(&queue->send_list, 382 struct nvme_tcp_request, entry); 383 if (unlikely(!req)) 384 return NULL; 385 } 386 387 list_del(&req->entry); 388 return req; 389 } 390 391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 392 __le32 *dgst) 393 { 394 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 395 crypto_ahash_final(hash); 396 } 397 398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 399 struct page *page, off_t off, size_t len) 400 { 401 struct scatterlist sg; 402 403 sg_init_table(&sg, 1); 404 sg_set_page(&sg, page, len, off); 405 ahash_request_set_crypt(hash, &sg, NULL, len); 406 crypto_ahash_update(hash); 407 } 408 409 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 410 void *pdu, size_t len) 411 { 412 struct scatterlist sg; 413 414 sg_init_one(&sg, pdu, len); 415 ahash_request_set_crypt(hash, &sg, pdu + len, len); 416 crypto_ahash_digest(hash); 417 } 418 419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 420 void *pdu, size_t pdu_len) 421 { 422 struct nvme_tcp_hdr *hdr = pdu; 423 __le32 recv_digest; 424 __le32 exp_digest; 425 426 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 427 dev_err(queue->ctrl->ctrl.device, 428 "queue %d: header digest flag is cleared\n", 429 nvme_tcp_queue_id(queue)); 430 return -EPROTO; 431 } 432 433 recv_digest = *(__le32 *)(pdu + hdr->hlen); 434 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 435 exp_digest = *(__le32 *)(pdu + hdr->hlen); 436 if (recv_digest != exp_digest) { 437 dev_err(queue->ctrl->ctrl.device, 438 "header digest error: recv %#x expected %#x\n", 439 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 440 return -EIO; 441 } 442 443 return 0; 444 } 445 446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 447 { 448 struct nvme_tcp_hdr *hdr = pdu; 449 u8 digest_len = nvme_tcp_hdgst_len(queue); 450 u32 len; 451 452 len = le32_to_cpu(hdr->plen) - hdr->hlen - 453 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 454 455 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 456 dev_err(queue->ctrl->ctrl.device, 457 "queue %d: data digest flag is cleared\n", 458 nvme_tcp_queue_id(queue)); 459 return -EPROTO; 460 } 461 crypto_ahash_init(queue->rcv_hash); 462 463 return 0; 464 } 465 466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 467 struct request *rq, unsigned int hctx_idx) 468 { 469 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 470 471 page_frag_free(req->pdu); 472 } 473 474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 475 struct request *rq, unsigned int hctx_idx, 476 unsigned int numa_node) 477 { 478 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 479 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 480 struct nvme_tcp_cmd_pdu *pdu; 481 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 482 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 483 u8 hdgst = nvme_tcp_hdgst_len(queue); 484 485 req->pdu = page_frag_alloc(&queue->pf_cache, 486 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 487 GFP_KERNEL | __GFP_ZERO); 488 if (!req->pdu) 489 return -ENOMEM; 490 491 pdu = req->pdu; 492 req->queue = queue; 493 nvme_req(rq)->ctrl = &ctrl->ctrl; 494 nvme_req(rq)->cmd = &pdu->cmd; 495 496 return 0; 497 } 498 499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 500 unsigned int hctx_idx) 501 { 502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 503 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 504 505 hctx->driver_data = queue; 506 return 0; 507 } 508 509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 510 unsigned int hctx_idx) 511 { 512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 513 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 514 515 hctx->driver_data = queue; 516 return 0; 517 } 518 519 static enum nvme_tcp_recv_state 520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 521 { 522 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 523 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 524 NVME_TCP_RECV_DATA; 525 } 526 527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 528 { 529 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 530 nvme_tcp_hdgst_len(queue); 531 queue->pdu_offset = 0; 532 queue->data_remaining = -1; 533 queue->ddgst_remaining = 0; 534 } 535 536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 537 { 538 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 539 return; 540 541 dev_warn(ctrl->device, "starting error recovery\n"); 542 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 543 } 544 545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 546 struct nvme_completion *cqe) 547 { 548 struct nvme_tcp_request *req; 549 struct request *rq; 550 551 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 552 if (!rq) { 553 dev_err(queue->ctrl->ctrl.device, 554 "got bad cqe.command_id %#x on queue %d\n", 555 cqe->command_id, nvme_tcp_queue_id(queue)); 556 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 557 return -EINVAL; 558 } 559 560 req = blk_mq_rq_to_pdu(rq); 561 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 562 req->status = cqe->status; 563 564 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 565 nvme_complete_rq(rq); 566 queue->nr_cqe++; 567 568 return 0; 569 } 570 571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 572 struct nvme_tcp_data_pdu *pdu) 573 { 574 struct request *rq; 575 576 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 577 if (!rq) { 578 dev_err(queue->ctrl->ctrl.device, 579 "got bad c2hdata.command_id %#x on queue %d\n", 580 pdu->command_id, nvme_tcp_queue_id(queue)); 581 return -ENOENT; 582 } 583 584 if (!blk_rq_payload_bytes(rq)) { 585 dev_err(queue->ctrl->ctrl.device, 586 "queue %d tag %#x unexpected data\n", 587 nvme_tcp_queue_id(queue), rq->tag); 588 return -EIO; 589 } 590 591 queue->data_remaining = le32_to_cpu(pdu->data_length); 592 593 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 594 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 595 dev_err(queue->ctrl->ctrl.device, 596 "queue %d tag %#x SUCCESS set but not last PDU\n", 597 nvme_tcp_queue_id(queue), rq->tag); 598 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 599 return -EPROTO; 600 } 601 602 return 0; 603 } 604 605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 606 struct nvme_tcp_rsp_pdu *pdu) 607 { 608 struct nvme_completion *cqe = &pdu->cqe; 609 int ret = 0; 610 611 /* 612 * AEN requests are special as they don't time out and can 613 * survive any kind of queue freeze and often don't respond to 614 * aborts. We don't even bother to allocate a struct request 615 * for them but rather special case them here. 616 */ 617 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 618 cqe->command_id))) 619 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 620 &cqe->result); 621 else 622 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 623 624 return ret; 625 } 626 627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 628 { 629 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 630 struct nvme_tcp_queue *queue = req->queue; 631 struct request *rq = blk_mq_rq_from_pdu(req); 632 u32 h2cdata_sent = req->pdu_len; 633 u8 hdgst = nvme_tcp_hdgst_len(queue); 634 u8 ddgst = nvme_tcp_ddgst_len(queue); 635 636 req->state = NVME_TCP_SEND_H2C_PDU; 637 req->offset = 0; 638 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 639 req->pdu_sent = 0; 640 req->h2cdata_left -= req->pdu_len; 641 req->h2cdata_offset += h2cdata_sent; 642 643 memset(data, 0, sizeof(*data)); 644 data->hdr.type = nvme_tcp_h2c_data; 645 if (!req->h2cdata_left) 646 data->hdr.flags = NVME_TCP_F_DATA_LAST; 647 if (queue->hdr_digest) 648 data->hdr.flags |= NVME_TCP_F_HDGST; 649 if (queue->data_digest) 650 data->hdr.flags |= NVME_TCP_F_DDGST; 651 data->hdr.hlen = sizeof(*data); 652 data->hdr.pdo = data->hdr.hlen + hdgst; 653 data->hdr.plen = 654 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 655 data->ttag = req->ttag; 656 data->command_id = nvme_cid(rq); 657 data->data_offset = cpu_to_le32(req->h2cdata_offset); 658 data->data_length = cpu_to_le32(req->pdu_len); 659 } 660 661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 662 struct nvme_tcp_r2t_pdu *pdu) 663 { 664 struct nvme_tcp_request *req; 665 struct request *rq; 666 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 667 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 668 669 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 670 if (!rq) { 671 dev_err(queue->ctrl->ctrl.device, 672 "got bad r2t.command_id %#x on queue %d\n", 673 pdu->command_id, nvme_tcp_queue_id(queue)); 674 return -ENOENT; 675 } 676 req = blk_mq_rq_to_pdu(rq); 677 678 if (unlikely(!r2t_length)) { 679 dev_err(queue->ctrl->ctrl.device, 680 "req %d r2t len is %u, probably a bug...\n", 681 rq->tag, r2t_length); 682 return -EPROTO; 683 } 684 685 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 686 dev_err(queue->ctrl->ctrl.device, 687 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 688 rq->tag, r2t_length, req->data_len, req->data_sent); 689 return -EPROTO; 690 } 691 692 if (unlikely(r2t_offset < req->data_sent)) { 693 dev_err(queue->ctrl->ctrl.device, 694 "req %d unexpected r2t offset %u (expected %zu)\n", 695 rq->tag, r2t_offset, req->data_sent); 696 return -EPROTO; 697 } 698 699 req->pdu_len = 0; 700 req->h2cdata_left = r2t_length; 701 req->h2cdata_offset = r2t_offset; 702 req->ttag = pdu->ttag; 703 704 nvme_tcp_setup_h2c_data_pdu(req); 705 nvme_tcp_queue_request(req, false, true); 706 707 return 0; 708 } 709 710 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 711 unsigned int *offset, size_t *len) 712 { 713 struct nvme_tcp_hdr *hdr; 714 char *pdu = queue->pdu; 715 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 716 int ret; 717 718 ret = skb_copy_bits(skb, *offset, 719 &pdu[queue->pdu_offset], rcv_len); 720 if (unlikely(ret)) 721 return ret; 722 723 queue->pdu_remaining -= rcv_len; 724 queue->pdu_offset += rcv_len; 725 *offset += rcv_len; 726 *len -= rcv_len; 727 if (queue->pdu_remaining) 728 return 0; 729 730 hdr = queue->pdu; 731 if (queue->hdr_digest) { 732 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 733 if (unlikely(ret)) 734 return ret; 735 } 736 737 738 if (queue->data_digest) { 739 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 740 if (unlikely(ret)) 741 return ret; 742 } 743 744 switch (hdr->type) { 745 case nvme_tcp_c2h_data: 746 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 747 case nvme_tcp_rsp: 748 nvme_tcp_init_recv_ctx(queue); 749 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 750 case nvme_tcp_r2t: 751 nvme_tcp_init_recv_ctx(queue); 752 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 753 default: 754 dev_err(queue->ctrl->ctrl.device, 755 "unsupported pdu type (%d)\n", hdr->type); 756 return -EINVAL; 757 } 758 } 759 760 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 761 { 762 union nvme_result res = {}; 763 764 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 765 nvme_complete_rq(rq); 766 } 767 768 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 769 unsigned int *offset, size_t *len) 770 { 771 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 772 struct request *rq = 773 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 774 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 775 776 while (true) { 777 int recv_len, ret; 778 779 recv_len = min_t(size_t, *len, queue->data_remaining); 780 if (!recv_len) 781 break; 782 783 if (!iov_iter_count(&req->iter)) { 784 req->curr_bio = req->curr_bio->bi_next; 785 786 /* 787 * If we don`t have any bios it means that controller 788 * sent more data than we requested, hence error 789 */ 790 if (!req->curr_bio) { 791 dev_err(queue->ctrl->ctrl.device, 792 "queue %d no space in request %#x", 793 nvme_tcp_queue_id(queue), rq->tag); 794 nvme_tcp_init_recv_ctx(queue); 795 return -EIO; 796 } 797 nvme_tcp_init_iter(req, ITER_DEST); 798 } 799 800 /* we can read only from what is left in this bio */ 801 recv_len = min_t(size_t, recv_len, 802 iov_iter_count(&req->iter)); 803 804 if (queue->data_digest) 805 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 806 &req->iter, recv_len, queue->rcv_hash); 807 else 808 ret = skb_copy_datagram_iter(skb, *offset, 809 &req->iter, recv_len); 810 if (ret) { 811 dev_err(queue->ctrl->ctrl.device, 812 "queue %d failed to copy request %#x data", 813 nvme_tcp_queue_id(queue), rq->tag); 814 return ret; 815 } 816 817 *len -= recv_len; 818 *offset += recv_len; 819 queue->data_remaining -= recv_len; 820 } 821 822 if (!queue->data_remaining) { 823 if (queue->data_digest) { 824 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 825 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 826 } else { 827 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 828 nvme_tcp_end_request(rq, 829 le16_to_cpu(req->status)); 830 queue->nr_cqe++; 831 } 832 nvme_tcp_init_recv_ctx(queue); 833 } 834 } 835 836 return 0; 837 } 838 839 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 840 struct sk_buff *skb, unsigned int *offset, size_t *len) 841 { 842 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 843 char *ddgst = (char *)&queue->recv_ddgst; 844 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 845 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 846 int ret; 847 848 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 849 if (unlikely(ret)) 850 return ret; 851 852 queue->ddgst_remaining -= recv_len; 853 *offset += recv_len; 854 *len -= recv_len; 855 if (queue->ddgst_remaining) 856 return 0; 857 858 if (queue->recv_ddgst != queue->exp_ddgst) { 859 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 860 pdu->command_id); 861 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 862 863 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 864 865 dev_err(queue->ctrl->ctrl.device, 866 "data digest error: recv %#x expected %#x\n", 867 le32_to_cpu(queue->recv_ddgst), 868 le32_to_cpu(queue->exp_ddgst)); 869 } 870 871 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 872 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 873 pdu->command_id); 874 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 875 876 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 877 queue->nr_cqe++; 878 } 879 880 nvme_tcp_init_recv_ctx(queue); 881 return 0; 882 } 883 884 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 885 unsigned int offset, size_t len) 886 { 887 struct nvme_tcp_queue *queue = desc->arg.data; 888 size_t consumed = len; 889 int result; 890 891 if (unlikely(!queue->rd_enabled)) 892 return -EFAULT; 893 894 while (len) { 895 switch (nvme_tcp_recv_state(queue)) { 896 case NVME_TCP_RECV_PDU: 897 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 898 break; 899 case NVME_TCP_RECV_DATA: 900 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 901 break; 902 case NVME_TCP_RECV_DDGST: 903 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 904 break; 905 default: 906 result = -EFAULT; 907 } 908 if (result) { 909 dev_err(queue->ctrl->ctrl.device, 910 "receive failed: %d\n", result); 911 queue->rd_enabled = false; 912 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 913 return result; 914 } 915 } 916 917 return consumed; 918 } 919 920 static void nvme_tcp_data_ready(struct sock *sk) 921 { 922 struct nvme_tcp_queue *queue; 923 924 trace_sk_data_ready(sk); 925 926 read_lock_bh(&sk->sk_callback_lock); 927 queue = sk->sk_user_data; 928 if (likely(queue && queue->rd_enabled) && 929 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 930 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 931 read_unlock_bh(&sk->sk_callback_lock); 932 } 933 934 static void nvme_tcp_write_space(struct sock *sk) 935 { 936 struct nvme_tcp_queue *queue; 937 938 read_lock_bh(&sk->sk_callback_lock); 939 queue = sk->sk_user_data; 940 if (likely(queue && sk_stream_is_writeable(sk))) { 941 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 942 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 943 } 944 read_unlock_bh(&sk->sk_callback_lock); 945 } 946 947 static void nvme_tcp_state_change(struct sock *sk) 948 { 949 struct nvme_tcp_queue *queue; 950 951 read_lock_bh(&sk->sk_callback_lock); 952 queue = sk->sk_user_data; 953 if (!queue) 954 goto done; 955 956 switch (sk->sk_state) { 957 case TCP_CLOSE: 958 case TCP_CLOSE_WAIT: 959 case TCP_LAST_ACK: 960 case TCP_FIN_WAIT1: 961 case TCP_FIN_WAIT2: 962 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 963 break; 964 default: 965 dev_info(queue->ctrl->ctrl.device, 966 "queue %d socket state %d\n", 967 nvme_tcp_queue_id(queue), sk->sk_state); 968 } 969 970 queue->state_change(sk); 971 done: 972 read_unlock_bh(&sk->sk_callback_lock); 973 } 974 975 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 976 { 977 queue->request = NULL; 978 } 979 980 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 981 { 982 if (nvme_tcp_async_req(req)) { 983 union nvme_result res = {}; 984 985 nvme_complete_async_event(&req->queue->ctrl->ctrl, 986 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 987 } else { 988 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 989 NVME_SC_HOST_PATH_ERROR); 990 } 991 } 992 993 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 994 { 995 struct nvme_tcp_queue *queue = req->queue; 996 int req_data_len = req->data_len; 997 u32 h2cdata_left = req->h2cdata_left; 998 999 while (true) { 1000 struct bio_vec bvec; 1001 struct msghdr msg = { 1002 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1003 }; 1004 struct page *page = nvme_tcp_req_cur_page(req); 1005 size_t offset = nvme_tcp_req_cur_offset(req); 1006 size_t len = nvme_tcp_req_cur_length(req); 1007 bool last = nvme_tcp_pdu_last_send(req, len); 1008 int req_data_sent = req->data_sent; 1009 int ret; 1010 1011 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1012 msg.msg_flags |= MSG_EOR; 1013 else 1014 msg.msg_flags |= MSG_MORE; 1015 1016 if (!sendpage_ok(page)) 1017 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1018 1019 bvec_set_page(&bvec, page, len, offset); 1020 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1021 ret = sock_sendmsg(queue->sock, &msg); 1022 if (ret <= 0) 1023 return ret; 1024 1025 if (queue->data_digest) 1026 nvme_tcp_ddgst_update(queue->snd_hash, page, 1027 offset, ret); 1028 1029 /* 1030 * update the request iterator except for the last payload send 1031 * in the request where we don't want to modify it as we may 1032 * compete with the RX path completing the request. 1033 */ 1034 if (req_data_sent + ret < req_data_len) 1035 nvme_tcp_advance_req(req, ret); 1036 1037 /* fully successful last send in current PDU */ 1038 if (last && ret == len) { 1039 if (queue->data_digest) { 1040 nvme_tcp_ddgst_final(queue->snd_hash, 1041 &req->ddgst); 1042 req->state = NVME_TCP_SEND_DDGST; 1043 req->offset = 0; 1044 } else { 1045 if (h2cdata_left) 1046 nvme_tcp_setup_h2c_data_pdu(req); 1047 else 1048 nvme_tcp_done_send_req(queue); 1049 } 1050 return 1; 1051 } 1052 } 1053 return -EAGAIN; 1054 } 1055 1056 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1057 { 1058 struct nvme_tcp_queue *queue = req->queue; 1059 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1060 struct bio_vec bvec; 1061 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1062 bool inline_data = nvme_tcp_has_inline_data(req); 1063 u8 hdgst = nvme_tcp_hdgst_len(queue); 1064 int len = sizeof(*pdu) + hdgst - req->offset; 1065 int ret; 1066 1067 if (inline_data || nvme_tcp_queue_more(queue)) 1068 msg.msg_flags |= MSG_MORE; 1069 else 1070 msg.msg_flags |= MSG_EOR; 1071 1072 if (queue->hdr_digest && !req->offset) 1073 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1074 1075 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1076 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1077 ret = sock_sendmsg(queue->sock, &msg); 1078 if (unlikely(ret <= 0)) 1079 return ret; 1080 1081 len -= ret; 1082 if (!len) { 1083 if (inline_data) { 1084 req->state = NVME_TCP_SEND_DATA; 1085 if (queue->data_digest) 1086 crypto_ahash_init(queue->snd_hash); 1087 } else { 1088 nvme_tcp_done_send_req(queue); 1089 } 1090 return 1; 1091 } 1092 req->offset += ret; 1093 1094 return -EAGAIN; 1095 } 1096 1097 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1098 { 1099 struct nvme_tcp_queue *queue = req->queue; 1100 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1101 struct bio_vec bvec; 1102 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1103 u8 hdgst = nvme_tcp_hdgst_len(queue); 1104 int len = sizeof(*pdu) - req->offset + hdgst; 1105 int ret; 1106 1107 if (queue->hdr_digest && !req->offset) 1108 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1109 1110 if (!req->h2cdata_left) 1111 msg.msg_flags |= MSG_SPLICE_PAGES; 1112 1113 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1114 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1115 ret = sock_sendmsg(queue->sock, &msg); 1116 if (unlikely(ret <= 0)) 1117 return ret; 1118 1119 len -= ret; 1120 if (!len) { 1121 req->state = NVME_TCP_SEND_DATA; 1122 if (queue->data_digest) 1123 crypto_ahash_init(queue->snd_hash); 1124 return 1; 1125 } 1126 req->offset += ret; 1127 1128 return -EAGAIN; 1129 } 1130 1131 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1132 { 1133 struct nvme_tcp_queue *queue = req->queue; 1134 size_t offset = req->offset; 1135 u32 h2cdata_left = req->h2cdata_left; 1136 int ret; 1137 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1138 struct kvec iov = { 1139 .iov_base = (u8 *)&req->ddgst + req->offset, 1140 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1141 }; 1142 1143 if (nvme_tcp_queue_more(queue)) 1144 msg.msg_flags |= MSG_MORE; 1145 else 1146 msg.msg_flags |= MSG_EOR; 1147 1148 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1149 if (unlikely(ret <= 0)) 1150 return ret; 1151 1152 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1153 if (h2cdata_left) 1154 nvme_tcp_setup_h2c_data_pdu(req); 1155 else 1156 nvme_tcp_done_send_req(queue); 1157 return 1; 1158 } 1159 1160 req->offset += ret; 1161 return -EAGAIN; 1162 } 1163 1164 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1165 { 1166 struct nvme_tcp_request *req; 1167 unsigned int noreclaim_flag; 1168 int ret = 1; 1169 1170 if (!queue->request) { 1171 queue->request = nvme_tcp_fetch_request(queue); 1172 if (!queue->request) 1173 return 0; 1174 } 1175 req = queue->request; 1176 1177 noreclaim_flag = memalloc_noreclaim_save(); 1178 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1179 ret = nvme_tcp_try_send_cmd_pdu(req); 1180 if (ret <= 0) 1181 goto done; 1182 if (!nvme_tcp_has_inline_data(req)) 1183 goto out; 1184 } 1185 1186 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1187 ret = nvme_tcp_try_send_data_pdu(req); 1188 if (ret <= 0) 1189 goto done; 1190 } 1191 1192 if (req->state == NVME_TCP_SEND_DATA) { 1193 ret = nvme_tcp_try_send_data(req); 1194 if (ret <= 0) 1195 goto done; 1196 } 1197 1198 if (req->state == NVME_TCP_SEND_DDGST) 1199 ret = nvme_tcp_try_send_ddgst(req); 1200 done: 1201 if (ret == -EAGAIN) { 1202 ret = 0; 1203 } else if (ret < 0) { 1204 dev_err(queue->ctrl->ctrl.device, 1205 "failed to send request %d\n", ret); 1206 nvme_tcp_fail_request(queue->request); 1207 nvme_tcp_done_send_req(queue); 1208 } 1209 out: 1210 memalloc_noreclaim_restore(noreclaim_flag); 1211 return ret; 1212 } 1213 1214 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1215 { 1216 struct socket *sock = queue->sock; 1217 struct sock *sk = sock->sk; 1218 read_descriptor_t rd_desc; 1219 int consumed; 1220 1221 rd_desc.arg.data = queue; 1222 rd_desc.count = 1; 1223 lock_sock(sk); 1224 queue->nr_cqe = 0; 1225 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1226 release_sock(sk); 1227 return consumed; 1228 } 1229 1230 static void nvme_tcp_io_work(struct work_struct *w) 1231 { 1232 struct nvme_tcp_queue *queue = 1233 container_of(w, struct nvme_tcp_queue, io_work); 1234 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1235 1236 do { 1237 bool pending = false; 1238 int result; 1239 1240 if (mutex_trylock(&queue->send_mutex)) { 1241 result = nvme_tcp_try_send(queue); 1242 mutex_unlock(&queue->send_mutex); 1243 if (result > 0) 1244 pending = true; 1245 else if (unlikely(result < 0)) 1246 break; 1247 } 1248 1249 result = nvme_tcp_try_recv(queue); 1250 if (result > 0) 1251 pending = true; 1252 else if (unlikely(result < 0)) 1253 return; 1254 1255 if (!pending || !queue->rd_enabled) 1256 return; 1257 1258 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1259 1260 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1261 } 1262 1263 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1264 { 1265 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1266 1267 ahash_request_free(queue->rcv_hash); 1268 ahash_request_free(queue->snd_hash); 1269 crypto_free_ahash(tfm); 1270 } 1271 1272 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1273 { 1274 struct crypto_ahash *tfm; 1275 1276 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1277 if (IS_ERR(tfm)) 1278 return PTR_ERR(tfm); 1279 1280 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1281 if (!queue->snd_hash) 1282 goto free_tfm; 1283 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1284 1285 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1286 if (!queue->rcv_hash) 1287 goto free_snd_hash; 1288 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1289 1290 return 0; 1291 free_snd_hash: 1292 ahash_request_free(queue->snd_hash); 1293 free_tfm: 1294 crypto_free_ahash(tfm); 1295 return -ENOMEM; 1296 } 1297 1298 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1299 { 1300 struct nvme_tcp_request *async = &ctrl->async_req; 1301 1302 page_frag_free(async->pdu); 1303 } 1304 1305 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1306 { 1307 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1308 struct nvme_tcp_request *async = &ctrl->async_req; 1309 u8 hdgst = nvme_tcp_hdgst_len(queue); 1310 1311 async->pdu = page_frag_alloc(&queue->pf_cache, 1312 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1313 GFP_KERNEL | __GFP_ZERO); 1314 if (!async->pdu) 1315 return -ENOMEM; 1316 1317 async->queue = &ctrl->queues[0]; 1318 return 0; 1319 } 1320 1321 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1322 { 1323 struct page *page; 1324 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1325 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1326 unsigned int noreclaim_flag; 1327 1328 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1329 return; 1330 1331 if (queue->hdr_digest || queue->data_digest) 1332 nvme_tcp_free_crypto(queue); 1333 1334 if (queue->pf_cache.va) { 1335 page = virt_to_head_page(queue->pf_cache.va); 1336 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1337 queue->pf_cache.va = NULL; 1338 } 1339 1340 noreclaim_flag = memalloc_noreclaim_save(); 1341 sock_release(queue->sock); 1342 memalloc_noreclaim_restore(noreclaim_flag); 1343 1344 kfree(queue->pdu); 1345 mutex_destroy(&queue->send_mutex); 1346 mutex_destroy(&queue->queue_lock); 1347 } 1348 1349 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1350 { 1351 struct nvme_tcp_icreq_pdu *icreq; 1352 struct nvme_tcp_icresp_pdu *icresp; 1353 struct msghdr msg = {}; 1354 struct kvec iov; 1355 bool ctrl_hdgst, ctrl_ddgst; 1356 u32 maxh2cdata; 1357 int ret; 1358 1359 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1360 if (!icreq) 1361 return -ENOMEM; 1362 1363 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1364 if (!icresp) { 1365 ret = -ENOMEM; 1366 goto free_icreq; 1367 } 1368 1369 icreq->hdr.type = nvme_tcp_icreq; 1370 icreq->hdr.hlen = sizeof(*icreq); 1371 icreq->hdr.pdo = 0; 1372 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1373 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1374 icreq->maxr2t = 0; /* single inflight r2t supported */ 1375 icreq->hpda = 0; /* no alignment constraint */ 1376 if (queue->hdr_digest) 1377 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1378 if (queue->data_digest) 1379 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1380 1381 iov.iov_base = icreq; 1382 iov.iov_len = sizeof(*icreq); 1383 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1384 if (ret < 0) 1385 goto free_icresp; 1386 1387 memset(&msg, 0, sizeof(msg)); 1388 iov.iov_base = icresp; 1389 iov.iov_len = sizeof(*icresp); 1390 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1391 iov.iov_len, msg.msg_flags); 1392 if (ret < 0) 1393 goto free_icresp; 1394 1395 ret = -EINVAL; 1396 if (icresp->hdr.type != nvme_tcp_icresp) { 1397 pr_err("queue %d: bad type returned %d\n", 1398 nvme_tcp_queue_id(queue), icresp->hdr.type); 1399 goto free_icresp; 1400 } 1401 1402 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1403 pr_err("queue %d: bad pdu length returned %d\n", 1404 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1405 goto free_icresp; 1406 } 1407 1408 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1409 pr_err("queue %d: bad pfv returned %d\n", 1410 nvme_tcp_queue_id(queue), icresp->pfv); 1411 goto free_icresp; 1412 } 1413 1414 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1415 if ((queue->data_digest && !ctrl_ddgst) || 1416 (!queue->data_digest && ctrl_ddgst)) { 1417 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1418 nvme_tcp_queue_id(queue), 1419 queue->data_digest ? "enabled" : "disabled", 1420 ctrl_ddgst ? "enabled" : "disabled"); 1421 goto free_icresp; 1422 } 1423 1424 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1425 if ((queue->hdr_digest && !ctrl_hdgst) || 1426 (!queue->hdr_digest && ctrl_hdgst)) { 1427 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1428 nvme_tcp_queue_id(queue), 1429 queue->hdr_digest ? "enabled" : "disabled", 1430 ctrl_hdgst ? "enabled" : "disabled"); 1431 goto free_icresp; 1432 } 1433 1434 if (icresp->cpda != 0) { 1435 pr_err("queue %d: unsupported cpda returned %d\n", 1436 nvme_tcp_queue_id(queue), icresp->cpda); 1437 goto free_icresp; 1438 } 1439 1440 maxh2cdata = le32_to_cpu(icresp->maxdata); 1441 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1442 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1443 nvme_tcp_queue_id(queue), maxh2cdata); 1444 goto free_icresp; 1445 } 1446 queue->maxh2cdata = maxh2cdata; 1447 1448 ret = 0; 1449 free_icresp: 1450 kfree(icresp); 1451 free_icreq: 1452 kfree(icreq); 1453 return ret; 1454 } 1455 1456 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1457 { 1458 return nvme_tcp_queue_id(queue) == 0; 1459 } 1460 1461 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1462 { 1463 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1464 int qid = nvme_tcp_queue_id(queue); 1465 1466 return !nvme_tcp_admin_queue(queue) && 1467 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1468 } 1469 1470 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1471 { 1472 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1473 int qid = nvme_tcp_queue_id(queue); 1474 1475 return !nvme_tcp_admin_queue(queue) && 1476 !nvme_tcp_default_queue(queue) && 1477 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1478 ctrl->io_queues[HCTX_TYPE_READ]; 1479 } 1480 1481 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1482 { 1483 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1484 int qid = nvme_tcp_queue_id(queue); 1485 1486 return !nvme_tcp_admin_queue(queue) && 1487 !nvme_tcp_default_queue(queue) && 1488 !nvme_tcp_read_queue(queue) && 1489 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1490 ctrl->io_queues[HCTX_TYPE_READ] + 1491 ctrl->io_queues[HCTX_TYPE_POLL]; 1492 } 1493 1494 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1495 { 1496 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1497 int qid = nvme_tcp_queue_id(queue); 1498 int n = 0; 1499 1500 if (nvme_tcp_default_queue(queue)) 1501 n = qid - 1; 1502 else if (nvme_tcp_read_queue(queue)) 1503 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1504 else if (nvme_tcp_poll_queue(queue)) 1505 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1506 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1507 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1508 } 1509 1510 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid) 1511 { 1512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1513 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1514 int ret, rcv_pdu_size; 1515 1516 mutex_init(&queue->queue_lock); 1517 queue->ctrl = ctrl; 1518 init_llist_head(&queue->req_list); 1519 INIT_LIST_HEAD(&queue->send_list); 1520 mutex_init(&queue->send_mutex); 1521 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1522 1523 if (qid > 0) 1524 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1525 else 1526 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1527 NVME_TCP_ADMIN_CCSZ; 1528 1529 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1530 IPPROTO_TCP, &queue->sock); 1531 if (ret) { 1532 dev_err(nctrl->device, 1533 "failed to create socket: %d\n", ret); 1534 goto err_destroy_mutex; 1535 } 1536 1537 nvme_tcp_reclassify_socket(queue->sock); 1538 1539 /* Single syn retry */ 1540 tcp_sock_set_syncnt(queue->sock->sk, 1); 1541 1542 /* Set TCP no delay */ 1543 tcp_sock_set_nodelay(queue->sock->sk); 1544 1545 /* 1546 * Cleanup whatever is sitting in the TCP transmit queue on socket 1547 * close. This is done to prevent stale data from being sent should 1548 * the network connection be restored before TCP times out. 1549 */ 1550 sock_no_linger(queue->sock->sk); 1551 1552 if (so_priority > 0) 1553 sock_set_priority(queue->sock->sk, so_priority); 1554 1555 /* Set socket type of service */ 1556 if (nctrl->opts->tos >= 0) 1557 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1558 1559 /* Set 10 seconds timeout for icresp recvmsg */ 1560 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1561 1562 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1563 queue->sock->sk->sk_use_task_frag = false; 1564 nvme_tcp_set_queue_io_cpu(queue); 1565 queue->request = NULL; 1566 queue->data_remaining = 0; 1567 queue->ddgst_remaining = 0; 1568 queue->pdu_remaining = 0; 1569 queue->pdu_offset = 0; 1570 sk_set_memalloc(queue->sock->sk); 1571 1572 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1573 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1574 sizeof(ctrl->src_addr)); 1575 if (ret) { 1576 dev_err(nctrl->device, 1577 "failed to bind queue %d socket %d\n", 1578 qid, ret); 1579 goto err_sock; 1580 } 1581 } 1582 1583 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1584 char *iface = nctrl->opts->host_iface; 1585 sockptr_t optval = KERNEL_SOCKPTR(iface); 1586 1587 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1588 optval, strlen(iface)); 1589 if (ret) { 1590 dev_err(nctrl->device, 1591 "failed to bind to interface %s queue %d err %d\n", 1592 iface, qid, ret); 1593 goto err_sock; 1594 } 1595 } 1596 1597 queue->hdr_digest = nctrl->opts->hdr_digest; 1598 queue->data_digest = nctrl->opts->data_digest; 1599 if (queue->hdr_digest || queue->data_digest) { 1600 ret = nvme_tcp_alloc_crypto(queue); 1601 if (ret) { 1602 dev_err(nctrl->device, 1603 "failed to allocate queue %d crypto\n", qid); 1604 goto err_sock; 1605 } 1606 } 1607 1608 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1609 nvme_tcp_hdgst_len(queue); 1610 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1611 if (!queue->pdu) { 1612 ret = -ENOMEM; 1613 goto err_crypto; 1614 } 1615 1616 dev_dbg(nctrl->device, "connecting queue %d\n", 1617 nvme_tcp_queue_id(queue)); 1618 1619 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1620 sizeof(ctrl->addr), 0); 1621 if (ret) { 1622 dev_err(nctrl->device, 1623 "failed to connect socket: %d\n", ret); 1624 goto err_rcv_pdu; 1625 } 1626 1627 ret = nvme_tcp_init_connection(queue); 1628 if (ret) 1629 goto err_init_connect; 1630 1631 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1632 1633 return 0; 1634 1635 err_init_connect: 1636 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1637 err_rcv_pdu: 1638 kfree(queue->pdu); 1639 err_crypto: 1640 if (queue->hdr_digest || queue->data_digest) 1641 nvme_tcp_free_crypto(queue); 1642 err_sock: 1643 sock_release(queue->sock); 1644 queue->sock = NULL; 1645 err_destroy_mutex: 1646 mutex_destroy(&queue->send_mutex); 1647 mutex_destroy(&queue->queue_lock); 1648 return ret; 1649 } 1650 1651 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1652 { 1653 struct socket *sock = queue->sock; 1654 1655 write_lock_bh(&sock->sk->sk_callback_lock); 1656 sock->sk->sk_user_data = NULL; 1657 sock->sk->sk_data_ready = queue->data_ready; 1658 sock->sk->sk_state_change = queue->state_change; 1659 sock->sk->sk_write_space = queue->write_space; 1660 write_unlock_bh(&sock->sk->sk_callback_lock); 1661 } 1662 1663 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1664 { 1665 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1666 nvme_tcp_restore_sock_ops(queue); 1667 cancel_work_sync(&queue->io_work); 1668 } 1669 1670 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1671 { 1672 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1673 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1674 1675 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1676 return; 1677 1678 mutex_lock(&queue->queue_lock); 1679 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1680 __nvme_tcp_stop_queue(queue); 1681 mutex_unlock(&queue->queue_lock); 1682 } 1683 1684 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1685 { 1686 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1687 queue->sock->sk->sk_user_data = queue; 1688 queue->state_change = queue->sock->sk->sk_state_change; 1689 queue->data_ready = queue->sock->sk->sk_data_ready; 1690 queue->write_space = queue->sock->sk->sk_write_space; 1691 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1692 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1693 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1694 #ifdef CONFIG_NET_RX_BUSY_POLL 1695 queue->sock->sk->sk_ll_usec = 1; 1696 #endif 1697 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1698 } 1699 1700 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1701 { 1702 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1703 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1704 int ret; 1705 1706 queue->rd_enabled = true; 1707 nvme_tcp_init_recv_ctx(queue); 1708 nvme_tcp_setup_sock_ops(queue); 1709 1710 if (idx) 1711 ret = nvmf_connect_io_queue(nctrl, idx); 1712 else 1713 ret = nvmf_connect_admin_queue(nctrl); 1714 1715 if (!ret) { 1716 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 1717 } else { 1718 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1719 __nvme_tcp_stop_queue(queue); 1720 dev_err(nctrl->device, 1721 "failed to connect queue: %d ret=%d\n", idx, ret); 1722 } 1723 return ret; 1724 } 1725 1726 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1727 { 1728 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1729 cancel_work_sync(&ctrl->async_event_work); 1730 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1731 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1732 } 1733 1734 nvme_tcp_free_queue(ctrl, 0); 1735 } 1736 1737 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1738 { 1739 int i; 1740 1741 for (i = 1; i < ctrl->queue_count; i++) 1742 nvme_tcp_free_queue(ctrl, i); 1743 } 1744 1745 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1746 { 1747 int i; 1748 1749 for (i = 1; i < ctrl->queue_count; i++) 1750 nvme_tcp_stop_queue(ctrl, i); 1751 } 1752 1753 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 1754 int first, int last) 1755 { 1756 int i, ret; 1757 1758 for (i = first; i < last; i++) { 1759 ret = nvme_tcp_start_queue(ctrl, i); 1760 if (ret) 1761 goto out_stop_queues; 1762 } 1763 1764 return 0; 1765 1766 out_stop_queues: 1767 for (i--; i >= first; i--) 1768 nvme_tcp_stop_queue(ctrl, i); 1769 return ret; 1770 } 1771 1772 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1773 { 1774 int ret; 1775 1776 ret = nvme_tcp_alloc_queue(ctrl, 0); 1777 if (ret) 1778 return ret; 1779 1780 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1781 if (ret) 1782 goto out_free_queue; 1783 1784 return 0; 1785 1786 out_free_queue: 1787 nvme_tcp_free_queue(ctrl, 0); 1788 return ret; 1789 } 1790 1791 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1792 { 1793 int i, ret; 1794 1795 for (i = 1; i < ctrl->queue_count; i++) { 1796 ret = nvme_tcp_alloc_queue(ctrl, i); 1797 if (ret) 1798 goto out_free_queues; 1799 } 1800 1801 return 0; 1802 1803 out_free_queues: 1804 for (i--; i >= 1; i--) 1805 nvme_tcp_free_queue(ctrl, i); 1806 1807 return ret; 1808 } 1809 1810 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1811 { 1812 unsigned int nr_io_queues; 1813 int ret; 1814 1815 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 1816 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1817 if (ret) 1818 return ret; 1819 1820 if (nr_io_queues == 0) { 1821 dev_err(ctrl->device, 1822 "unable to set any I/O queues\n"); 1823 return -ENOMEM; 1824 } 1825 1826 ctrl->queue_count = nr_io_queues + 1; 1827 dev_info(ctrl->device, 1828 "creating %d I/O queues.\n", nr_io_queues); 1829 1830 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 1831 to_tcp_ctrl(ctrl)->io_queues); 1832 return __nvme_tcp_alloc_io_queues(ctrl); 1833 } 1834 1835 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1836 { 1837 nvme_tcp_stop_io_queues(ctrl); 1838 if (remove) 1839 nvme_remove_io_tag_set(ctrl); 1840 nvme_tcp_free_io_queues(ctrl); 1841 } 1842 1843 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1844 { 1845 int ret, nr_queues; 1846 1847 ret = nvme_tcp_alloc_io_queues(ctrl); 1848 if (ret) 1849 return ret; 1850 1851 if (new) { 1852 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 1853 &nvme_tcp_mq_ops, 1854 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 1855 sizeof(struct nvme_tcp_request)); 1856 if (ret) 1857 goto out_free_io_queues; 1858 } 1859 1860 /* 1861 * Only start IO queues for which we have allocated the tagset 1862 * and limitted it to the available queues. On reconnects, the 1863 * queue number might have changed. 1864 */ 1865 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 1866 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 1867 if (ret) 1868 goto out_cleanup_connect_q; 1869 1870 if (!new) { 1871 nvme_start_freeze(ctrl); 1872 nvme_unquiesce_io_queues(ctrl); 1873 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1874 /* 1875 * If we timed out waiting for freeze we are likely to 1876 * be stuck. Fail the controller initialization just 1877 * to be safe. 1878 */ 1879 ret = -ENODEV; 1880 nvme_unfreeze(ctrl); 1881 goto out_wait_freeze_timed_out; 1882 } 1883 blk_mq_update_nr_hw_queues(ctrl->tagset, 1884 ctrl->queue_count - 1); 1885 nvme_unfreeze(ctrl); 1886 } 1887 1888 /* 1889 * If the number of queues has increased (reconnect case) 1890 * start all new queues now. 1891 */ 1892 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 1893 ctrl->tagset->nr_hw_queues + 1); 1894 if (ret) 1895 goto out_wait_freeze_timed_out; 1896 1897 return 0; 1898 1899 out_wait_freeze_timed_out: 1900 nvme_quiesce_io_queues(ctrl); 1901 nvme_sync_io_queues(ctrl); 1902 nvme_tcp_stop_io_queues(ctrl); 1903 out_cleanup_connect_q: 1904 nvme_cancel_tagset(ctrl); 1905 if (new) 1906 nvme_remove_io_tag_set(ctrl); 1907 out_free_io_queues: 1908 nvme_tcp_free_io_queues(ctrl); 1909 return ret; 1910 } 1911 1912 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1913 { 1914 nvme_tcp_stop_queue(ctrl, 0); 1915 if (remove) 1916 nvme_remove_admin_tag_set(ctrl); 1917 nvme_tcp_free_admin_queue(ctrl); 1918 } 1919 1920 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1921 { 1922 int error; 1923 1924 error = nvme_tcp_alloc_admin_queue(ctrl); 1925 if (error) 1926 return error; 1927 1928 if (new) { 1929 error = nvme_alloc_admin_tag_set(ctrl, 1930 &to_tcp_ctrl(ctrl)->admin_tag_set, 1931 &nvme_tcp_admin_mq_ops, 1932 sizeof(struct nvme_tcp_request)); 1933 if (error) 1934 goto out_free_queue; 1935 } 1936 1937 error = nvme_tcp_start_queue(ctrl, 0); 1938 if (error) 1939 goto out_cleanup_tagset; 1940 1941 error = nvme_enable_ctrl(ctrl); 1942 if (error) 1943 goto out_stop_queue; 1944 1945 nvme_unquiesce_admin_queue(ctrl); 1946 1947 error = nvme_init_ctrl_finish(ctrl, false); 1948 if (error) 1949 goto out_quiesce_queue; 1950 1951 return 0; 1952 1953 out_quiesce_queue: 1954 nvme_quiesce_admin_queue(ctrl); 1955 blk_sync_queue(ctrl->admin_q); 1956 out_stop_queue: 1957 nvme_tcp_stop_queue(ctrl, 0); 1958 nvme_cancel_admin_tagset(ctrl); 1959 out_cleanup_tagset: 1960 if (new) 1961 nvme_remove_admin_tag_set(ctrl); 1962 out_free_queue: 1963 nvme_tcp_free_admin_queue(ctrl); 1964 return error; 1965 } 1966 1967 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1968 bool remove) 1969 { 1970 nvme_quiesce_admin_queue(ctrl); 1971 blk_sync_queue(ctrl->admin_q); 1972 nvme_tcp_stop_queue(ctrl, 0); 1973 nvme_cancel_admin_tagset(ctrl); 1974 if (remove) 1975 nvme_unquiesce_admin_queue(ctrl); 1976 nvme_tcp_destroy_admin_queue(ctrl, remove); 1977 } 1978 1979 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1980 bool remove) 1981 { 1982 if (ctrl->queue_count <= 1) 1983 return; 1984 nvme_quiesce_admin_queue(ctrl); 1985 nvme_quiesce_io_queues(ctrl); 1986 nvme_sync_io_queues(ctrl); 1987 nvme_tcp_stop_io_queues(ctrl); 1988 nvme_cancel_tagset(ctrl); 1989 if (remove) 1990 nvme_unquiesce_io_queues(ctrl); 1991 nvme_tcp_destroy_io_queues(ctrl, remove); 1992 } 1993 1994 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1995 { 1996 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1997 1998 /* If we are resetting/deleting then do nothing */ 1999 if (state != NVME_CTRL_CONNECTING) { 2000 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2001 return; 2002 } 2003 2004 if (nvmf_should_reconnect(ctrl)) { 2005 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2006 ctrl->opts->reconnect_delay); 2007 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2008 ctrl->opts->reconnect_delay * HZ); 2009 } else { 2010 dev_info(ctrl->device, "Removing controller...\n"); 2011 nvme_delete_ctrl(ctrl); 2012 } 2013 } 2014 2015 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2016 { 2017 struct nvmf_ctrl_options *opts = ctrl->opts; 2018 int ret; 2019 2020 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2021 if (ret) 2022 return ret; 2023 2024 if (ctrl->icdoff) { 2025 ret = -EOPNOTSUPP; 2026 dev_err(ctrl->device, "icdoff is not supported!\n"); 2027 goto destroy_admin; 2028 } 2029 2030 if (!nvme_ctrl_sgl_supported(ctrl)) { 2031 ret = -EOPNOTSUPP; 2032 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2033 goto destroy_admin; 2034 } 2035 2036 if (opts->queue_size > ctrl->sqsize + 1) 2037 dev_warn(ctrl->device, 2038 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2039 opts->queue_size, ctrl->sqsize + 1); 2040 2041 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2042 dev_warn(ctrl->device, 2043 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2044 ctrl->sqsize + 1, ctrl->maxcmd); 2045 ctrl->sqsize = ctrl->maxcmd - 1; 2046 } 2047 2048 if (ctrl->queue_count > 1) { 2049 ret = nvme_tcp_configure_io_queues(ctrl, new); 2050 if (ret) 2051 goto destroy_admin; 2052 } 2053 2054 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2055 /* 2056 * state change failure is ok if we started ctrl delete, 2057 * unless we're during creation of a new controller to 2058 * avoid races with teardown flow. 2059 */ 2060 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2061 2062 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2063 state != NVME_CTRL_DELETING_NOIO); 2064 WARN_ON_ONCE(new); 2065 ret = -EINVAL; 2066 goto destroy_io; 2067 } 2068 2069 nvme_start_ctrl(ctrl); 2070 return 0; 2071 2072 destroy_io: 2073 if (ctrl->queue_count > 1) { 2074 nvme_quiesce_io_queues(ctrl); 2075 nvme_sync_io_queues(ctrl); 2076 nvme_tcp_stop_io_queues(ctrl); 2077 nvme_cancel_tagset(ctrl); 2078 nvme_tcp_destroy_io_queues(ctrl, new); 2079 } 2080 destroy_admin: 2081 nvme_quiesce_admin_queue(ctrl); 2082 blk_sync_queue(ctrl->admin_q); 2083 nvme_tcp_stop_queue(ctrl, 0); 2084 nvme_cancel_admin_tagset(ctrl); 2085 nvme_tcp_destroy_admin_queue(ctrl, new); 2086 return ret; 2087 } 2088 2089 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2090 { 2091 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2092 struct nvme_tcp_ctrl, connect_work); 2093 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2094 2095 ++ctrl->nr_reconnects; 2096 2097 if (nvme_tcp_setup_ctrl(ctrl, false)) 2098 goto requeue; 2099 2100 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2101 ctrl->nr_reconnects); 2102 2103 ctrl->nr_reconnects = 0; 2104 2105 return; 2106 2107 requeue: 2108 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2109 ctrl->nr_reconnects); 2110 nvme_tcp_reconnect_or_remove(ctrl); 2111 } 2112 2113 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2114 { 2115 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2116 struct nvme_tcp_ctrl, err_work); 2117 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2118 2119 nvme_stop_keep_alive(ctrl); 2120 flush_work(&ctrl->async_event_work); 2121 nvme_tcp_teardown_io_queues(ctrl, false); 2122 /* unquiesce to fail fast pending requests */ 2123 nvme_unquiesce_io_queues(ctrl); 2124 nvme_tcp_teardown_admin_queue(ctrl, false); 2125 nvme_unquiesce_admin_queue(ctrl); 2126 nvme_auth_stop(ctrl); 2127 2128 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2129 /* state change failure is ok if we started ctrl delete */ 2130 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2131 2132 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2133 state != NVME_CTRL_DELETING_NOIO); 2134 return; 2135 } 2136 2137 nvme_tcp_reconnect_or_remove(ctrl); 2138 } 2139 2140 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2141 { 2142 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2143 nvme_quiesce_admin_queue(ctrl); 2144 nvme_disable_ctrl(ctrl, shutdown); 2145 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2146 } 2147 2148 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2149 { 2150 nvme_tcp_teardown_ctrl(ctrl, true); 2151 } 2152 2153 static void nvme_reset_ctrl_work(struct work_struct *work) 2154 { 2155 struct nvme_ctrl *ctrl = 2156 container_of(work, struct nvme_ctrl, reset_work); 2157 2158 nvme_stop_ctrl(ctrl); 2159 nvme_tcp_teardown_ctrl(ctrl, false); 2160 2161 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2162 /* state change failure is ok if we started ctrl delete */ 2163 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2164 2165 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2166 state != NVME_CTRL_DELETING_NOIO); 2167 return; 2168 } 2169 2170 if (nvme_tcp_setup_ctrl(ctrl, false)) 2171 goto out_fail; 2172 2173 return; 2174 2175 out_fail: 2176 ++ctrl->nr_reconnects; 2177 nvme_tcp_reconnect_or_remove(ctrl); 2178 } 2179 2180 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2181 { 2182 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2183 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2184 } 2185 2186 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2187 { 2188 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2189 2190 if (list_empty(&ctrl->list)) 2191 goto free_ctrl; 2192 2193 mutex_lock(&nvme_tcp_ctrl_mutex); 2194 list_del(&ctrl->list); 2195 mutex_unlock(&nvme_tcp_ctrl_mutex); 2196 2197 nvmf_free_options(nctrl->opts); 2198 free_ctrl: 2199 kfree(ctrl->queues); 2200 kfree(ctrl); 2201 } 2202 2203 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2204 { 2205 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2206 2207 sg->addr = 0; 2208 sg->length = 0; 2209 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2210 NVME_SGL_FMT_TRANSPORT_A; 2211 } 2212 2213 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2214 struct nvme_command *c, u32 data_len) 2215 { 2216 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2217 2218 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2219 sg->length = cpu_to_le32(data_len); 2220 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2221 } 2222 2223 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2224 u32 data_len) 2225 { 2226 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2227 2228 sg->addr = 0; 2229 sg->length = cpu_to_le32(data_len); 2230 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2231 NVME_SGL_FMT_TRANSPORT_A; 2232 } 2233 2234 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2235 { 2236 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2237 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2238 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2239 struct nvme_command *cmd = &pdu->cmd; 2240 u8 hdgst = nvme_tcp_hdgst_len(queue); 2241 2242 memset(pdu, 0, sizeof(*pdu)); 2243 pdu->hdr.type = nvme_tcp_cmd; 2244 if (queue->hdr_digest) 2245 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2246 pdu->hdr.hlen = sizeof(*pdu); 2247 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2248 2249 cmd->common.opcode = nvme_admin_async_event; 2250 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2251 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2252 nvme_tcp_set_sg_null(cmd); 2253 2254 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2255 ctrl->async_req.offset = 0; 2256 ctrl->async_req.curr_bio = NULL; 2257 ctrl->async_req.data_len = 0; 2258 2259 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2260 } 2261 2262 static void nvme_tcp_complete_timed_out(struct request *rq) 2263 { 2264 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2265 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2266 2267 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2268 nvmf_complete_timed_out_request(rq); 2269 } 2270 2271 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2272 { 2273 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2274 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2275 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2276 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype; 2277 int qid = nvme_tcp_queue_id(req->queue); 2278 2279 dev_warn(ctrl->device, 2280 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n", 2281 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type, 2282 opc, nvme_opcode_str(qid, opc, fctype)); 2283 2284 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2285 /* 2286 * If we are resetting, connecting or deleting we should 2287 * complete immediately because we may block controller 2288 * teardown or setup sequence 2289 * - ctrl disable/shutdown fabrics requests 2290 * - connect requests 2291 * - initialization admin requests 2292 * - I/O requests that entered after unquiescing and 2293 * the controller stopped responding 2294 * 2295 * All other requests should be cancelled by the error 2296 * recovery work, so it's fine that we fail it here. 2297 */ 2298 nvme_tcp_complete_timed_out(rq); 2299 return BLK_EH_DONE; 2300 } 2301 2302 /* 2303 * LIVE state should trigger the normal error recovery which will 2304 * handle completing this request. 2305 */ 2306 nvme_tcp_error_recovery(ctrl); 2307 return BLK_EH_RESET_TIMER; 2308 } 2309 2310 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2311 struct request *rq) 2312 { 2313 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2314 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2315 struct nvme_command *c = &pdu->cmd; 2316 2317 c->common.flags |= NVME_CMD_SGL_METABUF; 2318 2319 if (!blk_rq_nr_phys_segments(rq)) 2320 nvme_tcp_set_sg_null(c); 2321 else if (rq_data_dir(rq) == WRITE && 2322 req->data_len <= nvme_tcp_inline_data_size(req)) 2323 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2324 else 2325 nvme_tcp_set_sg_host_data(c, req->data_len); 2326 2327 return 0; 2328 } 2329 2330 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2331 struct request *rq) 2332 { 2333 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2334 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2335 struct nvme_tcp_queue *queue = req->queue; 2336 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2337 blk_status_t ret; 2338 2339 ret = nvme_setup_cmd(ns, rq); 2340 if (ret) 2341 return ret; 2342 2343 req->state = NVME_TCP_SEND_CMD_PDU; 2344 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2345 req->offset = 0; 2346 req->data_sent = 0; 2347 req->pdu_len = 0; 2348 req->pdu_sent = 0; 2349 req->h2cdata_left = 0; 2350 req->data_len = blk_rq_nr_phys_segments(rq) ? 2351 blk_rq_payload_bytes(rq) : 0; 2352 req->curr_bio = rq->bio; 2353 if (req->curr_bio && req->data_len) 2354 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2355 2356 if (rq_data_dir(rq) == WRITE && 2357 req->data_len <= nvme_tcp_inline_data_size(req)) 2358 req->pdu_len = req->data_len; 2359 2360 pdu->hdr.type = nvme_tcp_cmd; 2361 pdu->hdr.flags = 0; 2362 if (queue->hdr_digest) 2363 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2364 if (queue->data_digest && req->pdu_len) { 2365 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2366 ddgst = nvme_tcp_ddgst_len(queue); 2367 } 2368 pdu->hdr.hlen = sizeof(*pdu); 2369 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2370 pdu->hdr.plen = 2371 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2372 2373 ret = nvme_tcp_map_data(queue, rq); 2374 if (unlikely(ret)) { 2375 nvme_cleanup_cmd(rq); 2376 dev_err(queue->ctrl->ctrl.device, 2377 "Failed to map data (%d)\n", ret); 2378 return ret; 2379 } 2380 2381 return 0; 2382 } 2383 2384 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2385 { 2386 struct nvme_tcp_queue *queue = hctx->driver_data; 2387 2388 if (!llist_empty(&queue->req_list)) 2389 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2390 } 2391 2392 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2393 const struct blk_mq_queue_data *bd) 2394 { 2395 struct nvme_ns *ns = hctx->queue->queuedata; 2396 struct nvme_tcp_queue *queue = hctx->driver_data; 2397 struct request *rq = bd->rq; 2398 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2399 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2400 blk_status_t ret; 2401 2402 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2403 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2404 2405 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2406 if (unlikely(ret)) 2407 return ret; 2408 2409 nvme_start_request(rq); 2410 2411 nvme_tcp_queue_request(req, true, bd->last); 2412 2413 return BLK_STS_OK; 2414 } 2415 2416 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2417 { 2418 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2419 2420 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2421 } 2422 2423 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2424 { 2425 struct nvme_tcp_queue *queue = hctx->driver_data; 2426 struct sock *sk = queue->sock->sk; 2427 2428 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2429 return 0; 2430 2431 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2432 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2433 sk_busy_loop(sk, true); 2434 nvme_tcp_try_recv(queue); 2435 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2436 return queue->nr_cqe; 2437 } 2438 2439 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2440 { 2441 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2442 struct sockaddr_storage src_addr; 2443 int ret, len; 2444 2445 len = nvmf_get_address(ctrl, buf, size); 2446 2447 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2448 return len; 2449 2450 mutex_lock(&queue->queue_lock); 2451 2452 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2453 if (ret > 0) { 2454 if (len > 0) 2455 len--; /* strip trailing newline */ 2456 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2457 (len) ? "," : "", &src_addr); 2458 } 2459 2460 mutex_unlock(&queue->queue_lock); 2461 2462 return len; 2463 } 2464 2465 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2466 .queue_rq = nvme_tcp_queue_rq, 2467 .commit_rqs = nvme_tcp_commit_rqs, 2468 .complete = nvme_complete_rq, 2469 .init_request = nvme_tcp_init_request, 2470 .exit_request = nvme_tcp_exit_request, 2471 .init_hctx = nvme_tcp_init_hctx, 2472 .timeout = nvme_tcp_timeout, 2473 .map_queues = nvme_tcp_map_queues, 2474 .poll = nvme_tcp_poll, 2475 }; 2476 2477 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2478 .queue_rq = nvme_tcp_queue_rq, 2479 .complete = nvme_complete_rq, 2480 .init_request = nvme_tcp_init_request, 2481 .exit_request = nvme_tcp_exit_request, 2482 .init_hctx = nvme_tcp_init_admin_hctx, 2483 .timeout = nvme_tcp_timeout, 2484 }; 2485 2486 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2487 .name = "tcp", 2488 .module = THIS_MODULE, 2489 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2490 .reg_read32 = nvmf_reg_read32, 2491 .reg_read64 = nvmf_reg_read64, 2492 .reg_write32 = nvmf_reg_write32, 2493 .free_ctrl = nvme_tcp_free_ctrl, 2494 .submit_async_event = nvme_tcp_submit_async_event, 2495 .delete_ctrl = nvme_tcp_delete_ctrl, 2496 .get_address = nvme_tcp_get_address, 2497 .stop_ctrl = nvme_tcp_stop_ctrl, 2498 }; 2499 2500 static bool 2501 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2502 { 2503 struct nvme_tcp_ctrl *ctrl; 2504 bool found = false; 2505 2506 mutex_lock(&nvme_tcp_ctrl_mutex); 2507 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2508 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2509 if (found) 2510 break; 2511 } 2512 mutex_unlock(&nvme_tcp_ctrl_mutex); 2513 2514 return found; 2515 } 2516 2517 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2518 struct nvmf_ctrl_options *opts) 2519 { 2520 struct nvme_tcp_ctrl *ctrl; 2521 int ret; 2522 2523 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2524 if (!ctrl) 2525 return ERR_PTR(-ENOMEM); 2526 2527 INIT_LIST_HEAD(&ctrl->list); 2528 ctrl->ctrl.opts = opts; 2529 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2530 opts->nr_poll_queues + 1; 2531 ctrl->ctrl.sqsize = opts->queue_size - 1; 2532 ctrl->ctrl.kato = opts->kato; 2533 2534 INIT_DELAYED_WORK(&ctrl->connect_work, 2535 nvme_tcp_reconnect_ctrl_work); 2536 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2537 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2538 2539 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2540 opts->trsvcid = 2541 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2542 if (!opts->trsvcid) { 2543 ret = -ENOMEM; 2544 goto out_free_ctrl; 2545 } 2546 opts->mask |= NVMF_OPT_TRSVCID; 2547 } 2548 2549 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2550 opts->traddr, opts->trsvcid, &ctrl->addr); 2551 if (ret) { 2552 pr_err("malformed address passed: %s:%s\n", 2553 opts->traddr, opts->trsvcid); 2554 goto out_free_ctrl; 2555 } 2556 2557 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2558 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2559 opts->host_traddr, NULL, &ctrl->src_addr); 2560 if (ret) { 2561 pr_err("malformed src address passed: %s\n", 2562 opts->host_traddr); 2563 goto out_free_ctrl; 2564 } 2565 } 2566 2567 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2568 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2569 pr_err("invalid interface passed: %s\n", 2570 opts->host_iface); 2571 ret = -ENODEV; 2572 goto out_free_ctrl; 2573 } 2574 } 2575 2576 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2577 ret = -EALREADY; 2578 goto out_free_ctrl; 2579 } 2580 2581 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2582 GFP_KERNEL); 2583 if (!ctrl->queues) { 2584 ret = -ENOMEM; 2585 goto out_free_ctrl; 2586 } 2587 2588 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2589 if (ret) 2590 goto out_kfree_queues; 2591 2592 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2593 WARN_ON_ONCE(1); 2594 ret = -EINTR; 2595 goto out_uninit_ctrl; 2596 } 2597 2598 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2599 if (ret) 2600 goto out_uninit_ctrl; 2601 2602 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2603 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2604 2605 mutex_lock(&nvme_tcp_ctrl_mutex); 2606 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2607 mutex_unlock(&nvme_tcp_ctrl_mutex); 2608 2609 return &ctrl->ctrl; 2610 2611 out_uninit_ctrl: 2612 nvme_uninit_ctrl(&ctrl->ctrl); 2613 nvme_put_ctrl(&ctrl->ctrl); 2614 if (ret > 0) 2615 ret = -EIO; 2616 return ERR_PTR(ret); 2617 out_kfree_queues: 2618 kfree(ctrl->queues); 2619 out_free_ctrl: 2620 kfree(ctrl); 2621 return ERR_PTR(ret); 2622 } 2623 2624 static struct nvmf_transport_ops nvme_tcp_transport = { 2625 .name = "tcp", 2626 .module = THIS_MODULE, 2627 .required_opts = NVMF_OPT_TRADDR, 2628 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2629 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2630 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2631 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2632 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2633 .create_ctrl = nvme_tcp_create_ctrl, 2634 }; 2635 2636 static int __init nvme_tcp_init_module(void) 2637 { 2638 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 2639 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 2640 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 2641 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 2642 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 2643 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 2644 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 2645 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 2646 2647 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2648 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2649 if (!nvme_tcp_wq) 2650 return -ENOMEM; 2651 2652 nvmf_register_transport(&nvme_tcp_transport); 2653 return 0; 2654 } 2655 2656 static void __exit nvme_tcp_cleanup_module(void) 2657 { 2658 struct nvme_tcp_ctrl *ctrl; 2659 2660 nvmf_unregister_transport(&nvme_tcp_transport); 2661 2662 mutex_lock(&nvme_tcp_ctrl_mutex); 2663 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2664 nvme_delete_ctrl(&ctrl->ctrl); 2665 mutex_unlock(&nvme_tcp_ctrl_mutex); 2666 flush_workqueue(nvme_delete_wq); 2667 2668 destroy_workqueue(nvme_tcp_wq); 2669 } 2670 2671 module_init(nvme_tcp_init_module); 2672 module_exit(nvme_tcp_cleanup_module); 2673 2674 MODULE_LICENSE("GPL v2"); 2675