xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		queue_lock;
80 	struct mutex		send_mutex;
81 	struct llist_head	req_list;
82 	struct list_head	send_list;
83 	bool			more_requests;
84 
85 	/* recv state */
86 	void			*pdu;
87 	int			pdu_remaining;
88 	int			pdu_offset;
89 	size_t			data_remaining;
90 	size_t			ddgst_remaining;
91 	unsigned int		nr_cqe;
92 
93 	/* send state */
94 	struct nvme_tcp_request *request;
95 
96 	int			queue_size;
97 	size_t			cmnd_capsule_len;
98 	struct nvme_tcp_ctrl	*ctrl;
99 	unsigned long		flags;
100 	bool			rd_enabled;
101 
102 	bool			hdr_digest;
103 	bool			data_digest;
104 	struct ahash_request	*rcv_hash;
105 	struct ahash_request	*snd_hash;
106 	__le32			exp_ddgst;
107 	__le32			recv_ddgst;
108 
109 	struct page_frag_cache	pf_cache;
110 
111 	void (*state_change)(struct sock *);
112 	void (*data_ready)(struct sock *);
113 	void (*write_space)(struct sock *);
114 };
115 
116 struct nvme_tcp_ctrl {
117 	/* read only in the hot path */
118 	struct nvme_tcp_queue	*queues;
119 	struct blk_mq_tag_set	tag_set;
120 
121 	/* other member variables */
122 	struct list_head	list;
123 	struct blk_mq_tag_set	admin_tag_set;
124 	struct sockaddr_storage addr;
125 	struct sockaddr_storage src_addr;
126 	struct nvme_ctrl	ctrl;
127 
128 	struct work_struct	err_work;
129 	struct delayed_work	connect_work;
130 	struct nvme_tcp_request async_req;
131 	u32			io_queues[HCTX_MAX_TYPES];
132 };
133 
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140 
141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 {
143 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
144 }
145 
146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 {
148 	return queue - queue->ctrl->queues;
149 }
150 
151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 {
153 	u32 queue_idx = nvme_tcp_queue_id(queue);
154 
155 	if (queue_idx == 0)
156 		return queue->ctrl->admin_tag_set.tags[queue_idx];
157 	return queue->ctrl->tag_set.tags[queue_idx - 1];
158 }
159 
160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 {
162 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
163 }
164 
165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 {
167 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
168 }
169 
170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 {
172 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174 
175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 {
177 	return req == &req->queue->ctrl->async_req;
178 }
179 
180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
181 {
182 	struct request *rq;
183 
184 	if (unlikely(nvme_tcp_async_req(req)))
185 		return false; /* async events don't have a request */
186 
187 	rq = blk_mq_rq_from_pdu(req);
188 
189 	return rq_data_dir(rq) == WRITE && req->data_len &&
190 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
191 }
192 
193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 {
195 	return req->iter.bvec->bv_page;
196 }
197 
198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 {
200 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
201 }
202 
203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 {
205 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
206 			req->pdu_len - req->pdu_sent);
207 }
208 
209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
210 {
211 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
212 			req->pdu_len - req->pdu_sent : 0;
213 }
214 
215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
216 		int len)
217 {
218 	return nvme_tcp_pdu_data_left(req) <= len;
219 }
220 
221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
222 		unsigned int dir)
223 {
224 	struct request *rq = blk_mq_rq_from_pdu(req);
225 	struct bio_vec *vec;
226 	unsigned int size;
227 	int nr_bvec;
228 	size_t offset;
229 
230 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
231 		vec = &rq->special_vec;
232 		nr_bvec = 1;
233 		size = blk_rq_payload_bytes(rq);
234 		offset = 0;
235 	} else {
236 		struct bio *bio = req->curr_bio;
237 		struct bvec_iter bi;
238 		struct bio_vec bv;
239 
240 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
241 		nr_bvec = 0;
242 		bio_for_each_bvec(bv, bio, bi) {
243 			nr_bvec++;
244 		}
245 		size = bio->bi_iter.bi_size;
246 		offset = bio->bi_iter.bi_bvec_done;
247 	}
248 
249 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
250 	req->iter.iov_offset = offset;
251 }
252 
253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
254 		int len)
255 {
256 	req->data_sent += len;
257 	req->pdu_sent += len;
258 	iov_iter_advance(&req->iter, len);
259 	if (!iov_iter_count(&req->iter) &&
260 	    req->data_sent < req->data_len) {
261 		req->curr_bio = req->curr_bio->bi_next;
262 		nvme_tcp_init_iter(req, WRITE);
263 	}
264 }
265 
266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
267 {
268 	int ret;
269 
270 	/* drain the send queue as much as we can... */
271 	do {
272 		ret = nvme_tcp_try_send(queue);
273 	} while (ret > 0);
274 }
275 
276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
277 		bool sync, bool last)
278 {
279 	struct nvme_tcp_queue *queue = req->queue;
280 	bool empty;
281 
282 	empty = llist_add(&req->lentry, &queue->req_list) &&
283 		list_empty(&queue->send_list) && !queue->request;
284 
285 	/*
286 	 * if we're the first on the send_list and we can try to send
287 	 * directly, otherwise queue io_work. Also, only do that if we
288 	 * are on the same cpu, so we don't introduce contention.
289 	 */
290 	if (queue->io_cpu == raw_smp_processor_id() &&
291 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
292 		queue->more_requests = !last;
293 		nvme_tcp_send_all(queue);
294 		queue->more_requests = false;
295 		mutex_unlock(&queue->send_mutex);
296 	} else if (last) {
297 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
298 	}
299 }
300 
301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
302 {
303 	struct nvme_tcp_request *req;
304 	struct llist_node *node;
305 
306 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
307 		req = llist_entry(node, struct nvme_tcp_request, lentry);
308 		list_add(&req->entry, &queue->send_list);
309 	}
310 }
311 
312 static inline struct nvme_tcp_request *
313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
314 {
315 	struct nvme_tcp_request *req;
316 
317 	req = list_first_entry_or_null(&queue->send_list,
318 			struct nvme_tcp_request, entry);
319 	if (!req) {
320 		nvme_tcp_process_req_list(queue);
321 		req = list_first_entry_or_null(&queue->send_list,
322 				struct nvme_tcp_request, entry);
323 		if (unlikely(!req))
324 			return NULL;
325 	}
326 
327 	list_del(&req->entry);
328 	return req;
329 }
330 
331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
332 		__le32 *dgst)
333 {
334 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
335 	crypto_ahash_final(hash);
336 }
337 
338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
339 		struct page *page, off_t off, size_t len)
340 {
341 	struct scatterlist sg;
342 
343 	sg_init_marker(&sg, 1);
344 	sg_set_page(&sg, page, len, off);
345 	ahash_request_set_crypt(hash, &sg, NULL, len);
346 	crypto_ahash_update(hash);
347 }
348 
349 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
350 		void *pdu, size_t len)
351 {
352 	struct scatterlist sg;
353 
354 	sg_init_one(&sg, pdu, len);
355 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
356 	crypto_ahash_digest(hash);
357 }
358 
359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
360 		void *pdu, size_t pdu_len)
361 {
362 	struct nvme_tcp_hdr *hdr = pdu;
363 	__le32 recv_digest;
364 	__le32 exp_digest;
365 
366 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
367 		dev_err(queue->ctrl->ctrl.device,
368 			"queue %d: header digest flag is cleared\n",
369 			nvme_tcp_queue_id(queue));
370 		return -EPROTO;
371 	}
372 
373 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
374 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
375 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
376 	if (recv_digest != exp_digest) {
377 		dev_err(queue->ctrl->ctrl.device,
378 			"header digest error: recv %#x expected %#x\n",
379 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
380 		return -EIO;
381 	}
382 
383 	return 0;
384 }
385 
386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
387 {
388 	struct nvme_tcp_hdr *hdr = pdu;
389 	u8 digest_len = nvme_tcp_hdgst_len(queue);
390 	u32 len;
391 
392 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
393 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
394 
395 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
396 		dev_err(queue->ctrl->ctrl.device,
397 			"queue %d: data digest flag is cleared\n",
398 		nvme_tcp_queue_id(queue));
399 		return -EPROTO;
400 	}
401 	crypto_ahash_init(queue->rcv_hash);
402 
403 	return 0;
404 }
405 
406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
407 		struct request *rq, unsigned int hctx_idx)
408 {
409 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
410 
411 	page_frag_free(req->pdu);
412 }
413 
414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
415 		struct request *rq, unsigned int hctx_idx,
416 		unsigned int numa_node)
417 {
418 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
419 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
420 	struct nvme_tcp_cmd_pdu *pdu;
421 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
422 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
423 	u8 hdgst = nvme_tcp_hdgst_len(queue);
424 
425 	req->pdu = page_frag_alloc(&queue->pf_cache,
426 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
427 		GFP_KERNEL | __GFP_ZERO);
428 	if (!req->pdu)
429 		return -ENOMEM;
430 
431 	pdu = req->pdu;
432 	req->queue = queue;
433 	nvme_req(rq)->ctrl = &ctrl->ctrl;
434 	nvme_req(rq)->cmd = &pdu->cmd;
435 
436 	return 0;
437 }
438 
439 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
440 		unsigned int hctx_idx)
441 {
442 	struct nvme_tcp_ctrl *ctrl = data;
443 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
444 
445 	hctx->driver_data = queue;
446 	return 0;
447 }
448 
449 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
450 		unsigned int hctx_idx)
451 {
452 	struct nvme_tcp_ctrl *ctrl = data;
453 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
454 
455 	hctx->driver_data = queue;
456 	return 0;
457 }
458 
459 static enum nvme_tcp_recv_state
460 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
461 {
462 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
463 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
464 		NVME_TCP_RECV_DATA;
465 }
466 
467 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
468 {
469 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
470 				nvme_tcp_hdgst_len(queue);
471 	queue->pdu_offset = 0;
472 	queue->data_remaining = -1;
473 	queue->ddgst_remaining = 0;
474 }
475 
476 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
477 {
478 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
479 		return;
480 
481 	dev_warn(ctrl->device, "starting error recovery\n");
482 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
483 }
484 
485 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
486 		struct nvme_completion *cqe)
487 {
488 	struct request *rq;
489 
490 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
491 	if (!rq) {
492 		dev_err(queue->ctrl->ctrl.device,
493 			"got bad cqe.command_id %#x on queue %d\n",
494 			cqe->command_id, nvme_tcp_queue_id(queue));
495 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
496 		return -EINVAL;
497 	}
498 
499 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
500 		nvme_complete_rq(rq);
501 	queue->nr_cqe++;
502 
503 	return 0;
504 }
505 
506 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
507 		struct nvme_tcp_data_pdu *pdu)
508 {
509 	struct request *rq;
510 
511 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
512 	if (!rq) {
513 		dev_err(queue->ctrl->ctrl.device,
514 			"got bad c2hdata.command_id %#x on queue %d\n",
515 			pdu->command_id, nvme_tcp_queue_id(queue));
516 		return -ENOENT;
517 	}
518 
519 	if (!blk_rq_payload_bytes(rq)) {
520 		dev_err(queue->ctrl->ctrl.device,
521 			"queue %d tag %#x unexpected data\n",
522 			nvme_tcp_queue_id(queue), rq->tag);
523 		return -EIO;
524 	}
525 
526 	queue->data_remaining = le32_to_cpu(pdu->data_length);
527 
528 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
529 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
530 		dev_err(queue->ctrl->ctrl.device,
531 			"queue %d tag %#x SUCCESS set but not last PDU\n",
532 			nvme_tcp_queue_id(queue), rq->tag);
533 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
534 		return -EPROTO;
535 	}
536 
537 	return 0;
538 }
539 
540 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
541 		struct nvme_tcp_rsp_pdu *pdu)
542 {
543 	struct nvme_completion *cqe = &pdu->cqe;
544 	int ret = 0;
545 
546 	/*
547 	 * AEN requests are special as they don't time out and can
548 	 * survive any kind of queue freeze and often don't respond to
549 	 * aborts.  We don't even bother to allocate a struct request
550 	 * for them but rather special case them here.
551 	 */
552 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
553 				     cqe->command_id)))
554 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
555 				&cqe->result);
556 	else
557 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
558 
559 	return ret;
560 }
561 
562 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
563 		struct nvme_tcp_r2t_pdu *pdu)
564 {
565 	struct nvme_tcp_data_pdu *data = req->pdu;
566 	struct nvme_tcp_queue *queue = req->queue;
567 	struct request *rq = blk_mq_rq_from_pdu(req);
568 	u8 hdgst = nvme_tcp_hdgst_len(queue);
569 	u8 ddgst = nvme_tcp_ddgst_len(queue);
570 
571 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
572 	req->pdu_sent = 0;
573 
574 	if (unlikely(!req->pdu_len)) {
575 		dev_err(queue->ctrl->ctrl.device,
576 			"req %d r2t len is %u, probably a bug...\n",
577 			rq->tag, req->pdu_len);
578 		return -EPROTO;
579 	}
580 
581 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
582 		dev_err(queue->ctrl->ctrl.device,
583 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
584 			rq->tag, req->pdu_len, req->data_len,
585 			req->data_sent);
586 		return -EPROTO;
587 	}
588 
589 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
590 		dev_err(queue->ctrl->ctrl.device,
591 			"req %d unexpected r2t offset %u (expected %zu)\n",
592 			rq->tag, le32_to_cpu(pdu->r2t_offset),
593 			req->data_sent);
594 		return -EPROTO;
595 	}
596 
597 	memset(data, 0, sizeof(*data));
598 	data->hdr.type = nvme_tcp_h2c_data;
599 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
600 	if (queue->hdr_digest)
601 		data->hdr.flags |= NVME_TCP_F_HDGST;
602 	if (queue->data_digest)
603 		data->hdr.flags |= NVME_TCP_F_DDGST;
604 	data->hdr.hlen = sizeof(*data);
605 	data->hdr.pdo = data->hdr.hlen + hdgst;
606 	data->hdr.plen =
607 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
608 	data->ttag = pdu->ttag;
609 	data->command_id = nvme_cid(rq);
610 	data->data_offset = cpu_to_le32(req->data_sent);
611 	data->data_length = cpu_to_le32(req->pdu_len);
612 	return 0;
613 }
614 
615 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
616 		struct nvme_tcp_r2t_pdu *pdu)
617 {
618 	struct nvme_tcp_request *req;
619 	struct request *rq;
620 	int ret;
621 
622 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
623 	if (!rq) {
624 		dev_err(queue->ctrl->ctrl.device,
625 			"got bad r2t.command_id %#x on queue %d\n",
626 			pdu->command_id, nvme_tcp_queue_id(queue));
627 		return -ENOENT;
628 	}
629 	req = blk_mq_rq_to_pdu(rq);
630 
631 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
632 	if (unlikely(ret))
633 		return ret;
634 
635 	req->state = NVME_TCP_SEND_H2C_PDU;
636 	req->offset = 0;
637 
638 	nvme_tcp_queue_request(req, false, true);
639 
640 	return 0;
641 }
642 
643 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
644 		unsigned int *offset, size_t *len)
645 {
646 	struct nvme_tcp_hdr *hdr;
647 	char *pdu = queue->pdu;
648 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
649 	int ret;
650 
651 	ret = skb_copy_bits(skb, *offset,
652 		&pdu[queue->pdu_offset], rcv_len);
653 	if (unlikely(ret))
654 		return ret;
655 
656 	queue->pdu_remaining -= rcv_len;
657 	queue->pdu_offset += rcv_len;
658 	*offset += rcv_len;
659 	*len -= rcv_len;
660 	if (queue->pdu_remaining)
661 		return 0;
662 
663 	hdr = queue->pdu;
664 	if (queue->hdr_digest) {
665 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
666 		if (unlikely(ret))
667 			return ret;
668 	}
669 
670 
671 	if (queue->data_digest) {
672 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
673 		if (unlikely(ret))
674 			return ret;
675 	}
676 
677 	switch (hdr->type) {
678 	case nvme_tcp_c2h_data:
679 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
680 	case nvme_tcp_rsp:
681 		nvme_tcp_init_recv_ctx(queue);
682 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
683 	case nvme_tcp_r2t:
684 		nvme_tcp_init_recv_ctx(queue);
685 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
686 	default:
687 		dev_err(queue->ctrl->ctrl.device,
688 			"unsupported pdu type (%d)\n", hdr->type);
689 		return -EINVAL;
690 	}
691 }
692 
693 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
694 {
695 	union nvme_result res = {};
696 
697 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
698 		nvme_complete_rq(rq);
699 }
700 
701 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
702 			      unsigned int *offset, size_t *len)
703 {
704 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
705 	struct request *rq =
706 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
707 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
708 
709 	while (true) {
710 		int recv_len, ret;
711 
712 		recv_len = min_t(size_t, *len, queue->data_remaining);
713 		if (!recv_len)
714 			break;
715 
716 		if (!iov_iter_count(&req->iter)) {
717 			req->curr_bio = req->curr_bio->bi_next;
718 
719 			/*
720 			 * If we don`t have any bios it means that controller
721 			 * sent more data than we requested, hence error
722 			 */
723 			if (!req->curr_bio) {
724 				dev_err(queue->ctrl->ctrl.device,
725 					"queue %d no space in request %#x",
726 					nvme_tcp_queue_id(queue), rq->tag);
727 				nvme_tcp_init_recv_ctx(queue);
728 				return -EIO;
729 			}
730 			nvme_tcp_init_iter(req, READ);
731 		}
732 
733 		/* we can read only from what is left in this bio */
734 		recv_len = min_t(size_t, recv_len,
735 				iov_iter_count(&req->iter));
736 
737 		if (queue->data_digest)
738 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
739 				&req->iter, recv_len, queue->rcv_hash);
740 		else
741 			ret = skb_copy_datagram_iter(skb, *offset,
742 					&req->iter, recv_len);
743 		if (ret) {
744 			dev_err(queue->ctrl->ctrl.device,
745 				"queue %d failed to copy request %#x data",
746 				nvme_tcp_queue_id(queue), rq->tag);
747 			return ret;
748 		}
749 
750 		*len -= recv_len;
751 		*offset += recv_len;
752 		queue->data_remaining -= recv_len;
753 	}
754 
755 	if (!queue->data_remaining) {
756 		if (queue->data_digest) {
757 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
758 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
759 		} else {
760 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
761 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
762 				queue->nr_cqe++;
763 			}
764 			nvme_tcp_init_recv_ctx(queue);
765 		}
766 	}
767 
768 	return 0;
769 }
770 
771 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
772 		struct sk_buff *skb, unsigned int *offset, size_t *len)
773 {
774 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
775 	char *ddgst = (char *)&queue->recv_ddgst;
776 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
777 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
778 	int ret;
779 
780 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
781 	if (unlikely(ret))
782 		return ret;
783 
784 	queue->ddgst_remaining -= recv_len;
785 	*offset += recv_len;
786 	*len -= recv_len;
787 	if (queue->ddgst_remaining)
788 		return 0;
789 
790 	if (queue->recv_ddgst != queue->exp_ddgst) {
791 		dev_err(queue->ctrl->ctrl.device,
792 			"data digest error: recv %#x expected %#x\n",
793 			le32_to_cpu(queue->recv_ddgst),
794 			le32_to_cpu(queue->exp_ddgst));
795 		return -EIO;
796 	}
797 
798 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
799 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
800 					pdu->command_id);
801 
802 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
803 		queue->nr_cqe++;
804 	}
805 
806 	nvme_tcp_init_recv_ctx(queue);
807 	return 0;
808 }
809 
810 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
811 			     unsigned int offset, size_t len)
812 {
813 	struct nvme_tcp_queue *queue = desc->arg.data;
814 	size_t consumed = len;
815 	int result;
816 
817 	while (len) {
818 		switch (nvme_tcp_recv_state(queue)) {
819 		case NVME_TCP_RECV_PDU:
820 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
821 			break;
822 		case NVME_TCP_RECV_DATA:
823 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
824 			break;
825 		case NVME_TCP_RECV_DDGST:
826 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
827 			break;
828 		default:
829 			result = -EFAULT;
830 		}
831 		if (result) {
832 			dev_err(queue->ctrl->ctrl.device,
833 				"receive failed:  %d\n", result);
834 			queue->rd_enabled = false;
835 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
836 			return result;
837 		}
838 	}
839 
840 	return consumed;
841 }
842 
843 static void nvme_tcp_data_ready(struct sock *sk)
844 {
845 	struct nvme_tcp_queue *queue;
846 
847 	read_lock_bh(&sk->sk_callback_lock);
848 	queue = sk->sk_user_data;
849 	if (likely(queue && queue->rd_enabled) &&
850 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
851 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
852 	read_unlock_bh(&sk->sk_callback_lock);
853 }
854 
855 static void nvme_tcp_write_space(struct sock *sk)
856 {
857 	struct nvme_tcp_queue *queue;
858 
859 	read_lock_bh(&sk->sk_callback_lock);
860 	queue = sk->sk_user_data;
861 	if (likely(queue && sk_stream_is_writeable(sk))) {
862 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
863 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
864 	}
865 	read_unlock_bh(&sk->sk_callback_lock);
866 }
867 
868 static void nvme_tcp_state_change(struct sock *sk)
869 {
870 	struct nvme_tcp_queue *queue;
871 
872 	read_lock_bh(&sk->sk_callback_lock);
873 	queue = sk->sk_user_data;
874 	if (!queue)
875 		goto done;
876 
877 	switch (sk->sk_state) {
878 	case TCP_CLOSE:
879 	case TCP_CLOSE_WAIT:
880 	case TCP_LAST_ACK:
881 	case TCP_FIN_WAIT1:
882 	case TCP_FIN_WAIT2:
883 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
884 		break;
885 	default:
886 		dev_info(queue->ctrl->ctrl.device,
887 			"queue %d socket state %d\n",
888 			nvme_tcp_queue_id(queue), sk->sk_state);
889 	}
890 
891 	queue->state_change(sk);
892 done:
893 	read_unlock_bh(&sk->sk_callback_lock);
894 }
895 
896 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
897 {
898 	return !list_empty(&queue->send_list) ||
899 		!llist_empty(&queue->req_list) || queue->more_requests;
900 }
901 
902 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
903 {
904 	queue->request = NULL;
905 }
906 
907 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
908 {
909 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
910 }
911 
912 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
913 {
914 	struct nvme_tcp_queue *queue = req->queue;
915 
916 	while (true) {
917 		struct page *page = nvme_tcp_req_cur_page(req);
918 		size_t offset = nvme_tcp_req_cur_offset(req);
919 		size_t len = nvme_tcp_req_cur_length(req);
920 		bool last = nvme_tcp_pdu_last_send(req, len);
921 		int ret, flags = MSG_DONTWAIT;
922 
923 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
924 			flags |= MSG_EOR;
925 		else
926 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
927 
928 		if (sendpage_ok(page)) {
929 			ret = kernel_sendpage(queue->sock, page, offset, len,
930 					flags);
931 		} else {
932 			ret = sock_no_sendpage(queue->sock, page, offset, len,
933 					flags);
934 		}
935 		if (ret <= 0)
936 			return ret;
937 
938 		if (queue->data_digest)
939 			nvme_tcp_ddgst_update(queue->snd_hash, page,
940 					offset, ret);
941 
942 		/* fully successful last write*/
943 		if (last && ret == len) {
944 			if (queue->data_digest) {
945 				nvme_tcp_ddgst_final(queue->snd_hash,
946 					&req->ddgst);
947 				req->state = NVME_TCP_SEND_DDGST;
948 				req->offset = 0;
949 			} else {
950 				nvme_tcp_done_send_req(queue);
951 			}
952 			return 1;
953 		}
954 		nvme_tcp_advance_req(req, ret);
955 	}
956 	return -EAGAIN;
957 }
958 
959 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
960 {
961 	struct nvme_tcp_queue *queue = req->queue;
962 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
963 	bool inline_data = nvme_tcp_has_inline_data(req);
964 	u8 hdgst = nvme_tcp_hdgst_len(queue);
965 	int len = sizeof(*pdu) + hdgst - req->offset;
966 	int flags = MSG_DONTWAIT;
967 	int ret;
968 
969 	if (inline_data || nvme_tcp_queue_more(queue))
970 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
971 	else
972 		flags |= MSG_EOR;
973 
974 	if (queue->hdr_digest && !req->offset)
975 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
976 
977 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
978 			offset_in_page(pdu) + req->offset, len,  flags);
979 	if (unlikely(ret <= 0))
980 		return ret;
981 
982 	len -= ret;
983 	if (!len) {
984 		if (inline_data) {
985 			req->state = NVME_TCP_SEND_DATA;
986 			if (queue->data_digest)
987 				crypto_ahash_init(queue->snd_hash);
988 		} else {
989 			nvme_tcp_done_send_req(queue);
990 		}
991 		return 1;
992 	}
993 	req->offset += ret;
994 
995 	return -EAGAIN;
996 }
997 
998 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
999 {
1000 	struct nvme_tcp_queue *queue = req->queue;
1001 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1002 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1003 	int len = sizeof(*pdu) - req->offset + hdgst;
1004 	int ret;
1005 
1006 	if (queue->hdr_digest && !req->offset)
1007 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1008 
1009 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1010 			offset_in_page(pdu) + req->offset, len,
1011 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1012 	if (unlikely(ret <= 0))
1013 		return ret;
1014 
1015 	len -= ret;
1016 	if (!len) {
1017 		req->state = NVME_TCP_SEND_DATA;
1018 		if (queue->data_digest)
1019 			crypto_ahash_init(queue->snd_hash);
1020 		return 1;
1021 	}
1022 	req->offset += ret;
1023 
1024 	return -EAGAIN;
1025 }
1026 
1027 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1028 {
1029 	struct nvme_tcp_queue *queue = req->queue;
1030 	int ret;
1031 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1032 	struct kvec iov = {
1033 		.iov_base = &req->ddgst + req->offset,
1034 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1035 	};
1036 
1037 	if (nvme_tcp_queue_more(queue))
1038 		msg.msg_flags |= MSG_MORE;
1039 	else
1040 		msg.msg_flags |= MSG_EOR;
1041 
1042 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1043 	if (unlikely(ret <= 0))
1044 		return ret;
1045 
1046 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1047 		nvme_tcp_done_send_req(queue);
1048 		return 1;
1049 	}
1050 
1051 	req->offset += ret;
1052 	return -EAGAIN;
1053 }
1054 
1055 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1056 {
1057 	struct nvme_tcp_request *req;
1058 	int ret = 1;
1059 
1060 	if (!queue->request) {
1061 		queue->request = nvme_tcp_fetch_request(queue);
1062 		if (!queue->request)
1063 			return 0;
1064 	}
1065 	req = queue->request;
1066 
1067 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1068 		ret = nvme_tcp_try_send_cmd_pdu(req);
1069 		if (ret <= 0)
1070 			goto done;
1071 		if (!nvme_tcp_has_inline_data(req))
1072 			return ret;
1073 	}
1074 
1075 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1076 		ret = nvme_tcp_try_send_data_pdu(req);
1077 		if (ret <= 0)
1078 			goto done;
1079 	}
1080 
1081 	if (req->state == NVME_TCP_SEND_DATA) {
1082 		ret = nvme_tcp_try_send_data(req);
1083 		if (ret <= 0)
1084 			goto done;
1085 	}
1086 
1087 	if (req->state == NVME_TCP_SEND_DDGST)
1088 		ret = nvme_tcp_try_send_ddgst(req);
1089 done:
1090 	if (ret == -EAGAIN) {
1091 		ret = 0;
1092 	} else if (ret < 0) {
1093 		dev_err(queue->ctrl->ctrl.device,
1094 			"failed to send request %d\n", ret);
1095 		if (ret != -EPIPE && ret != -ECONNRESET)
1096 			nvme_tcp_fail_request(queue->request);
1097 		nvme_tcp_done_send_req(queue);
1098 	}
1099 	return ret;
1100 }
1101 
1102 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1103 {
1104 	struct socket *sock = queue->sock;
1105 	struct sock *sk = sock->sk;
1106 	read_descriptor_t rd_desc;
1107 	int consumed;
1108 
1109 	rd_desc.arg.data = queue;
1110 	rd_desc.count = 1;
1111 	lock_sock(sk);
1112 	queue->nr_cqe = 0;
1113 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1114 	release_sock(sk);
1115 	return consumed;
1116 }
1117 
1118 static void nvme_tcp_io_work(struct work_struct *w)
1119 {
1120 	struct nvme_tcp_queue *queue =
1121 		container_of(w, struct nvme_tcp_queue, io_work);
1122 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1123 
1124 	do {
1125 		bool pending = false;
1126 		int result;
1127 
1128 		if (mutex_trylock(&queue->send_mutex)) {
1129 			result = nvme_tcp_try_send(queue);
1130 			mutex_unlock(&queue->send_mutex);
1131 			if (result > 0)
1132 				pending = true;
1133 			else if (unlikely(result < 0))
1134 				break;
1135 		} else
1136 			pending = !llist_empty(&queue->req_list);
1137 
1138 		result = nvme_tcp_try_recv(queue);
1139 		if (result > 0)
1140 			pending = true;
1141 		else if (unlikely(result < 0))
1142 			return;
1143 
1144 		if (!pending)
1145 			return;
1146 
1147 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1148 
1149 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1150 }
1151 
1152 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1153 {
1154 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1155 
1156 	ahash_request_free(queue->rcv_hash);
1157 	ahash_request_free(queue->snd_hash);
1158 	crypto_free_ahash(tfm);
1159 }
1160 
1161 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1162 {
1163 	struct crypto_ahash *tfm;
1164 
1165 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1166 	if (IS_ERR(tfm))
1167 		return PTR_ERR(tfm);
1168 
1169 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1170 	if (!queue->snd_hash)
1171 		goto free_tfm;
1172 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1173 
1174 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1175 	if (!queue->rcv_hash)
1176 		goto free_snd_hash;
1177 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1178 
1179 	return 0;
1180 free_snd_hash:
1181 	ahash_request_free(queue->snd_hash);
1182 free_tfm:
1183 	crypto_free_ahash(tfm);
1184 	return -ENOMEM;
1185 }
1186 
1187 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1188 {
1189 	struct nvme_tcp_request *async = &ctrl->async_req;
1190 
1191 	page_frag_free(async->pdu);
1192 }
1193 
1194 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1195 {
1196 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1197 	struct nvme_tcp_request *async = &ctrl->async_req;
1198 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1199 
1200 	async->pdu = page_frag_alloc(&queue->pf_cache,
1201 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1202 		GFP_KERNEL | __GFP_ZERO);
1203 	if (!async->pdu)
1204 		return -ENOMEM;
1205 
1206 	async->queue = &ctrl->queues[0];
1207 	return 0;
1208 }
1209 
1210 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1211 {
1212 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1213 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1214 
1215 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1216 		return;
1217 
1218 	if (queue->hdr_digest || queue->data_digest)
1219 		nvme_tcp_free_crypto(queue);
1220 
1221 	sock_release(queue->sock);
1222 	kfree(queue->pdu);
1223 	mutex_destroy(&queue->send_mutex);
1224 	mutex_destroy(&queue->queue_lock);
1225 }
1226 
1227 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1228 {
1229 	struct nvme_tcp_icreq_pdu *icreq;
1230 	struct nvme_tcp_icresp_pdu *icresp;
1231 	struct msghdr msg = {};
1232 	struct kvec iov;
1233 	bool ctrl_hdgst, ctrl_ddgst;
1234 	int ret;
1235 
1236 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1237 	if (!icreq)
1238 		return -ENOMEM;
1239 
1240 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1241 	if (!icresp) {
1242 		ret = -ENOMEM;
1243 		goto free_icreq;
1244 	}
1245 
1246 	icreq->hdr.type = nvme_tcp_icreq;
1247 	icreq->hdr.hlen = sizeof(*icreq);
1248 	icreq->hdr.pdo = 0;
1249 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1250 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1251 	icreq->maxr2t = 0; /* single inflight r2t supported */
1252 	icreq->hpda = 0; /* no alignment constraint */
1253 	if (queue->hdr_digest)
1254 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1255 	if (queue->data_digest)
1256 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1257 
1258 	iov.iov_base = icreq;
1259 	iov.iov_len = sizeof(*icreq);
1260 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1261 	if (ret < 0)
1262 		goto free_icresp;
1263 
1264 	memset(&msg, 0, sizeof(msg));
1265 	iov.iov_base = icresp;
1266 	iov.iov_len = sizeof(*icresp);
1267 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1268 			iov.iov_len, msg.msg_flags);
1269 	if (ret < 0)
1270 		goto free_icresp;
1271 
1272 	ret = -EINVAL;
1273 	if (icresp->hdr.type != nvme_tcp_icresp) {
1274 		pr_err("queue %d: bad type returned %d\n",
1275 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1276 		goto free_icresp;
1277 	}
1278 
1279 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1280 		pr_err("queue %d: bad pdu length returned %d\n",
1281 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1282 		goto free_icresp;
1283 	}
1284 
1285 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1286 		pr_err("queue %d: bad pfv returned %d\n",
1287 			nvme_tcp_queue_id(queue), icresp->pfv);
1288 		goto free_icresp;
1289 	}
1290 
1291 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1292 	if ((queue->data_digest && !ctrl_ddgst) ||
1293 	    (!queue->data_digest && ctrl_ddgst)) {
1294 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1295 			nvme_tcp_queue_id(queue),
1296 			queue->data_digest ? "enabled" : "disabled",
1297 			ctrl_ddgst ? "enabled" : "disabled");
1298 		goto free_icresp;
1299 	}
1300 
1301 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1302 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1303 	    (!queue->hdr_digest && ctrl_hdgst)) {
1304 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1305 			nvme_tcp_queue_id(queue),
1306 			queue->hdr_digest ? "enabled" : "disabled",
1307 			ctrl_hdgst ? "enabled" : "disabled");
1308 		goto free_icresp;
1309 	}
1310 
1311 	if (icresp->cpda != 0) {
1312 		pr_err("queue %d: unsupported cpda returned %d\n",
1313 			nvme_tcp_queue_id(queue), icresp->cpda);
1314 		goto free_icresp;
1315 	}
1316 
1317 	ret = 0;
1318 free_icresp:
1319 	kfree(icresp);
1320 free_icreq:
1321 	kfree(icreq);
1322 	return ret;
1323 }
1324 
1325 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1326 {
1327 	return nvme_tcp_queue_id(queue) == 0;
1328 }
1329 
1330 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1331 {
1332 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1333 	int qid = nvme_tcp_queue_id(queue);
1334 
1335 	return !nvme_tcp_admin_queue(queue) &&
1336 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1337 }
1338 
1339 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1340 {
1341 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1342 	int qid = nvme_tcp_queue_id(queue);
1343 
1344 	return !nvme_tcp_admin_queue(queue) &&
1345 		!nvme_tcp_default_queue(queue) &&
1346 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1347 			  ctrl->io_queues[HCTX_TYPE_READ];
1348 }
1349 
1350 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1351 {
1352 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1353 	int qid = nvme_tcp_queue_id(queue);
1354 
1355 	return !nvme_tcp_admin_queue(queue) &&
1356 		!nvme_tcp_default_queue(queue) &&
1357 		!nvme_tcp_read_queue(queue) &&
1358 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1359 			  ctrl->io_queues[HCTX_TYPE_READ] +
1360 			  ctrl->io_queues[HCTX_TYPE_POLL];
1361 }
1362 
1363 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1364 {
1365 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1366 	int qid = nvme_tcp_queue_id(queue);
1367 	int n = 0;
1368 
1369 	if (nvme_tcp_default_queue(queue))
1370 		n = qid - 1;
1371 	else if (nvme_tcp_read_queue(queue))
1372 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1373 	else if (nvme_tcp_poll_queue(queue))
1374 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1375 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1376 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1377 }
1378 
1379 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1380 		int qid, size_t queue_size)
1381 {
1382 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1383 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1384 	int ret, rcv_pdu_size;
1385 
1386 	mutex_init(&queue->queue_lock);
1387 	queue->ctrl = ctrl;
1388 	init_llist_head(&queue->req_list);
1389 	INIT_LIST_HEAD(&queue->send_list);
1390 	mutex_init(&queue->send_mutex);
1391 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1392 	queue->queue_size = queue_size;
1393 
1394 	if (qid > 0)
1395 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1396 	else
1397 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1398 						NVME_TCP_ADMIN_CCSZ;
1399 
1400 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1401 			IPPROTO_TCP, &queue->sock);
1402 	if (ret) {
1403 		dev_err(nctrl->device,
1404 			"failed to create socket: %d\n", ret);
1405 		goto err_destroy_mutex;
1406 	}
1407 
1408 	/* Single syn retry */
1409 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1410 
1411 	/* Set TCP no delay */
1412 	tcp_sock_set_nodelay(queue->sock->sk);
1413 
1414 	/*
1415 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1416 	 * close. This is done to prevent stale data from being sent should
1417 	 * the network connection be restored before TCP times out.
1418 	 */
1419 	sock_no_linger(queue->sock->sk);
1420 
1421 	if (so_priority > 0)
1422 		sock_set_priority(queue->sock->sk, so_priority);
1423 
1424 	/* Set socket type of service */
1425 	if (nctrl->opts->tos >= 0)
1426 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1427 
1428 	/* Set 10 seconds timeout for icresp recvmsg */
1429 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1430 
1431 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1432 	nvme_tcp_set_queue_io_cpu(queue);
1433 	queue->request = NULL;
1434 	queue->data_remaining = 0;
1435 	queue->ddgst_remaining = 0;
1436 	queue->pdu_remaining = 0;
1437 	queue->pdu_offset = 0;
1438 	sk_set_memalloc(queue->sock->sk);
1439 
1440 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1441 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1442 			sizeof(ctrl->src_addr));
1443 		if (ret) {
1444 			dev_err(nctrl->device,
1445 				"failed to bind queue %d socket %d\n",
1446 				qid, ret);
1447 			goto err_sock;
1448 		}
1449 	}
1450 
1451 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1452 		char *iface = nctrl->opts->host_iface;
1453 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1454 
1455 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1456 				      optval, strlen(iface));
1457 		if (ret) {
1458 			dev_err(nctrl->device,
1459 			  "failed to bind to interface %s queue %d err %d\n",
1460 			  iface, qid, ret);
1461 			goto err_sock;
1462 		}
1463 	}
1464 
1465 	queue->hdr_digest = nctrl->opts->hdr_digest;
1466 	queue->data_digest = nctrl->opts->data_digest;
1467 	if (queue->hdr_digest || queue->data_digest) {
1468 		ret = nvme_tcp_alloc_crypto(queue);
1469 		if (ret) {
1470 			dev_err(nctrl->device,
1471 				"failed to allocate queue %d crypto\n", qid);
1472 			goto err_sock;
1473 		}
1474 	}
1475 
1476 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1477 			nvme_tcp_hdgst_len(queue);
1478 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1479 	if (!queue->pdu) {
1480 		ret = -ENOMEM;
1481 		goto err_crypto;
1482 	}
1483 
1484 	dev_dbg(nctrl->device, "connecting queue %d\n",
1485 			nvme_tcp_queue_id(queue));
1486 
1487 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1488 		sizeof(ctrl->addr), 0);
1489 	if (ret) {
1490 		dev_err(nctrl->device,
1491 			"failed to connect socket: %d\n", ret);
1492 		goto err_rcv_pdu;
1493 	}
1494 
1495 	ret = nvme_tcp_init_connection(queue);
1496 	if (ret)
1497 		goto err_init_connect;
1498 
1499 	queue->rd_enabled = true;
1500 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1501 	nvme_tcp_init_recv_ctx(queue);
1502 
1503 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1504 	queue->sock->sk->sk_user_data = queue;
1505 	queue->state_change = queue->sock->sk->sk_state_change;
1506 	queue->data_ready = queue->sock->sk->sk_data_ready;
1507 	queue->write_space = queue->sock->sk->sk_write_space;
1508 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1509 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1510 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1511 #ifdef CONFIG_NET_RX_BUSY_POLL
1512 	queue->sock->sk->sk_ll_usec = 1;
1513 #endif
1514 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1515 
1516 	return 0;
1517 
1518 err_init_connect:
1519 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1520 err_rcv_pdu:
1521 	kfree(queue->pdu);
1522 err_crypto:
1523 	if (queue->hdr_digest || queue->data_digest)
1524 		nvme_tcp_free_crypto(queue);
1525 err_sock:
1526 	sock_release(queue->sock);
1527 	queue->sock = NULL;
1528 err_destroy_mutex:
1529 	mutex_destroy(&queue->send_mutex);
1530 	mutex_destroy(&queue->queue_lock);
1531 	return ret;
1532 }
1533 
1534 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1535 {
1536 	struct socket *sock = queue->sock;
1537 
1538 	write_lock_bh(&sock->sk->sk_callback_lock);
1539 	sock->sk->sk_user_data  = NULL;
1540 	sock->sk->sk_data_ready = queue->data_ready;
1541 	sock->sk->sk_state_change = queue->state_change;
1542 	sock->sk->sk_write_space  = queue->write_space;
1543 	write_unlock_bh(&sock->sk->sk_callback_lock);
1544 }
1545 
1546 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1547 {
1548 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1549 	nvme_tcp_restore_sock_calls(queue);
1550 	cancel_work_sync(&queue->io_work);
1551 }
1552 
1553 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1554 {
1555 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1556 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1557 
1558 	mutex_lock(&queue->queue_lock);
1559 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1560 		__nvme_tcp_stop_queue(queue);
1561 	mutex_unlock(&queue->queue_lock);
1562 }
1563 
1564 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1565 {
1566 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1567 	int ret;
1568 
1569 	if (idx)
1570 		ret = nvmf_connect_io_queue(nctrl, idx);
1571 	else
1572 		ret = nvmf_connect_admin_queue(nctrl);
1573 
1574 	if (!ret) {
1575 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1576 	} else {
1577 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1578 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1579 		dev_err(nctrl->device,
1580 			"failed to connect queue: %d ret=%d\n", idx, ret);
1581 	}
1582 	return ret;
1583 }
1584 
1585 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1586 		bool admin)
1587 {
1588 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1589 	struct blk_mq_tag_set *set;
1590 	int ret;
1591 
1592 	if (admin) {
1593 		set = &ctrl->admin_tag_set;
1594 		memset(set, 0, sizeof(*set));
1595 		set->ops = &nvme_tcp_admin_mq_ops;
1596 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1597 		set->reserved_tags = NVMF_RESERVED_TAGS;
1598 		set->numa_node = nctrl->numa_node;
1599 		set->flags = BLK_MQ_F_BLOCKING;
1600 		set->cmd_size = sizeof(struct nvme_tcp_request);
1601 		set->driver_data = ctrl;
1602 		set->nr_hw_queues = 1;
1603 		set->timeout = NVME_ADMIN_TIMEOUT;
1604 	} else {
1605 		set = &ctrl->tag_set;
1606 		memset(set, 0, sizeof(*set));
1607 		set->ops = &nvme_tcp_mq_ops;
1608 		set->queue_depth = nctrl->sqsize + 1;
1609 		set->reserved_tags = NVMF_RESERVED_TAGS;
1610 		set->numa_node = nctrl->numa_node;
1611 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1612 		set->cmd_size = sizeof(struct nvme_tcp_request);
1613 		set->driver_data = ctrl;
1614 		set->nr_hw_queues = nctrl->queue_count - 1;
1615 		set->timeout = NVME_IO_TIMEOUT;
1616 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1617 	}
1618 
1619 	ret = blk_mq_alloc_tag_set(set);
1620 	if (ret)
1621 		return ERR_PTR(ret);
1622 
1623 	return set;
1624 }
1625 
1626 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1627 {
1628 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1629 		cancel_work_sync(&ctrl->async_event_work);
1630 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1631 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1632 	}
1633 
1634 	nvme_tcp_free_queue(ctrl, 0);
1635 }
1636 
1637 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1638 {
1639 	int i;
1640 
1641 	for (i = 1; i < ctrl->queue_count; i++)
1642 		nvme_tcp_free_queue(ctrl, i);
1643 }
1644 
1645 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1646 {
1647 	int i;
1648 
1649 	for (i = 1; i < ctrl->queue_count; i++)
1650 		nvme_tcp_stop_queue(ctrl, i);
1651 }
1652 
1653 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1654 {
1655 	int i, ret = 0;
1656 
1657 	for (i = 1; i < ctrl->queue_count; i++) {
1658 		ret = nvme_tcp_start_queue(ctrl, i);
1659 		if (ret)
1660 			goto out_stop_queues;
1661 	}
1662 
1663 	return 0;
1664 
1665 out_stop_queues:
1666 	for (i--; i >= 1; i--)
1667 		nvme_tcp_stop_queue(ctrl, i);
1668 	return ret;
1669 }
1670 
1671 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1672 {
1673 	int ret;
1674 
1675 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1676 	if (ret)
1677 		return ret;
1678 
1679 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1680 	if (ret)
1681 		goto out_free_queue;
1682 
1683 	return 0;
1684 
1685 out_free_queue:
1686 	nvme_tcp_free_queue(ctrl, 0);
1687 	return ret;
1688 }
1689 
1690 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1691 {
1692 	int i, ret;
1693 
1694 	for (i = 1; i < ctrl->queue_count; i++) {
1695 		ret = nvme_tcp_alloc_queue(ctrl, i,
1696 				ctrl->sqsize + 1);
1697 		if (ret)
1698 			goto out_free_queues;
1699 	}
1700 
1701 	return 0;
1702 
1703 out_free_queues:
1704 	for (i--; i >= 1; i--)
1705 		nvme_tcp_free_queue(ctrl, i);
1706 
1707 	return ret;
1708 }
1709 
1710 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1711 {
1712 	unsigned int nr_io_queues;
1713 
1714 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1715 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1716 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1717 
1718 	return nr_io_queues;
1719 }
1720 
1721 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1722 		unsigned int nr_io_queues)
1723 {
1724 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1725 	struct nvmf_ctrl_options *opts = nctrl->opts;
1726 
1727 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1728 		/*
1729 		 * separate read/write queues
1730 		 * hand out dedicated default queues only after we have
1731 		 * sufficient read queues.
1732 		 */
1733 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1734 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1735 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1736 			min(opts->nr_write_queues, nr_io_queues);
1737 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1738 	} else {
1739 		/*
1740 		 * shared read/write queues
1741 		 * either no write queues were requested, or we don't have
1742 		 * sufficient queue count to have dedicated default queues.
1743 		 */
1744 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1745 			min(opts->nr_io_queues, nr_io_queues);
1746 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1747 	}
1748 
1749 	if (opts->nr_poll_queues && nr_io_queues) {
1750 		/* map dedicated poll queues only if we have queues left */
1751 		ctrl->io_queues[HCTX_TYPE_POLL] =
1752 			min(opts->nr_poll_queues, nr_io_queues);
1753 	}
1754 }
1755 
1756 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1757 {
1758 	unsigned int nr_io_queues;
1759 	int ret;
1760 
1761 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1762 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1763 	if (ret)
1764 		return ret;
1765 
1766 	if (nr_io_queues == 0) {
1767 		dev_err(ctrl->device,
1768 			"unable to set any I/O queues\n");
1769 		return -ENOMEM;
1770 	}
1771 
1772 	ctrl->queue_count = nr_io_queues + 1;
1773 	dev_info(ctrl->device,
1774 		"creating %d I/O queues.\n", nr_io_queues);
1775 
1776 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1777 
1778 	return __nvme_tcp_alloc_io_queues(ctrl);
1779 }
1780 
1781 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1782 {
1783 	nvme_tcp_stop_io_queues(ctrl);
1784 	if (remove) {
1785 		blk_cleanup_queue(ctrl->connect_q);
1786 		blk_mq_free_tag_set(ctrl->tagset);
1787 	}
1788 	nvme_tcp_free_io_queues(ctrl);
1789 }
1790 
1791 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1792 {
1793 	int ret;
1794 
1795 	ret = nvme_tcp_alloc_io_queues(ctrl);
1796 	if (ret)
1797 		return ret;
1798 
1799 	if (new) {
1800 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1801 		if (IS_ERR(ctrl->tagset)) {
1802 			ret = PTR_ERR(ctrl->tagset);
1803 			goto out_free_io_queues;
1804 		}
1805 
1806 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1807 		if (IS_ERR(ctrl->connect_q)) {
1808 			ret = PTR_ERR(ctrl->connect_q);
1809 			goto out_free_tag_set;
1810 		}
1811 	}
1812 
1813 	ret = nvme_tcp_start_io_queues(ctrl);
1814 	if (ret)
1815 		goto out_cleanup_connect_q;
1816 
1817 	if (!new) {
1818 		nvme_start_queues(ctrl);
1819 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1820 			/*
1821 			 * If we timed out waiting for freeze we are likely to
1822 			 * be stuck.  Fail the controller initialization just
1823 			 * to be safe.
1824 			 */
1825 			ret = -ENODEV;
1826 			goto out_wait_freeze_timed_out;
1827 		}
1828 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1829 			ctrl->queue_count - 1);
1830 		nvme_unfreeze(ctrl);
1831 	}
1832 
1833 	return 0;
1834 
1835 out_wait_freeze_timed_out:
1836 	nvme_stop_queues(ctrl);
1837 	nvme_sync_io_queues(ctrl);
1838 	nvme_tcp_stop_io_queues(ctrl);
1839 out_cleanup_connect_q:
1840 	nvme_cancel_tagset(ctrl);
1841 	if (new)
1842 		blk_cleanup_queue(ctrl->connect_q);
1843 out_free_tag_set:
1844 	if (new)
1845 		blk_mq_free_tag_set(ctrl->tagset);
1846 out_free_io_queues:
1847 	nvme_tcp_free_io_queues(ctrl);
1848 	return ret;
1849 }
1850 
1851 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1852 {
1853 	nvme_tcp_stop_queue(ctrl, 0);
1854 	if (remove) {
1855 		blk_cleanup_queue(ctrl->admin_q);
1856 		blk_cleanup_queue(ctrl->fabrics_q);
1857 		blk_mq_free_tag_set(ctrl->admin_tagset);
1858 	}
1859 	nvme_tcp_free_admin_queue(ctrl);
1860 }
1861 
1862 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1863 {
1864 	int error;
1865 
1866 	error = nvme_tcp_alloc_admin_queue(ctrl);
1867 	if (error)
1868 		return error;
1869 
1870 	if (new) {
1871 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1872 		if (IS_ERR(ctrl->admin_tagset)) {
1873 			error = PTR_ERR(ctrl->admin_tagset);
1874 			goto out_free_queue;
1875 		}
1876 
1877 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1878 		if (IS_ERR(ctrl->fabrics_q)) {
1879 			error = PTR_ERR(ctrl->fabrics_q);
1880 			goto out_free_tagset;
1881 		}
1882 
1883 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1884 		if (IS_ERR(ctrl->admin_q)) {
1885 			error = PTR_ERR(ctrl->admin_q);
1886 			goto out_cleanup_fabrics_q;
1887 		}
1888 	}
1889 
1890 	error = nvme_tcp_start_queue(ctrl, 0);
1891 	if (error)
1892 		goto out_cleanup_queue;
1893 
1894 	error = nvme_enable_ctrl(ctrl);
1895 	if (error)
1896 		goto out_stop_queue;
1897 
1898 	blk_mq_unquiesce_queue(ctrl->admin_q);
1899 
1900 	error = nvme_init_ctrl_finish(ctrl);
1901 	if (error)
1902 		goto out_quiesce_queue;
1903 
1904 	return 0;
1905 
1906 out_quiesce_queue:
1907 	blk_mq_quiesce_queue(ctrl->admin_q);
1908 	blk_sync_queue(ctrl->admin_q);
1909 out_stop_queue:
1910 	nvme_tcp_stop_queue(ctrl, 0);
1911 	nvme_cancel_admin_tagset(ctrl);
1912 out_cleanup_queue:
1913 	if (new)
1914 		blk_cleanup_queue(ctrl->admin_q);
1915 out_cleanup_fabrics_q:
1916 	if (new)
1917 		blk_cleanup_queue(ctrl->fabrics_q);
1918 out_free_tagset:
1919 	if (new)
1920 		blk_mq_free_tag_set(ctrl->admin_tagset);
1921 out_free_queue:
1922 	nvme_tcp_free_admin_queue(ctrl);
1923 	return error;
1924 }
1925 
1926 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1927 		bool remove)
1928 {
1929 	blk_mq_quiesce_queue(ctrl->admin_q);
1930 	blk_sync_queue(ctrl->admin_q);
1931 	nvme_tcp_stop_queue(ctrl, 0);
1932 	nvme_cancel_admin_tagset(ctrl);
1933 	if (remove)
1934 		blk_mq_unquiesce_queue(ctrl->admin_q);
1935 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1936 }
1937 
1938 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1939 		bool remove)
1940 {
1941 	if (ctrl->queue_count <= 1)
1942 		return;
1943 	blk_mq_quiesce_queue(ctrl->admin_q);
1944 	nvme_start_freeze(ctrl);
1945 	nvme_stop_queues(ctrl);
1946 	nvme_sync_io_queues(ctrl);
1947 	nvme_tcp_stop_io_queues(ctrl);
1948 	nvme_cancel_tagset(ctrl);
1949 	if (remove)
1950 		nvme_start_queues(ctrl);
1951 	nvme_tcp_destroy_io_queues(ctrl, remove);
1952 }
1953 
1954 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1955 {
1956 	/* If we are resetting/deleting then do nothing */
1957 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1958 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1959 			ctrl->state == NVME_CTRL_LIVE);
1960 		return;
1961 	}
1962 
1963 	if (nvmf_should_reconnect(ctrl)) {
1964 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1965 			ctrl->opts->reconnect_delay);
1966 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1967 				ctrl->opts->reconnect_delay * HZ);
1968 	} else {
1969 		dev_info(ctrl->device, "Removing controller...\n");
1970 		nvme_delete_ctrl(ctrl);
1971 	}
1972 }
1973 
1974 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1975 {
1976 	struct nvmf_ctrl_options *opts = ctrl->opts;
1977 	int ret;
1978 
1979 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1980 	if (ret)
1981 		return ret;
1982 
1983 	if (ctrl->icdoff) {
1984 		ret = -EOPNOTSUPP;
1985 		dev_err(ctrl->device, "icdoff is not supported!\n");
1986 		goto destroy_admin;
1987 	}
1988 
1989 	if (!nvme_ctrl_sgl_supported(ctrl)) {
1990 		ret = -EOPNOTSUPP;
1991 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
1992 		goto destroy_admin;
1993 	}
1994 
1995 	if (opts->queue_size > ctrl->sqsize + 1)
1996 		dev_warn(ctrl->device,
1997 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1998 			opts->queue_size, ctrl->sqsize + 1);
1999 
2000 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2001 		dev_warn(ctrl->device,
2002 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2003 			ctrl->sqsize + 1, ctrl->maxcmd);
2004 		ctrl->sqsize = ctrl->maxcmd - 1;
2005 	}
2006 
2007 	if (ctrl->queue_count > 1) {
2008 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2009 		if (ret)
2010 			goto destroy_admin;
2011 	}
2012 
2013 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2014 		/*
2015 		 * state change failure is ok if we started ctrl delete,
2016 		 * unless we're during creation of a new controller to
2017 		 * avoid races with teardown flow.
2018 		 */
2019 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2020 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2021 		WARN_ON_ONCE(new);
2022 		ret = -EINVAL;
2023 		goto destroy_io;
2024 	}
2025 
2026 	nvme_start_ctrl(ctrl);
2027 	return 0;
2028 
2029 destroy_io:
2030 	if (ctrl->queue_count > 1) {
2031 		nvme_stop_queues(ctrl);
2032 		nvme_sync_io_queues(ctrl);
2033 		nvme_tcp_stop_io_queues(ctrl);
2034 		nvme_cancel_tagset(ctrl);
2035 		nvme_tcp_destroy_io_queues(ctrl, new);
2036 	}
2037 destroy_admin:
2038 	blk_mq_quiesce_queue(ctrl->admin_q);
2039 	blk_sync_queue(ctrl->admin_q);
2040 	nvme_tcp_stop_queue(ctrl, 0);
2041 	nvme_cancel_admin_tagset(ctrl);
2042 	nvme_tcp_destroy_admin_queue(ctrl, new);
2043 	return ret;
2044 }
2045 
2046 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2047 {
2048 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2049 			struct nvme_tcp_ctrl, connect_work);
2050 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2051 
2052 	++ctrl->nr_reconnects;
2053 
2054 	if (nvme_tcp_setup_ctrl(ctrl, false))
2055 		goto requeue;
2056 
2057 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2058 			ctrl->nr_reconnects);
2059 
2060 	ctrl->nr_reconnects = 0;
2061 
2062 	return;
2063 
2064 requeue:
2065 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2066 			ctrl->nr_reconnects);
2067 	nvme_tcp_reconnect_or_remove(ctrl);
2068 }
2069 
2070 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2071 {
2072 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2073 				struct nvme_tcp_ctrl, err_work);
2074 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2075 
2076 	nvme_stop_keep_alive(ctrl);
2077 	nvme_tcp_teardown_io_queues(ctrl, false);
2078 	/* unquiesce to fail fast pending requests */
2079 	nvme_start_queues(ctrl);
2080 	nvme_tcp_teardown_admin_queue(ctrl, false);
2081 	blk_mq_unquiesce_queue(ctrl->admin_q);
2082 
2083 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2084 		/* state change failure is ok if we started ctrl delete */
2085 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2086 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2087 		return;
2088 	}
2089 
2090 	nvme_tcp_reconnect_or_remove(ctrl);
2091 }
2092 
2093 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2094 {
2095 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2096 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2097 
2098 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2099 	blk_mq_quiesce_queue(ctrl->admin_q);
2100 	if (shutdown)
2101 		nvme_shutdown_ctrl(ctrl);
2102 	else
2103 		nvme_disable_ctrl(ctrl);
2104 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2105 }
2106 
2107 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2108 {
2109 	nvme_tcp_teardown_ctrl(ctrl, true);
2110 }
2111 
2112 static void nvme_reset_ctrl_work(struct work_struct *work)
2113 {
2114 	struct nvme_ctrl *ctrl =
2115 		container_of(work, struct nvme_ctrl, reset_work);
2116 
2117 	nvme_stop_ctrl(ctrl);
2118 	nvme_tcp_teardown_ctrl(ctrl, false);
2119 
2120 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2121 		/* state change failure is ok if we started ctrl delete */
2122 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2123 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2124 		return;
2125 	}
2126 
2127 	if (nvme_tcp_setup_ctrl(ctrl, false))
2128 		goto out_fail;
2129 
2130 	return;
2131 
2132 out_fail:
2133 	++ctrl->nr_reconnects;
2134 	nvme_tcp_reconnect_or_remove(ctrl);
2135 }
2136 
2137 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2138 {
2139 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2140 
2141 	if (list_empty(&ctrl->list))
2142 		goto free_ctrl;
2143 
2144 	mutex_lock(&nvme_tcp_ctrl_mutex);
2145 	list_del(&ctrl->list);
2146 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2147 
2148 	nvmf_free_options(nctrl->opts);
2149 free_ctrl:
2150 	kfree(ctrl->queues);
2151 	kfree(ctrl);
2152 }
2153 
2154 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2155 {
2156 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2157 
2158 	sg->addr = 0;
2159 	sg->length = 0;
2160 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2161 			NVME_SGL_FMT_TRANSPORT_A;
2162 }
2163 
2164 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2165 		struct nvme_command *c, u32 data_len)
2166 {
2167 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2168 
2169 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2170 	sg->length = cpu_to_le32(data_len);
2171 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2172 }
2173 
2174 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2175 		u32 data_len)
2176 {
2177 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2178 
2179 	sg->addr = 0;
2180 	sg->length = cpu_to_le32(data_len);
2181 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2182 			NVME_SGL_FMT_TRANSPORT_A;
2183 }
2184 
2185 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2186 {
2187 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2188 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2189 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2190 	struct nvme_command *cmd = &pdu->cmd;
2191 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2192 
2193 	memset(pdu, 0, sizeof(*pdu));
2194 	pdu->hdr.type = nvme_tcp_cmd;
2195 	if (queue->hdr_digest)
2196 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2197 	pdu->hdr.hlen = sizeof(*pdu);
2198 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2199 
2200 	cmd->common.opcode = nvme_admin_async_event;
2201 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2202 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2203 	nvme_tcp_set_sg_null(cmd);
2204 
2205 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2206 	ctrl->async_req.offset = 0;
2207 	ctrl->async_req.curr_bio = NULL;
2208 	ctrl->async_req.data_len = 0;
2209 
2210 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2211 }
2212 
2213 static void nvme_tcp_complete_timed_out(struct request *rq)
2214 {
2215 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2216 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2217 
2218 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2219 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2220 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2221 		blk_mq_complete_request(rq);
2222 	}
2223 }
2224 
2225 static enum blk_eh_timer_return
2226 nvme_tcp_timeout(struct request *rq, bool reserved)
2227 {
2228 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2229 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2230 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2231 
2232 	dev_warn(ctrl->device,
2233 		"queue %d: timeout request %#x type %d\n",
2234 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2235 
2236 	if (ctrl->state != NVME_CTRL_LIVE) {
2237 		/*
2238 		 * If we are resetting, connecting or deleting we should
2239 		 * complete immediately because we may block controller
2240 		 * teardown or setup sequence
2241 		 * - ctrl disable/shutdown fabrics requests
2242 		 * - connect requests
2243 		 * - initialization admin requests
2244 		 * - I/O requests that entered after unquiescing and
2245 		 *   the controller stopped responding
2246 		 *
2247 		 * All other requests should be cancelled by the error
2248 		 * recovery work, so it's fine that we fail it here.
2249 		 */
2250 		nvme_tcp_complete_timed_out(rq);
2251 		return BLK_EH_DONE;
2252 	}
2253 
2254 	/*
2255 	 * LIVE state should trigger the normal error recovery which will
2256 	 * handle completing this request.
2257 	 */
2258 	nvme_tcp_error_recovery(ctrl);
2259 	return BLK_EH_RESET_TIMER;
2260 }
2261 
2262 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2263 			struct request *rq)
2264 {
2265 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2266 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2267 	struct nvme_command *c = &pdu->cmd;
2268 
2269 	c->common.flags |= NVME_CMD_SGL_METABUF;
2270 
2271 	if (!blk_rq_nr_phys_segments(rq))
2272 		nvme_tcp_set_sg_null(c);
2273 	else if (rq_data_dir(rq) == WRITE &&
2274 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2275 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2276 	else
2277 		nvme_tcp_set_sg_host_data(c, req->data_len);
2278 
2279 	return 0;
2280 }
2281 
2282 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2283 		struct request *rq)
2284 {
2285 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2286 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2287 	struct nvme_tcp_queue *queue = req->queue;
2288 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2289 	blk_status_t ret;
2290 
2291 	ret = nvme_setup_cmd(ns, rq);
2292 	if (ret)
2293 		return ret;
2294 
2295 	req->state = NVME_TCP_SEND_CMD_PDU;
2296 	req->offset = 0;
2297 	req->data_sent = 0;
2298 	req->pdu_len = 0;
2299 	req->pdu_sent = 0;
2300 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2301 				blk_rq_payload_bytes(rq) : 0;
2302 	req->curr_bio = rq->bio;
2303 	if (req->curr_bio && req->data_len)
2304 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2305 
2306 	if (rq_data_dir(rq) == WRITE &&
2307 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2308 		req->pdu_len = req->data_len;
2309 
2310 	pdu->hdr.type = nvme_tcp_cmd;
2311 	pdu->hdr.flags = 0;
2312 	if (queue->hdr_digest)
2313 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2314 	if (queue->data_digest && req->pdu_len) {
2315 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2316 		ddgst = nvme_tcp_ddgst_len(queue);
2317 	}
2318 	pdu->hdr.hlen = sizeof(*pdu);
2319 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2320 	pdu->hdr.plen =
2321 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2322 
2323 	ret = nvme_tcp_map_data(queue, rq);
2324 	if (unlikely(ret)) {
2325 		nvme_cleanup_cmd(rq);
2326 		dev_err(queue->ctrl->ctrl.device,
2327 			"Failed to map data (%d)\n", ret);
2328 		return ret;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2335 {
2336 	struct nvme_tcp_queue *queue = hctx->driver_data;
2337 
2338 	if (!llist_empty(&queue->req_list))
2339 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2340 }
2341 
2342 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2343 		const struct blk_mq_queue_data *bd)
2344 {
2345 	struct nvme_ns *ns = hctx->queue->queuedata;
2346 	struct nvme_tcp_queue *queue = hctx->driver_data;
2347 	struct request *rq = bd->rq;
2348 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2349 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2350 	blk_status_t ret;
2351 
2352 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2353 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2354 
2355 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2356 	if (unlikely(ret))
2357 		return ret;
2358 
2359 	blk_mq_start_request(rq);
2360 
2361 	nvme_tcp_queue_request(req, true, bd->last);
2362 
2363 	return BLK_STS_OK;
2364 }
2365 
2366 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2367 {
2368 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2369 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2370 
2371 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2372 		/* separate read/write queues */
2373 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2374 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2375 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2376 		set->map[HCTX_TYPE_READ].nr_queues =
2377 			ctrl->io_queues[HCTX_TYPE_READ];
2378 		set->map[HCTX_TYPE_READ].queue_offset =
2379 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2380 	} else {
2381 		/* shared read/write queues */
2382 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2383 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2384 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2385 		set->map[HCTX_TYPE_READ].nr_queues =
2386 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2387 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2388 	}
2389 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2390 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2391 
2392 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2393 		/* map dedicated poll queues only if we have queues left */
2394 		set->map[HCTX_TYPE_POLL].nr_queues =
2395 				ctrl->io_queues[HCTX_TYPE_POLL];
2396 		set->map[HCTX_TYPE_POLL].queue_offset =
2397 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2398 			ctrl->io_queues[HCTX_TYPE_READ];
2399 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2400 	}
2401 
2402 	dev_info(ctrl->ctrl.device,
2403 		"mapped %d/%d/%d default/read/poll queues.\n",
2404 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2405 		ctrl->io_queues[HCTX_TYPE_READ],
2406 		ctrl->io_queues[HCTX_TYPE_POLL]);
2407 
2408 	return 0;
2409 }
2410 
2411 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2412 {
2413 	struct nvme_tcp_queue *queue = hctx->driver_data;
2414 	struct sock *sk = queue->sock->sk;
2415 
2416 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2417 		return 0;
2418 
2419 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2420 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2421 		sk_busy_loop(sk, true);
2422 	nvme_tcp_try_recv(queue);
2423 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2424 	return queue->nr_cqe;
2425 }
2426 
2427 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2428 	.queue_rq	= nvme_tcp_queue_rq,
2429 	.commit_rqs	= nvme_tcp_commit_rqs,
2430 	.complete	= nvme_complete_rq,
2431 	.init_request	= nvme_tcp_init_request,
2432 	.exit_request	= nvme_tcp_exit_request,
2433 	.init_hctx	= nvme_tcp_init_hctx,
2434 	.timeout	= nvme_tcp_timeout,
2435 	.map_queues	= nvme_tcp_map_queues,
2436 	.poll		= nvme_tcp_poll,
2437 };
2438 
2439 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2440 	.queue_rq	= nvme_tcp_queue_rq,
2441 	.complete	= nvme_complete_rq,
2442 	.init_request	= nvme_tcp_init_request,
2443 	.exit_request	= nvme_tcp_exit_request,
2444 	.init_hctx	= nvme_tcp_init_admin_hctx,
2445 	.timeout	= nvme_tcp_timeout,
2446 };
2447 
2448 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2449 	.name			= "tcp",
2450 	.module			= THIS_MODULE,
2451 	.flags			= NVME_F_FABRICS,
2452 	.reg_read32		= nvmf_reg_read32,
2453 	.reg_read64		= nvmf_reg_read64,
2454 	.reg_write32		= nvmf_reg_write32,
2455 	.free_ctrl		= nvme_tcp_free_ctrl,
2456 	.submit_async_event	= nvme_tcp_submit_async_event,
2457 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2458 	.get_address		= nvmf_get_address,
2459 };
2460 
2461 static bool
2462 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2463 {
2464 	struct nvme_tcp_ctrl *ctrl;
2465 	bool found = false;
2466 
2467 	mutex_lock(&nvme_tcp_ctrl_mutex);
2468 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2469 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2470 		if (found)
2471 			break;
2472 	}
2473 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2474 
2475 	return found;
2476 }
2477 
2478 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2479 		struct nvmf_ctrl_options *opts)
2480 {
2481 	struct nvme_tcp_ctrl *ctrl;
2482 	int ret;
2483 
2484 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2485 	if (!ctrl)
2486 		return ERR_PTR(-ENOMEM);
2487 
2488 	INIT_LIST_HEAD(&ctrl->list);
2489 	ctrl->ctrl.opts = opts;
2490 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2491 				opts->nr_poll_queues + 1;
2492 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2493 	ctrl->ctrl.kato = opts->kato;
2494 
2495 	INIT_DELAYED_WORK(&ctrl->connect_work,
2496 			nvme_tcp_reconnect_ctrl_work);
2497 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2498 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2499 
2500 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2501 		opts->trsvcid =
2502 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2503 		if (!opts->trsvcid) {
2504 			ret = -ENOMEM;
2505 			goto out_free_ctrl;
2506 		}
2507 		opts->mask |= NVMF_OPT_TRSVCID;
2508 	}
2509 
2510 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2511 			opts->traddr, opts->trsvcid, &ctrl->addr);
2512 	if (ret) {
2513 		pr_err("malformed address passed: %s:%s\n",
2514 			opts->traddr, opts->trsvcid);
2515 		goto out_free_ctrl;
2516 	}
2517 
2518 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2519 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2520 			opts->host_traddr, NULL, &ctrl->src_addr);
2521 		if (ret) {
2522 			pr_err("malformed src address passed: %s\n",
2523 			       opts->host_traddr);
2524 			goto out_free_ctrl;
2525 		}
2526 	}
2527 
2528 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2529 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2530 			pr_err("invalid interface passed: %s\n",
2531 			       opts->host_iface);
2532 			ret = -ENODEV;
2533 			goto out_free_ctrl;
2534 		}
2535 	}
2536 
2537 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2538 		ret = -EALREADY;
2539 		goto out_free_ctrl;
2540 	}
2541 
2542 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2543 				GFP_KERNEL);
2544 	if (!ctrl->queues) {
2545 		ret = -ENOMEM;
2546 		goto out_free_ctrl;
2547 	}
2548 
2549 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2550 	if (ret)
2551 		goto out_kfree_queues;
2552 
2553 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2554 		WARN_ON_ONCE(1);
2555 		ret = -EINTR;
2556 		goto out_uninit_ctrl;
2557 	}
2558 
2559 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2560 	if (ret)
2561 		goto out_uninit_ctrl;
2562 
2563 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2564 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2565 
2566 	mutex_lock(&nvme_tcp_ctrl_mutex);
2567 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2568 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2569 
2570 	return &ctrl->ctrl;
2571 
2572 out_uninit_ctrl:
2573 	nvme_uninit_ctrl(&ctrl->ctrl);
2574 	nvme_put_ctrl(&ctrl->ctrl);
2575 	if (ret > 0)
2576 		ret = -EIO;
2577 	return ERR_PTR(ret);
2578 out_kfree_queues:
2579 	kfree(ctrl->queues);
2580 out_free_ctrl:
2581 	kfree(ctrl);
2582 	return ERR_PTR(ret);
2583 }
2584 
2585 static struct nvmf_transport_ops nvme_tcp_transport = {
2586 	.name		= "tcp",
2587 	.module		= THIS_MODULE,
2588 	.required_opts	= NVMF_OPT_TRADDR,
2589 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2590 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2591 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2592 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2593 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2594 	.create_ctrl	= nvme_tcp_create_ctrl,
2595 };
2596 
2597 static int __init nvme_tcp_init_module(void)
2598 {
2599 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2600 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2601 	if (!nvme_tcp_wq)
2602 		return -ENOMEM;
2603 
2604 	nvmf_register_transport(&nvme_tcp_transport);
2605 	return 0;
2606 }
2607 
2608 static void __exit nvme_tcp_cleanup_module(void)
2609 {
2610 	struct nvme_tcp_ctrl *ctrl;
2611 
2612 	nvmf_unregister_transport(&nvme_tcp_transport);
2613 
2614 	mutex_lock(&nvme_tcp_ctrl_mutex);
2615 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2616 		nvme_delete_ctrl(&ctrl->ctrl);
2617 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2618 	flush_workqueue(nvme_delete_wq);
2619 
2620 	destroy_workqueue(nvme_tcp_wq);
2621 }
2622 
2623 module_init(nvme_tcp_init_module);
2624 module_exit(nvme_tcp_cleanup_module);
2625 
2626 MODULE_LICENSE("GPL v2");
2627