1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex queue_lock; 80 struct mutex send_mutex; 81 struct llist_head req_list; 82 struct list_head send_list; 83 bool more_requests; 84 85 /* recv state */ 86 void *pdu; 87 int pdu_remaining; 88 int pdu_offset; 89 size_t data_remaining; 90 size_t ddgst_remaining; 91 unsigned int nr_cqe; 92 93 /* send state */ 94 struct nvme_tcp_request *request; 95 96 int queue_size; 97 size_t cmnd_capsule_len; 98 struct nvme_tcp_ctrl *ctrl; 99 unsigned long flags; 100 bool rd_enabled; 101 102 bool hdr_digest; 103 bool data_digest; 104 struct ahash_request *rcv_hash; 105 struct ahash_request *snd_hash; 106 __le32 exp_ddgst; 107 __le32 recv_ddgst; 108 109 struct page_frag_cache pf_cache; 110 111 void (*state_change)(struct sock *); 112 void (*data_ready)(struct sock *); 113 void (*write_space)(struct sock *); 114 }; 115 116 struct nvme_tcp_ctrl { 117 /* read only in the hot path */ 118 struct nvme_tcp_queue *queues; 119 struct blk_mq_tag_set tag_set; 120 121 /* other member variables */ 122 struct list_head list; 123 struct blk_mq_tag_set admin_tag_set; 124 struct sockaddr_storage addr; 125 struct sockaddr_storage src_addr; 126 struct nvme_ctrl ctrl; 127 128 struct work_struct err_work; 129 struct delayed_work connect_work; 130 struct nvme_tcp_request async_req; 131 u32 io_queues[HCTX_MAX_TYPES]; 132 }; 133 134 static LIST_HEAD(nvme_tcp_ctrl_list); 135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 136 static struct workqueue_struct *nvme_tcp_wq; 137 static const struct blk_mq_ops nvme_tcp_mq_ops; 138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 140 141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 142 { 143 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 144 } 145 146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 147 { 148 return queue - queue->ctrl->queues; 149 } 150 151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 152 { 153 u32 queue_idx = nvme_tcp_queue_id(queue); 154 155 if (queue_idx == 0) 156 return queue->ctrl->admin_tag_set.tags[queue_idx]; 157 return queue->ctrl->tag_set.tags[queue_idx - 1]; 158 } 159 160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 161 { 162 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 163 } 164 165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 166 { 167 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 168 } 169 170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 171 { 172 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 173 } 174 175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 176 { 177 return req == &req->queue->ctrl->async_req; 178 } 179 180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 181 { 182 struct request *rq; 183 184 if (unlikely(nvme_tcp_async_req(req))) 185 return false; /* async events don't have a request */ 186 187 rq = blk_mq_rq_from_pdu(req); 188 189 return rq_data_dir(rq) == WRITE && req->data_len && 190 req->data_len <= nvme_tcp_inline_data_size(req->queue); 191 } 192 193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 194 { 195 return req->iter.bvec->bv_page; 196 } 197 198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 199 { 200 return req->iter.bvec->bv_offset + req->iter.iov_offset; 201 } 202 203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 204 { 205 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 206 req->pdu_len - req->pdu_sent); 207 } 208 209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 210 { 211 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 212 req->pdu_len - req->pdu_sent : 0; 213 } 214 215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 216 int len) 217 { 218 return nvme_tcp_pdu_data_left(req) <= len; 219 } 220 221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 222 unsigned int dir) 223 { 224 struct request *rq = blk_mq_rq_from_pdu(req); 225 struct bio_vec *vec; 226 unsigned int size; 227 int nr_bvec; 228 size_t offset; 229 230 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 231 vec = &rq->special_vec; 232 nr_bvec = 1; 233 size = blk_rq_payload_bytes(rq); 234 offset = 0; 235 } else { 236 struct bio *bio = req->curr_bio; 237 struct bvec_iter bi; 238 struct bio_vec bv; 239 240 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 241 nr_bvec = 0; 242 bio_for_each_bvec(bv, bio, bi) { 243 nr_bvec++; 244 } 245 size = bio->bi_iter.bi_size; 246 offset = bio->bi_iter.bi_bvec_done; 247 } 248 249 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 250 req->iter.iov_offset = offset; 251 } 252 253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 254 int len) 255 { 256 req->data_sent += len; 257 req->pdu_sent += len; 258 iov_iter_advance(&req->iter, len); 259 if (!iov_iter_count(&req->iter) && 260 req->data_sent < req->data_len) { 261 req->curr_bio = req->curr_bio->bi_next; 262 nvme_tcp_init_iter(req, WRITE); 263 } 264 } 265 266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 267 { 268 int ret; 269 270 /* drain the send queue as much as we can... */ 271 do { 272 ret = nvme_tcp_try_send(queue); 273 } while (ret > 0); 274 } 275 276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 277 bool sync, bool last) 278 { 279 struct nvme_tcp_queue *queue = req->queue; 280 bool empty; 281 282 empty = llist_add(&req->lentry, &queue->req_list) && 283 list_empty(&queue->send_list) && !queue->request; 284 285 /* 286 * if we're the first on the send_list and we can try to send 287 * directly, otherwise queue io_work. Also, only do that if we 288 * are on the same cpu, so we don't introduce contention. 289 */ 290 if (queue->io_cpu == raw_smp_processor_id() && 291 sync && empty && mutex_trylock(&queue->send_mutex)) { 292 queue->more_requests = !last; 293 nvme_tcp_send_all(queue); 294 queue->more_requests = false; 295 mutex_unlock(&queue->send_mutex); 296 } else if (last) { 297 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 298 } 299 } 300 301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 302 { 303 struct nvme_tcp_request *req; 304 struct llist_node *node; 305 306 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 307 req = llist_entry(node, struct nvme_tcp_request, lentry); 308 list_add(&req->entry, &queue->send_list); 309 } 310 } 311 312 static inline struct nvme_tcp_request * 313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 314 { 315 struct nvme_tcp_request *req; 316 317 req = list_first_entry_or_null(&queue->send_list, 318 struct nvme_tcp_request, entry); 319 if (!req) { 320 nvme_tcp_process_req_list(queue); 321 req = list_first_entry_or_null(&queue->send_list, 322 struct nvme_tcp_request, entry); 323 if (unlikely(!req)) 324 return NULL; 325 } 326 327 list_del(&req->entry); 328 return req; 329 } 330 331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 332 __le32 *dgst) 333 { 334 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 335 crypto_ahash_final(hash); 336 } 337 338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 339 struct page *page, off_t off, size_t len) 340 { 341 struct scatterlist sg; 342 343 sg_init_marker(&sg, 1); 344 sg_set_page(&sg, page, len, off); 345 ahash_request_set_crypt(hash, &sg, NULL, len); 346 crypto_ahash_update(hash); 347 } 348 349 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 350 void *pdu, size_t len) 351 { 352 struct scatterlist sg; 353 354 sg_init_one(&sg, pdu, len); 355 ahash_request_set_crypt(hash, &sg, pdu + len, len); 356 crypto_ahash_digest(hash); 357 } 358 359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 360 void *pdu, size_t pdu_len) 361 { 362 struct nvme_tcp_hdr *hdr = pdu; 363 __le32 recv_digest; 364 __le32 exp_digest; 365 366 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 367 dev_err(queue->ctrl->ctrl.device, 368 "queue %d: header digest flag is cleared\n", 369 nvme_tcp_queue_id(queue)); 370 return -EPROTO; 371 } 372 373 recv_digest = *(__le32 *)(pdu + hdr->hlen); 374 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 375 exp_digest = *(__le32 *)(pdu + hdr->hlen); 376 if (recv_digest != exp_digest) { 377 dev_err(queue->ctrl->ctrl.device, 378 "header digest error: recv %#x expected %#x\n", 379 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 380 return -EIO; 381 } 382 383 return 0; 384 } 385 386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 387 { 388 struct nvme_tcp_hdr *hdr = pdu; 389 u8 digest_len = nvme_tcp_hdgst_len(queue); 390 u32 len; 391 392 len = le32_to_cpu(hdr->plen) - hdr->hlen - 393 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 394 395 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 396 dev_err(queue->ctrl->ctrl.device, 397 "queue %d: data digest flag is cleared\n", 398 nvme_tcp_queue_id(queue)); 399 return -EPROTO; 400 } 401 crypto_ahash_init(queue->rcv_hash); 402 403 return 0; 404 } 405 406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 407 struct request *rq, unsigned int hctx_idx) 408 { 409 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 410 411 page_frag_free(req->pdu); 412 } 413 414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 415 struct request *rq, unsigned int hctx_idx, 416 unsigned int numa_node) 417 { 418 struct nvme_tcp_ctrl *ctrl = set->driver_data; 419 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 420 struct nvme_tcp_cmd_pdu *pdu; 421 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 422 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 423 u8 hdgst = nvme_tcp_hdgst_len(queue); 424 425 req->pdu = page_frag_alloc(&queue->pf_cache, 426 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 427 GFP_KERNEL | __GFP_ZERO); 428 if (!req->pdu) 429 return -ENOMEM; 430 431 pdu = req->pdu; 432 req->queue = queue; 433 nvme_req(rq)->ctrl = &ctrl->ctrl; 434 nvme_req(rq)->cmd = &pdu->cmd; 435 436 return 0; 437 } 438 439 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 440 unsigned int hctx_idx) 441 { 442 struct nvme_tcp_ctrl *ctrl = data; 443 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 444 445 hctx->driver_data = queue; 446 return 0; 447 } 448 449 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 450 unsigned int hctx_idx) 451 { 452 struct nvme_tcp_ctrl *ctrl = data; 453 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 454 455 hctx->driver_data = queue; 456 return 0; 457 } 458 459 static enum nvme_tcp_recv_state 460 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 461 { 462 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 463 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 464 NVME_TCP_RECV_DATA; 465 } 466 467 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 468 { 469 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 470 nvme_tcp_hdgst_len(queue); 471 queue->pdu_offset = 0; 472 queue->data_remaining = -1; 473 queue->ddgst_remaining = 0; 474 } 475 476 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 477 { 478 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 479 return; 480 481 dev_warn(ctrl->device, "starting error recovery\n"); 482 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 483 } 484 485 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 486 struct nvme_completion *cqe) 487 { 488 struct request *rq; 489 490 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 491 if (!rq) { 492 dev_err(queue->ctrl->ctrl.device, 493 "got bad cqe.command_id %#x on queue %d\n", 494 cqe->command_id, nvme_tcp_queue_id(queue)); 495 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 496 return -EINVAL; 497 } 498 499 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 500 nvme_complete_rq(rq); 501 queue->nr_cqe++; 502 503 return 0; 504 } 505 506 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 507 struct nvme_tcp_data_pdu *pdu) 508 { 509 struct request *rq; 510 511 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 512 if (!rq) { 513 dev_err(queue->ctrl->ctrl.device, 514 "got bad c2hdata.command_id %#x on queue %d\n", 515 pdu->command_id, nvme_tcp_queue_id(queue)); 516 return -ENOENT; 517 } 518 519 if (!blk_rq_payload_bytes(rq)) { 520 dev_err(queue->ctrl->ctrl.device, 521 "queue %d tag %#x unexpected data\n", 522 nvme_tcp_queue_id(queue), rq->tag); 523 return -EIO; 524 } 525 526 queue->data_remaining = le32_to_cpu(pdu->data_length); 527 528 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 529 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 530 dev_err(queue->ctrl->ctrl.device, 531 "queue %d tag %#x SUCCESS set but not last PDU\n", 532 nvme_tcp_queue_id(queue), rq->tag); 533 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 534 return -EPROTO; 535 } 536 537 return 0; 538 } 539 540 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 541 struct nvme_tcp_rsp_pdu *pdu) 542 { 543 struct nvme_completion *cqe = &pdu->cqe; 544 int ret = 0; 545 546 /* 547 * AEN requests are special as they don't time out and can 548 * survive any kind of queue freeze and often don't respond to 549 * aborts. We don't even bother to allocate a struct request 550 * for them but rather special case them here. 551 */ 552 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 553 cqe->command_id))) 554 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 555 &cqe->result); 556 else 557 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 558 559 return ret; 560 } 561 562 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 563 struct nvme_tcp_r2t_pdu *pdu) 564 { 565 struct nvme_tcp_data_pdu *data = req->pdu; 566 struct nvme_tcp_queue *queue = req->queue; 567 struct request *rq = blk_mq_rq_from_pdu(req); 568 u8 hdgst = nvme_tcp_hdgst_len(queue); 569 u8 ddgst = nvme_tcp_ddgst_len(queue); 570 571 req->pdu_len = le32_to_cpu(pdu->r2t_length); 572 req->pdu_sent = 0; 573 574 if (unlikely(!req->pdu_len)) { 575 dev_err(queue->ctrl->ctrl.device, 576 "req %d r2t len is %u, probably a bug...\n", 577 rq->tag, req->pdu_len); 578 return -EPROTO; 579 } 580 581 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 582 dev_err(queue->ctrl->ctrl.device, 583 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 584 rq->tag, req->pdu_len, req->data_len, 585 req->data_sent); 586 return -EPROTO; 587 } 588 589 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 590 dev_err(queue->ctrl->ctrl.device, 591 "req %d unexpected r2t offset %u (expected %zu)\n", 592 rq->tag, le32_to_cpu(pdu->r2t_offset), 593 req->data_sent); 594 return -EPROTO; 595 } 596 597 memset(data, 0, sizeof(*data)); 598 data->hdr.type = nvme_tcp_h2c_data; 599 data->hdr.flags = NVME_TCP_F_DATA_LAST; 600 if (queue->hdr_digest) 601 data->hdr.flags |= NVME_TCP_F_HDGST; 602 if (queue->data_digest) 603 data->hdr.flags |= NVME_TCP_F_DDGST; 604 data->hdr.hlen = sizeof(*data); 605 data->hdr.pdo = data->hdr.hlen + hdgst; 606 data->hdr.plen = 607 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 608 data->ttag = pdu->ttag; 609 data->command_id = nvme_cid(rq); 610 data->data_offset = cpu_to_le32(req->data_sent); 611 data->data_length = cpu_to_le32(req->pdu_len); 612 return 0; 613 } 614 615 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 616 struct nvme_tcp_r2t_pdu *pdu) 617 { 618 struct nvme_tcp_request *req; 619 struct request *rq; 620 int ret; 621 622 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 623 if (!rq) { 624 dev_err(queue->ctrl->ctrl.device, 625 "got bad r2t.command_id %#x on queue %d\n", 626 pdu->command_id, nvme_tcp_queue_id(queue)); 627 return -ENOENT; 628 } 629 req = blk_mq_rq_to_pdu(rq); 630 631 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 632 if (unlikely(ret)) 633 return ret; 634 635 req->state = NVME_TCP_SEND_H2C_PDU; 636 req->offset = 0; 637 638 nvme_tcp_queue_request(req, false, true); 639 640 return 0; 641 } 642 643 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 644 unsigned int *offset, size_t *len) 645 { 646 struct nvme_tcp_hdr *hdr; 647 char *pdu = queue->pdu; 648 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 649 int ret; 650 651 ret = skb_copy_bits(skb, *offset, 652 &pdu[queue->pdu_offset], rcv_len); 653 if (unlikely(ret)) 654 return ret; 655 656 queue->pdu_remaining -= rcv_len; 657 queue->pdu_offset += rcv_len; 658 *offset += rcv_len; 659 *len -= rcv_len; 660 if (queue->pdu_remaining) 661 return 0; 662 663 hdr = queue->pdu; 664 if (queue->hdr_digest) { 665 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 666 if (unlikely(ret)) 667 return ret; 668 } 669 670 671 if (queue->data_digest) { 672 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 673 if (unlikely(ret)) 674 return ret; 675 } 676 677 switch (hdr->type) { 678 case nvme_tcp_c2h_data: 679 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 680 case nvme_tcp_rsp: 681 nvme_tcp_init_recv_ctx(queue); 682 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 683 case nvme_tcp_r2t: 684 nvme_tcp_init_recv_ctx(queue); 685 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 686 default: 687 dev_err(queue->ctrl->ctrl.device, 688 "unsupported pdu type (%d)\n", hdr->type); 689 return -EINVAL; 690 } 691 } 692 693 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 694 { 695 union nvme_result res = {}; 696 697 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 698 nvme_complete_rq(rq); 699 } 700 701 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 702 unsigned int *offset, size_t *len) 703 { 704 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 705 struct request *rq = 706 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 707 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 708 709 while (true) { 710 int recv_len, ret; 711 712 recv_len = min_t(size_t, *len, queue->data_remaining); 713 if (!recv_len) 714 break; 715 716 if (!iov_iter_count(&req->iter)) { 717 req->curr_bio = req->curr_bio->bi_next; 718 719 /* 720 * If we don`t have any bios it means that controller 721 * sent more data than we requested, hence error 722 */ 723 if (!req->curr_bio) { 724 dev_err(queue->ctrl->ctrl.device, 725 "queue %d no space in request %#x", 726 nvme_tcp_queue_id(queue), rq->tag); 727 nvme_tcp_init_recv_ctx(queue); 728 return -EIO; 729 } 730 nvme_tcp_init_iter(req, READ); 731 } 732 733 /* we can read only from what is left in this bio */ 734 recv_len = min_t(size_t, recv_len, 735 iov_iter_count(&req->iter)); 736 737 if (queue->data_digest) 738 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 739 &req->iter, recv_len, queue->rcv_hash); 740 else 741 ret = skb_copy_datagram_iter(skb, *offset, 742 &req->iter, recv_len); 743 if (ret) { 744 dev_err(queue->ctrl->ctrl.device, 745 "queue %d failed to copy request %#x data", 746 nvme_tcp_queue_id(queue), rq->tag); 747 return ret; 748 } 749 750 *len -= recv_len; 751 *offset += recv_len; 752 queue->data_remaining -= recv_len; 753 } 754 755 if (!queue->data_remaining) { 756 if (queue->data_digest) { 757 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 758 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 759 } else { 760 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 761 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 762 queue->nr_cqe++; 763 } 764 nvme_tcp_init_recv_ctx(queue); 765 } 766 } 767 768 return 0; 769 } 770 771 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 772 struct sk_buff *skb, unsigned int *offset, size_t *len) 773 { 774 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 775 char *ddgst = (char *)&queue->recv_ddgst; 776 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 777 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 778 int ret; 779 780 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 781 if (unlikely(ret)) 782 return ret; 783 784 queue->ddgst_remaining -= recv_len; 785 *offset += recv_len; 786 *len -= recv_len; 787 if (queue->ddgst_remaining) 788 return 0; 789 790 if (queue->recv_ddgst != queue->exp_ddgst) { 791 dev_err(queue->ctrl->ctrl.device, 792 "data digest error: recv %#x expected %#x\n", 793 le32_to_cpu(queue->recv_ddgst), 794 le32_to_cpu(queue->exp_ddgst)); 795 return -EIO; 796 } 797 798 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 799 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 800 pdu->command_id); 801 802 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 803 queue->nr_cqe++; 804 } 805 806 nvme_tcp_init_recv_ctx(queue); 807 return 0; 808 } 809 810 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 811 unsigned int offset, size_t len) 812 { 813 struct nvme_tcp_queue *queue = desc->arg.data; 814 size_t consumed = len; 815 int result; 816 817 while (len) { 818 switch (nvme_tcp_recv_state(queue)) { 819 case NVME_TCP_RECV_PDU: 820 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 821 break; 822 case NVME_TCP_RECV_DATA: 823 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 824 break; 825 case NVME_TCP_RECV_DDGST: 826 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 827 break; 828 default: 829 result = -EFAULT; 830 } 831 if (result) { 832 dev_err(queue->ctrl->ctrl.device, 833 "receive failed: %d\n", result); 834 queue->rd_enabled = false; 835 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 836 return result; 837 } 838 } 839 840 return consumed; 841 } 842 843 static void nvme_tcp_data_ready(struct sock *sk) 844 { 845 struct nvme_tcp_queue *queue; 846 847 read_lock_bh(&sk->sk_callback_lock); 848 queue = sk->sk_user_data; 849 if (likely(queue && queue->rd_enabled) && 850 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 851 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 852 read_unlock_bh(&sk->sk_callback_lock); 853 } 854 855 static void nvme_tcp_write_space(struct sock *sk) 856 { 857 struct nvme_tcp_queue *queue; 858 859 read_lock_bh(&sk->sk_callback_lock); 860 queue = sk->sk_user_data; 861 if (likely(queue && sk_stream_is_writeable(sk))) { 862 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 863 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 864 } 865 read_unlock_bh(&sk->sk_callback_lock); 866 } 867 868 static void nvme_tcp_state_change(struct sock *sk) 869 { 870 struct nvme_tcp_queue *queue; 871 872 read_lock_bh(&sk->sk_callback_lock); 873 queue = sk->sk_user_data; 874 if (!queue) 875 goto done; 876 877 switch (sk->sk_state) { 878 case TCP_CLOSE: 879 case TCP_CLOSE_WAIT: 880 case TCP_LAST_ACK: 881 case TCP_FIN_WAIT1: 882 case TCP_FIN_WAIT2: 883 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 884 break; 885 default: 886 dev_info(queue->ctrl->ctrl.device, 887 "queue %d socket state %d\n", 888 nvme_tcp_queue_id(queue), sk->sk_state); 889 } 890 891 queue->state_change(sk); 892 done: 893 read_unlock_bh(&sk->sk_callback_lock); 894 } 895 896 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 897 { 898 return !list_empty(&queue->send_list) || 899 !llist_empty(&queue->req_list) || queue->more_requests; 900 } 901 902 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 903 { 904 queue->request = NULL; 905 } 906 907 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 908 { 909 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 910 } 911 912 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 913 { 914 struct nvme_tcp_queue *queue = req->queue; 915 916 while (true) { 917 struct page *page = nvme_tcp_req_cur_page(req); 918 size_t offset = nvme_tcp_req_cur_offset(req); 919 size_t len = nvme_tcp_req_cur_length(req); 920 bool last = nvme_tcp_pdu_last_send(req, len); 921 int ret, flags = MSG_DONTWAIT; 922 923 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 924 flags |= MSG_EOR; 925 else 926 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 927 928 if (sendpage_ok(page)) { 929 ret = kernel_sendpage(queue->sock, page, offset, len, 930 flags); 931 } else { 932 ret = sock_no_sendpage(queue->sock, page, offset, len, 933 flags); 934 } 935 if (ret <= 0) 936 return ret; 937 938 if (queue->data_digest) 939 nvme_tcp_ddgst_update(queue->snd_hash, page, 940 offset, ret); 941 942 /* fully successful last write*/ 943 if (last && ret == len) { 944 if (queue->data_digest) { 945 nvme_tcp_ddgst_final(queue->snd_hash, 946 &req->ddgst); 947 req->state = NVME_TCP_SEND_DDGST; 948 req->offset = 0; 949 } else { 950 nvme_tcp_done_send_req(queue); 951 } 952 return 1; 953 } 954 nvme_tcp_advance_req(req, ret); 955 } 956 return -EAGAIN; 957 } 958 959 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 960 { 961 struct nvme_tcp_queue *queue = req->queue; 962 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 963 bool inline_data = nvme_tcp_has_inline_data(req); 964 u8 hdgst = nvme_tcp_hdgst_len(queue); 965 int len = sizeof(*pdu) + hdgst - req->offset; 966 int flags = MSG_DONTWAIT; 967 int ret; 968 969 if (inline_data || nvme_tcp_queue_more(queue)) 970 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 971 else 972 flags |= MSG_EOR; 973 974 if (queue->hdr_digest && !req->offset) 975 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 976 977 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 978 offset_in_page(pdu) + req->offset, len, flags); 979 if (unlikely(ret <= 0)) 980 return ret; 981 982 len -= ret; 983 if (!len) { 984 if (inline_data) { 985 req->state = NVME_TCP_SEND_DATA; 986 if (queue->data_digest) 987 crypto_ahash_init(queue->snd_hash); 988 } else { 989 nvme_tcp_done_send_req(queue); 990 } 991 return 1; 992 } 993 req->offset += ret; 994 995 return -EAGAIN; 996 } 997 998 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 999 { 1000 struct nvme_tcp_queue *queue = req->queue; 1001 struct nvme_tcp_data_pdu *pdu = req->pdu; 1002 u8 hdgst = nvme_tcp_hdgst_len(queue); 1003 int len = sizeof(*pdu) - req->offset + hdgst; 1004 int ret; 1005 1006 if (queue->hdr_digest && !req->offset) 1007 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1008 1009 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1010 offset_in_page(pdu) + req->offset, len, 1011 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1012 if (unlikely(ret <= 0)) 1013 return ret; 1014 1015 len -= ret; 1016 if (!len) { 1017 req->state = NVME_TCP_SEND_DATA; 1018 if (queue->data_digest) 1019 crypto_ahash_init(queue->snd_hash); 1020 return 1; 1021 } 1022 req->offset += ret; 1023 1024 return -EAGAIN; 1025 } 1026 1027 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1028 { 1029 struct nvme_tcp_queue *queue = req->queue; 1030 int ret; 1031 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1032 struct kvec iov = { 1033 .iov_base = &req->ddgst + req->offset, 1034 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1035 }; 1036 1037 if (nvme_tcp_queue_more(queue)) 1038 msg.msg_flags |= MSG_MORE; 1039 else 1040 msg.msg_flags |= MSG_EOR; 1041 1042 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1043 if (unlikely(ret <= 0)) 1044 return ret; 1045 1046 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1047 nvme_tcp_done_send_req(queue); 1048 return 1; 1049 } 1050 1051 req->offset += ret; 1052 return -EAGAIN; 1053 } 1054 1055 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1056 { 1057 struct nvme_tcp_request *req; 1058 int ret = 1; 1059 1060 if (!queue->request) { 1061 queue->request = nvme_tcp_fetch_request(queue); 1062 if (!queue->request) 1063 return 0; 1064 } 1065 req = queue->request; 1066 1067 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1068 ret = nvme_tcp_try_send_cmd_pdu(req); 1069 if (ret <= 0) 1070 goto done; 1071 if (!nvme_tcp_has_inline_data(req)) 1072 return ret; 1073 } 1074 1075 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1076 ret = nvme_tcp_try_send_data_pdu(req); 1077 if (ret <= 0) 1078 goto done; 1079 } 1080 1081 if (req->state == NVME_TCP_SEND_DATA) { 1082 ret = nvme_tcp_try_send_data(req); 1083 if (ret <= 0) 1084 goto done; 1085 } 1086 1087 if (req->state == NVME_TCP_SEND_DDGST) 1088 ret = nvme_tcp_try_send_ddgst(req); 1089 done: 1090 if (ret == -EAGAIN) { 1091 ret = 0; 1092 } else if (ret < 0) { 1093 dev_err(queue->ctrl->ctrl.device, 1094 "failed to send request %d\n", ret); 1095 if (ret != -EPIPE && ret != -ECONNRESET) 1096 nvme_tcp_fail_request(queue->request); 1097 nvme_tcp_done_send_req(queue); 1098 } 1099 return ret; 1100 } 1101 1102 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1103 { 1104 struct socket *sock = queue->sock; 1105 struct sock *sk = sock->sk; 1106 read_descriptor_t rd_desc; 1107 int consumed; 1108 1109 rd_desc.arg.data = queue; 1110 rd_desc.count = 1; 1111 lock_sock(sk); 1112 queue->nr_cqe = 0; 1113 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1114 release_sock(sk); 1115 return consumed; 1116 } 1117 1118 static void nvme_tcp_io_work(struct work_struct *w) 1119 { 1120 struct nvme_tcp_queue *queue = 1121 container_of(w, struct nvme_tcp_queue, io_work); 1122 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1123 1124 do { 1125 bool pending = false; 1126 int result; 1127 1128 if (mutex_trylock(&queue->send_mutex)) { 1129 result = nvme_tcp_try_send(queue); 1130 mutex_unlock(&queue->send_mutex); 1131 if (result > 0) 1132 pending = true; 1133 else if (unlikely(result < 0)) 1134 break; 1135 } else 1136 pending = !llist_empty(&queue->req_list); 1137 1138 result = nvme_tcp_try_recv(queue); 1139 if (result > 0) 1140 pending = true; 1141 else if (unlikely(result < 0)) 1142 return; 1143 1144 if (!pending) 1145 return; 1146 1147 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1148 1149 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1150 } 1151 1152 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1153 { 1154 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1155 1156 ahash_request_free(queue->rcv_hash); 1157 ahash_request_free(queue->snd_hash); 1158 crypto_free_ahash(tfm); 1159 } 1160 1161 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1162 { 1163 struct crypto_ahash *tfm; 1164 1165 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1166 if (IS_ERR(tfm)) 1167 return PTR_ERR(tfm); 1168 1169 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1170 if (!queue->snd_hash) 1171 goto free_tfm; 1172 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1173 1174 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1175 if (!queue->rcv_hash) 1176 goto free_snd_hash; 1177 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1178 1179 return 0; 1180 free_snd_hash: 1181 ahash_request_free(queue->snd_hash); 1182 free_tfm: 1183 crypto_free_ahash(tfm); 1184 return -ENOMEM; 1185 } 1186 1187 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1188 { 1189 struct nvme_tcp_request *async = &ctrl->async_req; 1190 1191 page_frag_free(async->pdu); 1192 } 1193 1194 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1195 { 1196 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1197 struct nvme_tcp_request *async = &ctrl->async_req; 1198 u8 hdgst = nvme_tcp_hdgst_len(queue); 1199 1200 async->pdu = page_frag_alloc(&queue->pf_cache, 1201 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1202 GFP_KERNEL | __GFP_ZERO); 1203 if (!async->pdu) 1204 return -ENOMEM; 1205 1206 async->queue = &ctrl->queues[0]; 1207 return 0; 1208 } 1209 1210 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1211 { 1212 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1213 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1214 1215 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1216 return; 1217 1218 if (queue->hdr_digest || queue->data_digest) 1219 nvme_tcp_free_crypto(queue); 1220 1221 sock_release(queue->sock); 1222 kfree(queue->pdu); 1223 mutex_destroy(&queue->send_mutex); 1224 mutex_destroy(&queue->queue_lock); 1225 } 1226 1227 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1228 { 1229 struct nvme_tcp_icreq_pdu *icreq; 1230 struct nvme_tcp_icresp_pdu *icresp; 1231 struct msghdr msg = {}; 1232 struct kvec iov; 1233 bool ctrl_hdgst, ctrl_ddgst; 1234 int ret; 1235 1236 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1237 if (!icreq) 1238 return -ENOMEM; 1239 1240 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1241 if (!icresp) { 1242 ret = -ENOMEM; 1243 goto free_icreq; 1244 } 1245 1246 icreq->hdr.type = nvme_tcp_icreq; 1247 icreq->hdr.hlen = sizeof(*icreq); 1248 icreq->hdr.pdo = 0; 1249 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1250 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1251 icreq->maxr2t = 0; /* single inflight r2t supported */ 1252 icreq->hpda = 0; /* no alignment constraint */ 1253 if (queue->hdr_digest) 1254 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1255 if (queue->data_digest) 1256 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1257 1258 iov.iov_base = icreq; 1259 iov.iov_len = sizeof(*icreq); 1260 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1261 if (ret < 0) 1262 goto free_icresp; 1263 1264 memset(&msg, 0, sizeof(msg)); 1265 iov.iov_base = icresp; 1266 iov.iov_len = sizeof(*icresp); 1267 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1268 iov.iov_len, msg.msg_flags); 1269 if (ret < 0) 1270 goto free_icresp; 1271 1272 ret = -EINVAL; 1273 if (icresp->hdr.type != nvme_tcp_icresp) { 1274 pr_err("queue %d: bad type returned %d\n", 1275 nvme_tcp_queue_id(queue), icresp->hdr.type); 1276 goto free_icresp; 1277 } 1278 1279 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1280 pr_err("queue %d: bad pdu length returned %d\n", 1281 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1282 goto free_icresp; 1283 } 1284 1285 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1286 pr_err("queue %d: bad pfv returned %d\n", 1287 nvme_tcp_queue_id(queue), icresp->pfv); 1288 goto free_icresp; 1289 } 1290 1291 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1292 if ((queue->data_digest && !ctrl_ddgst) || 1293 (!queue->data_digest && ctrl_ddgst)) { 1294 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1295 nvme_tcp_queue_id(queue), 1296 queue->data_digest ? "enabled" : "disabled", 1297 ctrl_ddgst ? "enabled" : "disabled"); 1298 goto free_icresp; 1299 } 1300 1301 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1302 if ((queue->hdr_digest && !ctrl_hdgst) || 1303 (!queue->hdr_digest && ctrl_hdgst)) { 1304 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1305 nvme_tcp_queue_id(queue), 1306 queue->hdr_digest ? "enabled" : "disabled", 1307 ctrl_hdgst ? "enabled" : "disabled"); 1308 goto free_icresp; 1309 } 1310 1311 if (icresp->cpda != 0) { 1312 pr_err("queue %d: unsupported cpda returned %d\n", 1313 nvme_tcp_queue_id(queue), icresp->cpda); 1314 goto free_icresp; 1315 } 1316 1317 ret = 0; 1318 free_icresp: 1319 kfree(icresp); 1320 free_icreq: 1321 kfree(icreq); 1322 return ret; 1323 } 1324 1325 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1326 { 1327 return nvme_tcp_queue_id(queue) == 0; 1328 } 1329 1330 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1331 { 1332 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1333 int qid = nvme_tcp_queue_id(queue); 1334 1335 return !nvme_tcp_admin_queue(queue) && 1336 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1337 } 1338 1339 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1340 { 1341 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1342 int qid = nvme_tcp_queue_id(queue); 1343 1344 return !nvme_tcp_admin_queue(queue) && 1345 !nvme_tcp_default_queue(queue) && 1346 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1347 ctrl->io_queues[HCTX_TYPE_READ]; 1348 } 1349 1350 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1351 { 1352 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1353 int qid = nvme_tcp_queue_id(queue); 1354 1355 return !nvme_tcp_admin_queue(queue) && 1356 !nvme_tcp_default_queue(queue) && 1357 !nvme_tcp_read_queue(queue) && 1358 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1359 ctrl->io_queues[HCTX_TYPE_READ] + 1360 ctrl->io_queues[HCTX_TYPE_POLL]; 1361 } 1362 1363 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1364 { 1365 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1366 int qid = nvme_tcp_queue_id(queue); 1367 int n = 0; 1368 1369 if (nvme_tcp_default_queue(queue)) 1370 n = qid - 1; 1371 else if (nvme_tcp_read_queue(queue)) 1372 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1373 else if (nvme_tcp_poll_queue(queue)) 1374 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1375 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1376 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1377 } 1378 1379 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1380 int qid, size_t queue_size) 1381 { 1382 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1383 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1384 int ret, rcv_pdu_size; 1385 1386 mutex_init(&queue->queue_lock); 1387 queue->ctrl = ctrl; 1388 init_llist_head(&queue->req_list); 1389 INIT_LIST_HEAD(&queue->send_list); 1390 mutex_init(&queue->send_mutex); 1391 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1392 queue->queue_size = queue_size; 1393 1394 if (qid > 0) 1395 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1396 else 1397 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1398 NVME_TCP_ADMIN_CCSZ; 1399 1400 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1401 IPPROTO_TCP, &queue->sock); 1402 if (ret) { 1403 dev_err(nctrl->device, 1404 "failed to create socket: %d\n", ret); 1405 goto err_destroy_mutex; 1406 } 1407 1408 /* Single syn retry */ 1409 tcp_sock_set_syncnt(queue->sock->sk, 1); 1410 1411 /* Set TCP no delay */ 1412 tcp_sock_set_nodelay(queue->sock->sk); 1413 1414 /* 1415 * Cleanup whatever is sitting in the TCP transmit queue on socket 1416 * close. This is done to prevent stale data from being sent should 1417 * the network connection be restored before TCP times out. 1418 */ 1419 sock_no_linger(queue->sock->sk); 1420 1421 if (so_priority > 0) 1422 sock_set_priority(queue->sock->sk, so_priority); 1423 1424 /* Set socket type of service */ 1425 if (nctrl->opts->tos >= 0) 1426 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1427 1428 /* Set 10 seconds timeout for icresp recvmsg */ 1429 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1430 1431 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1432 nvme_tcp_set_queue_io_cpu(queue); 1433 queue->request = NULL; 1434 queue->data_remaining = 0; 1435 queue->ddgst_remaining = 0; 1436 queue->pdu_remaining = 0; 1437 queue->pdu_offset = 0; 1438 sk_set_memalloc(queue->sock->sk); 1439 1440 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1441 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1442 sizeof(ctrl->src_addr)); 1443 if (ret) { 1444 dev_err(nctrl->device, 1445 "failed to bind queue %d socket %d\n", 1446 qid, ret); 1447 goto err_sock; 1448 } 1449 } 1450 1451 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1452 char *iface = nctrl->opts->host_iface; 1453 sockptr_t optval = KERNEL_SOCKPTR(iface); 1454 1455 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1456 optval, strlen(iface)); 1457 if (ret) { 1458 dev_err(nctrl->device, 1459 "failed to bind to interface %s queue %d err %d\n", 1460 iface, qid, ret); 1461 goto err_sock; 1462 } 1463 } 1464 1465 queue->hdr_digest = nctrl->opts->hdr_digest; 1466 queue->data_digest = nctrl->opts->data_digest; 1467 if (queue->hdr_digest || queue->data_digest) { 1468 ret = nvme_tcp_alloc_crypto(queue); 1469 if (ret) { 1470 dev_err(nctrl->device, 1471 "failed to allocate queue %d crypto\n", qid); 1472 goto err_sock; 1473 } 1474 } 1475 1476 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1477 nvme_tcp_hdgst_len(queue); 1478 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1479 if (!queue->pdu) { 1480 ret = -ENOMEM; 1481 goto err_crypto; 1482 } 1483 1484 dev_dbg(nctrl->device, "connecting queue %d\n", 1485 nvme_tcp_queue_id(queue)); 1486 1487 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1488 sizeof(ctrl->addr), 0); 1489 if (ret) { 1490 dev_err(nctrl->device, 1491 "failed to connect socket: %d\n", ret); 1492 goto err_rcv_pdu; 1493 } 1494 1495 ret = nvme_tcp_init_connection(queue); 1496 if (ret) 1497 goto err_init_connect; 1498 1499 queue->rd_enabled = true; 1500 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1501 nvme_tcp_init_recv_ctx(queue); 1502 1503 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1504 queue->sock->sk->sk_user_data = queue; 1505 queue->state_change = queue->sock->sk->sk_state_change; 1506 queue->data_ready = queue->sock->sk->sk_data_ready; 1507 queue->write_space = queue->sock->sk->sk_write_space; 1508 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1509 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1510 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1511 #ifdef CONFIG_NET_RX_BUSY_POLL 1512 queue->sock->sk->sk_ll_usec = 1; 1513 #endif 1514 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1515 1516 return 0; 1517 1518 err_init_connect: 1519 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1520 err_rcv_pdu: 1521 kfree(queue->pdu); 1522 err_crypto: 1523 if (queue->hdr_digest || queue->data_digest) 1524 nvme_tcp_free_crypto(queue); 1525 err_sock: 1526 sock_release(queue->sock); 1527 queue->sock = NULL; 1528 err_destroy_mutex: 1529 mutex_destroy(&queue->send_mutex); 1530 mutex_destroy(&queue->queue_lock); 1531 return ret; 1532 } 1533 1534 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1535 { 1536 struct socket *sock = queue->sock; 1537 1538 write_lock_bh(&sock->sk->sk_callback_lock); 1539 sock->sk->sk_user_data = NULL; 1540 sock->sk->sk_data_ready = queue->data_ready; 1541 sock->sk->sk_state_change = queue->state_change; 1542 sock->sk->sk_write_space = queue->write_space; 1543 write_unlock_bh(&sock->sk->sk_callback_lock); 1544 } 1545 1546 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1547 { 1548 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1549 nvme_tcp_restore_sock_calls(queue); 1550 cancel_work_sync(&queue->io_work); 1551 } 1552 1553 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1554 { 1555 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1556 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1557 1558 mutex_lock(&queue->queue_lock); 1559 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1560 __nvme_tcp_stop_queue(queue); 1561 mutex_unlock(&queue->queue_lock); 1562 } 1563 1564 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1565 { 1566 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1567 int ret; 1568 1569 if (idx) 1570 ret = nvmf_connect_io_queue(nctrl, idx); 1571 else 1572 ret = nvmf_connect_admin_queue(nctrl); 1573 1574 if (!ret) { 1575 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1576 } else { 1577 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1578 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1579 dev_err(nctrl->device, 1580 "failed to connect queue: %d ret=%d\n", idx, ret); 1581 } 1582 return ret; 1583 } 1584 1585 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1586 bool admin) 1587 { 1588 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1589 struct blk_mq_tag_set *set; 1590 int ret; 1591 1592 if (admin) { 1593 set = &ctrl->admin_tag_set; 1594 memset(set, 0, sizeof(*set)); 1595 set->ops = &nvme_tcp_admin_mq_ops; 1596 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1597 set->reserved_tags = NVMF_RESERVED_TAGS; 1598 set->numa_node = nctrl->numa_node; 1599 set->flags = BLK_MQ_F_BLOCKING; 1600 set->cmd_size = sizeof(struct nvme_tcp_request); 1601 set->driver_data = ctrl; 1602 set->nr_hw_queues = 1; 1603 set->timeout = NVME_ADMIN_TIMEOUT; 1604 } else { 1605 set = &ctrl->tag_set; 1606 memset(set, 0, sizeof(*set)); 1607 set->ops = &nvme_tcp_mq_ops; 1608 set->queue_depth = nctrl->sqsize + 1; 1609 set->reserved_tags = NVMF_RESERVED_TAGS; 1610 set->numa_node = nctrl->numa_node; 1611 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1612 set->cmd_size = sizeof(struct nvme_tcp_request); 1613 set->driver_data = ctrl; 1614 set->nr_hw_queues = nctrl->queue_count - 1; 1615 set->timeout = NVME_IO_TIMEOUT; 1616 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1617 } 1618 1619 ret = blk_mq_alloc_tag_set(set); 1620 if (ret) 1621 return ERR_PTR(ret); 1622 1623 return set; 1624 } 1625 1626 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1627 { 1628 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1629 cancel_work_sync(&ctrl->async_event_work); 1630 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1631 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1632 } 1633 1634 nvme_tcp_free_queue(ctrl, 0); 1635 } 1636 1637 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1638 { 1639 int i; 1640 1641 for (i = 1; i < ctrl->queue_count; i++) 1642 nvme_tcp_free_queue(ctrl, i); 1643 } 1644 1645 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1646 { 1647 int i; 1648 1649 for (i = 1; i < ctrl->queue_count; i++) 1650 nvme_tcp_stop_queue(ctrl, i); 1651 } 1652 1653 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1654 { 1655 int i, ret = 0; 1656 1657 for (i = 1; i < ctrl->queue_count; i++) { 1658 ret = nvme_tcp_start_queue(ctrl, i); 1659 if (ret) 1660 goto out_stop_queues; 1661 } 1662 1663 return 0; 1664 1665 out_stop_queues: 1666 for (i--; i >= 1; i--) 1667 nvme_tcp_stop_queue(ctrl, i); 1668 return ret; 1669 } 1670 1671 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1672 { 1673 int ret; 1674 1675 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1676 if (ret) 1677 return ret; 1678 1679 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1680 if (ret) 1681 goto out_free_queue; 1682 1683 return 0; 1684 1685 out_free_queue: 1686 nvme_tcp_free_queue(ctrl, 0); 1687 return ret; 1688 } 1689 1690 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1691 { 1692 int i, ret; 1693 1694 for (i = 1; i < ctrl->queue_count; i++) { 1695 ret = nvme_tcp_alloc_queue(ctrl, i, 1696 ctrl->sqsize + 1); 1697 if (ret) 1698 goto out_free_queues; 1699 } 1700 1701 return 0; 1702 1703 out_free_queues: 1704 for (i--; i >= 1; i--) 1705 nvme_tcp_free_queue(ctrl, i); 1706 1707 return ret; 1708 } 1709 1710 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1711 { 1712 unsigned int nr_io_queues; 1713 1714 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1715 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1716 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1717 1718 return nr_io_queues; 1719 } 1720 1721 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1722 unsigned int nr_io_queues) 1723 { 1724 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1725 struct nvmf_ctrl_options *opts = nctrl->opts; 1726 1727 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1728 /* 1729 * separate read/write queues 1730 * hand out dedicated default queues only after we have 1731 * sufficient read queues. 1732 */ 1733 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1734 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1735 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1736 min(opts->nr_write_queues, nr_io_queues); 1737 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1738 } else { 1739 /* 1740 * shared read/write queues 1741 * either no write queues were requested, or we don't have 1742 * sufficient queue count to have dedicated default queues. 1743 */ 1744 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1745 min(opts->nr_io_queues, nr_io_queues); 1746 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1747 } 1748 1749 if (opts->nr_poll_queues && nr_io_queues) { 1750 /* map dedicated poll queues only if we have queues left */ 1751 ctrl->io_queues[HCTX_TYPE_POLL] = 1752 min(opts->nr_poll_queues, nr_io_queues); 1753 } 1754 } 1755 1756 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1757 { 1758 unsigned int nr_io_queues; 1759 int ret; 1760 1761 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1762 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1763 if (ret) 1764 return ret; 1765 1766 if (nr_io_queues == 0) { 1767 dev_err(ctrl->device, 1768 "unable to set any I/O queues\n"); 1769 return -ENOMEM; 1770 } 1771 1772 ctrl->queue_count = nr_io_queues + 1; 1773 dev_info(ctrl->device, 1774 "creating %d I/O queues.\n", nr_io_queues); 1775 1776 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1777 1778 return __nvme_tcp_alloc_io_queues(ctrl); 1779 } 1780 1781 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1782 { 1783 nvme_tcp_stop_io_queues(ctrl); 1784 if (remove) { 1785 blk_cleanup_queue(ctrl->connect_q); 1786 blk_mq_free_tag_set(ctrl->tagset); 1787 } 1788 nvme_tcp_free_io_queues(ctrl); 1789 } 1790 1791 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1792 { 1793 int ret; 1794 1795 ret = nvme_tcp_alloc_io_queues(ctrl); 1796 if (ret) 1797 return ret; 1798 1799 if (new) { 1800 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1801 if (IS_ERR(ctrl->tagset)) { 1802 ret = PTR_ERR(ctrl->tagset); 1803 goto out_free_io_queues; 1804 } 1805 1806 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1807 if (IS_ERR(ctrl->connect_q)) { 1808 ret = PTR_ERR(ctrl->connect_q); 1809 goto out_free_tag_set; 1810 } 1811 } 1812 1813 ret = nvme_tcp_start_io_queues(ctrl); 1814 if (ret) 1815 goto out_cleanup_connect_q; 1816 1817 if (!new) { 1818 nvme_start_queues(ctrl); 1819 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1820 /* 1821 * If we timed out waiting for freeze we are likely to 1822 * be stuck. Fail the controller initialization just 1823 * to be safe. 1824 */ 1825 ret = -ENODEV; 1826 goto out_wait_freeze_timed_out; 1827 } 1828 blk_mq_update_nr_hw_queues(ctrl->tagset, 1829 ctrl->queue_count - 1); 1830 nvme_unfreeze(ctrl); 1831 } 1832 1833 return 0; 1834 1835 out_wait_freeze_timed_out: 1836 nvme_stop_queues(ctrl); 1837 nvme_sync_io_queues(ctrl); 1838 nvme_tcp_stop_io_queues(ctrl); 1839 out_cleanup_connect_q: 1840 nvme_cancel_tagset(ctrl); 1841 if (new) 1842 blk_cleanup_queue(ctrl->connect_q); 1843 out_free_tag_set: 1844 if (new) 1845 blk_mq_free_tag_set(ctrl->tagset); 1846 out_free_io_queues: 1847 nvme_tcp_free_io_queues(ctrl); 1848 return ret; 1849 } 1850 1851 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1852 { 1853 nvme_tcp_stop_queue(ctrl, 0); 1854 if (remove) { 1855 blk_cleanup_queue(ctrl->admin_q); 1856 blk_cleanup_queue(ctrl->fabrics_q); 1857 blk_mq_free_tag_set(ctrl->admin_tagset); 1858 } 1859 nvme_tcp_free_admin_queue(ctrl); 1860 } 1861 1862 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1863 { 1864 int error; 1865 1866 error = nvme_tcp_alloc_admin_queue(ctrl); 1867 if (error) 1868 return error; 1869 1870 if (new) { 1871 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1872 if (IS_ERR(ctrl->admin_tagset)) { 1873 error = PTR_ERR(ctrl->admin_tagset); 1874 goto out_free_queue; 1875 } 1876 1877 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1878 if (IS_ERR(ctrl->fabrics_q)) { 1879 error = PTR_ERR(ctrl->fabrics_q); 1880 goto out_free_tagset; 1881 } 1882 1883 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1884 if (IS_ERR(ctrl->admin_q)) { 1885 error = PTR_ERR(ctrl->admin_q); 1886 goto out_cleanup_fabrics_q; 1887 } 1888 } 1889 1890 error = nvme_tcp_start_queue(ctrl, 0); 1891 if (error) 1892 goto out_cleanup_queue; 1893 1894 error = nvme_enable_ctrl(ctrl); 1895 if (error) 1896 goto out_stop_queue; 1897 1898 blk_mq_unquiesce_queue(ctrl->admin_q); 1899 1900 error = nvme_init_ctrl_finish(ctrl); 1901 if (error) 1902 goto out_quiesce_queue; 1903 1904 return 0; 1905 1906 out_quiesce_queue: 1907 blk_mq_quiesce_queue(ctrl->admin_q); 1908 blk_sync_queue(ctrl->admin_q); 1909 out_stop_queue: 1910 nvme_tcp_stop_queue(ctrl, 0); 1911 nvme_cancel_admin_tagset(ctrl); 1912 out_cleanup_queue: 1913 if (new) 1914 blk_cleanup_queue(ctrl->admin_q); 1915 out_cleanup_fabrics_q: 1916 if (new) 1917 blk_cleanup_queue(ctrl->fabrics_q); 1918 out_free_tagset: 1919 if (new) 1920 blk_mq_free_tag_set(ctrl->admin_tagset); 1921 out_free_queue: 1922 nvme_tcp_free_admin_queue(ctrl); 1923 return error; 1924 } 1925 1926 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1927 bool remove) 1928 { 1929 blk_mq_quiesce_queue(ctrl->admin_q); 1930 blk_sync_queue(ctrl->admin_q); 1931 nvme_tcp_stop_queue(ctrl, 0); 1932 nvme_cancel_admin_tagset(ctrl); 1933 if (remove) 1934 blk_mq_unquiesce_queue(ctrl->admin_q); 1935 nvme_tcp_destroy_admin_queue(ctrl, remove); 1936 } 1937 1938 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1939 bool remove) 1940 { 1941 if (ctrl->queue_count <= 1) 1942 return; 1943 blk_mq_quiesce_queue(ctrl->admin_q); 1944 nvme_start_freeze(ctrl); 1945 nvme_stop_queues(ctrl); 1946 nvme_sync_io_queues(ctrl); 1947 nvme_tcp_stop_io_queues(ctrl); 1948 nvme_cancel_tagset(ctrl); 1949 if (remove) 1950 nvme_start_queues(ctrl); 1951 nvme_tcp_destroy_io_queues(ctrl, remove); 1952 } 1953 1954 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1955 { 1956 /* If we are resetting/deleting then do nothing */ 1957 if (ctrl->state != NVME_CTRL_CONNECTING) { 1958 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1959 ctrl->state == NVME_CTRL_LIVE); 1960 return; 1961 } 1962 1963 if (nvmf_should_reconnect(ctrl)) { 1964 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1965 ctrl->opts->reconnect_delay); 1966 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1967 ctrl->opts->reconnect_delay * HZ); 1968 } else { 1969 dev_info(ctrl->device, "Removing controller...\n"); 1970 nvme_delete_ctrl(ctrl); 1971 } 1972 } 1973 1974 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1975 { 1976 struct nvmf_ctrl_options *opts = ctrl->opts; 1977 int ret; 1978 1979 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1980 if (ret) 1981 return ret; 1982 1983 if (ctrl->icdoff) { 1984 ret = -EOPNOTSUPP; 1985 dev_err(ctrl->device, "icdoff is not supported!\n"); 1986 goto destroy_admin; 1987 } 1988 1989 if (!nvme_ctrl_sgl_supported(ctrl)) { 1990 ret = -EOPNOTSUPP; 1991 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 1992 goto destroy_admin; 1993 } 1994 1995 if (opts->queue_size > ctrl->sqsize + 1) 1996 dev_warn(ctrl->device, 1997 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1998 opts->queue_size, ctrl->sqsize + 1); 1999 2000 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2001 dev_warn(ctrl->device, 2002 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2003 ctrl->sqsize + 1, ctrl->maxcmd); 2004 ctrl->sqsize = ctrl->maxcmd - 1; 2005 } 2006 2007 if (ctrl->queue_count > 1) { 2008 ret = nvme_tcp_configure_io_queues(ctrl, new); 2009 if (ret) 2010 goto destroy_admin; 2011 } 2012 2013 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2014 /* 2015 * state change failure is ok if we started ctrl delete, 2016 * unless we're during creation of a new controller to 2017 * avoid races with teardown flow. 2018 */ 2019 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2020 ctrl->state != NVME_CTRL_DELETING_NOIO); 2021 WARN_ON_ONCE(new); 2022 ret = -EINVAL; 2023 goto destroy_io; 2024 } 2025 2026 nvme_start_ctrl(ctrl); 2027 return 0; 2028 2029 destroy_io: 2030 if (ctrl->queue_count > 1) { 2031 nvme_stop_queues(ctrl); 2032 nvme_sync_io_queues(ctrl); 2033 nvme_tcp_stop_io_queues(ctrl); 2034 nvme_cancel_tagset(ctrl); 2035 nvme_tcp_destroy_io_queues(ctrl, new); 2036 } 2037 destroy_admin: 2038 blk_mq_quiesce_queue(ctrl->admin_q); 2039 blk_sync_queue(ctrl->admin_q); 2040 nvme_tcp_stop_queue(ctrl, 0); 2041 nvme_cancel_admin_tagset(ctrl); 2042 nvme_tcp_destroy_admin_queue(ctrl, new); 2043 return ret; 2044 } 2045 2046 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2047 { 2048 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2049 struct nvme_tcp_ctrl, connect_work); 2050 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2051 2052 ++ctrl->nr_reconnects; 2053 2054 if (nvme_tcp_setup_ctrl(ctrl, false)) 2055 goto requeue; 2056 2057 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2058 ctrl->nr_reconnects); 2059 2060 ctrl->nr_reconnects = 0; 2061 2062 return; 2063 2064 requeue: 2065 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2066 ctrl->nr_reconnects); 2067 nvme_tcp_reconnect_or_remove(ctrl); 2068 } 2069 2070 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2071 { 2072 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2073 struct nvme_tcp_ctrl, err_work); 2074 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2075 2076 nvme_stop_keep_alive(ctrl); 2077 nvme_tcp_teardown_io_queues(ctrl, false); 2078 /* unquiesce to fail fast pending requests */ 2079 nvme_start_queues(ctrl); 2080 nvme_tcp_teardown_admin_queue(ctrl, false); 2081 blk_mq_unquiesce_queue(ctrl->admin_q); 2082 2083 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2084 /* state change failure is ok if we started ctrl delete */ 2085 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2086 ctrl->state != NVME_CTRL_DELETING_NOIO); 2087 return; 2088 } 2089 2090 nvme_tcp_reconnect_or_remove(ctrl); 2091 } 2092 2093 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2094 { 2095 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2096 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2097 2098 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2099 blk_mq_quiesce_queue(ctrl->admin_q); 2100 if (shutdown) 2101 nvme_shutdown_ctrl(ctrl); 2102 else 2103 nvme_disable_ctrl(ctrl); 2104 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2105 } 2106 2107 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2108 { 2109 nvme_tcp_teardown_ctrl(ctrl, true); 2110 } 2111 2112 static void nvme_reset_ctrl_work(struct work_struct *work) 2113 { 2114 struct nvme_ctrl *ctrl = 2115 container_of(work, struct nvme_ctrl, reset_work); 2116 2117 nvme_stop_ctrl(ctrl); 2118 nvme_tcp_teardown_ctrl(ctrl, false); 2119 2120 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2121 /* state change failure is ok if we started ctrl delete */ 2122 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2123 ctrl->state != NVME_CTRL_DELETING_NOIO); 2124 return; 2125 } 2126 2127 if (nvme_tcp_setup_ctrl(ctrl, false)) 2128 goto out_fail; 2129 2130 return; 2131 2132 out_fail: 2133 ++ctrl->nr_reconnects; 2134 nvme_tcp_reconnect_or_remove(ctrl); 2135 } 2136 2137 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2138 { 2139 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2140 2141 if (list_empty(&ctrl->list)) 2142 goto free_ctrl; 2143 2144 mutex_lock(&nvme_tcp_ctrl_mutex); 2145 list_del(&ctrl->list); 2146 mutex_unlock(&nvme_tcp_ctrl_mutex); 2147 2148 nvmf_free_options(nctrl->opts); 2149 free_ctrl: 2150 kfree(ctrl->queues); 2151 kfree(ctrl); 2152 } 2153 2154 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2155 { 2156 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2157 2158 sg->addr = 0; 2159 sg->length = 0; 2160 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2161 NVME_SGL_FMT_TRANSPORT_A; 2162 } 2163 2164 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2165 struct nvme_command *c, u32 data_len) 2166 { 2167 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2168 2169 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2170 sg->length = cpu_to_le32(data_len); 2171 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2172 } 2173 2174 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2175 u32 data_len) 2176 { 2177 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2178 2179 sg->addr = 0; 2180 sg->length = cpu_to_le32(data_len); 2181 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2182 NVME_SGL_FMT_TRANSPORT_A; 2183 } 2184 2185 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2186 { 2187 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2188 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2189 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2190 struct nvme_command *cmd = &pdu->cmd; 2191 u8 hdgst = nvme_tcp_hdgst_len(queue); 2192 2193 memset(pdu, 0, sizeof(*pdu)); 2194 pdu->hdr.type = nvme_tcp_cmd; 2195 if (queue->hdr_digest) 2196 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2197 pdu->hdr.hlen = sizeof(*pdu); 2198 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2199 2200 cmd->common.opcode = nvme_admin_async_event; 2201 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2202 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2203 nvme_tcp_set_sg_null(cmd); 2204 2205 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2206 ctrl->async_req.offset = 0; 2207 ctrl->async_req.curr_bio = NULL; 2208 ctrl->async_req.data_len = 0; 2209 2210 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2211 } 2212 2213 static void nvme_tcp_complete_timed_out(struct request *rq) 2214 { 2215 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2216 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2217 2218 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2219 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2220 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2221 blk_mq_complete_request(rq); 2222 } 2223 } 2224 2225 static enum blk_eh_timer_return 2226 nvme_tcp_timeout(struct request *rq, bool reserved) 2227 { 2228 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2229 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2230 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2231 2232 dev_warn(ctrl->device, 2233 "queue %d: timeout request %#x type %d\n", 2234 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2235 2236 if (ctrl->state != NVME_CTRL_LIVE) { 2237 /* 2238 * If we are resetting, connecting or deleting we should 2239 * complete immediately because we may block controller 2240 * teardown or setup sequence 2241 * - ctrl disable/shutdown fabrics requests 2242 * - connect requests 2243 * - initialization admin requests 2244 * - I/O requests that entered after unquiescing and 2245 * the controller stopped responding 2246 * 2247 * All other requests should be cancelled by the error 2248 * recovery work, so it's fine that we fail it here. 2249 */ 2250 nvme_tcp_complete_timed_out(rq); 2251 return BLK_EH_DONE; 2252 } 2253 2254 /* 2255 * LIVE state should trigger the normal error recovery which will 2256 * handle completing this request. 2257 */ 2258 nvme_tcp_error_recovery(ctrl); 2259 return BLK_EH_RESET_TIMER; 2260 } 2261 2262 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2263 struct request *rq) 2264 { 2265 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2266 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2267 struct nvme_command *c = &pdu->cmd; 2268 2269 c->common.flags |= NVME_CMD_SGL_METABUF; 2270 2271 if (!blk_rq_nr_phys_segments(rq)) 2272 nvme_tcp_set_sg_null(c); 2273 else if (rq_data_dir(rq) == WRITE && 2274 req->data_len <= nvme_tcp_inline_data_size(queue)) 2275 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2276 else 2277 nvme_tcp_set_sg_host_data(c, req->data_len); 2278 2279 return 0; 2280 } 2281 2282 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2283 struct request *rq) 2284 { 2285 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2286 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2287 struct nvme_tcp_queue *queue = req->queue; 2288 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2289 blk_status_t ret; 2290 2291 ret = nvme_setup_cmd(ns, rq); 2292 if (ret) 2293 return ret; 2294 2295 req->state = NVME_TCP_SEND_CMD_PDU; 2296 req->offset = 0; 2297 req->data_sent = 0; 2298 req->pdu_len = 0; 2299 req->pdu_sent = 0; 2300 req->data_len = blk_rq_nr_phys_segments(rq) ? 2301 blk_rq_payload_bytes(rq) : 0; 2302 req->curr_bio = rq->bio; 2303 if (req->curr_bio && req->data_len) 2304 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2305 2306 if (rq_data_dir(rq) == WRITE && 2307 req->data_len <= nvme_tcp_inline_data_size(queue)) 2308 req->pdu_len = req->data_len; 2309 2310 pdu->hdr.type = nvme_tcp_cmd; 2311 pdu->hdr.flags = 0; 2312 if (queue->hdr_digest) 2313 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2314 if (queue->data_digest && req->pdu_len) { 2315 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2316 ddgst = nvme_tcp_ddgst_len(queue); 2317 } 2318 pdu->hdr.hlen = sizeof(*pdu); 2319 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2320 pdu->hdr.plen = 2321 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2322 2323 ret = nvme_tcp_map_data(queue, rq); 2324 if (unlikely(ret)) { 2325 nvme_cleanup_cmd(rq); 2326 dev_err(queue->ctrl->ctrl.device, 2327 "Failed to map data (%d)\n", ret); 2328 return ret; 2329 } 2330 2331 return 0; 2332 } 2333 2334 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2335 { 2336 struct nvme_tcp_queue *queue = hctx->driver_data; 2337 2338 if (!llist_empty(&queue->req_list)) 2339 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2340 } 2341 2342 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2343 const struct blk_mq_queue_data *bd) 2344 { 2345 struct nvme_ns *ns = hctx->queue->queuedata; 2346 struct nvme_tcp_queue *queue = hctx->driver_data; 2347 struct request *rq = bd->rq; 2348 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2349 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2350 blk_status_t ret; 2351 2352 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2353 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2354 2355 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2356 if (unlikely(ret)) 2357 return ret; 2358 2359 blk_mq_start_request(rq); 2360 2361 nvme_tcp_queue_request(req, true, bd->last); 2362 2363 return BLK_STS_OK; 2364 } 2365 2366 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2367 { 2368 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2369 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2370 2371 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2372 /* separate read/write queues */ 2373 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2374 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2375 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2376 set->map[HCTX_TYPE_READ].nr_queues = 2377 ctrl->io_queues[HCTX_TYPE_READ]; 2378 set->map[HCTX_TYPE_READ].queue_offset = 2379 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2380 } else { 2381 /* shared read/write queues */ 2382 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2383 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2384 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2385 set->map[HCTX_TYPE_READ].nr_queues = 2386 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2387 set->map[HCTX_TYPE_READ].queue_offset = 0; 2388 } 2389 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2390 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2391 2392 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2393 /* map dedicated poll queues only if we have queues left */ 2394 set->map[HCTX_TYPE_POLL].nr_queues = 2395 ctrl->io_queues[HCTX_TYPE_POLL]; 2396 set->map[HCTX_TYPE_POLL].queue_offset = 2397 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2398 ctrl->io_queues[HCTX_TYPE_READ]; 2399 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2400 } 2401 2402 dev_info(ctrl->ctrl.device, 2403 "mapped %d/%d/%d default/read/poll queues.\n", 2404 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2405 ctrl->io_queues[HCTX_TYPE_READ], 2406 ctrl->io_queues[HCTX_TYPE_POLL]); 2407 2408 return 0; 2409 } 2410 2411 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2412 { 2413 struct nvme_tcp_queue *queue = hctx->driver_data; 2414 struct sock *sk = queue->sock->sk; 2415 2416 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2417 return 0; 2418 2419 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2420 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2421 sk_busy_loop(sk, true); 2422 nvme_tcp_try_recv(queue); 2423 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2424 return queue->nr_cqe; 2425 } 2426 2427 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2428 .queue_rq = nvme_tcp_queue_rq, 2429 .commit_rqs = nvme_tcp_commit_rqs, 2430 .complete = nvme_complete_rq, 2431 .init_request = nvme_tcp_init_request, 2432 .exit_request = nvme_tcp_exit_request, 2433 .init_hctx = nvme_tcp_init_hctx, 2434 .timeout = nvme_tcp_timeout, 2435 .map_queues = nvme_tcp_map_queues, 2436 .poll = nvme_tcp_poll, 2437 }; 2438 2439 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2440 .queue_rq = nvme_tcp_queue_rq, 2441 .complete = nvme_complete_rq, 2442 .init_request = nvme_tcp_init_request, 2443 .exit_request = nvme_tcp_exit_request, 2444 .init_hctx = nvme_tcp_init_admin_hctx, 2445 .timeout = nvme_tcp_timeout, 2446 }; 2447 2448 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2449 .name = "tcp", 2450 .module = THIS_MODULE, 2451 .flags = NVME_F_FABRICS, 2452 .reg_read32 = nvmf_reg_read32, 2453 .reg_read64 = nvmf_reg_read64, 2454 .reg_write32 = nvmf_reg_write32, 2455 .free_ctrl = nvme_tcp_free_ctrl, 2456 .submit_async_event = nvme_tcp_submit_async_event, 2457 .delete_ctrl = nvme_tcp_delete_ctrl, 2458 .get_address = nvmf_get_address, 2459 }; 2460 2461 static bool 2462 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2463 { 2464 struct nvme_tcp_ctrl *ctrl; 2465 bool found = false; 2466 2467 mutex_lock(&nvme_tcp_ctrl_mutex); 2468 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2469 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2470 if (found) 2471 break; 2472 } 2473 mutex_unlock(&nvme_tcp_ctrl_mutex); 2474 2475 return found; 2476 } 2477 2478 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2479 struct nvmf_ctrl_options *opts) 2480 { 2481 struct nvme_tcp_ctrl *ctrl; 2482 int ret; 2483 2484 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2485 if (!ctrl) 2486 return ERR_PTR(-ENOMEM); 2487 2488 INIT_LIST_HEAD(&ctrl->list); 2489 ctrl->ctrl.opts = opts; 2490 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2491 opts->nr_poll_queues + 1; 2492 ctrl->ctrl.sqsize = opts->queue_size - 1; 2493 ctrl->ctrl.kato = opts->kato; 2494 2495 INIT_DELAYED_WORK(&ctrl->connect_work, 2496 nvme_tcp_reconnect_ctrl_work); 2497 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2498 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2499 2500 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2501 opts->trsvcid = 2502 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2503 if (!opts->trsvcid) { 2504 ret = -ENOMEM; 2505 goto out_free_ctrl; 2506 } 2507 opts->mask |= NVMF_OPT_TRSVCID; 2508 } 2509 2510 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2511 opts->traddr, opts->trsvcid, &ctrl->addr); 2512 if (ret) { 2513 pr_err("malformed address passed: %s:%s\n", 2514 opts->traddr, opts->trsvcid); 2515 goto out_free_ctrl; 2516 } 2517 2518 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2519 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2520 opts->host_traddr, NULL, &ctrl->src_addr); 2521 if (ret) { 2522 pr_err("malformed src address passed: %s\n", 2523 opts->host_traddr); 2524 goto out_free_ctrl; 2525 } 2526 } 2527 2528 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2529 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2530 pr_err("invalid interface passed: %s\n", 2531 opts->host_iface); 2532 ret = -ENODEV; 2533 goto out_free_ctrl; 2534 } 2535 } 2536 2537 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2538 ret = -EALREADY; 2539 goto out_free_ctrl; 2540 } 2541 2542 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2543 GFP_KERNEL); 2544 if (!ctrl->queues) { 2545 ret = -ENOMEM; 2546 goto out_free_ctrl; 2547 } 2548 2549 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2550 if (ret) 2551 goto out_kfree_queues; 2552 2553 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2554 WARN_ON_ONCE(1); 2555 ret = -EINTR; 2556 goto out_uninit_ctrl; 2557 } 2558 2559 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2560 if (ret) 2561 goto out_uninit_ctrl; 2562 2563 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2564 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2565 2566 mutex_lock(&nvme_tcp_ctrl_mutex); 2567 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2568 mutex_unlock(&nvme_tcp_ctrl_mutex); 2569 2570 return &ctrl->ctrl; 2571 2572 out_uninit_ctrl: 2573 nvme_uninit_ctrl(&ctrl->ctrl); 2574 nvme_put_ctrl(&ctrl->ctrl); 2575 if (ret > 0) 2576 ret = -EIO; 2577 return ERR_PTR(ret); 2578 out_kfree_queues: 2579 kfree(ctrl->queues); 2580 out_free_ctrl: 2581 kfree(ctrl); 2582 return ERR_PTR(ret); 2583 } 2584 2585 static struct nvmf_transport_ops nvme_tcp_transport = { 2586 .name = "tcp", 2587 .module = THIS_MODULE, 2588 .required_opts = NVMF_OPT_TRADDR, 2589 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2590 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2591 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2592 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2593 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2594 .create_ctrl = nvme_tcp_create_ctrl, 2595 }; 2596 2597 static int __init nvme_tcp_init_module(void) 2598 { 2599 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2600 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2601 if (!nvme_tcp_wq) 2602 return -ENOMEM; 2603 2604 nvmf_register_transport(&nvme_tcp_transport); 2605 return 0; 2606 } 2607 2608 static void __exit nvme_tcp_cleanup_module(void) 2609 { 2610 struct nvme_tcp_ctrl *ctrl; 2611 2612 nvmf_unregister_transport(&nvme_tcp_transport); 2613 2614 mutex_lock(&nvme_tcp_ctrl_mutex); 2615 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2616 nvme_delete_ctrl(&ctrl->ctrl); 2617 mutex_unlock(&nvme_tcp_ctrl_mutex); 2618 flush_workqueue(nvme_delete_wq); 2619 2620 destroy_workqueue(nvme_tcp_wq); 2621 } 2622 2623 module_init(nvme_tcp_init_module); 2624 module_exit(nvme_tcp_cleanup_module); 2625 2626 MODULE_LICENSE("GPL v2"); 2627