1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 #include <trace/events/sock.h> 18 19 #include "nvme.h" 20 #include "fabrics.h" 21 22 struct nvme_tcp_queue; 23 24 /* Define the socket priority to use for connections were it is desirable 25 * that the NIC consider performing optimized packet processing or filtering. 26 * A non-zero value being sufficient to indicate general consideration of any 27 * possible optimization. Making it a module param allows for alternative 28 * values that may be unique for some NIC implementations. 29 */ 30 static int so_priority; 31 module_param(so_priority, int, 0644); 32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 33 34 #ifdef CONFIG_DEBUG_LOCK_ALLOC 35 /* lockdep can detect a circular dependency of the form 36 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 37 * because dependencies are tracked for both nvme-tcp and user contexts. Using 38 * a separate class prevents lockdep from conflating nvme-tcp socket use with 39 * user-space socket API use. 40 */ 41 static struct lock_class_key nvme_tcp_sk_key[2]; 42 static struct lock_class_key nvme_tcp_slock_key[2]; 43 44 static void nvme_tcp_reclassify_socket(struct socket *sock) 45 { 46 struct sock *sk = sock->sk; 47 48 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 49 return; 50 51 switch (sk->sk_family) { 52 case AF_INET: 53 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 54 &nvme_tcp_slock_key[0], 55 "sk_lock-AF_INET-NVME", 56 &nvme_tcp_sk_key[0]); 57 break; 58 case AF_INET6: 59 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 60 &nvme_tcp_slock_key[1], 61 "sk_lock-AF_INET6-NVME", 62 &nvme_tcp_sk_key[1]); 63 break; 64 default: 65 WARN_ON_ONCE(1); 66 } 67 } 68 #else 69 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 70 #endif 71 72 enum nvme_tcp_send_state { 73 NVME_TCP_SEND_CMD_PDU = 0, 74 NVME_TCP_SEND_H2C_PDU, 75 NVME_TCP_SEND_DATA, 76 NVME_TCP_SEND_DDGST, 77 }; 78 79 struct nvme_tcp_request { 80 struct nvme_request req; 81 void *pdu; 82 struct nvme_tcp_queue *queue; 83 u32 data_len; 84 u32 pdu_len; 85 u32 pdu_sent; 86 u32 h2cdata_left; 87 u32 h2cdata_offset; 88 u16 ttag; 89 __le16 status; 90 struct list_head entry; 91 struct llist_node lentry; 92 __le32 ddgst; 93 94 struct bio *curr_bio; 95 struct iov_iter iter; 96 97 /* send state */ 98 size_t offset; 99 size_t data_sent; 100 enum nvme_tcp_send_state state; 101 }; 102 103 enum nvme_tcp_queue_flags { 104 NVME_TCP_Q_ALLOCATED = 0, 105 NVME_TCP_Q_LIVE = 1, 106 NVME_TCP_Q_POLLING = 2, 107 }; 108 109 enum nvme_tcp_recv_state { 110 NVME_TCP_RECV_PDU = 0, 111 NVME_TCP_RECV_DATA, 112 NVME_TCP_RECV_DDGST, 113 }; 114 115 struct nvme_tcp_ctrl; 116 struct nvme_tcp_queue { 117 struct socket *sock; 118 struct work_struct io_work; 119 int io_cpu; 120 121 struct mutex queue_lock; 122 struct mutex send_mutex; 123 struct llist_head req_list; 124 struct list_head send_list; 125 126 /* recv state */ 127 void *pdu; 128 int pdu_remaining; 129 int pdu_offset; 130 size_t data_remaining; 131 size_t ddgst_remaining; 132 unsigned int nr_cqe; 133 134 /* send state */ 135 struct nvme_tcp_request *request; 136 137 u32 maxh2cdata; 138 size_t cmnd_capsule_len; 139 struct nvme_tcp_ctrl *ctrl; 140 unsigned long flags; 141 bool rd_enabled; 142 143 bool hdr_digest; 144 bool data_digest; 145 struct ahash_request *rcv_hash; 146 struct ahash_request *snd_hash; 147 __le32 exp_ddgst; 148 __le32 recv_ddgst; 149 150 struct page_frag_cache pf_cache; 151 152 void (*state_change)(struct sock *); 153 void (*data_ready)(struct sock *); 154 void (*write_space)(struct sock *); 155 }; 156 157 struct nvme_tcp_ctrl { 158 /* read only in the hot path */ 159 struct nvme_tcp_queue *queues; 160 struct blk_mq_tag_set tag_set; 161 162 /* other member variables */ 163 struct list_head list; 164 struct blk_mq_tag_set admin_tag_set; 165 struct sockaddr_storage addr; 166 struct sockaddr_storage src_addr; 167 struct nvme_ctrl ctrl; 168 169 struct work_struct err_work; 170 struct delayed_work connect_work; 171 struct nvme_tcp_request async_req; 172 u32 io_queues[HCTX_MAX_TYPES]; 173 }; 174 175 static LIST_HEAD(nvme_tcp_ctrl_list); 176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 177 static struct workqueue_struct *nvme_tcp_wq; 178 static const struct blk_mq_ops nvme_tcp_mq_ops; 179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 181 182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 183 { 184 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 185 } 186 187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 188 { 189 return queue - queue->ctrl->queues; 190 } 191 192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 193 { 194 u32 queue_idx = nvme_tcp_queue_id(queue); 195 196 if (queue_idx == 0) 197 return queue->ctrl->admin_tag_set.tags[queue_idx]; 198 return queue->ctrl->tag_set.tags[queue_idx - 1]; 199 } 200 201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 202 { 203 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 204 } 205 206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 207 { 208 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 209 } 210 211 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 212 { 213 if (nvme_is_fabrics(req->req.cmd)) 214 return NVME_TCP_ADMIN_CCSZ; 215 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 216 } 217 218 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 219 { 220 return req == &req->queue->ctrl->async_req; 221 } 222 223 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 224 { 225 struct request *rq; 226 227 if (unlikely(nvme_tcp_async_req(req))) 228 return false; /* async events don't have a request */ 229 230 rq = blk_mq_rq_from_pdu(req); 231 232 return rq_data_dir(rq) == WRITE && req->data_len && 233 req->data_len <= nvme_tcp_inline_data_size(req); 234 } 235 236 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 237 { 238 return req->iter.bvec->bv_page; 239 } 240 241 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 242 { 243 return req->iter.bvec->bv_offset + req->iter.iov_offset; 244 } 245 246 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 247 { 248 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 249 req->pdu_len - req->pdu_sent); 250 } 251 252 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 253 { 254 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 255 req->pdu_len - req->pdu_sent : 0; 256 } 257 258 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 259 int len) 260 { 261 return nvme_tcp_pdu_data_left(req) <= len; 262 } 263 264 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 265 unsigned int dir) 266 { 267 struct request *rq = blk_mq_rq_from_pdu(req); 268 struct bio_vec *vec; 269 unsigned int size; 270 int nr_bvec; 271 size_t offset; 272 273 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 274 vec = &rq->special_vec; 275 nr_bvec = 1; 276 size = blk_rq_payload_bytes(rq); 277 offset = 0; 278 } else { 279 struct bio *bio = req->curr_bio; 280 struct bvec_iter bi; 281 struct bio_vec bv; 282 283 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 284 nr_bvec = 0; 285 bio_for_each_bvec(bv, bio, bi) { 286 nr_bvec++; 287 } 288 size = bio->bi_iter.bi_size; 289 offset = bio->bi_iter.bi_bvec_done; 290 } 291 292 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 293 req->iter.iov_offset = offset; 294 } 295 296 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 297 int len) 298 { 299 req->data_sent += len; 300 req->pdu_sent += len; 301 iov_iter_advance(&req->iter, len); 302 if (!iov_iter_count(&req->iter) && 303 req->data_sent < req->data_len) { 304 req->curr_bio = req->curr_bio->bi_next; 305 nvme_tcp_init_iter(req, ITER_SOURCE); 306 } 307 } 308 309 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 310 { 311 int ret; 312 313 /* drain the send queue as much as we can... */ 314 do { 315 ret = nvme_tcp_try_send(queue); 316 } while (ret > 0); 317 } 318 319 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 320 { 321 return !list_empty(&queue->send_list) || 322 !llist_empty(&queue->req_list); 323 } 324 325 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 326 bool sync, bool last) 327 { 328 struct nvme_tcp_queue *queue = req->queue; 329 bool empty; 330 331 empty = llist_add(&req->lentry, &queue->req_list) && 332 list_empty(&queue->send_list) && !queue->request; 333 334 /* 335 * if we're the first on the send_list and we can try to send 336 * directly, otherwise queue io_work. Also, only do that if we 337 * are on the same cpu, so we don't introduce contention. 338 */ 339 if (queue->io_cpu == raw_smp_processor_id() && 340 sync && empty && mutex_trylock(&queue->send_mutex)) { 341 nvme_tcp_send_all(queue); 342 mutex_unlock(&queue->send_mutex); 343 } 344 345 if (last && nvme_tcp_queue_more(queue)) 346 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 347 } 348 349 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 350 { 351 struct nvme_tcp_request *req; 352 struct llist_node *node; 353 354 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 355 req = llist_entry(node, struct nvme_tcp_request, lentry); 356 list_add(&req->entry, &queue->send_list); 357 } 358 } 359 360 static inline struct nvme_tcp_request * 361 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 362 { 363 struct nvme_tcp_request *req; 364 365 req = list_first_entry_or_null(&queue->send_list, 366 struct nvme_tcp_request, entry); 367 if (!req) { 368 nvme_tcp_process_req_list(queue); 369 req = list_first_entry_or_null(&queue->send_list, 370 struct nvme_tcp_request, entry); 371 if (unlikely(!req)) 372 return NULL; 373 } 374 375 list_del(&req->entry); 376 return req; 377 } 378 379 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 380 __le32 *dgst) 381 { 382 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 383 crypto_ahash_final(hash); 384 } 385 386 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 387 struct page *page, off_t off, size_t len) 388 { 389 struct scatterlist sg; 390 391 sg_init_table(&sg, 1); 392 sg_set_page(&sg, page, len, off); 393 ahash_request_set_crypt(hash, &sg, NULL, len); 394 crypto_ahash_update(hash); 395 } 396 397 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 398 void *pdu, size_t len) 399 { 400 struct scatterlist sg; 401 402 sg_init_one(&sg, pdu, len); 403 ahash_request_set_crypt(hash, &sg, pdu + len, len); 404 crypto_ahash_digest(hash); 405 } 406 407 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 408 void *pdu, size_t pdu_len) 409 { 410 struct nvme_tcp_hdr *hdr = pdu; 411 __le32 recv_digest; 412 __le32 exp_digest; 413 414 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 415 dev_err(queue->ctrl->ctrl.device, 416 "queue %d: header digest flag is cleared\n", 417 nvme_tcp_queue_id(queue)); 418 return -EPROTO; 419 } 420 421 recv_digest = *(__le32 *)(pdu + hdr->hlen); 422 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 423 exp_digest = *(__le32 *)(pdu + hdr->hlen); 424 if (recv_digest != exp_digest) { 425 dev_err(queue->ctrl->ctrl.device, 426 "header digest error: recv %#x expected %#x\n", 427 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 428 return -EIO; 429 } 430 431 return 0; 432 } 433 434 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 435 { 436 struct nvme_tcp_hdr *hdr = pdu; 437 u8 digest_len = nvme_tcp_hdgst_len(queue); 438 u32 len; 439 440 len = le32_to_cpu(hdr->plen) - hdr->hlen - 441 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 442 443 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 444 dev_err(queue->ctrl->ctrl.device, 445 "queue %d: data digest flag is cleared\n", 446 nvme_tcp_queue_id(queue)); 447 return -EPROTO; 448 } 449 crypto_ahash_init(queue->rcv_hash); 450 451 return 0; 452 } 453 454 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 455 struct request *rq, unsigned int hctx_idx) 456 { 457 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 458 459 page_frag_free(req->pdu); 460 } 461 462 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 463 struct request *rq, unsigned int hctx_idx, 464 unsigned int numa_node) 465 { 466 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 467 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 468 struct nvme_tcp_cmd_pdu *pdu; 469 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 470 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 471 u8 hdgst = nvme_tcp_hdgst_len(queue); 472 473 req->pdu = page_frag_alloc(&queue->pf_cache, 474 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 475 GFP_KERNEL | __GFP_ZERO); 476 if (!req->pdu) 477 return -ENOMEM; 478 479 pdu = req->pdu; 480 req->queue = queue; 481 nvme_req(rq)->ctrl = &ctrl->ctrl; 482 nvme_req(rq)->cmd = &pdu->cmd; 483 484 return 0; 485 } 486 487 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 488 unsigned int hctx_idx) 489 { 490 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 491 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 492 493 hctx->driver_data = queue; 494 return 0; 495 } 496 497 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 498 unsigned int hctx_idx) 499 { 500 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 501 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 502 503 hctx->driver_data = queue; 504 return 0; 505 } 506 507 static enum nvme_tcp_recv_state 508 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 509 { 510 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 511 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 512 NVME_TCP_RECV_DATA; 513 } 514 515 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 516 { 517 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 518 nvme_tcp_hdgst_len(queue); 519 queue->pdu_offset = 0; 520 queue->data_remaining = -1; 521 queue->ddgst_remaining = 0; 522 } 523 524 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 525 { 526 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 527 return; 528 529 dev_warn(ctrl->device, "starting error recovery\n"); 530 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 531 } 532 533 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 534 struct nvme_completion *cqe) 535 { 536 struct nvme_tcp_request *req; 537 struct request *rq; 538 539 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 540 if (!rq) { 541 dev_err(queue->ctrl->ctrl.device, 542 "got bad cqe.command_id %#x on queue %d\n", 543 cqe->command_id, nvme_tcp_queue_id(queue)); 544 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 545 return -EINVAL; 546 } 547 548 req = blk_mq_rq_to_pdu(rq); 549 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 550 req->status = cqe->status; 551 552 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 553 nvme_complete_rq(rq); 554 queue->nr_cqe++; 555 556 return 0; 557 } 558 559 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 560 struct nvme_tcp_data_pdu *pdu) 561 { 562 struct request *rq; 563 564 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 565 if (!rq) { 566 dev_err(queue->ctrl->ctrl.device, 567 "got bad c2hdata.command_id %#x on queue %d\n", 568 pdu->command_id, nvme_tcp_queue_id(queue)); 569 return -ENOENT; 570 } 571 572 if (!blk_rq_payload_bytes(rq)) { 573 dev_err(queue->ctrl->ctrl.device, 574 "queue %d tag %#x unexpected data\n", 575 nvme_tcp_queue_id(queue), rq->tag); 576 return -EIO; 577 } 578 579 queue->data_remaining = le32_to_cpu(pdu->data_length); 580 581 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 582 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 583 dev_err(queue->ctrl->ctrl.device, 584 "queue %d tag %#x SUCCESS set but not last PDU\n", 585 nvme_tcp_queue_id(queue), rq->tag); 586 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 587 return -EPROTO; 588 } 589 590 return 0; 591 } 592 593 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 594 struct nvme_tcp_rsp_pdu *pdu) 595 { 596 struct nvme_completion *cqe = &pdu->cqe; 597 int ret = 0; 598 599 /* 600 * AEN requests are special as they don't time out and can 601 * survive any kind of queue freeze and often don't respond to 602 * aborts. We don't even bother to allocate a struct request 603 * for them but rather special case them here. 604 */ 605 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 606 cqe->command_id))) 607 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 608 &cqe->result); 609 else 610 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 611 612 return ret; 613 } 614 615 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 616 { 617 struct nvme_tcp_data_pdu *data = req->pdu; 618 struct nvme_tcp_queue *queue = req->queue; 619 struct request *rq = blk_mq_rq_from_pdu(req); 620 u32 h2cdata_sent = req->pdu_len; 621 u8 hdgst = nvme_tcp_hdgst_len(queue); 622 u8 ddgst = nvme_tcp_ddgst_len(queue); 623 624 req->state = NVME_TCP_SEND_H2C_PDU; 625 req->offset = 0; 626 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 627 req->pdu_sent = 0; 628 req->h2cdata_left -= req->pdu_len; 629 req->h2cdata_offset += h2cdata_sent; 630 631 memset(data, 0, sizeof(*data)); 632 data->hdr.type = nvme_tcp_h2c_data; 633 if (!req->h2cdata_left) 634 data->hdr.flags = NVME_TCP_F_DATA_LAST; 635 if (queue->hdr_digest) 636 data->hdr.flags |= NVME_TCP_F_HDGST; 637 if (queue->data_digest) 638 data->hdr.flags |= NVME_TCP_F_DDGST; 639 data->hdr.hlen = sizeof(*data); 640 data->hdr.pdo = data->hdr.hlen + hdgst; 641 data->hdr.plen = 642 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 643 data->ttag = req->ttag; 644 data->command_id = nvme_cid(rq); 645 data->data_offset = cpu_to_le32(req->h2cdata_offset); 646 data->data_length = cpu_to_le32(req->pdu_len); 647 } 648 649 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 650 struct nvme_tcp_r2t_pdu *pdu) 651 { 652 struct nvme_tcp_request *req; 653 struct request *rq; 654 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 655 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 656 657 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 658 if (!rq) { 659 dev_err(queue->ctrl->ctrl.device, 660 "got bad r2t.command_id %#x on queue %d\n", 661 pdu->command_id, nvme_tcp_queue_id(queue)); 662 return -ENOENT; 663 } 664 req = blk_mq_rq_to_pdu(rq); 665 666 if (unlikely(!r2t_length)) { 667 dev_err(queue->ctrl->ctrl.device, 668 "req %d r2t len is %u, probably a bug...\n", 669 rq->tag, r2t_length); 670 return -EPROTO; 671 } 672 673 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 674 dev_err(queue->ctrl->ctrl.device, 675 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 676 rq->tag, r2t_length, req->data_len, req->data_sent); 677 return -EPROTO; 678 } 679 680 if (unlikely(r2t_offset < req->data_sent)) { 681 dev_err(queue->ctrl->ctrl.device, 682 "req %d unexpected r2t offset %u (expected %zu)\n", 683 rq->tag, r2t_offset, req->data_sent); 684 return -EPROTO; 685 } 686 687 req->pdu_len = 0; 688 req->h2cdata_left = r2t_length; 689 req->h2cdata_offset = r2t_offset; 690 req->ttag = pdu->ttag; 691 692 nvme_tcp_setup_h2c_data_pdu(req); 693 nvme_tcp_queue_request(req, false, true); 694 695 return 0; 696 } 697 698 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 699 unsigned int *offset, size_t *len) 700 { 701 struct nvme_tcp_hdr *hdr; 702 char *pdu = queue->pdu; 703 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 704 int ret; 705 706 ret = skb_copy_bits(skb, *offset, 707 &pdu[queue->pdu_offset], rcv_len); 708 if (unlikely(ret)) 709 return ret; 710 711 queue->pdu_remaining -= rcv_len; 712 queue->pdu_offset += rcv_len; 713 *offset += rcv_len; 714 *len -= rcv_len; 715 if (queue->pdu_remaining) 716 return 0; 717 718 hdr = queue->pdu; 719 if (queue->hdr_digest) { 720 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 721 if (unlikely(ret)) 722 return ret; 723 } 724 725 726 if (queue->data_digest) { 727 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 728 if (unlikely(ret)) 729 return ret; 730 } 731 732 switch (hdr->type) { 733 case nvme_tcp_c2h_data: 734 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 735 case nvme_tcp_rsp: 736 nvme_tcp_init_recv_ctx(queue); 737 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 738 case nvme_tcp_r2t: 739 nvme_tcp_init_recv_ctx(queue); 740 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 741 default: 742 dev_err(queue->ctrl->ctrl.device, 743 "unsupported pdu type (%d)\n", hdr->type); 744 return -EINVAL; 745 } 746 } 747 748 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 749 { 750 union nvme_result res = {}; 751 752 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 753 nvme_complete_rq(rq); 754 } 755 756 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 757 unsigned int *offset, size_t *len) 758 { 759 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 760 struct request *rq = 761 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 762 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 763 764 while (true) { 765 int recv_len, ret; 766 767 recv_len = min_t(size_t, *len, queue->data_remaining); 768 if (!recv_len) 769 break; 770 771 if (!iov_iter_count(&req->iter)) { 772 req->curr_bio = req->curr_bio->bi_next; 773 774 /* 775 * If we don`t have any bios it means that controller 776 * sent more data than we requested, hence error 777 */ 778 if (!req->curr_bio) { 779 dev_err(queue->ctrl->ctrl.device, 780 "queue %d no space in request %#x", 781 nvme_tcp_queue_id(queue), rq->tag); 782 nvme_tcp_init_recv_ctx(queue); 783 return -EIO; 784 } 785 nvme_tcp_init_iter(req, ITER_DEST); 786 } 787 788 /* we can read only from what is left in this bio */ 789 recv_len = min_t(size_t, recv_len, 790 iov_iter_count(&req->iter)); 791 792 if (queue->data_digest) 793 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 794 &req->iter, recv_len, queue->rcv_hash); 795 else 796 ret = skb_copy_datagram_iter(skb, *offset, 797 &req->iter, recv_len); 798 if (ret) { 799 dev_err(queue->ctrl->ctrl.device, 800 "queue %d failed to copy request %#x data", 801 nvme_tcp_queue_id(queue), rq->tag); 802 return ret; 803 } 804 805 *len -= recv_len; 806 *offset += recv_len; 807 queue->data_remaining -= recv_len; 808 } 809 810 if (!queue->data_remaining) { 811 if (queue->data_digest) { 812 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 813 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 814 } else { 815 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 816 nvme_tcp_end_request(rq, 817 le16_to_cpu(req->status)); 818 queue->nr_cqe++; 819 } 820 nvme_tcp_init_recv_ctx(queue); 821 } 822 } 823 824 return 0; 825 } 826 827 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 828 struct sk_buff *skb, unsigned int *offset, size_t *len) 829 { 830 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 831 char *ddgst = (char *)&queue->recv_ddgst; 832 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 833 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 834 int ret; 835 836 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 837 if (unlikely(ret)) 838 return ret; 839 840 queue->ddgst_remaining -= recv_len; 841 *offset += recv_len; 842 *len -= recv_len; 843 if (queue->ddgst_remaining) 844 return 0; 845 846 if (queue->recv_ddgst != queue->exp_ddgst) { 847 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 848 pdu->command_id); 849 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 850 851 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 852 853 dev_err(queue->ctrl->ctrl.device, 854 "data digest error: recv %#x expected %#x\n", 855 le32_to_cpu(queue->recv_ddgst), 856 le32_to_cpu(queue->exp_ddgst)); 857 } 858 859 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 860 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 861 pdu->command_id); 862 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 863 864 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 865 queue->nr_cqe++; 866 } 867 868 nvme_tcp_init_recv_ctx(queue); 869 return 0; 870 } 871 872 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 873 unsigned int offset, size_t len) 874 { 875 struct nvme_tcp_queue *queue = desc->arg.data; 876 size_t consumed = len; 877 int result; 878 879 while (len) { 880 switch (nvme_tcp_recv_state(queue)) { 881 case NVME_TCP_RECV_PDU: 882 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 883 break; 884 case NVME_TCP_RECV_DATA: 885 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 886 break; 887 case NVME_TCP_RECV_DDGST: 888 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 889 break; 890 default: 891 result = -EFAULT; 892 } 893 if (result) { 894 dev_err(queue->ctrl->ctrl.device, 895 "receive failed: %d\n", result); 896 queue->rd_enabled = false; 897 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 898 return result; 899 } 900 } 901 902 return consumed; 903 } 904 905 static void nvme_tcp_data_ready(struct sock *sk) 906 { 907 struct nvme_tcp_queue *queue; 908 909 trace_sk_data_ready(sk); 910 911 read_lock_bh(&sk->sk_callback_lock); 912 queue = sk->sk_user_data; 913 if (likely(queue && queue->rd_enabled) && 914 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 915 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 916 read_unlock_bh(&sk->sk_callback_lock); 917 } 918 919 static void nvme_tcp_write_space(struct sock *sk) 920 { 921 struct nvme_tcp_queue *queue; 922 923 read_lock_bh(&sk->sk_callback_lock); 924 queue = sk->sk_user_data; 925 if (likely(queue && sk_stream_is_writeable(sk))) { 926 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 927 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 928 } 929 read_unlock_bh(&sk->sk_callback_lock); 930 } 931 932 static void nvme_tcp_state_change(struct sock *sk) 933 { 934 struct nvme_tcp_queue *queue; 935 936 read_lock_bh(&sk->sk_callback_lock); 937 queue = sk->sk_user_data; 938 if (!queue) 939 goto done; 940 941 switch (sk->sk_state) { 942 case TCP_CLOSE: 943 case TCP_CLOSE_WAIT: 944 case TCP_LAST_ACK: 945 case TCP_FIN_WAIT1: 946 case TCP_FIN_WAIT2: 947 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 948 break; 949 default: 950 dev_info(queue->ctrl->ctrl.device, 951 "queue %d socket state %d\n", 952 nvme_tcp_queue_id(queue), sk->sk_state); 953 } 954 955 queue->state_change(sk); 956 done: 957 read_unlock_bh(&sk->sk_callback_lock); 958 } 959 960 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 961 { 962 queue->request = NULL; 963 } 964 965 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 966 { 967 if (nvme_tcp_async_req(req)) { 968 union nvme_result res = {}; 969 970 nvme_complete_async_event(&req->queue->ctrl->ctrl, 971 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 972 } else { 973 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 974 NVME_SC_HOST_PATH_ERROR); 975 } 976 } 977 978 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 979 { 980 struct nvme_tcp_queue *queue = req->queue; 981 int req_data_len = req->data_len; 982 u32 h2cdata_left = req->h2cdata_left; 983 984 while (true) { 985 struct page *page = nvme_tcp_req_cur_page(req); 986 size_t offset = nvme_tcp_req_cur_offset(req); 987 size_t len = nvme_tcp_req_cur_length(req); 988 bool last = nvme_tcp_pdu_last_send(req, len); 989 int req_data_sent = req->data_sent; 990 int ret, flags = MSG_DONTWAIT; 991 992 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 993 flags |= MSG_EOR; 994 else 995 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 996 997 if (sendpage_ok(page)) { 998 ret = kernel_sendpage(queue->sock, page, offset, len, 999 flags); 1000 } else { 1001 ret = sock_no_sendpage(queue->sock, page, offset, len, 1002 flags); 1003 } 1004 if (ret <= 0) 1005 return ret; 1006 1007 if (queue->data_digest) 1008 nvme_tcp_ddgst_update(queue->snd_hash, page, 1009 offset, ret); 1010 1011 /* 1012 * update the request iterator except for the last payload send 1013 * in the request where we don't want to modify it as we may 1014 * compete with the RX path completing the request. 1015 */ 1016 if (req_data_sent + ret < req_data_len) 1017 nvme_tcp_advance_req(req, ret); 1018 1019 /* fully successful last send in current PDU */ 1020 if (last && ret == len) { 1021 if (queue->data_digest) { 1022 nvme_tcp_ddgst_final(queue->snd_hash, 1023 &req->ddgst); 1024 req->state = NVME_TCP_SEND_DDGST; 1025 req->offset = 0; 1026 } else { 1027 if (h2cdata_left) 1028 nvme_tcp_setup_h2c_data_pdu(req); 1029 else 1030 nvme_tcp_done_send_req(queue); 1031 } 1032 return 1; 1033 } 1034 } 1035 return -EAGAIN; 1036 } 1037 1038 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1039 { 1040 struct nvme_tcp_queue *queue = req->queue; 1041 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 1042 bool inline_data = nvme_tcp_has_inline_data(req); 1043 u8 hdgst = nvme_tcp_hdgst_len(queue); 1044 int len = sizeof(*pdu) + hdgst - req->offset; 1045 int flags = MSG_DONTWAIT; 1046 int ret; 1047 1048 if (inline_data || nvme_tcp_queue_more(queue)) 1049 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 1050 else 1051 flags |= MSG_EOR; 1052 1053 if (queue->hdr_digest && !req->offset) 1054 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1055 1056 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1057 offset_in_page(pdu) + req->offset, len, flags); 1058 if (unlikely(ret <= 0)) 1059 return ret; 1060 1061 len -= ret; 1062 if (!len) { 1063 if (inline_data) { 1064 req->state = NVME_TCP_SEND_DATA; 1065 if (queue->data_digest) 1066 crypto_ahash_init(queue->snd_hash); 1067 } else { 1068 nvme_tcp_done_send_req(queue); 1069 } 1070 return 1; 1071 } 1072 req->offset += ret; 1073 1074 return -EAGAIN; 1075 } 1076 1077 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1078 { 1079 struct nvme_tcp_queue *queue = req->queue; 1080 struct nvme_tcp_data_pdu *pdu = req->pdu; 1081 u8 hdgst = nvme_tcp_hdgst_len(queue); 1082 int len = sizeof(*pdu) - req->offset + hdgst; 1083 int ret; 1084 1085 if (queue->hdr_digest && !req->offset) 1086 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1087 1088 if (!req->h2cdata_left) 1089 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1090 offset_in_page(pdu) + req->offset, len, 1091 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1092 else 1093 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu), 1094 offset_in_page(pdu) + req->offset, len, 1095 MSG_DONTWAIT | MSG_MORE); 1096 if (unlikely(ret <= 0)) 1097 return ret; 1098 1099 len -= ret; 1100 if (!len) { 1101 req->state = NVME_TCP_SEND_DATA; 1102 if (queue->data_digest) 1103 crypto_ahash_init(queue->snd_hash); 1104 return 1; 1105 } 1106 req->offset += ret; 1107 1108 return -EAGAIN; 1109 } 1110 1111 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1112 { 1113 struct nvme_tcp_queue *queue = req->queue; 1114 size_t offset = req->offset; 1115 u32 h2cdata_left = req->h2cdata_left; 1116 int ret; 1117 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1118 struct kvec iov = { 1119 .iov_base = (u8 *)&req->ddgst + req->offset, 1120 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1121 }; 1122 1123 if (nvme_tcp_queue_more(queue)) 1124 msg.msg_flags |= MSG_MORE; 1125 else 1126 msg.msg_flags |= MSG_EOR; 1127 1128 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1129 if (unlikely(ret <= 0)) 1130 return ret; 1131 1132 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1133 if (h2cdata_left) 1134 nvme_tcp_setup_h2c_data_pdu(req); 1135 else 1136 nvme_tcp_done_send_req(queue); 1137 return 1; 1138 } 1139 1140 req->offset += ret; 1141 return -EAGAIN; 1142 } 1143 1144 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1145 { 1146 struct nvme_tcp_request *req; 1147 unsigned int noreclaim_flag; 1148 int ret = 1; 1149 1150 if (!queue->request) { 1151 queue->request = nvme_tcp_fetch_request(queue); 1152 if (!queue->request) 1153 return 0; 1154 } 1155 req = queue->request; 1156 1157 noreclaim_flag = memalloc_noreclaim_save(); 1158 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1159 ret = nvme_tcp_try_send_cmd_pdu(req); 1160 if (ret <= 0) 1161 goto done; 1162 if (!nvme_tcp_has_inline_data(req)) 1163 goto out; 1164 } 1165 1166 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1167 ret = nvme_tcp_try_send_data_pdu(req); 1168 if (ret <= 0) 1169 goto done; 1170 } 1171 1172 if (req->state == NVME_TCP_SEND_DATA) { 1173 ret = nvme_tcp_try_send_data(req); 1174 if (ret <= 0) 1175 goto done; 1176 } 1177 1178 if (req->state == NVME_TCP_SEND_DDGST) 1179 ret = nvme_tcp_try_send_ddgst(req); 1180 done: 1181 if (ret == -EAGAIN) { 1182 ret = 0; 1183 } else if (ret < 0) { 1184 dev_err(queue->ctrl->ctrl.device, 1185 "failed to send request %d\n", ret); 1186 nvme_tcp_fail_request(queue->request); 1187 nvme_tcp_done_send_req(queue); 1188 } 1189 out: 1190 memalloc_noreclaim_restore(noreclaim_flag); 1191 return ret; 1192 } 1193 1194 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1195 { 1196 struct socket *sock = queue->sock; 1197 struct sock *sk = sock->sk; 1198 read_descriptor_t rd_desc; 1199 int consumed; 1200 1201 rd_desc.arg.data = queue; 1202 rd_desc.count = 1; 1203 lock_sock(sk); 1204 queue->nr_cqe = 0; 1205 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1206 release_sock(sk); 1207 return consumed; 1208 } 1209 1210 static void nvme_tcp_io_work(struct work_struct *w) 1211 { 1212 struct nvme_tcp_queue *queue = 1213 container_of(w, struct nvme_tcp_queue, io_work); 1214 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1215 1216 do { 1217 bool pending = false; 1218 int result; 1219 1220 if (mutex_trylock(&queue->send_mutex)) { 1221 result = nvme_tcp_try_send(queue); 1222 mutex_unlock(&queue->send_mutex); 1223 if (result > 0) 1224 pending = true; 1225 else if (unlikely(result < 0)) 1226 break; 1227 } 1228 1229 result = nvme_tcp_try_recv(queue); 1230 if (result > 0) 1231 pending = true; 1232 else if (unlikely(result < 0)) 1233 return; 1234 1235 if (!pending || !queue->rd_enabled) 1236 return; 1237 1238 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1239 1240 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1241 } 1242 1243 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1244 { 1245 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1246 1247 ahash_request_free(queue->rcv_hash); 1248 ahash_request_free(queue->snd_hash); 1249 crypto_free_ahash(tfm); 1250 } 1251 1252 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1253 { 1254 struct crypto_ahash *tfm; 1255 1256 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1257 if (IS_ERR(tfm)) 1258 return PTR_ERR(tfm); 1259 1260 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1261 if (!queue->snd_hash) 1262 goto free_tfm; 1263 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1264 1265 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1266 if (!queue->rcv_hash) 1267 goto free_snd_hash; 1268 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1269 1270 return 0; 1271 free_snd_hash: 1272 ahash_request_free(queue->snd_hash); 1273 free_tfm: 1274 crypto_free_ahash(tfm); 1275 return -ENOMEM; 1276 } 1277 1278 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1279 { 1280 struct nvme_tcp_request *async = &ctrl->async_req; 1281 1282 page_frag_free(async->pdu); 1283 } 1284 1285 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1286 { 1287 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1288 struct nvme_tcp_request *async = &ctrl->async_req; 1289 u8 hdgst = nvme_tcp_hdgst_len(queue); 1290 1291 async->pdu = page_frag_alloc(&queue->pf_cache, 1292 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1293 GFP_KERNEL | __GFP_ZERO); 1294 if (!async->pdu) 1295 return -ENOMEM; 1296 1297 async->queue = &ctrl->queues[0]; 1298 return 0; 1299 } 1300 1301 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1302 { 1303 struct page *page; 1304 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1305 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1306 unsigned int noreclaim_flag; 1307 1308 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1309 return; 1310 1311 if (queue->hdr_digest || queue->data_digest) 1312 nvme_tcp_free_crypto(queue); 1313 1314 if (queue->pf_cache.va) { 1315 page = virt_to_head_page(queue->pf_cache.va); 1316 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1317 queue->pf_cache.va = NULL; 1318 } 1319 1320 noreclaim_flag = memalloc_noreclaim_save(); 1321 sock_release(queue->sock); 1322 memalloc_noreclaim_restore(noreclaim_flag); 1323 1324 kfree(queue->pdu); 1325 mutex_destroy(&queue->send_mutex); 1326 mutex_destroy(&queue->queue_lock); 1327 } 1328 1329 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1330 { 1331 struct nvme_tcp_icreq_pdu *icreq; 1332 struct nvme_tcp_icresp_pdu *icresp; 1333 struct msghdr msg = {}; 1334 struct kvec iov; 1335 bool ctrl_hdgst, ctrl_ddgst; 1336 u32 maxh2cdata; 1337 int ret; 1338 1339 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1340 if (!icreq) 1341 return -ENOMEM; 1342 1343 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1344 if (!icresp) { 1345 ret = -ENOMEM; 1346 goto free_icreq; 1347 } 1348 1349 icreq->hdr.type = nvme_tcp_icreq; 1350 icreq->hdr.hlen = sizeof(*icreq); 1351 icreq->hdr.pdo = 0; 1352 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1353 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1354 icreq->maxr2t = 0; /* single inflight r2t supported */ 1355 icreq->hpda = 0; /* no alignment constraint */ 1356 if (queue->hdr_digest) 1357 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1358 if (queue->data_digest) 1359 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1360 1361 iov.iov_base = icreq; 1362 iov.iov_len = sizeof(*icreq); 1363 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1364 if (ret < 0) 1365 goto free_icresp; 1366 1367 memset(&msg, 0, sizeof(msg)); 1368 iov.iov_base = icresp; 1369 iov.iov_len = sizeof(*icresp); 1370 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1371 iov.iov_len, msg.msg_flags); 1372 if (ret < 0) 1373 goto free_icresp; 1374 1375 ret = -EINVAL; 1376 if (icresp->hdr.type != nvme_tcp_icresp) { 1377 pr_err("queue %d: bad type returned %d\n", 1378 nvme_tcp_queue_id(queue), icresp->hdr.type); 1379 goto free_icresp; 1380 } 1381 1382 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1383 pr_err("queue %d: bad pdu length returned %d\n", 1384 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1385 goto free_icresp; 1386 } 1387 1388 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1389 pr_err("queue %d: bad pfv returned %d\n", 1390 nvme_tcp_queue_id(queue), icresp->pfv); 1391 goto free_icresp; 1392 } 1393 1394 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1395 if ((queue->data_digest && !ctrl_ddgst) || 1396 (!queue->data_digest && ctrl_ddgst)) { 1397 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1398 nvme_tcp_queue_id(queue), 1399 queue->data_digest ? "enabled" : "disabled", 1400 ctrl_ddgst ? "enabled" : "disabled"); 1401 goto free_icresp; 1402 } 1403 1404 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1405 if ((queue->hdr_digest && !ctrl_hdgst) || 1406 (!queue->hdr_digest && ctrl_hdgst)) { 1407 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1408 nvme_tcp_queue_id(queue), 1409 queue->hdr_digest ? "enabled" : "disabled", 1410 ctrl_hdgst ? "enabled" : "disabled"); 1411 goto free_icresp; 1412 } 1413 1414 if (icresp->cpda != 0) { 1415 pr_err("queue %d: unsupported cpda returned %d\n", 1416 nvme_tcp_queue_id(queue), icresp->cpda); 1417 goto free_icresp; 1418 } 1419 1420 maxh2cdata = le32_to_cpu(icresp->maxdata); 1421 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1422 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1423 nvme_tcp_queue_id(queue), maxh2cdata); 1424 goto free_icresp; 1425 } 1426 queue->maxh2cdata = maxh2cdata; 1427 1428 ret = 0; 1429 free_icresp: 1430 kfree(icresp); 1431 free_icreq: 1432 kfree(icreq); 1433 return ret; 1434 } 1435 1436 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1437 { 1438 return nvme_tcp_queue_id(queue) == 0; 1439 } 1440 1441 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1442 { 1443 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1444 int qid = nvme_tcp_queue_id(queue); 1445 1446 return !nvme_tcp_admin_queue(queue) && 1447 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1448 } 1449 1450 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1451 { 1452 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1453 int qid = nvme_tcp_queue_id(queue); 1454 1455 return !nvme_tcp_admin_queue(queue) && 1456 !nvme_tcp_default_queue(queue) && 1457 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1458 ctrl->io_queues[HCTX_TYPE_READ]; 1459 } 1460 1461 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1462 { 1463 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1464 int qid = nvme_tcp_queue_id(queue); 1465 1466 return !nvme_tcp_admin_queue(queue) && 1467 !nvme_tcp_default_queue(queue) && 1468 !nvme_tcp_read_queue(queue) && 1469 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1470 ctrl->io_queues[HCTX_TYPE_READ] + 1471 ctrl->io_queues[HCTX_TYPE_POLL]; 1472 } 1473 1474 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1475 { 1476 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1477 int qid = nvme_tcp_queue_id(queue); 1478 int n = 0; 1479 1480 if (nvme_tcp_default_queue(queue)) 1481 n = qid - 1; 1482 else if (nvme_tcp_read_queue(queue)) 1483 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1484 else if (nvme_tcp_poll_queue(queue)) 1485 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1486 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1487 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1488 } 1489 1490 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid) 1491 { 1492 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1493 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1494 int ret, rcv_pdu_size; 1495 1496 mutex_init(&queue->queue_lock); 1497 queue->ctrl = ctrl; 1498 init_llist_head(&queue->req_list); 1499 INIT_LIST_HEAD(&queue->send_list); 1500 mutex_init(&queue->send_mutex); 1501 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1502 1503 if (qid > 0) 1504 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1505 else 1506 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1507 NVME_TCP_ADMIN_CCSZ; 1508 1509 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1510 IPPROTO_TCP, &queue->sock); 1511 if (ret) { 1512 dev_err(nctrl->device, 1513 "failed to create socket: %d\n", ret); 1514 goto err_destroy_mutex; 1515 } 1516 1517 nvme_tcp_reclassify_socket(queue->sock); 1518 1519 /* Single syn retry */ 1520 tcp_sock_set_syncnt(queue->sock->sk, 1); 1521 1522 /* Set TCP no delay */ 1523 tcp_sock_set_nodelay(queue->sock->sk); 1524 1525 /* 1526 * Cleanup whatever is sitting in the TCP transmit queue on socket 1527 * close. This is done to prevent stale data from being sent should 1528 * the network connection be restored before TCP times out. 1529 */ 1530 sock_no_linger(queue->sock->sk); 1531 1532 if (so_priority > 0) 1533 sock_set_priority(queue->sock->sk, so_priority); 1534 1535 /* Set socket type of service */ 1536 if (nctrl->opts->tos >= 0) 1537 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1538 1539 /* Set 10 seconds timeout for icresp recvmsg */ 1540 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1541 1542 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1543 queue->sock->sk->sk_use_task_frag = false; 1544 nvme_tcp_set_queue_io_cpu(queue); 1545 queue->request = NULL; 1546 queue->data_remaining = 0; 1547 queue->ddgst_remaining = 0; 1548 queue->pdu_remaining = 0; 1549 queue->pdu_offset = 0; 1550 sk_set_memalloc(queue->sock->sk); 1551 1552 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1553 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1554 sizeof(ctrl->src_addr)); 1555 if (ret) { 1556 dev_err(nctrl->device, 1557 "failed to bind queue %d socket %d\n", 1558 qid, ret); 1559 goto err_sock; 1560 } 1561 } 1562 1563 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1564 char *iface = nctrl->opts->host_iface; 1565 sockptr_t optval = KERNEL_SOCKPTR(iface); 1566 1567 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1568 optval, strlen(iface)); 1569 if (ret) { 1570 dev_err(nctrl->device, 1571 "failed to bind to interface %s queue %d err %d\n", 1572 iface, qid, ret); 1573 goto err_sock; 1574 } 1575 } 1576 1577 queue->hdr_digest = nctrl->opts->hdr_digest; 1578 queue->data_digest = nctrl->opts->data_digest; 1579 if (queue->hdr_digest || queue->data_digest) { 1580 ret = nvme_tcp_alloc_crypto(queue); 1581 if (ret) { 1582 dev_err(nctrl->device, 1583 "failed to allocate queue %d crypto\n", qid); 1584 goto err_sock; 1585 } 1586 } 1587 1588 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1589 nvme_tcp_hdgst_len(queue); 1590 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1591 if (!queue->pdu) { 1592 ret = -ENOMEM; 1593 goto err_crypto; 1594 } 1595 1596 dev_dbg(nctrl->device, "connecting queue %d\n", 1597 nvme_tcp_queue_id(queue)); 1598 1599 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1600 sizeof(ctrl->addr), 0); 1601 if (ret) { 1602 dev_err(nctrl->device, 1603 "failed to connect socket: %d\n", ret); 1604 goto err_rcv_pdu; 1605 } 1606 1607 ret = nvme_tcp_init_connection(queue); 1608 if (ret) 1609 goto err_init_connect; 1610 1611 queue->rd_enabled = true; 1612 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1613 nvme_tcp_init_recv_ctx(queue); 1614 1615 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1616 queue->sock->sk->sk_user_data = queue; 1617 queue->state_change = queue->sock->sk->sk_state_change; 1618 queue->data_ready = queue->sock->sk->sk_data_ready; 1619 queue->write_space = queue->sock->sk->sk_write_space; 1620 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1621 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1622 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1623 #ifdef CONFIG_NET_RX_BUSY_POLL 1624 queue->sock->sk->sk_ll_usec = 1; 1625 #endif 1626 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1627 1628 return 0; 1629 1630 err_init_connect: 1631 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1632 err_rcv_pdu: 1633 kfree(queue->pdu); 1634 err_crypto: 1635 if (queue->hdr_digest || queue->data_digest) 1636 nvme_tcp_free_crypto(queue); 1637 err_sock: 1638 sock_release(queue->sock); 1639 queue->sock = NULL; 1640 err_destroy_mutex: 1641 mutex_destroy(&queue->send_mutex); 1642 mutex_destroy(&queue->queue_lock); 1643 return ret; 1644 } 1645 1646 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1647 { 1648 struct socket *sock = queue->sock; 1649 1650 write_lock_bh(&sock->sk->sk_callback_lock); 1651 sock->sk->sk_user_data = NULL; 1652 sock->sk->sk_data_ready = queue->data_ready; 1653 sock->sk->sk_state_change = queue->state_change; 1654 sock->sk->sk_write_space = queue->write_space; 1655 write_unlock_bh(&sock->sk->sk_callback_lock); 1656 } 1657 1658 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1659 { 1660 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1661 nvme_tcp_restore_sock_calls(queue); 1662 cancel_work_sync(&queue->io_work); 1663 } 1664 1665 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1666 { 1667 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1668 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1669 1670 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1671 return; 1672 1673 mutex_lock(&queue->queue_lock); 1674 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1675 __nvme_tcp_stop_queue(queue); 1676 mutex_unlock(&queue->queue_lock); 1677 } 1678 1679 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1680 { 1681 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1682 int ret; 1683 1684 if (idx) 1685 ret = nvmf_connect_io_queue(nctrl, idx); 1686 else 1687 ret = nvmf_connect_admin_queue(nctrl); 1688 1689 if (!ret) { 1690 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1691 } else { 1692 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1693 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1694 dev_err(nctrl->device, 1695 "failed to connect queue: %d ret=%d\n", idx, ret); 1696 } 1697 return ret; 1698 } 1699 1700 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1701 { 1702 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1703 cancel_work_sync(&ctrl->async_event_work); 1704 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1705 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1706 } 1707 1708 nvme_tcp_free_queue(ctrl, 0); 1709 } 1710 1711 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1712 { 1713 int i; 1714 1715 for (i = 1; i < ctrl->queue_count; i++) 1716 nvme_tcp_free_queue(ctrl, i); 1717 } 1718 1719 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1720 { 1721 int i; 1722 1723 for (i = 1; i < ctrl->queue_count; i++) 1724 nvme_tcp_stop_queue(ctrl, i); 1725 } 1726 1727 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 1728 int first, int last) 1729 { 1730 int i, ret; 1731 1732 for (i = first; i < last; i++) { 1733 ret = nvme_tcp_start_queue(ctrl, i); 1734 if (ret) 1735 goto out_stop_queues; 1736 } 1737 1738 return 0; 1739 1740 out_stop_queues: 1741 for (i--; i >= first; i--) 1742 nvme_tcp_stop_queue(ctrl, i); 1743 return ret; 1744 } 1745 1746 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1747 { 1748 int ret; 1749 1750 ret = nvme_tcp_alloc_queue(ctrl, 0); 1751 if (ret) 1752 return ret; 1753 1754 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1755 if (ret) 1756 goto out_free_queue; 1757 1758 return 0; 1759 1760 out_free_queue: 1761 nvme_tcp_free_queue(ctrl, 0); 1762 return ret; 1763 } 1764 1765 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1766 { 1767 int i, ret; 1768 1769 for (i = 1; i < ctrl->queue_count; i++) { 1770 ret = nvme_tcp_alloc_queue(ctrl, i); 1771 if (ret) 1772 goto out_free_queues; 1773 } 1774 1775 return 0; 1776 1777 out_free_queues: 1778 for (i--; i >= 1; i--) 1779 nvme_tcp_free_queue(ctrl, i); 1780 1781 return ret; 1782 } 1783 1784 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1785 { 1786 unsigned int nr_io_queues; 1787 1788 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1789 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1790 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1791 1792 return nr_io_queues; 1793 } 1794 1795 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1796 unsigned int nr_io_queues) 1797 { 1798 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1799 struct nvmf_ctrl_options *opts = nctrl->opts; 1800 1801 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1802 /* 1803 * separate read/write queues 1804 * hand out dedicated default queues only after we have 1805 * sufficient read queues. 1806 */ 1807 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1808 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1809 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1810 min(opts->nr_write_queues, nr_io_queues); 1811 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1812 } else { 1813 /* 1814 * shared read/write queues 1815 * either no write queues were requested, or we don't have 1816 * sufficient queue count to have dedicated default queues. 1817 */ 1818 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1819 min(opts->nr_io_queues, nr_io_queues); 1820 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1821 } 1822 1823 if (opts->nr_poll_queues && nr_io_queues) { 1824 /* map dedicated poll queues only if we have queues left */ 1825 ctrl->io_queues[HCTX_TYPE_POLL] = 1826 min(opts->nr_poll_queues, nr_io_queues); 1827 } 1828 } 1829 1830 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1831 { 1832 unsigned int nr_io_queues; 1833 int ret; 1834 1835 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1836 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1837 if (ret) 1838 return ret; 1839 1840 if (nr_io_queues == 0) { 1841 dev_err(ctrl->device, 1842 "unable to set any I/O queues\n"); 1843 return -ENOMEM; 1844 } 1845 1846 ctrl->queue_count = nr_io_queues + 1; 1847 dev_info(ctrl->device, 1848 "creating %d I/O queues.\n", nr_io_queues); 1849 1850 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1851 1852 return __nvme_tcp_alloc_io_queues(ctrl); 1853 } 1854 1855 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1856 { 1857 nvme_tcp_stop_io_queues(ctrl); 1858 if (remove) 1859 nvme_remove_io_tag_set(ctrl); 1860 nvme_tcp_free_io_queues(ctrl); 1861 } 1862 1863 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1864 { 1865 int ret, nr_queues; 1866 1867 ret = nvme_tcp_alloc_io_queues(ctrl); 1868 if (ret) 1869 return ret; 1870 1871 if (new) { 1872 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 1873 &nvme_tcp_mq_ops, 1874 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 1875 sizeof(struct nvme_tcp_request)); 1876 if (ret) 1877 goto out_free_io_queues; 1878 } 1879 1880 /* 1881 * Only start IO queues for which we have allocated the tagset 1882 * and limitted it to the available queues. On reconnects, the 1883 * queue number might have changed. 1884 */ 1885 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 1886 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 1887 if (ret) 1888 goto out_cleanup_connect_q; 1889 1890 if (!new) { 1891 nvme_unquiesce_io_queues(ctrl); 1892 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1893 /* 1894 * If we timed out waiting for freeze we are likely to 1895 * be stuck. Fail the controller initialization just 1896 * to be safe. 1897 */ 1898 ret = -ENODEV; 1899 goto out_wait_freeze_timed_out; 1900 } 1901 blk_mq_update_nr_hw_queues(ctrl->tagset, 1902 ctrl->queue_count - 1); 1903 nvme_unfreeze(ctrl); 1904 } 1905 1906 /* 1907 * If the number of queues has increased (reconnect case) 1908 * start all new queues now. 1909 */ 1910 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 1911 ctrl->tagset->nr_hw_queues + 1); 1912 if (ret) 1913 goto out_wait_freeze_timed_out; 1914 1915 return 0; 1916 1917 out_wait_freeze_timed_out: 1918 nvme_quiesce_io_queues(ctrl); 1919 nvme_sync_io_queues(ctrl); 1920 nvme_tcp_stop_io_queues(ctrl); 1921 out_cleanup_connect_q: 1922 nvme_cancel_tagset(ctrl); 1923 if (new) 1924 nvme_remove_io_tag_set(ctrl); 1925 out_free_io_queues: 1926 nvme_tcp_free_io_queues(ctrl); 1927 return ret; 1928 } 1929 1930 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1931 { 1932 nvme_tcp_stop_queue(ctrl, 0); 1933 if (remove) 1934 nvme_remove_admin_tag_set(ctrl); 1935 nvme_tcp_free_admin_queue(ctrl); 1936 } 1937 1938 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1939 { 1940 int error; 1941 1942 error = nvme_tcp_alloc_admin_queue(ctrl); 1943 if (error) 1944 return error; 1945 1946 if (new) { 1947 error = nvme_alloc_admin_tag_set(ctrl, 1948 &to_tcp_ctrl(ctrl)->admin_tag_set, 1949 &nvme_tcp_admin_mq_ops, 1950 sizeof(struct nvme_tcp_request)); 1951 if (error) 1952 goto out_free_queue; 1953 } 1954 1955 error = nvme_tcp_start_queue(ctrl, 0); 1956 if (error) 1957 goto out_cleanup_tagset; 1958 1959 error = nvme_enable_ctrl(ctrl); 1960 if (error) 1961 goto out_stop_queue; 1962 1963 nvme_unquiesce_admin_queue(ctrl); 1964 1965 error = nvme_init_ctrl_finish(ctrl, false); 1966 if (error) 1967 goto out_quiesce_queue; 1968 1969 return 0; 1970 1971 out_quiesce_queue: 1972 nvme_quiesce_admin_queue(ctrl); 1973 blk_sync_queue(ctrl->admin_q); 1974 out_stop_queue: 1975 nvme_tcp_stop_queue(ctrl, 0); 1976 nvme_cancel_admin_tagset(ctrl); 1977 out_cleanup_tagset: 1978 if (new) 1979 nvme_remove_admin_tag_set(ctrl); 1980 out_free_queue: 1981 nvme_tcp_free_admin_queue(ctrl); 1982 return error; 1983 } 1984 1985 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1986 bool remove) 1987 { 1988 nvme_quiesce_admin_queue(ctrl); 1989 blk_sync_queue(ctrl->admin_q); 1990 nvme_tcp_stop_queue(ctrl, 0); 1991 nvme_cancel_admin_tagset(ctrl); 1992 if (remove) 1993 nvme_unquiesce_admin_queue(ctrl); 1994 nvme_tcp_destroy_admin_queue(ctrl, remove); 1995 } 1996 1997 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1998 bool remove) 1999 { 2000 if (ctrl->queue_count <= 1) 2001 return; 2002 nvme_quiesce_admin_queue(ctrl); 2003 nvme_start_freeze(ctrl); 2004 nvme_quiesce_io_queues(ctrl); 2005 nvme_sync_io_queues(ctrl); 2006 nvme_tcp_stop_io_queues(ctrl); 2007 nvme_cancel_tagset(ctrl); 2008 if (remove) 2009 nvme_unquiesce_io_queues(ctrl); 2010 nvme_tcp_destroy_io_queues(ctrl, remove); 2011 } 2012 2013 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 2014 { 2015 /* If we are resetting/deleting then do nothing */ 2016 if (ctrl->state != NVME_CTRL_CONNECTING) { 2017 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 2018 ctrl->state == NVME_CTRL_LIVE); 2019 return; 2020 } 2021 2022 if (nvmf_should_reconnect(ctrl)) { 2023 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2024 ctrl->opts->reconnect_delay); 2025 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2026 ctrl->opts->reconnect_delay * HZ); 2027 } else { 2028 dev_info(ctrl->device, "Removing controller...\n"); 2029 nvme_delete_ctrl(ctrl); 2030 } 2031 } 2032 2033 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2034 { 2035 struct nvmf_ctrl_options *opts = ctrl->opts; 2036 int ret; 2037 2038 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2039 if (ret) 2040 return ret; 2041 2042 if (ctrl->icdoff) { 2043 ret = -EOPNOTSUPP; 2044 dev_err(ctrl->device, "icdoff is not supported!\n"); 2045 goto destroy_admin; 2046 } 2047 2048 if (!nvme_ctrl_sgl_supported(ctrl)) { 2049 ret = -EOPNOTSUPP; 2050 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2051 goto destroy_admin; 2052 } 2053 2054 if (opts->queue_size > ctrl->sqsize + 1) 2055 dev_warn(ctrl->device, 2056 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2057 opts->queue_size, ctrl->sqsize + 1); 2058 2059 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2060 dev_warn(ctrl->device, 2061 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2062 ctrl->sqsize + 1, ctrl->maxcmd); 2063 ctrl->sqsize = ctrl->maxcmd - 1; 2064 } 2065 2066 if (ctrl->queue_count > 1) { 2067 ret = nvme_tcp_configure_io_queues(ctrl, new); 2068 if (ret) 2069 goto destroy_admin; 2070 } 2071 2072 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2073 /* 2074 * state change failure is ok if we started ctrl delete, 2075 * unless we're during creation of a new controller to 2076 * avoid races with teardown flow. 2077 */ 2078 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2079 ctrl->state != NVME_CTRL_DELETING_NOIO); 2080 WARN_ON_ONCE(new); 2081 ret = -EINVAL; 2082 goto destroy_io; 2083 } 2084 2085 nvme_start_ctrl(ctrl); 2086 return 0; 2087 2088 destroy_io: 2089 if (ctrl->queue_count > 1) { 2090 nvme_quiesce_io_queues(ctrl); 2091 nvme_sync_io_queues(ctrl); 2092 nvme_tcp_stop_io_queues(ctrl); 2093 nvme_cancel_tagset(ctrl); 2094 nvme_tcp_destroy_io_queues(ctrl, new); 2095 } 2096 destroy_admin: 2097 nvme_quiesce_admin_queue(ctrl); 2098 blk_sync_queue(ctrl->admin_q); 2099 nvme_tcp_stop_queue(ctrl, 0); 2100 nvme_cancel_admin_tagset(ctrl); 2101 nvme_tcp_destroy_admin_queue(ctrl, new); 2102 return ret; 2103 } 2104 2105 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2106 { 2107 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2108 struct nvme_tcp_ctrl, connect_work); 2109 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2110 2111 ++ctrl->nr_reconnects; 2112 2113 if (nvme_tcp_setup_ctrl(ctrl, false)) 2114 goto requeue; 2115 2116 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2117 ctrl->nr_reconnects); 2118 2119 ctrl->nr_reconnects = 0; 2120 2121 return; 2122 2123 requeue: 2124 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2125 ctrl->nr_reconnects); 2126 nvme_tcp_reconnect_or_remove(ctrl); 2127 } 2128 2129 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2130 { 2131 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2132 struct nvme_tcp_ctrl, err_work); 2133 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2134 2135 nvme_stop_keep_alive(ctrl); 2136 flush_work(&ctrl->async_event_work); 2137 nvme_tcp_teardown_io_queues(ctrl, false); 2138 /* unquiesce to fail fast pending requests */ 2139 nvme_unquiesce_io_queues(ctrl); 2140 nvme_tcp_teardown_admin_queue(ctrl, false); 2141 nvme_unquiesce_admin_queue(ctrl); 2142 nvme_auth_stop(ctrl); 2143 2144 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2145 /* state change failure is ok if we started ctrl delete */ 2146 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2147 ctrl->state != NVME_CTRL_DELETING_NOIO); 2148 return; 2149 } 2150 2151 nvme_tcp_reconnect_or_remove(ctrl); 2152 } 2153 2154 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2155 { 2156 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2157 nvme_quiesce_admin_queue(ctrl); 2158 nvme_disable_ctrl(ctrl, shutdown); 2159 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2160 } 2161 2162 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2163 { 2164 nvme_tcp_teardown_ctrl(ctrl, true); 2165 } 2166 2167 static void nvme_reset_ctrl_work(struct work_struct *work) 2168 { 2169 struct nvme_ctrl *ctrl = 2170 container_of(work, struct nvme_ctrl, reset_work); 2171 2172 nvme_stop_ctrl(ctrl); 2173 nvme_tcp_teardown_ctrl(ctrl, false); 2174 2175 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2176 /* state change failure is ok if we started ctrl delete */ 2177 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2178 ctrl->state != NVME_CTRL_DELETING_NOIO); 2179 return; 2180 } 2181 2182 if (nvme_tcp_setup_ctrl(ctrl, false)) 2183 goto out_fail; 2184 2185 return; 2186 2187 out_fail: 2188 ++ctrl->nr_reconnects; 2189 nvme_tcp_reconnect_or_remove(ctrl); 2190 } 2191 2192 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2193 { 2194 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2195 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2196 } 2197 2198 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2199 { 2200 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2201 2202 if (list_empty(&ctrl->list)) 2203 goto free_ctrl; 2204 2205 mutex_lock(&nvme_tcp_ctrl_mutex); 2206 list_del(&ctrl->list); 2207 mutex_unlock(&nvme_tcp_ctrl_mutex); 2208 2209 nvmf_free_options(nctrl->opts); 2210 free_ctrl: 2211 kfree(ctrl->queues); 2212 kfree(ctrl); 2213 } 2214 2215 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2216 { 2217 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2218 2219 sg->addr = 0; 2220 sg->length = 0; 2221 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2222 NVME_SGL_FMT_TRANSPORT_A; 2223 } 2224 2225 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2226 struct nvme_command *c, u32 data_len) 2227 { 2228 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2229 2230 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2231 sg->length = cpu_to_le32(data_len); 2232 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2233 } 2234 2235 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2236 u32 data_len) 2237 { 2238 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2239 2240 sg->addr = 0; 2241 sg->length = cpu_to_le32(data_len); 2242 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2243 NVME_SGL_FMT_TRANSPORT_A; 2244 } 2245 2246 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2247 { 2248 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2249 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2250 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2251 struct nvme_command *cmd = &pdu->cmd; 2252 u8 hdgst = nvme_tcp_hdgst_len(queue); 2253 2254 memset(pdu, 0, sizeof(*pdu)); 2255 pdu->hdr.type = nvme_tcp_cmd; 2256 if (queue->hdr_digest) 2257 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2258 pdu->hdr.hlen = sizeof(*pdu); 2259 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2260 2261 cmd->common.opcode = nvme_admin_async_event; 2262 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2263 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2264 nvme_tcp_set_sg_null(cmd); 2265 2266 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2267 ctrl->async_req.offset = 0; 2268 ctrl->async_req.curr_bio = NULL; 2269 ctrl->async_req.data_len = 0; 2270 2271 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2272 } 2273 2274 static void nvme_tcp_complete_timed_out(struct request *rq) 2275 { 2276 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2277 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2278 2279 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2280 nvmf_complete_timed_out_request(rq); 2281 } 2282 2283 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2284 { 2285 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2286 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2287 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2288 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype; 2289 int qid = nvme_tcp_queue_id(req->queue); 2290 2291 dev_warn(ctrl->device, 2292 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n", 2293 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type, 2294 opc, nvme_opcode_str(qid, opc, fctype)); 2295 2296 if (ctrl->state != NVME_CTRL_LIVE) { 2297 /* 2298 * If we are resetting, connecting or deleting we should 2299 * complete immediately because we may block controller 2300 * teardown or setup sequence 2301 * - ctrl disable/shutdown fabrics requests 2302 * - connect requests 2303 * - initialization admin requests 2304 * - I/O requests that entered after unquiescing and 2305 * the controller stopped responding 2306 * 2307 * All other requests should be cancelled by the error 2308 * recovery work, so it's fine that we fail it here. 2309 */ 2310 nvme_tcp_complete_timed_out(rq); 2311 return BLK_EH_DONE; 2312 } 2313 2314 /* 2315 * LIVE state should trigger the normal error recovery which will 2316 * handle completing this request. 2317 */ 2318 nvme_tcp_error_recovery(ctrl); 2319 return BLK_EH_RESET_TIMER; 2320 } 2321 2322 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2323 struct request *rq) 2324 { 2325 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2326 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2327 struct nvme_command *c = &pdu->cmd; 2328 2329 c->common.flags |= NVME_CMD_SGL_METABUF; 2330 2331 if (!blk_rq_nr_phys_segments(rq)) 2332 nvme_tcp_set_sg_null(c); 2333 else if (rq_data_dir(rq) == WRITE && 2334 req->data_len <= nvme_tcp_inline_data_size(req)) 2335 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2336 else 2337 nvme_tcp_set_sg_host_data(c, req->data_len); 2338 2339 return 0; 2340 } 2341 2342 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2343 struct request *rq) 2344 { 2345 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2346 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2347 struct nvme_tcp_queue *queue = req->queue; 2348 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2349 blk_status_t ret; 2350 2351 ret = nvme_setup_cmd(ns, rq); 2352 if (ret) 2353 return ret; 2354 2355 req->state = NVME_TCP_SEND_CMD_PDU; 2356 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2357 req->offset = 0; 2358 req->data_sent = 0; 2359 req->pdu_len = 0; 2360 req->pdu_sent = 0; 2361 req->h2cdata_left = 0; 2362 req->data_len = blk_rq_nr_phys_segments(rq) ? 2363 blk_rq_payload_bytes(rq) : 0; 2364 req->curr_bio = rq->bio; 2365 if (req->curr_bio && req->data_len) 2366 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2367 2368 if (rq_data_dir(rq) == WRITE && 2369 req->data_len <= nvme_tcp_inline_data_size(req)) 2370 req->pdu_len = req->data_len; 2371 2372 pdu->hdr.type = nvme_tcp_cmd; 2373 pdu->hdr.flags = 0; 2374 if (queue->hdr_digest) 2375 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2376 if (queue->data_digest && req->pdu_len) { 2377 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2378 ddgst = nvme_tcp_ddgst_len(queue); 2379 } 2380 pdu->hdr.hlen = sizeof(*pdu); 2381 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2382 pdu->hdr.plen = 2383 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2384 2385 ret = nvme_tcp_map_data(queue, rq); 2386 if (unlikely(ret)) { 2387 nvme_cleanup_cmd(rq); 2388 dev_err(queue->ctrl->ctrl.device, 2389 "Failed to map data (%d)\n", ret); 2390 return ret; 2391 } 2392 2393 return 0; 2394 } 2395 2396 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2397 { 2398 struct nvme_tcp_queue *queue = hctx->driver_data; 2399 2400 if (!llist_empty(&queue->req_list)) 2401 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2402 } 2403 2404 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2405 const struct blk_mq_queue_data *bd) 2406 { 2407 struct nvme_ns *ns = hctx->queue->queuedata; 2408 struct nvme_tcp_queue *queue = hctx->driver_data; 2409 struct request *rq = bd->rq; 2410 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2411 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2412 blk_status_t ret; 2413 2414 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2415 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2416 2417 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2418 if (unlikely(ret)) 2419 return ret; 2420 2421 nvme_start_request(rq); 2422 2423 nvme_tcp_queue_request(req, true, bd->last); 2424 2425 return BLK_STS_OK; 2426 } 2427 2428 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2429 { 2430 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2431 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2432 2433 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2434 /* separate read/write queues */ 2435 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2436 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2437 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2438 set->map[HCTX_TYPE_READ].nr_queues = 2439 ctrl->io_queues[HCTX_TYPE_READ]; 2440 set->map[HCTX_TYPE_READ].queue_offset = 2441 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2442 } else { 2443 /* shared read/write queues */ 2444 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2445 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2446 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2447 set->map[HCTX_TYPE_READ].nr_queues = 2448 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2449 set->map[HCTX_TYPE_READ].queue_offset = 0; 2450 } 2451 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2452 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2453 2454 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2455 /* map dedicated poll queues only if we have queues left */ 2456 set->map[HCTX_TYPE_POLL].nr_queues = 2457 ctrl->io_queues[HCTX_TYPE_POLL]; 2458 set->map[HCTX_TYPE_POLL].queue_offset = 2459 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2460 ctrl->io_queues[HCTX_TYPE_READ]; 2461 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2462 } 2463 2464 dev_info(ctrl->ctrl.device, 2465 "mapped %d/%d/%d default/read/poll queues.\n", 2466 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2467 ctrl->io_queues[HCTX_TYPE_READ], 2468 ctrl->io_queues[HCTX_TYPE_POLL]); 2469 } 2470 2471 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2472 { 2473 struct nvme_tcp_queue *queue = hctx->driver_data; 2474 struct sock *sk = queue->sock->sk; 2475 2476 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2477 return 0; 2478 2479 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2480 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2481 sk_busy_loop(sk, true); 2482 nvme_tcp_try_recv(queue); 2483 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2484 return queue->nr_cqe; 2485 } 2486 2487 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2488 { 2489 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2490 struct sockaddr_storage src_addr; 2491 int ret, len; 2492 2493 len = nvmf_get_address(ctrl, buf, size); 2494 2495 mutex_lock(&queue->queue_lock); 2496 2497 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2498 goto done; 2499 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2500 if (ret > 0) { 2501 if (len > 0) 2502 len--; /* strip trailing newline */ 2503 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2504 (len) ? "," : "", &src_addr); 2505 } 2506 done: 2507 mutex_unlock(&queue->queue_lock); 2508 2509 return len; 2510 } 2511 2512 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2513 .queue_rq = nvme_tcp_queue_rq, 2514 .commit_rqs = nvme_tcp_commit_rqs, 2515 .complete = nvme_complete_rq, 2516 .init_request = nvme_tcp_init_request, 2517 .exit_request = nvme_tcp_exit_request, 2518 .init_hctx = nvme_tcp_init_hctx, 2519 .timeout = nvme_tcp_timeout, 2520 .map_queues = nvme_tcp_map_queues, 2521 .poll = nvme_tcp_poll, 2522 }; 2523 2524 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2525 .queue_rq = nvme_tcp_queue_rq, 2526 .complete = nvme_complete_rq, 2527 .init_request = nvme_tcp_init_request, 2528 .exit_request = nvme_tcp_exit_request, 2529 .init_hctx = nvme_tcp_init_admin_hctx, 2530 .timeout = nvme_tcp_timeout, 2531 }; 2532 2533 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2534 .name = "tcp", 2535 .module = THIS_MODULE, 2536 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2537 .reg_read32 = nvmf_reg_read32, 2538 .reg_read64 = nvmf_reg_read64, 2539 .reg_write32 = nvmf_reg_write32, 2540 .free_ctrl = nvme_tcp_free_ctrl, 2541 .submit_async_event = nvme_tcp_submit_async_event, 2542 .delete_ctrl = nvme_tcp_delete_ctrl, 2543 .get_address = nvme_tcp_get_address, 2544 .stop_ctrl = nvme_tcp_stop_ctrl, 2545 }; 2546 2547 static bool 2548 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2549 { 2550 struct nvme_tcp_ctrl *ctrl; 2551 bool found = false; 2552 2553 mutex_lock(&nvme_tcp_ctrl_mutex); 2554 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2555 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2556 if (found) 2557 break; 2558 } 2559 mutex_unlock(&nvme_tcp_ctrl_mutex); 2560 2561 return found; 2562 } 2563 2564 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2565 struct nvmf_ctrl_options *opts) 2566 { 2567 struct nvme_tcp_ctrl *ctrl; 2568 int ret; 2569 2570 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2571 if (!ctrl) 2572 return ERR_PTR(-ENOMEM); 2573 2574 INIT_LIST_HEAD(&ctrl->list); 2575 ctrl->ctrl.opts = opts; 2576 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2577 opts->nr_poll_queues + 1; 2578 ctrl->ctrl.sqsize = opts->queue_size - 1; 2579 ctrl->ctrl.kato = opts->kato; 2580 2581 INIT_DELAYED_WORK(&ctrl->connect_work, 2582 nvme_tcp_reconnect_ctrl_work); 2583 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2584 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2585 2586 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2587 opts->trsvcid = 2588 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2589 if (!opts->trsvcid) { 2590 ret = -ENOMEM; 2591 goto out_free_ctrl; 2592 } 2593 opts->mask |= NVMF_OPT_TRSVCID; 2594 } 2595 2596 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2597 opts->traddr, opts->trsvcid, &ctrl->addr); 2598 if (ret) { 2599 pr_err("malformed address passed: %s:%s\n", 2600 opts->traddr, opts->trsvcid); 2601 goto out_free_ctrl; 2602 } 2603 2604 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2605 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2606 opts->host_traddr, NULL, &ctrl->src_addr); 2607 if (ret) { 2608 pr_err("malformed src address passed: %s\n", 2609 opts->host_traddr); 2610 goto out_free_ctrl; 2611 } 2612 } 2613 2614 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2615 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2616 pr_err("invalid interface passed: %s\n", 2617 opts->host_iface); 2618 ret = -ENODEV; 2619 goto out_free_ctrl; 2620 } 2621 } 2622 2623 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2624 ret = -EALREADY; 2625 goto out_free_ctrl; 2626 } 2627 2628 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2629 GFP_KERNEL); 2630 if (!ctrl->queues) { 2631 ret = -ENOMEM; 2632 goto out_free_ctrl; 2633 } 2634 2635 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2636 if (ret) 2637 goto out_kfree_queues; 2638 2639 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2640 WARN_ON_ONCE(1); 2641 ret = -EINTR; 2642 goto out_uninit_ctrl; 2643 } 2644 2645 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2646 if (ret) 2647 goto out_uninit_ctrl; 2648 2649 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2650 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2651 2652 mutex_lock(&nvme_tcp_ctrl_mutex); 2653 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2654 mutex_unlock(&nvme_tcp_ctrl_mutex); 2655 2656 return &ctrl->ctrl; 2657 2658 out_uninit_ctrl: 2659 nvme_uninit_ctrl(&ctrl->ctrl); 2660 nvme_put_ctrl(&ctrl->ctrl); 2661 if (ret > 0) 2662 ret = -EIO; 2663 return ERR_PTR(ret); 2664 out_kfree_queues: 2665 kfree(ctrl->queues); 2666 out_free_ctrl: 2667 kfree(ctrl); 2668 return ERR_PTR(ret); 2669 } 2670 2671 static struct nvmf_transport_ops nvme_tcp_transport = { 2672 .name = "tcp", 2673 .module = THIS_MODULE, 2674 .required_opts = NVMF_OPT_TRADDR, 2675 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2676 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2677 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2678 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2679 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2680 .create_ctrl = nvme_tcp_create_ctrl, 2681 }; 2682 2683 static int __init nvme_tcp_init_module(void) 2684 { 2685 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2686 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2687 if (!nvme_tcp_wq) 2688 return -ENOMEM; 2689 2690 nvmf_register_transport(&nvme_tcp_transport); 2691 return 0; 2692 } 2693 2694 static void __exit nvme_tcp_cleanup_module(void) 2695 { 2696 struct nvme_tcp_ctrl *ctrl; 2697 2698 nvmf_unregister_transport(&nvme_tcp_transport); 2699 2700 mutex_lock(&nvme_tcp_ctrl_mutex); 2701 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2702 nvme_delete_ctrl(&ctrl->ctrl); 2703 mutex_unlock(&nvme_tcp_ctrl_mutex); 2704 flush_workqueue(nvme_delete_wq); 2705 2706 destroy_workqueue(nvme_tcp_wq); 2707 } 2708 2709 module_init(nvme_tcp_init_module); 2710 module_exit(nvme_tcp_cleanup_module); 2711 2712 MODULE_LICENSE("GPL v2"); 2713