1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 #ifdef CONFIG_DEBUG_LOCK_ALLOC 34 /* lockdep can detect a circular dependency of the form 35 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 36 * because dependencies are tracked for both nvme-tcp and user contexts. Using 37 * a separate class prevents lockdep from conflating nvme-tcp socket use with 38 * user-space socket API use. 39 */ 40 static struct lock_class_key nvme_tcp_sk_key[2]; 41 static struct lock_class_key nvme_tcp_slock_key[2]; 42 43 static void nvme_tcp_reclassify_socket(struct socket *sock) 44 { 45 struct sock *sk = sock->sk; 46 47 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 48 return; 49 50 switch (sk->sk_family) { 51 case AF_INET: 52 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 53 &nvme_tcp_slock_key[0], 54 "sk_lock-AF_INET-NVME", 55 &nvme_tcp_sk_key[0]); 56 break; 57 case AF_INET6: 58 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 59 &nvme_tcp_slock_key[1], 60 "sk_lock-AF_INET6-NVME", 61 &nvme_tcp_sk_key[1]); 62 break; 63 default: 64 WARN_ON_ONCE(1); 65 } 66 } 67 #else 68 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 69 #endif 70 71 enum nvme_tcp_send_state { 72 NVME_TCP_SEND_CMD_PDU = 0, 73 NVME_TCP_SEND_H2C_PDU, 74 NVME_TCP_SEND_DATA, 75 NVME_TCP_SEND_DDGST, 76 }; 77 78 struct nvme_tcp_request { 79 struct nvme_request req; 80 void *pdu; 81 struct nvme_tcp_queue *queue; 82 u32 data_len; 83 u32 pdu_len; 84 u32 pdu_sent; 85 u32 h2cdata_left; 86 u32 h2cdata_offset; 87 u16 ttag; 88 __le16 status; 89 struct list_head entry; 90 struct llist_node lentry; 91 __le32 ddgst; 92 93 struct bio *curr_bio; 94 struct iov_iter iter; 95 96 /* send state */ 97 size_t offset; 98 size_t data_sent; 99 enum nvme_tcp_send_state state; 100 }; 101 102 enum nvme_tcp_queue_flags { 103 NVME_TCP_Q_ALLOCATED = 0, 104 NVME_TCP_Q_LIVE = 1, 105 NVME_TCP_Q_POLLING = 2, 106 }; 107 108 enum nvme_tcp_recv_state { 109 NVME_TCP_RECV_PDU = 0, 110 NVME_TCP_RECV_DATA, 111 NVME_TCP_RECV_DDGST, 112 }; 113 114 struct nvme_tcp_ctrl; 115 struct nvme_tcp_queue { 116 struct socket *sock; 117 struct work_struct io_work; 118 int io_cpu; 119 120 struct mutex queue_lock; 121 struct mutex send_mutex; 122 struct llist_head req_list; 123 struct list_head send_list; 124 bool more_requests; 125 126 /* recv state */ 127 void *pdu; 128 int pdu_remaining; 129 int pdu_offset; 130 size_t data_remaining; 131 size_t ddgst_remaining; 132 unsigned int nr_cqe; 133 134 /* send state */ 135 struct nvme_tcp_request *request; 136 137 int queue_size; 138 u32 maxh2cdata; 139 size_t cmnd_capsule_len; 140 struct nvme_tcp_ctrl *ctrl; 141 unsigned long flags; 142 bool rd_enabled; 143 144 bool hdr_digest; 145 bool data_digest; 146 struct ahash_request *rcv_hash; 147 struct ahash_request *snd_hash; 148 __le32 exp_ddgst; 149 __le32 recv_ddgst; 150 151 struct page_frag_cache pf_cache; 152 153 void (*state_change)(struct sock *); 154 void (*data_ready)(struct sock *); 155 void (*write_space)(struct sock *); 156 }; 157 158 struct nvme_tcp_ctrl { 159 /* read only in the hot path */ 160 struct nvme_tcp_queue *queues; 161 struct blk_mq_tag_set tag_set; 162 163 /* other member variables */ 164 struct list_head list; 165 struct blk_mq_tag_set admin_tag_set; 166 struct sockaddr_storage addr; 167 struct sockaddr_storage src_addr; 168 struct nvme_ctrl ctrl; 169 170 struct work_struct err_work; 171 struct delayed_work connect_work; 172 struct nvme_tcp_request async_req; 173 u32 io_queues[HCTX_MAX_TYPES]; 174 }; 175 176 static LIST_HEAD(nvme_tcp_ctrl_list); 177 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 178 static struct workqueue_struct *nvme_tcp_wq; 179 static const struct blk_mq_ops nvme_tcp_mq_ops; 180 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 181 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 182 183 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 186 } 187 188 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 189 { 190 return queue - queue->ctrl->queues; 191 } 192 193 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 194 { 195 u32 queue_idx = nvme_tcp_queue_id(queue); 196 197 if (queue_idx == 0) 198 return queue->ctrl->admin_tag_set.tags[queue_idx]; 199 return queue->ctrl->tag_set.tags[queue_idx - 1]; 200 } 201 202 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 203 { 204 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 205 } 206 207 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 208 { 209 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 210 } 211 212 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 213 { 214 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 215 } 216 217 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 218 { 219 return req == &req->queue->ctrl->async_req; 220 } 221 222 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 223 { 224 struct request *rq; 225 226 if (unlikely(nvme_tcp_async_req(req))) 227 return false; /* async events don't have a request */ 228 229 rq = blk_mq_rq_from_pdu(req); 230 231 return rq_data_dir(rq) == WRITE && req->data_len && 232 req->data_len <= nvme_tcp_inline_data_size(req->queue); 233 } 234 235 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 236 { 237 return req->iter.bvec->bv_page; 238 } 239 240 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 241 { 242 return req->iter.bvec->bv_offset + req->iter.iov_offset; 243 } 244 245 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 246 { 247 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 248 req->pdu_len - req->pdu_sent); 249 } 250 251 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 252 { 253 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 254 req->pdu_len - req->pdu_sent : 0; 255 } 256 257 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 258 int len) 259 { 260 return nvme_tcp_pdu_data_left(req) <= len; 261 } 262 263 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 264 unsigned int dir) 265 { 266 struct request *rq = blk_mq_rq_from_pdu(req); 267 struct bio_vec *vec; 268 unsigned int size; 269 int nr_bvec; 270 size_t offset; 271 272 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 273 vec = &rq->special_vec; 274 nr_bvec = 1; 275 size = blk_rq_payload_bytes(rq); 276 offset = 0; 277 } else { 278 struct bio *bio = req->curr_bio; 279 struct bvec_iter bi; 280 struct bio_vec bv; 281 282 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 283 nr_bvec = 0; 284 bio_for_each_bvec(bv, bio, bi) { 285 nr_bvec++; 286 } 287 size = bio->bi_iter.bi_size; 288 offset = bio->bi_iter.bi_bvec_done; 289 } 290 291 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 292 req->iter.iov_offset = offset; 293 } 294 295 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 296 int len) 297 { 298 req->data_sent += len; 299 req->pdu_sent += len; 300 iov_iter_advance(&req->iter, len); 301 if (!iov_iter_count(&req->iter) && 302 req->data_sent < req->data_len) { 303 req->curr_bio = req->curr_bio->bi_next; 304 nvme_tcp_init_iter(req, WRITE); 305 } 306 } 307 308 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 309 { 310 int ret; 311 312 /* drain the send queue as much as we can... */ 313 do { 314 ret = nvme_tcp_try_send(queue); 315 } while (ret > 0); 316 } 317 318 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 319 { 320 return !list_empty(&queue->send_list) || 321 !llist_empty(&queue->req_list) || queue->more_requests; 322 } 323 324 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 325 bool sync, bool last) 326 { 327 struct nvme_tcp_queue *queue = req->queue; 328 bool empty; 329 330 empty = llist_add(&req->lentry, &queue->req_list) && 331 list_empty(&queue->send_list) && !queue->request; 332 333 /* 334 * if we're the first on the send_list and we can try to send 335 * directly, otherwise queue io_work. Also, only do that if we 336 * are on the same cpu, so we don't introduce contention. 337 */ 338 if (queue->io_cpu == raw_smp_processor_id() && 339 sync && empty && mutex_trylock(&queue->send_mutex)) { 340 queue->more_requests = !last; 341 nvme_tcp_send_all(queue); 342 queue->more_requests = false; 343 mutex_unlock(&queue->send_mutex); 344 } 345 346 if (last && nvme_tcp_queue_more(queue)) 347 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 348 } 349 350 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 351 { 352 struct nvme_tcp_request *req; 353 struct llist_node *node; 354 355 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 356 req = llist_entry(node, struct nvme_tcp_request, lentry); 357 list_add(&req->entry, &queue->send_list); 358 } 359 } 360 361 static inline struct nvme_tcp_request * 362 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 363 { 364 struct nvme_tcp_request *req; 365 366 req = list_first_entry_or_null(&queue->send_list, 367 struct nvme_tcp_request, entry); 368 if (!req) { 369 nvme_tcp_process_req_list(queue); 370 req = list_first_entry_or_null(&queue->send_list, 371 struct nvme_tcp_request, entry); 372 if (unlikely(!req)) 373 return NULL; 374 } 375 376 list_del(&req->entry); 377 return req; 378 } 379 380 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 381 __le32 *dgst) 382 { 383 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 384 crypto_ahash_final(hash); 385 } 386 387 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 388 struct page *page, off_t off, size_t len) 389 { 390 struct scatterlist sg; 391 392 sg_init_marker(&sg, 1); 393 sg_set_page(&sg, page, len, off); 394 ahash_request_set_crypt(hash, &sg, NULL, len); 395 crypto_ahash_update(hash); 396 } 397 398 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 399 void *pdu, size_t len) 400 { 401 struct scatterlist sg; 402 403 sg_init_one(&sg, pdu, len); 404 ahash_request_set_crypt(hash, &sg, pdu + len, len); 405 crypto_ahash_digest(hash); 406 } 407 408 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 409 void *pdu, size_t pdu_len) 410 { 411 struct nvme_tcp_hdr *hdr = pdu; 412 __le32 recv_digest; 413 __le32 exp_digest; 414 415 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 416 dev_err(queue->ctrl->ctrl.device, 417 "queue %d: header digest flag is cleared\n", 418 nvme_tcp_queue_id(queue)); 419 return -EPROTO; 420 } 421 422 recv_digest = *(__le32 *)(pdu + hdr->hlen); 423 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 424 exp_digest = *(__le32 *)(pdu + hdr->hlen); 425 if (recv_digest != exp_digest) { 426 dev_err(queue->ctrl->ctrl.device, 427 "header digest error: recv %#x expected %#x\n", 428 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 429 return -EIO; 430 } 431 432 return 0; 433 } 434 435 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 436 { 437 struct nvme_tcp_hdr *hdr = pdu; 438 u8 digest_len = nvme_tcp_hdgst_len(queue); 439 u32 len; 440 441 len = le32_to_cpu(hdr->plen) - hdr->hlen - 442 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 443 444 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 445 dev_err(queue->ctrl->ctrl.device, 446 "queue %d: data digest flag is cleared\n", 447 nvme_tcp_queue_id(queue)); 448 return -EPROTO; 449 } 450 crypto_ahash_init(queue->rcv_hash); 451 452 return 0; 453 } 454 455 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 456 struct request *rq, unsigned int hctx_idx) 457 { 458 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 459 460 page_frag_free(req->pdu); 461 } 462 463 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 464 struct request *rq, unsigned int hctx_idx, 465 unsigned int numa_node) 466 { 467 struct nvme_tcp_ctrl *ctrl = set->driver_data; 468 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 469 struct nvme_tcp_cmd_pdu *pdu; 470 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 471 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 472 u8 hdgst = nvme_tcp_hdgst_len(queue); 473 474 req->pdu = page_frag_alloc(&queue->pf_cache, 475 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 476 GFP_KERNEL | __GFP_ZERO); 477 if (!req->pdu) 478 return -ENOMEM; 479 480 pdu = req->pdu; 481 req->queue = queue; 482 nvme_req(rq)->ctrl = &ctrl->ctrl; 483 nvme_req(rq)->cmd = &pdu->cmd; 484 485 return 0; 486 } 487 488 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 489 unsigned int hctx_idx) 490 { 491 struct nvme_tcp_ctrl *ctrl = data; 492 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 493 494 hctx->driver_data = queue; 495 return 0; 496 } 497 498 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 499 unsigned int hctx_idx) 500 { 501 struct nvme_tcp_ctrl *ctrl = data; 502 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 503 504 hctx->driver_data = queue; 505 return 0; 506 } 507 508 static enum nvme_tcp_recv_state 509 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 510 { 511 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 512 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 513 NVME_TCP_RECV_DATA; 514 } 515 516 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 517 { 518 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 519 nvme_tcp_hdgst_len(queue); 520 queue->pdu_offset = 0; 521 queue->data_remaining = -1; 522 queue->ddgst_remaining = 0; 523 } 524 525 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 526 { 527 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 528 return; 529 530 dev_warn(ctrl->device, "starting error recovery\n"); 531 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 532 } 533 534 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 535 struct nvme_completion *cqe) 536 { 537 struct nvme_tcp_request *req; 538 struct request *rq; 539 540 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 541 if (!rq) { 542 dev_err(queue->ctrl->ctrl.device, 543 "got bad cqe.command_id %#x on queue %d\n", 544 cqe->command_id, nvme_tcp_queue_id(queue)); 545 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 546 return -EINVAL; 547 } 548 549 req = blk_mq_rq_to_pdu(rq); 550 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 551 req->status = cqe->status; 552 553 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 554 nvme_complete_rq(rq); 555 queue->nr_cqe++; 556 557 return 0; 558 } 559 560 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 561 struct nvme_tcp_data_pdu *pdu) 562 { 563 struct request *rq; 564 565 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 566 if (!rq) { 567 dev_err(queue->ctrl->ctrl.device, 568 "got bad c2hdata.command_id %#x on queue %d\n", 569 pdu->command_id, nvme_tcp_queue_id(queue)); 570 return -ENOENT; 571 } 572 573 if (!blk_rq_payload_bytes(rq)) { 574 dev_err(queue->ctrl->ctrl.device, 575 "queue %d tag %#x unexpected data\n", 576 nvme_tcp_queue_id(queue), rq->tag); 577 return -EIO; 578 } 579 580 queue->data_remaining = le32_to_cpu(pdu->data_length); 581 582 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 583 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 584 dev_err(queue->ctrl->ctrl.device, 585 "queue %d tag %#x SUCCESS set but not last PDU\n", 586 nvme_tcp_queue_id(queue), rq->tag); 587 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 588 return -EPROTO; 589 } 590 591 return 0; 592 } 593 594 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 595 struct nvme_tcp_rsp_pdu *pdu) 596 { 597 struct nvme_completion *cqe = &pdu->cqe; 598 int ret = 0; 599 600 /* 601 * AEN requests are special as they don't time out and can 602 * survive any kind of queue freeze and often don't respond to 603 * aborts. We don't even bother to allocate a struct request 604 * for them but rather special case them here. 605 */ 606 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 607 cqe->command_id))) 608 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 609 &cqe->result); 610 else 611 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 612 613 return ret; 614 } 615 616 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 617 { 618 struct nvme_tcp_data_pdu *data = req->pdu; 619 struct nvme_tcp_queue *queue = req->queue; 620 struct request *rq = blk_mq_rq_from_pdu(req); 621 u32 h2cdata_sent = req->pdu_len; 622 u8 hdgst = nvme_tcp_hdgst_len(queue); 623 u8 ddgst = nvme_tcp_ddgst_len(queue); 624 625 req->state = NVME_TCP_SEND_H2C_PDU; 626 req->offset = 0; 627 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 628 req->pdu_sent = 0; 629 req->h2cdata_left -= req->pdu_len; 630 req->h2cdata_offset += h2cdata_sent; 631 632 memset(data, 0, sizeof(*data)); 633 data->hdr.type = nvme_tcp_h2c_data; 634 if (!req->h2cdata_left) 635 data->hdr.flags = NVME_TCP_F_DATA_LAST; 636 if (queue->hdr_digest) 637 data->hdr.flags |= NVME_TCP_F_HDGST; 638 if (queue->data_digest) 639 data->hdr.flags |= NVME_TCP_F_DDGST; 640 data->hdr.hlen = sizeof(*data); 641 data->hdr.pdo = data->hdr.hlen + hdgst; 642 data->hdr.plen = 643 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 644 data->ttag = req->ttag; 645 data->command_id = nvme_cid(rq); 646 data->data_offset = cpu_to_le32(req->h2cdata_offset); 647 data->data_length = cpu_to_le32(req->pdu_len); 648 } 649 650 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 651 struct nvme_tcp_r2t_pdu *pdu) 652 { 653 struct nvme_tcp_request *req; 654 struct request *rq; 655 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 656 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 657 658 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 659 if (!rq) { 660 dev_err(queue->ctrl->ctrl.device, 661 "got bad r2t.command_id %#x on queue %d\n", 662 pdu->command_id, nvme_tcp_queue_id(queue)); 663 return -ENOENT; 664 } 665 req = blk_mq_rq_to_pdu(rq); 666 667 if (unlikely(!r2t_length)) { 668 dev_err(queue->ctrl->ctrl.device, 669 "req %d r2t len is %u, probably a bug...\n", 670 rq->tag, r2t_length); 671 return -EPROTO; 672 } 673 674 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 675 dev_err(queue->ctrl->ctrl.device, 676 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 677 rq->tag, r2t_length, req->data_len, req->data_sent); 678 return -EPROTO; 679 } 680 681 if (unlikely(r2t_offset < req->data_sent)) { 682 dev_err(queue->ctrl->ctrl.device, 683 "req %d unexpected r2t offset %u (expected %zu)\n", 684 rq->tag, r2t_offset, req->data_sent); 685 return -EPROTO; 686 } 687 688 req->pdu_len = 0; 689 req->h2cdata_left = r2t_length; 690 req->h2cdata_offset = r2t_offset; 691 req->ttag = pdu->ttag; 692 693 nvme_tcp_setup_h2c_data_pdu(req); 694 nvme_tcp_queue_request(req, false, true); 695 696 return 0; 697 } 698 699 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 700 unsigned int *offset, size_t *len) 701 { 702 struct nvme_tcp_hdr *hdr; 703 char *pdu = queue->pdu; 704 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 705 int ret; 706 707 ret = skb_copy_bits(skb, *offset, 708 &pdu[queue->pdu_offset], rcv_len); 709 if (unlikely(ret)) 710 return ret; 711 712 queue->pdu_remaining -= rcv_len; 713 queue->pdu_offset += rcv_len; 714 *offset += rcv_len; 715 *len -= rcv_len; 716 if (queue->pdu_remaining) 717 return 0; 718 719 hdr = queue->pdu; 720 if (queue->hdr_digest) { 721 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 722 if (unlikely(ret)) 723 return ret; 724 } 725 726 727 if (queue->data_digest) { 728 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 729 if (unlikely(ret)) 730 return ret; 731 } 732 733 switch (hdr->type) { 734 case nvme_tcp_c2h_data: 735 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 736 case nvme_tcp_rsp: 737 nvme_tcp_init_recv_ctx(queue); 738 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 739 case nvme_tcp_r2t: 740 nvme_tcp_init_recv_ctx(queue); 741 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 742 default: 743 dev_err(queue->ctrl->ctrl.device, 744 "unsupported pdu type (%d)\n", hdr->type); 745 return -EINVAL; 746 } 747 } 748 749 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 750 { 751 union nvme_result res = {}; 752 753 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 754 nvme_complete_rq(rq); 755 } 756 757 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 758 unsigned int *offset, size_t *len) 759 { 760 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 761 struct request *rq = 762 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 763 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 764 765 while (true) { 766 int recv_len, ret; 767 768 recv_len = min_t(size_t, *len, queue->data_remaining); 769 if (!recv_len) 770 break; 771 772 if (!iov_iter_count(&req->iter)) { 773 req->curr_bio = req->curr_bio->bi_next; 774 775 /* 776 * If we don`t have any bios it means that controller 777 * sent more data than we requested, hence error 778 */ 779 if (!req->curr_bio) { 780 dev_err(queue->ctrl->ctrl.device, 781 "queue %d no space in request %#x", 782 nvme_tcp_queue_id(queue), rq->tag); 783 nvme_tcp_init_recv_ctx(queue); 784 return -EIO; 785 } 786 nvme_tcp_init_iter(req, READ); 787 } 788 789 /* we can read only from what is left in this bio */ 790 recv_len = min_t(size_t, recv_len, 791 iov_iter_count(&req->iter)); 792 793 if (queue->data_digest) 794 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 795 &req->iter, recv_len, queue->rcv_hash); 796 else 797 ret = skb_copy_datagram_iter(skb, *offset, 798 &req->iter, recv_len); 799 if (ret) { 800 dev_err(queue->ctrl->ctrl.device, 801 "queue %d failed to copy request %#x data", 802 nvme_tcp_queue_id(queue), rq->tag); 803 return ret; 804 } 805 806 *len -= recv_len; 807 *offset += recv_len; 808 queue->data_remaining -= recv_len; 809 } 810 811 if (!queue->data_remaining) { 812 if (queue->data_digest) { 813 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 814 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 815 } else { 816 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 817 nvme_tcp_end_request(rq, 818 le16_to_cpu(req->status)); 819 queue->nr_cqe++; 820 } 821 nvme_tcp_init_recv_ctx(queue); 822 } 823 } 824 825 return 0; 826 } 827 828 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 829 struct sk_buff *skb, unsigned int *offset, size_t *len) 830 { 831 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 832 char *ddgst = (char *)&queue->recv_ddgst; 833 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 834 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 835 int ret; 836 837 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 838 if (unlikely(ret)) 839 return ret; 840 841 queue->ddgst_remaining -= recv_len; 842 *offset += recv_len; 843 *len -= recv_len; 844 if (queue->ddgst_remaining) 845 return 0; 846 847 if (queue->recv_ddgst != queue->exp_ddgst) { 848 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 849 pdu->command_id); 850 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 851 852 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 853 854 dev_err(queue->ctrl->ctrl.device, 855 "data digest error: recv %#x expected %#x\n", 856 le32_to_cpu(queue->recv_ddgst), 857 le32_to_cpu(queue->exp_ddgst)); 858 } 859 860 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 861 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 862 pdu->command_id); 863 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 864 865 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 866 queue->nr_cqe++; 867 } 868 869 nvme_tcp_init_recv_ctx(queue); 870 return 0; 871 } 872 873 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 874 unsigned int offset, size_t len) 875 { 876 struct nvme_tcp_queue *queue = desc->arg.data; 877 size_t consumed = len; 878 int result; 879 880 while (len) { 881 switch (nvme_tcp_recv_state(queue)) { 882 case NVME_TCP_RECV_PDU: 883 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 884 break; 885 case NVME_TCP_RECV_DATA: 886 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 887 break; 888 case NVME_TCP_RECV_DDGST: 889 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 890 break; 891 default: 892 result = -EFAULT; 893 } 894 if (result) { 895 dev_err(queue->ctrl->ctrl.device, 896 "receive failed: %d\n", result); 897 queue->rd_enabled = false; 898 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 899 return result; 900 } 901 } 902 903 return consumed; 904 } 905 906 static void nvme_tcp_data_ready(struct sock *sk) 907 { 908 struct nvme_tcp_queue *queue; 909 910 read_lock_bh(&sk->sk_callback_lock); 911 queue = sk->sk_user_data; 912 if (likely(queue && queue->rd_enabled) && 913 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 914 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 915 read_unlock_bh(&sk->sk_callback_lock); 916 } 917 918 static void nvme_tcp_write_space(struct sock *sk) 919 { 920 struct nvme_tcp_queue *queue; 921 922 read_lock_bh(&sk->sk_callback_lock); 923 queue = sk->sk_user_data; 924 if (likely(queue && sk_stream_is_writeable(sk))) { 925 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 926 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 927 } 928 read_unlock_bh(&sk->sk_callback_lock); 929 } 930 931 static void nvme_tcp_state_change(struct sock *sk) 932 { 933 struct nvme_tcp_queue *queue; 934 935 read_lock_bh(&sk->sk_callback_lock); 936 queue = sk->sk_user_data; 937 if (!queue) 938 goto done; 939 940 switch (sk->sk_state) { 941 case TCP_CLOSE: 942 case TCP_CLOSE_WAIT: 943 case TCP_LAST_ACK: 944 case TCP_FIN_WAIT1: 945 case TCP_FIN_WAIT2: 946 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 947 break; 948 default: 949 dev_info(queue->ctrl->ctrl.device, 950 "queue %d socket state %d\n", 951 nvme_tcp_queue_id(queue), sk->sk_state); 952 } 953 954 queue->state_change(sk); 955 done: 956 read_unlock_bh(&sk->sk_callback_lock); 957 } 958 959 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 960 { 961 queue->request = NULL; 962 } 963 964 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 965 { 966 if (nvme_tcp_async_req(req)) { 967 union nvme_result res = {}; 968 969 nvme_complete_async_event(&req->queue->ctrl->ctrl, 970 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 971 } else { 972 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 973 NVME_SC_HOST_PATH_ERROR); 974 } 975 } 976 977 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 978 { 979 struct nvme_tcp_queue *queue = req->queue; 980 int req_data_len = req->data_len; 981 u32 h2cdata_left = req->h2cdata_left; 982 983 while (true) { 984 struct page *page = nvme_tcp_req_cur_page(req); 985 size_t offset = nvme_tcp_req_cur_offset(req); 986 size_t len = nvme_tcp_req_cur_length(req); 987 bool last = nvme_tcp_pdu_last_send(req, len); 988 int req_data_sent = req->data_sent; 989 int ret, flags = MSG_DONTWAIT; 990 991 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 992 flags |= MSG_EOR; 993 else 994 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 995 996 if (sendpage_ok(page)) { 997 ret = kernel_sendpage(queue->sock, page, offset, len, 998 flags); 999 } else { 1000 ret = sock_no_sendpage(queue->sock, page, offset, len, 1001 flags); 1002 } 1003 if (ret <= 0) 1004 return ret; 1005 1006 if (queue->data_digest) 1007 nvme_tcp_ddgst_update(queue->snd_hash, page, 1008 offset, ret); 1009 1010 /* 1011 * update the request iterator except for the last payload send 1012 * in the request where we don't want to modify it as we may 1013 * compete with the RX path completing the request. 1014 */ 1015 if (req_data_sent + ret < req_data_len) 1016 nvme_tcp_advance_req(req, ret); 1017 1018 /* fully successful last send in current PDU */ 1019 if (last && ret == len) { 1020 if (queue->data_digest) { 1021 nvme_tcp_ddgst_final(queue->snd_hash, 1022 &req->ddgst); 1023 req->state = NVME_TCP_SEND_DDGST; 1024 req->offset = 0; 1025 } else { 1026 if (h2cdata_left) 1027 nvme_tcp_setup_h2c_data_pdu(req); 1028 else 1029 nvme_tcp_done_send_req(queue); 1030 } 1031 return 1; 1032 } 1033 } 1034 return -EAGAIN; 1035 } 1036 1037 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1038 { 1039 struct nvme_tcp_queue *queue = req->queue; 1040 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 1041 bool inline_data = nvme_tcp_has_inline_data(req); 1042 u8 hdgst = nvme_tcp_hdgst_len(queue); 1043 int len = sizeof(*pdu) + hdgst - req->offset; 1044 int flags = MSG_DONTWAIT; 1045 int ret; 1046 1047 if (inline_data || nvme_tcp_queue_more(queue)) 1048 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 1049 else 1050 flags |= MSG_EOR; 1051 1052 if (queue->hdr_digest && !req->offset) 1053 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1054 1055 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1056 offset_in_page(pdu) + req->offset, len, flags); 1057 if (unlikely(ret <= 0)) 1058 return ret; 1059 1060 len -= ret; 1061 if (!len) { 1062 if (inline_data) { 1063 req->state = NVME_TCP_SEND_DATA; 1064 if (queue->data_digest) 1065 crypto_ahash_init(queue->snd_hash); 1066 } else { 1067 nvme_tcp_done_send_req(queue); 1068 } 1069 return 1; 1070 } 1071 req->offset += ret; 1072 1073 return -EAGAIN; 1074 } 1075 1076 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1077 { 1078 struct nvme_tcp_queue *queue = req->queue; 1079 struct nvme_tcp_data_pdu *pdu = req->pdu; 1080 u8 hdgst = nvme_tcp_hdgst_len(queue); 1081 int len = sizeof(*pdu) - req->offset + hdgst; 1082 int ret; 1083 1084 if (queue->hdr_digest && !req->offset) 1085 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1086 1087 if (!req->h2cdata_left) 1088 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1089 offset_in_page(pdu) + req->offset, len, 1090 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1091 else 1092 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu), 1093 offset_in_page(pdu) + req->offset, len, 1094 MSG_DONTWAIT | MSG_MORE); 1095 if (unlikely(ret <= 0)) 1096 return ret; 1097 1098 len -= ret; 1099 if (!len) { 1100 req->state = NVME_TCP_SEND_DATA; 1101 if (queue->data_digest) 1102 crypto_ahash_init(queue->snd_hash); 1103 return 1; 1104 } 1105 req->offset += ret; 1106 1107 return -EAGAIN; 1108 } 1109 1110 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1111 { 1112 struct nvme_tcp_queue *queue = req->queue; 1113 size_t offset = req->offset; 1114 u32 h2cdata_left = req->h2cdata_left; 1115 int ret; 1116 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1117 struct kvec iov = { 1118 .iov_base = (u8 *)&req->ddgst + req->offset, 1119 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1120 }; 1121 1122 if (nvme_tcp_queue_more(queue)) 1123 msg.msg_flags |= MSG_MORE; 1124 else 1125 msg.msg_flags |= MSG_EOR; 1126 1127 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1128 if (unlikely(ret <= 0)) 1129 return ret; 1130 1131 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1132 if (h2cdata_left) 1133 nvme_tcp_setup_h2c_data_pdu(req); 1134 else 1135 nvme_tcp_done_send_req(queue); 1136 return 1; 1137 } 1138 1139 req->offset += ret; 1140 return -EAGAIN; 1141 } 1142 1143 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1144 { 1145 struct nvme_tcp_request *req; 1146 int ret = 1; 1147 1148 if (!queue->request) { 1149 queue->request = nvme_tcp_fetch_request(queue); 1150 if (!queue->request) 1151 return 0; 1152 } 1153 req = queue->request; 1154 1155 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1156 ret = nvme_tcp_try_send_cmd_pdu(req); 1157 if (ret <= 0) 1158 goto done; 1159 if (!nvme_tcp_has_inline_data(req)) 1160 return ret; 1161 } 1162 1163 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1164 ret = nvme_tcp_try_send_data_pdu(req); 1165 if (ret <= 0) 1166 goto done; 1167 } 1168 1169 if (req->state == NVME_TCP_SEND_DATA) { 1170 ret = nvme_tcp_try_send_data(req); 1171 if (ret <= 0) 1172 goto done; 1173 } 1174 1175 if (req->state == NVME_TCP_SEND_DDGST) 1176 ret = nvme_tcp_try_send_ddgst(req); 1177 done: 1178 if (ret == -EAGAIN) { 1179 ret = 0; 1180 } else if (ret < 0) { 1181 dev_err(queue->ctrl->ctrl.device, 1182 "failed to send request %d\n", ret); 1183 if (ret != -EPIPE && ret != -ECONNRESET) 1184 nvme_tcp_fail_request(queue->request); 1185 nvme_tcp_done_send_req(queue); 1186 } 1187 return ret; 1188 } 1189 1190 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1191 { 1192 struct socket *sock = queue->sock; 1193 struct sock *sk = sock->sk; 1194 read_descriptor_t rd_desc; 1195 int consumed; 1196 1197 rd_desc.arg.data = queue; 1198 rd_desc.count = 1; 1199 lock_sock(sk); 1200 queue->nr_cqe = 0; 1201 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1202 release_sock(sk); 1203 return consumed; 1204 } 1205 1206 static void nvme_tcp_io_work(struct work_struct *w) 1207 { 1208 struct nvme_tcp_queue *queue = 1209 container_of(w, struct nvme_tcp_queue, io_work); 1210 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1211 1212 do { 1213 bool pending = false; 1214 int result; 1215 1216 if (mutex_trylock(&queue->send_mutex)) { 1217 result = nvme_tcp_try_send(queue); 1218 mutex_unlock(&queue->send_mutex); 1219 if (result > 0) 1220 pending = true; 1221 else if (unlikely(result < 0)) 1222 break; 1223 } 1224 1225 result = nvme_tcp_try_recv(queue); 1226 if (result > 0) 1227 pending = true; 1228 else if (unlikely(result < 0)) 1229 return; 1230 1231 if (!pending) 1232 return; 1233 1234 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1235 1236 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1237 } 1238 1239 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1240 { 1241 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1242 1243 ahash_request_free(queue->rcv_hash); 1244 ahash_request_free(queue->snd_hash); 1245 crypto_free_ahash(tfm); 1246 } 1247 1248 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1249 { 1250 struct crypto_ahash *tfm; 1251 1252 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1253 if (IS_ERR(tfm)) 1254 return PTR_ERR(tfm); 1255 1256 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1257 if (!queue->snd_hash) 1258 goto free_tfm; 1259 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1260 1261 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1262 if (!queue->rcv_hash) 1263 goto free_snd_hash; 1264 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1265 1266 return 0; 1267 free_snd_hash: 1268 ahash_request_free(queue->snd_hash); 1269 free_tfm: 1270 crypto_free_ahash(tfm); 1271 return -ENOMEM; 1272 } 1273 1274 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1275 { 1276 struct nvme_tcp_request *async = &ctrl->async_req; 1277 1278 page_frag_free(async->pdu); 1279 } 1280 1281 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1282 { 1283 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1284 struct nvme_tcp_request *async = &ctrl->async_req; 1285 u8 hdgst = nvme_tcp_hdgst_len(queue); 1286 1287 async->pdu = page_frag_alloc(&queue->pf_cache, 1288 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1289 GFP_KERNEL | __GFP_ZERO); 1290 if (!async->pdu) 1291 return -ENOMEM; 1292 1293 async->queue = &ctrl->queues[0]; 1294 return 0; 1295 } 1296 1297 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1298 { 1299 struct page *page; 1300 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1301 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1302 1303 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1304 return; 1305 1306 if (queue->hdr_digest || queue->data_digest) 1307 nvme_tcp_free_crypto(queue); 1308 1309 if (queue->pf_cache.va) { 1310 page = virt_to_head_page(queue->pf_cache.va); 1311 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1312 queue->pf_cache.va = NULL; 1313 } 1314 sock_release(queue->sock); 1315 kfree(queue->pdu); 1316 mutex_destroy(&queue->send_mutex); 1317 mutex_destroy(&queue->queue_lock); 1318 } 1319 1320 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1321 { 1322 struct nvme_tcp_icreq_pdu *icreq; 1323 struct nvme_tcp_icresp_pdu *icresp; 1324 struct msghdr msg = {}; 1325 struct kvec iov; 1326 bool ctrl_hdgst, ctrl_ddgst; 1327 u32 maxh2cdata; 1328 int ret; 1329 1330 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1331 if (!icreq) 1332 return -ENOMEM; 1333 1334 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1335 if (!icresp) { 1336 ret = -ENOMEM; 1337 goto free_icreq; 1338 } 1339 1340 icreq->hdr.type = nvme_tcp_icreq; 1341 icreq->hdr.hlen = sizeof(*icreq); 1342 icreq->hdr.pdo = 0; 1343 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1344 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1345 icreq->maxr2t = 0; /* single inflight r2t supported */ 1346 icreq->hpda = 0; /* no alignment constraint */ 1347 if (queue->hdr_digest) 1348 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1349 if (queue->data_digest) 1350 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1351 1352 iov.iov_base = icreq; 1353 iov.iov_len = sizeof(*icreq); 1354 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1355 if (ret < 0) 1356 goto free_icresp; 1357 1358 memset(&msg, 0, sizeof(msg)); 1359 iov.iov_base = icresp; 1360 iov.iov_len = sizeof(*icresp); 1361 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1362 iov.iov_len, msg.msg_flags); 1363 if (ret < 0) 1364 goto free_icresp; 1365 1366 ret = -EINVAL; 1367 if (icresp->hdr.type != nvme_tcp_icresp) { 1368 pr_err("queue %d: bad type returned %d\n", 1369 nvme_tcp_queue_id(queue), icresp->hdr.type); 1370 goto free_icresp; 1371 } 1372 1373 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1374 pr_err("queue %d: bad pdu length returned %d\n", 1375 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1376 goto free_icresp; 1377 } 1378 1379 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1380 pr_err("queue %d: bad pfv returned %d\n", 1381 nvme_tcp_queue_id(queue), icresp->pfv); 1382 goto free_icresp; 1383 } 1384 1385 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1386 if ((queue->data_digest && !ctrl_ddgst) || 1387 (!queue->data_digest && ctrl_ddgst)) { 1388 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1389 nvme_tcp_queue_id(queue), 1390 queue->data_digest ? "enabled" : "disabled", 1391 ctrl_ddgst ? "enabled" : "disabled"); 1392 goto free_icresp; 1393 } 1394 1395 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1396 if ((queue->hdr_digest && !ctrl_hdgst) || 1397 (!queue->hdr_digest && ctrl_hdgst)) { 1398 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1399 nvme_tcp_queue_id(queue), 1400 queue->hdr_digest ? "enabled" : "disabled", 1401 ctrl_hdgst ? "enabled" : "disabled"); 1402 goto free_icresp; 1403 } 1404 1405 if (icresp->cpda != 0) { 1406 pr_err("queue %d: unsupported cpda returned %d\n", 1407 nvme_tcp_queue_id(queue), icresp->cpda); 1408 goto free_icresp; 1409 } 1410 1411 maxh2cdata = le32_to_cpu(icresp->maxdata); 1412 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1413 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1414 nvme_tcp_queue_id(queue), maxh2cdata); 1415 goto free_icresp; 1416 } 1417 queue->maxh2cdata = maxh2cdata; 1418 1419 ret = 0; 1420 free_icresp: 1421 kfree(icresp); 1422 free_icreq: 1423 kfree(icreq); 1424 return ret; 1425 } 1426 1427 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1428 { 1429 return nvme_tcp_queue_id(queue) == 0; 1430 } 1431 1432 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1433 { 1434 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1435 int qid = nvme_tcp_queue_id(queue); 1436 1437 return !nvme_tcp_admin_queue(queue) && 1438 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1439 } 1440 1441 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1442 { 1443 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1444 int qid = nvme_tcp_queue_id(queue); 1445 1446 return !nvme_tcp_admin_queue(queue) && 1447 !nvme_tcp_default_queue(queue) && 1448 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1449 ctrl->io_queues[HCTX_TYPE_READ]; 1450 } 1451 1452 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1453 { 1454 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1455 int qid = nvme_tcp_queue_id(queue); 1456 1457 return !nvme_tcp_admin_queue(queue) && 1458 !nvme_tcp_default_queue(queue) && 1459 !nvme_tcp_read_queue(queue) && 1460 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1461 ctrl->io_queues[HCTX_TYPE_READ] + 1462 ctrl->io_queues[HCTX_TYPE_POLL]; 1463 } 1464 1465 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1466 { 1467 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1468 int qid = nvme_tcp_queue_id(queue); 1469 int n = 0; 1470 1471 if (nvme_tcp_default_queue(queue)) 1472 n = qid - 1; 1473 else if (nvme_tcp_read_queue(queue)) 1474 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1475 else if (nvme_tcp_poll_queue(queue)) 1476 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1477 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1478 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1479 } 1480 1481 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1482 int qid, size_t queue_size) 1483 { 1484 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1485 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1486 int ret, rcv_pdu_size; 1487 1488 mutex_init(&queue->queue_lock); 1489 queue->ctrl = ctrl; 1490 init_llist_head(&queue->req_list); 1491 INIT_LIST_HEAD(&queue->send_list); 1492 mutex_init(&queue->send_mutex); 1493 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1494 queue->queue_size = queue_size; 1495 1496 if (qid > 0) 1497 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1498 else 1499 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1500 NVME_TCP_ADMIN_CCSZ; 1501 1502 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1503 IPPROTO_TCP, &queue->sock); 1504 if (ret) { 1505 dev_err(nctrl->device, 1506 "failed to create socket: %d\n", ret); 1507 goto err_destroy_mutex; 1508 } 1509 1510 nvme_tcp_reclassify_socket(queue->sock); 1511 1512 /* Single syn retry */ 1513 tcp_sock_set_syncnt(queue->sock->sk, 1); 1514 1515 /* Set TCP no delay */ 1516 tcp_sock_set_nodelay(queue->sock->sk); 1517 1518 /* 1519 * Cleanup whatever is sitting in the TCP transmit queue on socket 1520 * close. This is done to prevent stale data from being sent should 1521 * the network connection be restored before TCP times out. 1522 */ 1523 sock_no_linger(queue->sock->sk); 1524 1525 if (so_priority > 0) 1526 sock_set_priority(queue->sock->sk, so_priority); 1527 1528 /* Set socket type of service */ 1529 if (nctrl->opts->tos >= 0) 1530 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1531 1532 /* Set 10 seconds timeout for icresp recvmsg */ 1533 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1534 1535 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1536 nvme_tcp_set_queue_io_cpu(queue); 1537 queue->request = NULL; 1538 queue->data_remaining = 0; 1539 queue->ddgst_remaining = 0; 1540 queue->pdu_remaining = 0; 1541 queue->pdu_offset = 0; 1542 sk_set_memalloc(queue->sock->sk); 1543 1544 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1545 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1546 sizeof(ctrl->src_addr)); 1547 if (ret) { 1548 dev_err(nctrl->device, 1549 "failed to bind queue %d socket %d\n", 1550 qid, ret); 1551 goto err_sock; 1552 } 1553 } 1554 1555 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1556 char *iface = nctrl->opts->host_iface; 1557 sockptr_t optval = KERNEL_SOCKPTR(iface); 1558 1559 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1560 optval, strlen(iface)); 1561 if (ret) { 1562 dev_err(nctrl->device, 1563 "failed to bind to interface %s queue %d err %d\n", 1564 iface, qid, ret); 1565 goto err_sock; 1566 } 1567 } 1568 1569 queue->hdr_digest = nctrl->opts->hdr_digest; 1570 queue->data_digest = nctrl->opts->data_digest; 1571 if (queue->hdr_digest || queue->data_digest) { 1572 ret = nvme_tcp_alloc_crypto(queue); 1573 if (ret) { 1574 dev_err(nctrl->device, 1575 "failed to allocate queue %d crypto\n", qid); 1576 goto err_sock; 1577 } 1578 } 1579 1580 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1581 nvme_tcp_hdgst_len(queue); 1582 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1583 if (!queue->pdu) { 1584 ret = -ENOMEM; 1585 goto err_crypto; 1586 } 1587 1588 dev_dbg(nctrl->device, "connecting queue %d\n", 1589 nvme_tcp_queue_id(queue)); 1590 1591 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1592 sizeof(ctrl->addr), 0); 1593 if (ret) { 1594 dev_err(nctrl->device, 1595 "failed to connect socket: %d\n", ret); 1596 goto err_rcv_pdu; 1597 } 1598 1599 ret = nvme_tcp_init_connection(queue); 1600 if (ret) 1601 goto err_init_connect; 1602 1603 queue->rd_enabled = true; 1604 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1605 nvme_tcp_init_recv_ctx(queue); 1606 1607 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1608 queue->sock->sk->sk_user_data = queue; 1609 queue->state_change = queue->sock->sk->sk_state_change; 1610 queue->data_ready = queue->sock->sk->sk_data_ready; 1611 queue->write_space = queue->sock->sk->sk_write_space; 1612 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1613 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1614 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1615 #ifdef CONFIG_NET_RX_BUSY_POLL 1616 queue->sock->sk->sk_ll_usec = 1; 1617 #endif 1618 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1619 1620 return 0; 1621 1622 err_init_connect: 1623 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1624 err_rcv_pdu: 1625 kfree(queue->pdu); 1626 err_crypto: 1627 if (queue->hdr_digest || queue->data_digest) 1628 nvme_tcp_free_crypto(queue); 1629 err_sock: 1630 sock_release(queue->sock); 1631 queue->sock = NULL; 1632 err_destroy_mutex: 1633 mutex_destroy(&queue->send_mutex); 1634 mutex_destroy(&queue->queue_lock); 1635 return ret; 1636 } 1637 1638 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1639 { 1640 struct socket *sock = queue->sock; 1641 1642 write_lock_bh(&sock->sk->sk_callback_lock); 1643 sock->sk->sk_user_data = NULL; 1644 sock->sk->sk_data_ready = queue->data_ready; 1645 sock->sk->sk_state_change = queue->state_change; 1646 sock->sk->sk_write_space = queue->write_space; 1647 write_unlock_bh(&sock->sk->sk_callback_lock); 1648 } 1649 1650 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1651 { 1652 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1653 nvme_tcp_restore_sock_calls(queue); 1654 cancel_work_sync(&queue->io_work); 1655 } 1656 1657 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1658 { 1659 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1660 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1661 1662 mutex_lock(&queue->queue_lock); 1663 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1664 __nvme_tcp_stop_queue(queue); 1665 mutex_unlock(&queue->queue_lock); 1666 } 1667 1668 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1669 { 1670 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1671 int ret; 1672 1673 if (idx) 1674 ret = nvmf_connect_io_queue(nctrl, idx); 1675 else 1676 ret = nvmf_connect_admin_queue(nctrl); 1677 1678 if (!ret) { 1679 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1680 } else { 1681 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1682 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1683 dev_err(nctrl->device, 1684 "failed to connect queue: %d ret=%d\n", idx, ret); 1685 } 1686 return ret; 1687 } 1688 1689 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1690 bool admin) 1691 { 1692 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1693 struct blk_mq_tag_set *set; 1694 int ret; 1695 1696 if (admin) { 1697 set = &ctrl->admin_tag_set; 1698 memset(set, 0, sizeof(*set)); 1699 set->ops = &nvme_tcp_admin_mq_ops; 1700 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1701 set->reserved_tags = NVMF_RESERVED_TAGS; 1702 set->numa_node = nctrl->numa_node; 1703 set->flags = BLK_MQ_F_BLOCKING; 1704 set->cmd_size = sizeof(struct nvme_tcp_request); 1705 set->driver_data = ctrl; 1706 set->nr_hw_queues = 1; 1707 set->timeout = NVME_ADMIN_TIMEOUT; 1708 } else { 1709 set = &ctrl->tag_set; 1710 memset(set, 0, sizeof(*set)); 1711 set->ops = &nvme_tcp_mq_ops; 1712 set->queue_depth = nctrl->sqsize + 1; 1713 set->reserved_tags = NVMF_RESERVED_TAGS; 1714 set->numa_node = nctrl->numa_node; 1715 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1716 set->cmd_size = sizeof(struct nvme_tcp_request); 1717 set->driver_data = ctrl; 1718 set->nr_hw_queues = nctrl->queue_count - 1; 1719 set->timeout = NVME_IO_TIMEOUT; 1720 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1721 } 1722 1723 ret = blk_mq_alloc_tag_set(set); 1724 if (ret) 1725 return ERR_PTR(ret); 1726 1727 return set; 1728 } 1729 1730 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1731 { 1732 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1733 cancel_work_sync(&ctrl->async_event_work); 1734 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1735 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1736 } 1737 1738 nvme_tcp_free_queue(ctrl, 0); 1739 } 1740 1741 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1742 { 1743 int i; 1744 1745 for (i = 1; i < ctrl->queue_count; i++) 1746 nvme_tcp_free_queue(ctrl, i); 1747 } 1748 1749 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1750 { 1751 int i; 1752 1753 for (i = 1; i < ctrl->queue_count; i++) 1754 nvme_tcp_stop_queue(ctrl, i); 1755 } 1756 1757 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1758 { 1759 int i, ret; 1760 1761 for (i = 1; i < ctrl->queue_count; i++) { 1762 ret = nvme_tcp_start_queue(ctrl, i); 1763 if (ret) 1764 goto out_stop_queues; 1765 } 1766 1767 return 0; 1768 1769 out_stop_queues: 1770 for (i--; i >= 1; i--) 1771 nvme_tcp_stop_queue(ctrl, i); 1772 return ret; 1773 } 1774 1775 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1776 { 1777 int ret; 1778 1779 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1780 if (ret) 1781 return ret; 1782 1783 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1784 if (ret) 1785 goto out_free_queue; 1786 1787 return 0; 1788 1789 out_free_queue: 1790 nvme_tcp_free_queue(ctrl, 0); 1791 return ret; 1792 } 1793 1794 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1795 { 1796 int i, ret; 1797 1798 for (i = 1; i < ctrl->queue_count; i++) { 1799 ret = nvme_tcp_alloc_queue(ctrl, i, ctrl->sqsize + 1); 1800 if (ret) 1801 goto out_free_queues; 1802 } 1803 1804 return 0; 1805 1806 out_free_queues: 1807 for (i--; i >= 1; i--) 1808 nvme_tcp_free_queue(ctrl, i); 1809 1810 return ret; 1811 } 1812 1813 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1814 { 1815 unsigned int nr_io_queues; 1816 1817 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1818 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1819 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1820 1821 return nr_io_queues; 1822 } 1823 1824 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1825 unsigned int nr_io_queues) 1826 { 1827 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1828 struct nvmf_ctrl_options *opts = nctrl->opts; 1829 1830 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1831 /* 1832 * separate read/write queues 1833 * hand out dedicated default queues only after we have 1834 * sufficient read queues. 1835 */ 1836 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1837 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1838 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1839 min(opts->nr_write_queues, nr_io_queues); 1840 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1841 } else { 1842 /* 1843 * shared read/write queues 1844 * either no write queues were requested, or we don't have 1845 * sufficient queue count to have dedicated default queues. 1846 */ 1847 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1848 min(opts->nr_io_queues, nr_io_queues); 1849 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1850 } 1851 1852 if (opts->nr_poll_queues && nr_io_queues) { 1853 /* map dedicated poll queues only if we have queues left */ 1854 ctrl->io_queues[HCTX_TYPE_POLL] = 1855 min(opts->nr_poll_queues, nr_io_queues); 1856 } 1857 } 1858 1859 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1860 { 1861 unsigned int nr_io_queues; 1862 int ret; 1863 1864 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1865 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1866 if (ret) 1867 return ret; 1868 1869 if (nr_io_queues == 0) { 1870 dev_err(ctrl->device, 1871 "unable to set any I/O queues\n"); 1872 return -ENOMEM; 1873 } 1874 1875 ctrl->queue_count = nr_io_queues + 1; 1876 dev_info(ctrl->device, 1877 "creating %d I/O queues.\n", nr_io_queues); 1878 1879 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1880 1881 return __nvme_tcp_alloc_io_queues(ctrl); 1882 } 1883 1884 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1885 { 1886 nvme_tcp_stop_io_queues(ctrl); 1887 if (remove) { 1888 blk_cleanup_queue(ctrl->connect_q); 1889 blk_mq_free_tag_set(ctrl->tagset); 1890 } 1891 nvme_tcp_free_io_queues(ctrl); 1892 } 1893 1894 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1895 { 1896 int ret; 1897 1898 ret = nvme_tcp_alloc_io_queues(ctrl); 1899 if (ret) 1900 return ret; 1901 1902 if (new) { 1903 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1904 if (IS_ERR(ctrl->tagset)) { 1905 ret = PTR_ERR(ctrl->tagset); 1906 goto out_free_io_queues; 1907 } 1908 1909 ret = nvme_ctrl_init_connect_q(ctrl); 1910 if (ret) 1911 goto out_free_tag_set; 1912 } 1913 1914 ret = nvme_tcp_start_io_queues(ctrl); 1915 if (ret) 1916 goto out_cleanup_connect_q; 1917 1918 if (!new) { 1919 nvme_start_queues(ctrl); 1920 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1921 /* 1922 * If we timed out waiting for freeze we are likely to 1923 * be stuck. Fail the controller initialization just 1924 * to be safe. 1925 */ 1926 ret = -ENODEV; 1927 goto out_wait_freeze_timed_out; 1928 } 1929 blk_mq_update_nr_hw_queues(ctrl->tagset, 1930 ctrl->queue_count - 1); 1931 nvme_unfreeze(ctrl); 1932 } 1933 1934 return 0; 1935 1936 out_wait_freeze_timed_out: 1937 nvme_stop_queues(ctrl); 1938 nvme_sync_io_queues(ctrl); 1939 nvme_tcp_stop_io_queues(ctrl); 1940 out_cleanup_connect_q: 1941 nvme_cancel_tagset(ctrl); 1942 if (new) 1943 blk_cleanup_queue(ctrl->connect_q); 1944 out_free_tag_set: 1945 if (new) 1946 blk_mq_free_tag_set(ctrl->tagset); 1947 out_free_io_queues: 1948 nvme_tcp_free_io_queues(ctrl); 1949 return ret; 1950 } 1951 1952 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1953 { 1954 nvme_tcp_stop_queue(ctrl, 0); 1955 if (remove) { 1956 blk_cleanup_queue(ctrl->admin_q); 1957 blk_cleanup_queue(ctrl->fabrics_q); 1958 blk_mq_free_tag_set(ctrl->admin_tagset); 1959 } 1960 nvme_tcp_free_admin_queue(ctrl); 1961 } 1962 1963 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1964 { 1965 int error; 1966 1967 error = nvme_tcp_alloc_admin_queue(ctrl); 1968 if (error) 1969 return error; 1970 1971 if (new) { 1972 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1973 if (IS_ERR(ctrl->admin_tagset)) { 1974 error = PTR_ERR(ctrl->admin_tagset); 1975 goto out_free_queue; 1976 } 1977 1978 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1979 if (IS_ERR(ctrl->fabrics_q)) { 1980 error = PTR_ERR(ctrl->fabrics_q); 1981 goto out_free_tagset; 1982 } 1983 1984 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1985 if (IS_ERR(ctrl->admin_q)) { 1986 error = PTR_ERR(ctrl->admin_q); 1987 goto out_cleanup_fabrics_q; 1988 } 1989 } 1990 1991 error = nvme_tcp_start_queue(ctrl, 0); 1992 if (error) 1993 goto out_cleanup_queue; 1994 1995 error = nvme_enable_ctrl(ctrl); 1996 if (error) 1997 goto out_stop_queue; 1998 1999 nvme_start_admin_queue(ctrl); 2000 2001 error = nvme_init_ctrl_finish(ctrl); 2002 if (error) 2003 goto out_quiesce_queue; 2004 2005 return 0; 2006 2007 out_quiesce_queue: 2008 nvme_stop_admin_queue(ctrl); 2009 blk_sync_queue(ctrl->admin_q); 2010 out_stop_queue: 2011 nvme_tcp_stop_queue(ctrl, 0); 2012 nvme_cancel_admin_tagset(ctrl); 2013 out_cleanup_queue: 2014 if (new) 2015 blk_cleanup_queue(ctrl->admin_q); 2016 out_cleanup_fabrics_q: 2017 if (new) 2018 blk_cleanup_queue(ctrl->fabrics_q); 2019 out_free_tagset: 2020 if (new) 2021 blk_mq_free_tag_set(ctrl->admin_tagset); 2022 out_free_queue: 2023 nvme_tcp_free_admin_queue(ctrl); 2024 return error; 2025 } 2026 2027 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2028 bool remove) 2029 { 2030 nvme_stop_admin_queue(ctrl); 2031 blk_sync_queue(ctrl->admin_q); 2032 nvme_tcp_stop_queue(ctrl, 0); 2033 nvme_cancel_admin_tagset(ctrl); 2034 if (remove) 2035 nvme_start_admin_queue(ctrl); 2036 nvme_tcp_destroy_admin_queue(ctrl, remove); 2037 } 2038 2039 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2040 bool remove) 2041 { 2042 if (ctrl->queue_count <= 1) 2043 return; 2044 nvme_stop_admin_queue(ctrl); 2045 nvme_start_freeze(ctrl); 2046 nvme_stop_queues(ctrl); 2047 nvme_sync_io_queues(ctrl); 2048 nvme_tcp_stop_io_queues(ctrl); 2049 nvme_cancel_tagset(ctrl); 2050 if (remove) 2051 nvme_start_queues(ctrl); 2052 nvme_tcp_destroy_io_queues(ctrl, remove); 2053 } 2054 2055 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 2056 { 2057 /* If we are resetting/deleting then do nothing */ 2058 if (ctrl->state != NVME_CTRL_CONNECTING) { 2059 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 2060 ctrl->state == NVME_CTRL_LIVE); 2061 return; 2062 } 2063 2064 if (nvmf_should_reconnect(ctrl)) { 2065 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2066 ctrl->opts->reconnect_delay); 2067 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2068 ctrl->opts->reconnect_delay * HZ); 2069 } else { 2070 dev_info(ctrl->device, "Removing controller...\n"); 2071 nvme_delete_ctrl(ctrl); 2072 } 2073 } 2074 2075 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2076 { 2077 struct nvmf_ctrl_options *opts = ctrl->opts; 2078 int ret; 2079 2080 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2081 if (ret) 2082 return ret; 2083 2084 if (ctrl->icdoff) { 2085 ret = -EOPNOTSUPP; 2086 dev_err(ctrl->device, "icdoff is not supported!\n"); 2087 goto destroy_admin; 2088 } 2089 2090 if (!nvme_ctrl_sgl_supported(ctrl)) { 2091 ret = -EOPNOTSUPP; 2092 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2093 goto destroy_admin; 2094 } 2095 2096 if (opts->queue_size > ctrl->sqsize + 1) 2097 dev_warn(ctrl->device, 2098 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2099 opts->queue_size, ctrl->sqsize + 1); 2100 2101 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2102 dev_warn(ctrl->device, 2103 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2104 ctrl->sqsize + 1, ctrl->maxcmd); 2105 ctrl->sqsize = ctrl->maxcmd - 1; 2106 } 2107 2108 if (ctrl->queue_count > 1) { 2109 ret = nvme_tcp_configure_io_queues(ctrl, new); 2110 if (ret) 2111 goto destroy_admin; 2112 } 2113 2114 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2115 /* 2116 * state change failure is ok if we started ctrl delete, 2117 * unless we're during creation of a new controller to 2118 * avoid races with teardown flow. 2119 */ 2120 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2121 ctrl->state != NVME_CTRL_DELETING_NOIO); 2122 WARN_ON_ONCE(new); 2123 ret = -EINVAL; 2124 goto destroy_io; 2125 } 2126 2127 nvme_start_ctrl(ctrl); 2128 return 0; 2129 2130 destroy_io: 2131 if (ctrl->queue_count > 1) { 2132 nvme_stop_queues(ctrl); 2133 nvme_sync_io_queues(ctrl); 2134 nvme_tcp_stop_io_queues(ctrl); 2135 nvme_cancel_tagset(ctrl); 2136 nvme_tcp_destroy_io_queues(ctrl, new); 2137 } 2138 destroy_admin: 2139 nvme_stop_admin_queue(ctrl); 2140 blk_sync_queue(ctrl->admin_q); 2141 nvme_tcp_stop_queue(ctrl, 0); 2142 nvme_cancel_admin_tagset(ctrl); 2143 nvme_tcp_destroy_admin_queue(ctrl, new); 2144 return ret; 2145 } 2146 2147 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2148 { 2149 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2150 struct nvme_tcp_ctrl, connect_work); 2151 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2152 2153 ++ctrl->nr_reconnects; 2154 2155 if (nvme_tcp_setup_ctrl(ctrl, false)) 2156 goto requeue; 2157 2158 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2159 ctrl->nr_reconnects); 2160 2161 ctrl->nr_reconnects = 0; 2162 2163 return; 2164 2165 requeue: 2166 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2167 ctrl->nr_reconnects); 2168 nvme_tcp_reconnect_or_remove(ctrl); 2169 } 2170 2171 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2172 { 2173 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2174 struct nvme_tcp_ctrl, err_work); 2175 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2176 2177 nvme_stop_keep_alive(ctrl); 2178 flush_work(&ctrl->async_event_work); 2179 nvme_tcp_teardown_io_queues(ctrl, false); 2180 /* unquiesce to fail fast pending requests */ 2181 nvme_start_queues(ctrl); 2182 nvme_tcp_teardown_admin_queue(ctrl, false); 2183 nvme_start_admin_queue(ctrl); 2184 2185 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2186 /* state change failure is ok if we started ctrl delete */ 2187 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2188 ctrl->state != NVME_CTRL_DELETING_NOIO); 2189 return; 2190 } 2191 2192 nvme_tcp_reconnect_or_remove(ctrl); 2193 } 2194 2195 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2196 { 2197 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2198 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2199 2200 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2201 nvme_stop_admin_queue(ctrl); 2202 if (shutdown) 2203 nvme_shutdown_ctrl(ctrl); 2204 else 2205 nvme_disable_ctrl(ctrl); 2206 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2207 } 2208 2209 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2210 { 2211 nvme_tcp_teardown_ctrl(ctrl, true); 2212 } 2213 2214 static void nvme_reset_ctrl_work(struct work_struct *work) 2215 { 2216 struct nvme_ctrl *ctrl = 2217 container_of(work, struct nvme_ctrl, reset_work); 2218 2219 nvme_stop_ctrl(ctrl); 2220 nvme_tcp_teardown_ctrl(ctrl, false); 2221 2222 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2223 /* state change failure is ok if we started ctrl delete */ 2224 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2225 ctrl->state != NVME_CTRL_DELETING_NOIO); 2226 return; 2227 } 2228 2229 if (nvme_tcp_setup_ctrl(ctrl, false)) 2230 goto out_fail; 2231 2232 return; 2233 2234 out_fail: 2235 ++ctrl->nr_reconnects; 2236 nvme_tcp_reconnect_or_remove(ctrl); 2237 } 2238 2239 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2240 { 2241 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2242 2243 if (list_empty(&ctrl->list)) 2244 goto free_ctrl; 2245 2246 mutex_lock(&nvme_tcp_ctrl_mutex); 2247 list_del(&ctrl->list); 2248 mutex_unlock(&nvme_tcp_ctrl_mutex); 2249 2250 nvmf_free_options(nctrl->opts); 2251 free_ctrl: 2252 kfree(ctrl->queues); 2253 kfree(ctrl); 2254 } 2255 2256 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2257 { 2258 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2259 2260 sg->addr = 0; 2261 sg->length = 0; 2262 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2263 NVME_SGL_FMT_TRANSPORT_A; 2264 } 2265 2266 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2267 struct nvme_command *c, u32 data_len) 2268 { 2269 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2270 2271 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2272 sg->length = cpu_to_le32(data_len); 2273 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2274 } 2275 2276 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2277 u32 data_len) 2278 { 2279 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2280 2281 sg->addr = 0; 2282 sg->length = cpu_to_le32(data_len); 2283 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2284 NVME_SGL_FMT_TRANSPORT_A; 2285 } 2286 2287 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2288 { 2289 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2290 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2291 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2292 struct nvme_command *cmd = &pdu->cmd; 2293 u8 hdgst = nvme_tcp_hdgst_len(queue); 2294 2295 memset(pdu, 0, sizeof(*pdu)); 2296 pdu->hdr.type = nvme_tcp_cmd; 2297 if (queue->hdr_digest) 2298 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2299 pdu->hdr.hlen = sizeof(*pdu); 2300 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2301 2302 cmd->common.opcode = nvme_admin_async_event; 2303 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2304 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2305 nvme_tcp_set_sg_null(cmd); 2306 2307 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2308 ctrl->async_req.offset = 0; 2309 ctrl->async_req.curr_bio = NULL; 2310 ctrl->async_req.data_len = 0; 2311 2312 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2313 } 2314 2315 static void nvme_tcp_complete_timed_out(struct request *rq) 2316 { 2317 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2318 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2319 2320 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2321 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2322 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2323 blk_mq_complete_request(rq); 2324 } 2325 } 2326 2327 static enum blk_eh_timer_return 2328 nvme_tcp_timeout(struct request *rq, bool reserved) 2329 { 2330 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2331 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2332 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2333 2334 dev_warn(ctrl->device, 2335 "queue %d: timeout request %#x type %d\n", 2336 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2337 2338 if (ctrl->state != NVME_CTRL_LIVE) { 2339 /* 2340 * If we are resetting, connecting or deleting we should 2341 * complete immediately because we may block controller 2342 * teardown or setup sequence 2343 * - ctrl disable/shutdown fabrics requests 2344 * - connect requests 2345 * - initialization admin requests 2346 * - I/O requests that entered after unquiescing and 2347 * the controller stopped responding 2348 * 2349 * All other requests should be cancelled by the error 2350 * recovery work, so it's fine that we fail it here. 2351 */ 2352 nvme_tcp_complete_timed_out(rq); 2353 return BLK_EH_DONE; 2354 } 2355 2356 /* 2357 * LIVE state should trigger the normal error recovery which will 2358 * handle completing this request. 2359 */ 2360 nvme_tcp_error_recovery(ctrl); 2361 return BLK_EH_RESET_TIMER; 2362 } 2363 2364 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2365 struct request *rq) 2366 { 2367 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2368 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2369 struct nvme_command *c = &pdu->cmd; 2370 2371 c->common.flags |= NVME_CMD_SGL_METABUF; 2372 2373 if (!blk_rq_nr_phys_segments(rq)) 2374 nvme_tcp_set_sg_null(c); 2375 else if (rq_data_dir(rq) == WRITE && 2376 req->data_len <= nvme_tcp_inline_data_size(queue)) 2377 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2378 else 2379 nvme_tcp_set_sg_host_data(c, req->data_len); 2380 2381 return 0; 2382 } 2383 2384 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2385 struct request *rq) 2386 { 2387 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2388 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2389 struct nvme_tcp_queue *queue = req->queue; 2390 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2391 blk_status_t ret; 2392 2393 ret = nvme_setup_cmd(ns, rq); 2394 if (ret) 2395 return ret; 2396 2397 req->state = NVME_TCP_SEND_CMD_PDU; 2398 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2399 req->offset = 0; 2400 req->data_sent = 0; 2401 req->pdu_len = 0; 2402 req->pdu_sent = 0; 2403 req->h2cdata_left = 0; 2404 req->data_len = blk_rq_nr_phys_segments(rq) ? 2405 blk_rq_payload_bytes(rq) : 0; 2406 req->curr_bio = rq->bio; 2407 if (req->curr_bio && req->data_len) 2408 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2409 2410 if (rq_data_dir(rq) == WRITE && 2411 req->data_len <= nvme_tcp_inline_data_size(queue)) 2412 req->pdu_len = req->data_len; 2413 2414 pdu->hdr.type = nvme_tcp_cmd; 2415 pdu->hdr.flags = 0; 2416 if (queue->hdr_digest) 2417 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2418 if (queue->data_digest && req->pdu_len) { 2419 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2420 ddgst = nvme_tcp_ddgst_len(queue); 2421 } 2422 pdu->hdr.hlen = sizeof(*pdu); 2423 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2424 pdu->hdr.plen = 2425 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2426 2427 ret = nvme_tcp_map_data(queue, rq); 2428 if (unlikely(ret)) { 2429 nvme_cleanup_cmd(rq); 2430 dev_err(queue->ctrl->ctrl.device, 2431 "Failed to map data (%d)\n", ret); 2432 return ret; 2433 } 2434 2435 return 0; 2436 } 2437 2438 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2439 { 2440 struct nvme_tcp_queue *queue = hctx->driver_data; 2441 2442 if (!llist_empty(&queue->req_list)) 2443 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2444 } 2445 2446 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2447 const struct blk_mq_queue_data *bd) 2448 { 2449 struct nvme_ns *ns = hctx->queue->queuedata; 2450 struct nvme_tcp_queue *queue = hctx->driver_data; 2451 struct request *rq = bd->rq; 2452 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2453 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2454 blk_status_t ret; 2455 2456 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2457 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2458 2459 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2460 if (unlikely(ret)) 2461 return ret; 2462 2463 blk_mq_start_request(rq); 2464 2465 nvme_tcp_queue_request(req, true, bd->last); 2466 2467 return BLK_STS_OK; 2468 } 2469 2470 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2471 { 2472 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2473 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2474 2475 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2476 /* separate read/write queues */ 2477 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2478 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2479 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2480 set->map[HCTX_TYPE_READ].nr_queues = 2481 ctrl->io_queues[HCTX_TYPE_READ]; 2482 set->map[HCTX_TYPE_READ].queue_offset = 2483 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2484 } else { 2485 /* shared read/write queues */ 2486 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2487 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2488 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2489 set->map[HCTX_TYPE_READ].nr_queues = 2490 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2491 set->map[HCTX_TYPE_READ].queue_offset = 0; 2492 } 2493 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2494 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2495 2496 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2497 /* map dedicated poll queues only if we have queues left */ 2498 set->map[HCTX_TYPE_POLL].nr_queues = 2499 ctrl->io_queues[HCTX_TYPE_POLL]; 2500 set->map[HCTX_TYPE_POLL].queue_offset = 2501 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2502 ctrl->io_queues[HCTX_TYPE_READ]; 2503 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2504 } 2505 2506 dev_info(ctrl->ctrl.device, 2507 "mapped %d/%d/%d default/read/poll queues.\n", 2508 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2509 ctrl->io_queues[HCTX_TYPE_READ], 2510 ctrl->io_queues[HCTX_TYPE_POLL]); 2511 2512 return 0; 2513 } 2514 2515 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2516 { 2517 struct nvme_tcp_queue *queue = hctx->driver_data; 2518 struct sock *sk = queue->sock->sk; 2519 2520 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2521 return 0; 2522 2523 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2524 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2525 sk_busy_loop(sk, true); 2526 nvme_tcp_try_recv(queue); 2527 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2528 return queue->nr_cqe; 2529 } 2530 2531 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2532 .queue_rq = nvme_tcp_queue_rq, 2533 .commit_rqs = nvme_tcp_commit_rqs, 2534 .complete = nvme_complete_rq, 2535 .init_request = nvme_tcp_init_request, 2536 .exit_request = nvme_tcp_exit_request, 2537 .init_hctx = nvme_tcp_init_hctx, 2538 .timeout = nvme_tcp_timeout, 2539 .map_queues = nvme_tcp_map_queues, 2540 .poll = nvme_tcp_poll, 2541 }; 2542 2543 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2544 .queue_rq = nvme_tcp_queue_rq, 2545 .complete = nvme_complete_rq, 2546 .init_request = nvme_tcp_init_request, 2547 .exit_request = nvme_tcp_exit_request, 2548 .init_hctx = nvme_tcp_init_admin_hctx, 2549 .timeout = nvme_tcp_timeout, 2550 }; 2551 2552 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2553 .name = "tcp", 2554 .module = THIS_MODULE, 2555 .flags = NVME_F_FABRICS, 2556 .reg_read32 = nvmf_reg_read32, 2557 .reg_read64 = nvmf_reg_read64, 2558 .reg_write32 = nvmf_reg_write32, 2559 .free_ctrl = nvme_tcp_free_ctrl, 2560 .submit_async_event = nvme_tcp_submit_async_event, 2561 .delete_ctrl = nvme_tcp_delete_ctrl, 2562 .get_address = nvmf_get_address, 2563 }; 2564 2565 static bool 2566 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2567 { 2568 struct nvme_tcp_ctrl *ctrl; 2569 bool found = false; 2570 2571 mutex_lock(&nvme_tcp_ctrl_mutex); 2572 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2573 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2574 if (found) 2575 break; 2576 } 2577 mutex_unlock(&nvme_tcp_ctrl_mutex); 2578 2579 return found; 2580 } 2581 2582 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2583 struct nvmf_ctrl_options *opts) 2584 { 2585 struct nvme_tcp_ctrl *ctrl; 2586 int ret; 2587 2588 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2589 if (!ctrl) 2590 return ERR_PTR(-ENOMEM); 2591 2592 INIT_LIST_HEAD(&ctrl->list); 2593 ctrl->ctrl.opts = opts; 2594 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2595 opts->nr_poll_queues + 1; 2596 ctrl->ctrl.sqsize = opts->queue_size - 1; 2597 ctrl->ctrl.kato = opts->kato; 2598 2599 INIT_DELAYED_WORK(&ctrl->connect_work, 2600 nvme_tcp_reconnect_ctrl_work); 2601 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2602 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2603 2604 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2605 opts->trsvcid = 2606 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2607 if (!opts->trsvcid) { 2608 ret = -ENOMEM; 2609 goto out_free_ctrl; 2610 } 2611 opts->mask |= NVMF_OPT_TRSVCID; 2612 } 2613 2614 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2615 opts->traddr, opts->trsvcid, &ctrl->addr); 2616 if (ret) { 2617 pr_err("malformed address passed: %s:%s\n", 2618 opts->traddr, opts->trsvcid); 2619 goto out_free_ctrl; 2620 } 2621 2622 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2623 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2624 opts->host_traddr, NULL, &ctrl->src_addr); 2625 if (ret) { 2626 pr_err("malformed src address passed: %s\n", 2627 opts->host_traddr); 2628 goto out_free_ctrl; 2629 } 2630 } 2631 2632 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2633 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2634 pr_err("invalid interface passed: %s\n", 2635 opts->host_iface); 2636 ret = -ENODEV; 2637 goto out_free_ctrl; 2638 } 2639 } 2640 2641 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2642 ret = -EALREADY; 2643 goto out_free_ctrl; 2644 } 2645 2646 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2647 GFP_KERNEL); 2648 if (!ctrl->queues) { 2649 ret = -ENOMEM; 2650 goto out_free_ctrl; 2651 } 2652 2653 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2654 if (ret) 2655 goto out_kfree_queues; 2656 2657 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2658 WARN_ON_ONCE(1); 2659 ret = -EINTR; 2660 goto out_uninit_ctrl; 2661 } 2662 2663 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2664 if (ret) 2665 goto out_uninit_ctrl; 2666 2667 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2668 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2669 2670 mutex_lock(&nvme_tcp_ctrl_mutex); 2671 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2672 mutex_unlock(&nvme_tcp_ctrl_mutex); 2673 2674 return &ctrl->ctrl; 2675 2676 out_uninit_ctrl: 2677 nvme_uninit_ctrl(&ctrl->ctrl); 2678 nvme_put_ctrl(&ctrl->ctrl); 2679 if (ret > 0) 2680 ret = -EIO; 2681 return ERR_PTR(ret); 2682 out_kfree_queues: 2683 kfree(ctrl->queues); 2684 out_free_ctrl: 2685 kfree(ctrl); 2686 return ERR_PTR(ret); 2687 } 2688 2689 static struct nvmf_transport_ops nvme_tcp_transport = { 2690 .name = "tcp", 2691 .module = THIS_MODULE, 2692 .required_opts = NVMF_OPT_TRADDR, 2693 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2694 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2695 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2696 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2697 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2698 .create_ctrl = nvme_tcp_create_ctrl, 2699 }; 2700 2701 static int __init nvme_tcp_init_module(void) 2702 { 2703 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2704 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2705 if (!nvme_tcp_wq) 2706 return -ENOMEM; 2707 2708 nvmf_register_transport(&nvme_tcp_transport); 2709 return 0; 2710 } 2711 2712 static void __exit nvme_tcp_cleanup_module(void) 2713 { 2714 struct nvme_tcp_ctrl *ctrl; 2715 2716 nvmf_unregister_transport(&nvme_tcp_transport); 2717 2718 mutex_lock(&nvme_tcp_ctrl_mutex); 2719 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2720 nvme_delete_ctrl(&ctrl->ctrl); 2721 mutex_unlock(&nvme_tcp_ctrl_mutex); 2722 flush_workqueue(nvme_delete_wq); 2723 2724 destroy_workqueue(nvme_tcp_wq); 2725 } 2726 2727 module_init(nvme_tcp_init_module); 2728 module_exit(nvme_tcp_cleanup_module); 2729 2730 MODULE_LICENSE("GPL v2"); 2731