1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex queue_lock; 80 struct mutex send_mutex; 81 struct llist_head req_list; 82 struct list_head send_list; 83 bool more_requests; 84 85 /* recv state */ 86 void *pdu; 87 int pdu_remaining; 88 int pdu_offset; 89 size_t data_remaining; 90 size_t ddgst_remaining; 91 unsigned int nr_cqe; 92 93 /* send state */ 94 struct nvme_tcp_request *request; 95 96 int queue_size; 97 size_t cmnd_capsule_len; 98 struct nvme_tcp_ctrl *ctrl; 99 unsigned long flags; 100 bool rd_enabled; 101 102 bool hdr_digest; 103 bool data_digest; 104 struct ahash_request *rcv_hash; 105 struct ahash_request *snd_hash; 106 __le32 exp_ddgst; 107 __le32 recv_ddgst; 108 109 struct page_frag_cache pf_cache; 110 111 void (*state_change)(struct sock *); 112 void (*data_ready)(struct sock *); 113 void (*write_space)(struct sock *); 114 }; 115 116 struct nvme_tcp_ctrl { 117 /* read only in the hot path */ 118 struct nvme_tcp_queue *queues; 119 struct blk_mq_tag_set tag_set; 120 121 /* other member variables */ 122 struct list_head list; 123 struct blk_mq_tag_set admin_tag_set; 124 struct sockaddr_storage addr; 125 struct sockaddr_storage src_addr; 126 struct nvme_ctrl ctrl; 127 128 struct work_struct err_work; 129 struct delayed_work connect_work; 130 struct nvme_tcp_request async_req; 131 u32 io_queues[HCTX_MAX_TYPES]; 132 }; 133 134 static LIST_HEAD(nvme_tcp_ctrl_list); 135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 136 static struct workqueue_struct *nvme_tcp_wq; 137 static const struct blk_mq_ops nvme_tcp_mq_ops; 138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 140 141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 142 { 143 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 144 } 145 146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 147 { 148 return queue - queue->ctrl->queues; 149 } 150 151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 152 { 153 u32 queue_idx = nvme_tcp_queue_id(queue); 154 155 if (queue_idx == 0) 156 return queue->ctrl->admin_tag_set.tags[queue_idx]; 157 return queue->ctrl->tag_set.tags[queue_idx - 1]; 158 } 159 160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 161 { 162 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 163 } 164 165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 166 { 167 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 168 } 169 170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 171 { 172 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 173 } 174 175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 176 { 177 return req == &req->queue->ctrl->async_req; 178 } 179 180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 181 { 182 struct request *rq; 183 184 if (unlikely(nvme_tcp_async_req(req))) 185 return false; /* async events don't have a request */ 186 187 rq = blk_mq_rq_from_pdu(req); 188 189 return rq_data_dir(rq) == WRITE && req->data_len && 190 req->data_len <= nvme_tcp_inline_data_size(req->queue); 191 } 192 193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 194 { 195 return req->iter.bvec->bv_page; 196 } 197 198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 199 { 200 return req->iter.bvec->bv_offset + req->iter.iov_offset; 201 } 202 203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 204 { 205 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 206 req->pdu_len - req->pdu_sent); 207 } 208 209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 210 { 211 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 212 req->pdu_len - req->pdu_sent : 0; 213 } 214 215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 216 int len) 217 { 218 return nvme_tcp_pdu_data_left(req) <= len; 219 } 220 221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 222 unsigned int dir) 223 { 224 struct request *rq = blk_mq_rq_from_pdu(req); 225 struct bio_vec *vec; 226 unsigned int size; 227 int nr_bvec; 228 size_t offset; 229 230 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 231 vec = &rq->special_vec; 232 nr_bvec = 1; 233 size = blk_rq_payload_bytes(rq); 234 offset = 0; 235 } else { 236 struct bio *bio = req->curr_bio; 237 struct bvec_iter bi; 238 struct bio_vec bv; 239 240 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 241 nr_bvec = 0; 242 bio_for_each_bvec(bv, bio, bi) { 243 nr_bvec++; 244 } 245 size = bio->bi_iter.bi_size; 246 offset = bio->bi_iter.bi_bvec_done; 247 } 248 249 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 250 req->iter.iov_offset = offset; 251 } 252 253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 254 int len) 255 { 256 req->data_sent += len; 257 req->pdu_sent += len; 258 iov_iter_advance(&req->iter, len); 259 if (!iov_iter_count(&req->iter) && 260 req->data_sent < req->data_len) { 261 req->curr_bio = req->curr_bio->bi_next; 262 nvme_tcp_init_iter(req, WRITE); 263 } 264 } 265 266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 267 { 268 int ret; 269 270 /* drain the send queue as much as we can... */ 271 do { 272 ret = nvme_tcp_try_send(queue); 273 } while (ret > 0); 274 } 275 276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 277 bool sync, bool last) 278 { 279 struct nvme_tcp_queue *queue = req->queue; 280 bool empty; 281 282 empty = llist_add(&req->lentry, &queue->req_list) && 283 list_empty(&queue->send_list) && !queue->request; 284 285 /* 286 * if we're the first on the send_list and we can try to send 287 * directly, otherwise queue io_work. Also, only do that if we 288 * are on the same cpu, so we don't introduce contention. 289 */ 290 if (queue->io_cpu == raw_smp_processor_id() && 291 sync && empty && mutex_trylock(&queue->send_mutex)) { 292 queue->more_requests = !last; 293 nvme_tcp_send_all(queue); 294 queue->more_requests = false; 295 mutex_unlock(&queue->send_mutex); 296 } else if (last) { 297 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 298 } 299 } 300 301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 302 { 303 struct nvme_tcp_request *req; 304 struct llist_node *node; 305 306 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 307 req = llist_entry(node, struct nvme_tcp_request, lentry); 308 list_add(&req->entry, &queue->send_list); 309 } 310 } 311 312 static inline struct nvme_tcp_request * 313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 314 { 315 struct nvme_tcp_request *req; 316 317 req = list_first_entry_or_null(&queue->send_list, 318 struct nvme_tcp_request, entry); 319 if (!req) { 320 nvme_tcp_process_req_list(queue); 321 req = list_first_entry_or_null(&queue->send_list, 322 struct nvme_tcp_request, entry); 323 if (unlikely(!req)) 324 return NULL; 325 } 326 327 list_del(&req->entry); 328 return req; 329 } 330 331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 332 __le32 *dgst) 333 { 334 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 335 crypto_ahash_final(hash); 336 } 337 338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 339 struct page *page, off_t off, size_t len) 340 { 341 struct scatterlist sg; 342 343 sg_init_marker(&sg, 1); 344 sg_set_page(&sg, page, len, off); 345 ahash_request_set_crypt(hash, &sg, NULL, len); 346 crypto_ahash_update(hash); 347 } 348 349 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 350 void *pdu, size_t len) 351 { 352 struct scatterlist sg; 353 354 sg_init_one(&sg, pdu, len); 355 ahash_request_set_crypt(hash, &sg, pdu + len, len); 356 crypto_ahash_digest(hash); 357 } 358 359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 360 void *pdu, size_t pdu_len) 361 { 362 struct nvme_tcp_hdr *hdr = pdu; 363 __le32 recv_digest; 364 __le32 exp_digest; 365 366 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 367 dev_err(queue->ctrl->ctrl.device, 368 "queue %d: header digest flag is cleared\n", 369 nvme_tcp_queue_id(queue)); 370 return -EPROTO; 371 } 372 373 recv_digest = *(__le32 *)(pdu + hdr->hlen); 374 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 375 exp_digest = *(__le32 *)(pdu + hdr->hlen); 376 if (recv_digest != exp_digest) { 377 dev_err(queue->ctrl->ctrl.device, 378 "header digest error: recv %#x expected %#x\n", 379 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 380 return -EIO; 381 } 382 383 return 0; 384 } 385 386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 387 { 388 struct nvme_tcp_hdr *hdr = pdu; 389 u8 digest_len = nvme_tcp_hdgst_len(queue); 390 u32 len; 391 392 len = le32_to_cpu(hdr->plen) - hdr->hlen - 393 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 394 395 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 396 dev_err(queue->ctrl->ctrl.device, 397 "queue %d: data digest flag is cleared\n", 398 nvme_tcp_queue_id(queue)); 399 return -EPROTO; 400 } 401 crypto_ahash_init(queue->rcv_hash); 402 403 return 0; 404 } 405 406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 407 struct request *rq, unsigned int hctx_idx) 408 { 409 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 410 411 page_frag_free(req->pdu); 412 } 413 414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 415 struct request *rq, unsigned int hctx_idx, 416 unsigned int numa_node) 417 { 418 struct nvme_tcp_ctrl *ctrl = set->driver_data; 419 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 420 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 421 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 422 u8 hdgst = nvme_tcp_hdgst_len(queue); 423 424 req->pdu = page_frag_alloc(&queue->pf_cache, 425 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 426 GFP_KERNEL | __GFP_ZERO); 427 if (!req->pdu) 428 return -ENOMEM; 429 430 req->queue = queue; 431 nvme_req(rq)->ctrl = &ctrl->ctrl; 432 433 return 0; 434 } 435 436 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 437 unsigned int hctx_idx) 438 { 439 struct nvme_tcp_ctrl *ctrl = data; 440 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 441 442 hctx->driver_data = queue; 443 return 0; 444 } 445 446 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 447 unsigned int hctx_idx) 448 { 449 struct nvme_tcp_ctrl *ctrl = data; 450 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 451 452 hctx->driver_data = queue; 453 return 0; 454 } 455 456 static enum nvme_tcp_recv_state 457 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 458 { 459 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 460 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 461 NVME_TCP_RECV_DATA; 462 } 463 464 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 465 { 466 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 467 nvme_tcp_hdgst_len(queue); 468 queue->pdu_offset = 0; 469 queue->data_remaining = -1; 470 queue->ddgst_remaining = 0; 471 } 472 473 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 474 { 475 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 476 return; 477 478 dev_warn(ctrl->device, "starting error recovery\n"); 479 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 480 } 481 482 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 483 struct nvme_completion *cqe) 484 { 485 struct request *rq; 486 487 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 488 if (!rq) { 489 dev_err(queue->ctrl->ctrl.device, 490 "queue %d tag 0x%x not found\n", 491 nvme_tcp_queue_id(queue), cqe->command_id); 492 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 493 return -EINVAL; 494 } 495 496 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 497 nvme_complete_rq(rq); 498 queue->nr_cqe++; 499 500 return 0; 501 } 502 503 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 504 struct nvme_tcp_data_pdu *pdu) 505 { 506 struct request *rq; 507 508 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 509 if (!rq) { 510 dev_err(queue->ctrl->ctrl.device, 511 "queue %d tag %#x not found\n", 512 nvme_tcp_queue_id(queue), pdu->command_id); 513 return -ENOENT; 514 } 515 516 if (!blk_rq_payload_bytes(rq)) { 517 dev_err(queue->ctrl->ctrl.device, 518 "queue %d tag %#x unexpected data\n", 519 nvme_tcp_queue_id(queue), rq->tag); 520 return -EIO; 521 } 522 523 queue->data_remaining = le32_to_cpu(pdu->data_length); 524 525 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 526 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 527 dev_err(queue->ctrl->ctrl.device, 528 "queue %d tag %#x SUCCESS set but not last PDU\n", 529 nvme_tcp_queue_id(queue), rq->tag); 530 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 531 return -EPROTO; 532 } 533 534 return 0; 535 } 536 537 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 538 struct nvme_tcp_rsp_pdu *pdu) 539 { 540 struct nvme_completion *cqe = &pdu->cqe; 541 int ret = 0; 542 543 /* 544 * AEN requests are special as they don't time out and can 545 * survive any kind of queue freeze and often don't respond to 546 * aborts. We don't even bother to allocate a struct request 547 * for them but rather special case them here. 548 */ 549 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 550 cqe->command_id))) 551 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 552 &cqe->result); 553 else 554 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 555 556 return ret; 557 } 558 559 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 560 struct nvme_tcp_r2t_pdu *pdu) 561 { 562 struct nvme_tcp_data_pdu *data = req->pdu; 563 struct nvme_tcp_queue *queue = req->queue; 564 struct request *rq = blk_mq_rq_from_pdu(req); 565 u8 hdgst = nvme_tcp_hdgst_len(queue); 566 u8 ddgst = nvme_tcp_ddgst_len(queue); 567 568 req->pdu_len = le32_to_cpu(pdu->r2t_length); 569 req->pdu_sent = 0; 570 571 if (unlikely(!req->pdu_len)) { 572 dev_err(queue->ctrl->ctrl.device, 573 "req %d r2t len is %u, probably a bug...\n", 574 rq->tag, req->pdu_len); 575 return -EPROTO; 576 } 577 578 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 579 dev_err(queue->ctrl->ctrl.device, 580 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 581 rq->tag, req->pdu_len, req->data_len, 582 req->data_sent); 583 return -EPROTO; 584 } 585 586 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 587 dev_err(queue->ctrl->ctrl.device, 588 "req %d unexpected r2t offset %u (expected %zu)\n", 589 rq->tag, le32_to_cpu(pdu->r2t_offset), 590 req->data_sent); 591 return -EPROTO; 592 } 593 594 memset(data, 0, sizeof(*data)); 595 data->hdr.type = nvme_tcp_h2c_data; 596 data->hdr.flags = NVME_TCP_F_DATA_LAST; 597 if (queue->hdr_digest) 598 data->hdr.flags |= NVME_TCP_F_HDGST; 599 if (queue->data_digest) 600 data->hdr.flags |= NVME_TCP_F_DDGST; 601 data->hdr.hlen = sizeof(*data); 602 data->hdr.pdo = data->hdr.hlen + hdgst; 603 data->hdr.plen = 604 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 605 data->ttag = pdu->ttag; 606 data->command_id = rq->tag; 607 data->data_offset = cpu_to_le32(req->data_sent); 608 data->data_length = cpu_to_le32(req->pdu_len); 609 return 0; 610 } 611 612 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 613 struct nvme_tcp_r2t_pdu *pdu) 614 { 615 struct nvme_tcp_request *req; 616 struct request *rq; 617 int ret; 618 619 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 620 if (!rq) { 621 dev_err(queue->ctrl->ctrl.device, 622 "queue %d tag %#x not found\n", 623 nvme_tcp_queue_id(queue), pdu->command_id); 624 return -ENOENT; 625 } 626 req = blk_mq_rq_to_pdu(rq); 627 628 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 629 if (unlikely(ret)) 630 return ret; 631 632 req->state = NVME_TCP_SEND_H2C_PDU; 633 req->offset = 0; 634 635 nvme_tcp_queue_request(req, false, true); 636 637 return 0; 638 } 639 640 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 641 unsigned int *offset, size_t *len) 642 { 643 struct nvme_tcp_hdr *hdr; 644 char *pdu = queue->pdu; 645 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 646 int ret; 647 648 ret = skb_copy_bits(skb, *offset, 649 &pdu[queue->pdu_offset], rcv_len); 650 if (unlikely(ret)) 651 return ret; 652 653 queue->pdu_remaining -= rcv_len; 654 queue->pdu_offset += rcv_len; 655 *offset += rcv_len; 656 *len -= rcv_len; 657 if (queue->pdu_remaining) 658 return 0; 659 660 hdr = queue->pdu; 661 if (queue->hdr_digest) { 662 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 663 if (unlikely(ret)) 664 return ret; 665 } 666 667 668 if (queue->data_digest) { 669 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 670 if (unlikely(ret)) 671 return ret; 672 } 673 674 switch (hdr->type) { 675 case nvme_tcp_c2h_data: 676 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 677 case nvme_tcp_rsp: 678 nvme_tcp_init_recv_ctx(queue); 679 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 680 case nvme_tcp_r2t: 681 nvme_tcp_init_recv_ctx(queue); 682 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 683 default: 684 dev_err(queue->ctrl->ctrl.device, 685 "unsupported pdu type (%d)\n", hdr->type); 686 return -EINVAL; 687 } 688 } 689 690 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 691 { 692 union nvme_result res = {}; 693 694 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 695 nvme_complete_rq(rq); 696 } 697 698 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 699 unsigned int *offset, size_t *len) 700 { 701 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 702 struct nvme_tcp_request *req; 703 struct request *rq; 704 705 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 706 if (!rq) { 707 dev_err(queue->ctrl->ctrl.device, 708 "queue %d tag %#x not found\n", 709 nvme_tcp_queue_id(queue), pdu->command_id); 710 return -ENOENT; 711 } 712 req = blk_mq_rq_to_pdu(rq); 713 714 while (true) { 715 int recv_len, ret; 716 717 recv_len = min_t(size_t, *len, queue->data_remaining); 718 if (!recv_len) 719 break; 720 721 if (!iov_iter_count(&req->iter)) { 722 req->curr_bio = req->curr_bio->bi_next; 723 724 /* 725 * If we don`t have any bios it means that controller 726 * sent more data than we requested, hence error 727 */ 728 if (!req->curr_bio) { 729 dev_err(queue->ctrl->ctrl.device, 730 "queue %d no space in request %#x", 731 nvme_tcp_queue_id(queue), rq->tag); 732 nvme_tcp_init_recv_ctx(queue); 733 return -EIO; 734 } 735 nvme_tcp_init_iter(req, READ); 736 } 737 738 /* we can read only from what is left in this bio */ 739 recv_len = min_t(size_t, recv_len, 740 iov_iter_count(&req->iter)); 741 742 if (queue->data_digest) 743 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 744 &req->iter, recv_len, queue->rcv_hash); 745 else 746 ret = skb_copy_datagram_iter(skb, *offset, 747 &req->iter, recv_len); 748 if (ret) { 749 dev_err(queue->ctrl->ctrl.device, 750 "queue %d failed to copy request %#x data", 751 nvme_tcp_queue_id(queue), rq->tag); 752 return ret; 753 } 754 755 *len -= recv_len; 756 *offset += recv_len; 757 queue->data_remaining -= recv_len; 758 } 759 760 if (!queue->data_remaining) { 761 if (queue->data_digest) { 762 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 763 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 764 } else { 765 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 766 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 767 queue->nr_cqe++; 768 } 769 nvme_tcp_init_recv_ctx(queue); 770 } 771 } 772 773 return 0; 774 } 775 776 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 777 struct sk_buff *skb, unsigned int *offset, size_t *len) 778 { 779 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 780 char *ddgst = (char *)&queue->recv_ddgst; 781 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 782 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 783 int ret; 784 785 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 786 if (unlikely(ret)) 787 return ret; 788 789 queue->ddgst_remaining -= recv_len; 790 *offset += recv_len; 791 *len -= recv_len; 792 if (queue->ddgst_remaining) 793 return 0; 794 795 if (queue->recv_ddgst != queue->exp_ddgst) { 796 dev_err(queue->ctrl->ctrl.device, 797 "data digest error: recv %#x expected %#x\n", 798 le32_to_cpu(queue->recv_ddgst), 799 le32_to_cpu(queue->exp_ddgst)); 800 return -EIO; 801 } 802 803 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 804 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 805 pdu->command_id); 806 807 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 808 queue->nr_cqe++; 809 } 810 811 nvme_tcp_init_recv_ctx(queue); 812 return 0; 813 } 814 815 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 816 unsigned int offset, size_t len) 817 { 818 struct nvme_tcp_queue *queue = desc->arg.data; 819 size_t consumed = len; 820 int result; 821 822 while (len) { 823 switch (nvme_tcp_recv_state(queue)) { 824 case NVME_TCP_RECV_PDU: 825 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 826 break; 827 case NVME_TCP_RECV_DATA: 828 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 829 break; 830 case NVME_TCP_RECV_DDGST: 831 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 832 break; 833 default: 834 result = -EFAULT; 835 } 836 if (result) { 837 dev_err(queue->ctrl->ctrl.device, 838 "receive failed: %d\n", result); 839 queue->rd_enabled = false; 840 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 841 return result; 842 } 843 } 844 845 return consumed; 846 } 847 848 static void nvme_tcp_data_ready(struct sock *sk) 849 { 850 struct nvme_tcp_queue *queue; 851 852 read_lock_bh(&sk->sk_callback_lock); 853 queue = sk->sk_user_data; 854 if (likely(queue && queue->rd_enabled) && 855 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 856 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 857 read_unlock_bh(&sk->sk_callback_lock); 858 } 859 860 static void nvme_tcp_write_space(struct sock *sk) 861 { 862 struct nvme_tcp_queue *queue; 863 864 read_lock_bh(&sk->sk_callback_lock); 865 queue = sk->sk_user_data; 866 if (likely(queue && sk_stream_is_writeable(sk))) { 867 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 868 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 869 } 870 read_unlock_bh(&sk->sk_callback_lock); 871 } 872 873 static void nvme_tcp_state_change(struct sock *sk) 874 { 875 struct nvme_tcp_queue *queue; 876 877 read_lock(&sk->sk_callback_lock); 878 queue = sk->sk_user_data; 879 if (!queue) 880 goto done; 881 882 switch (sk->sk_state) { 883 case TCP_CLOSE: 884 case TCP_CLOSE_WAIT: 885 case TCP_LAST_ACK: 886 case TCP_FIN_WAIT1: 887 case TCP_FIN_WAIT2: 888 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 889 break; 890 default: 891 dev_info(queue->ctrl->ctrl.device, 892 "queue %d socket state %d\n", 893 nvme_tcp_queue_id(queue), sk->sk_state); 894 } 895 896 queue->state_change(sk); 897 done: 898 read_unlock(&sk->sk_callback_lock); 899 } 900 901 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 902 { 903 return !list_empty(&queue->send_list) || 904 !llist_empty(&queue->req_list) || queue->more_requests; 905 } 906 907 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 908 { 909 queue->request = NULL; 910 } 911 912 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 913 { 914 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 915 } 916 917 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 918 { 919 struct nvme_tcp_queue *queue = req->queue; 920 921 while (true) { 922 struct page *page = nvme_tcp_req_cur_page(req); 923 size_t offset = nvme_tcp_req_cur_offset(req); 924 size_t len = nvme_tcp_req_cur_length(req); 925 bool last = nvme_tcp_pdu_last_send(req, len); 926 int ret, flags = MSG_DONTWAIT; 927 928 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 929 flags |= MSG_EOR; 930 else 931 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 932 933 if (sendpage_ok(page)) { 934 ret = kernel_sendpage(queue->sock, page, offset, len, 935 flags); 936 } else { 937 ret = sock_no_sendpage(queue->sock, page, offset, len, 938 flags); 939 } 940 if (ret <= 0) 941 return ret; 942 943 nvme_tcp_advance_req(req, ret); 944 if (queue->data_digest) 945 nvme_tcp_ddgst_update(queue->snd_hash, page, 946 offset, ret); 947 948 /* fully successful last write*/ 949 if (last && ret == len) { 950 if (queue->data_digest) { 951 nvme_tcp_ddgst_final(queue->snd_hash, 952 &req->ddgst); 953 req->state = NVME_TCP_SEND_DDGST; 954 req->offset = 0; 955 } else { 956 nvme_tcp_done_send_req(queue); 957 } 958 return 1; 959 } 960 } 961 return -EAGAIN; 962 } 963 964 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 965 { 966 struct nvme_tcp_queue *queue = req->queue; 967 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 968 bool inline_data = nvme_tcp_has_inline_data(req); 969 u8 hdgst = nvme_tcp_hdgst_len(queue); 970 int len = sizeof(*pdu) + hdgst - req->offset; 971 int flags = MSG_DONTWAIT; 972 int ret; 973 974 if (inline_data || nvme_tcp_queue_more(queue)) 975 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 976 else 977 flags |= MSG_EOR; 978 979 if (queue->hdr_digest && !req->offset) 980 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 981 982 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 983 offset_in_page(pdu) + req->offset, len, flags); 984 if (unlikely(ret <= 0)) 985 return ret; 986 987 len -= ret; 988 if (!len) { 989 if (inline_data) { 990 req->state = NVME_TCP_SEND_DATA; 991 if (queue->data_digest) 992 crypto_ahash_init(queue->snd_hash); 993 } else { 994 nvme_tcp_done_send_req(queue); 995 } 996 return 1; 997 } 998 req->offset += ret; 999 1000 return -EAGAIN; 1001 } 1002 1003 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1004 { 1005 struct nvme_tcp_queue *queue = req->queue; 1006 struct nvme_tcp_data_pdu *pdu = req->pdu; 1007 u8 hdgst = nvme_tcp_hdgst_len(queue); 1008 int len = sizeof(*pdu) - req->offset + hdgst; 1009 int ret; 1010 1011 if (queue->hdr_digest && !req->offset) 1012 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1013 1014 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1015 offset_in_page(pdu) + req->offset, len, 1016 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1017 if (unlikely(ret <= 0)) 1018 return ret; 1019 1020 len -= ret; 1021 if (!len) { 1022 req->state = NVME_TCP_SEND_DATA; 1023 if (queue->data_digest) 1024 crypto_ahash_init(queue->snd_hash); 1025 return 1; 1026 } 1027 req->offset += ret; 1028 1029 return -EAGAIN; 1030 } 1031 1032 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1033 { 1034 struct nvme_tcp_queue *queue = req->queue; 1035 int ret; 1036 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1037 struct kvec iov = { 1038 .iov_base = &req->ddgst + req->offset, 1039 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1040 }; 1041 1042 if (nvme_tcp_queue_more(queue)) 1043 msg.msg_flags |= MSG_MORE; 1044 else 1045 msg.msg_flags |= MSG_EOR; 1046 1047 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1048 if (unlikely(ret <= 0)) 1049 return ret; 1050 1051 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1052 nvme_tcp_done_send_req(queue); 1053 return 1; 1054 } 1055 1056 req->offset += ret; 1057 return -EAGAIN; 1058 } 1059 1060 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1061 { 1062 struct nvme_tcp_request *req; 1063 int ret = 1; 1064 1065 if (!queue->request) { 1066 queue->request = nvme_tcp_fetch_request(queue); 1067 if (!queue->request) 1068 return 0; 1069 } 1070 req = queue->request; 1071 1072 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1073 ret = nvme_tcp_try_send_cmd_pdu(req); 1074 if (ret <= 0) 1075 goto done; 1076 if (!nvme_tcp_has_inline_data(req)) 1077 return ret; 1078 } 1079 1080 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1081 ret = nvme_tcp_try_send_data_pdu(req); 1082 if (ret <= 0) 1083 goto done; 1084 } 1085 1086 if (req->state == NVME_TCP_SEND_DATA) { 1087 ret = nvme_tcp_try_send_data(req); 1088 if (ret <= 0) 1089 goto done; 1090 } 1091 1092 if (req->state == NVME_TCP_SEND_DDGST) 1093 ret = nvme_tcp_try_send_ddgst(req); 1094 done: 1095 if (ret == -EAGAIN) { 1096 ret = 0; 1097 } else if (ret < 0) { 1098 dev_err(queue->ctrl->ctrl.device, 1099 "failed to send request %d\n", ret); 1100 if (ret != -EPIPE && ret != -ECONNRESET) 1101 nvme_tcp_fail_request(queue->request); 1102 nvme_tcp_done_send_req(queue); 1103 } 1104 return ret; 1105 } 1106 1107 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1108 { 1109 struct socket *sock = queue->sock; 1110 struct sock *sk = sock->sk; 1111 read_descriptor_t rd_desc; 1112 int consumed; 1113 1114 rd_desc.arg.data = queue; 1115 rd_desc.count = 1; 1116 lock_sock(sk); 1117 queue->nr_cqe = 0; 1118 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1119 release_sock(sk); 1120 return consumed; 1121 } 1122 1123 static void nvme_tcp_io_work(struct work_struct *w) 1124 { 1125 struct nvme_tcp_queue *queue = 1126 container_of(w, struct nvme_tcp_queue, io_work); 1127 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1128 1129 do { 1130 bool pending = false; 1131 int result; 1132 1133 if (mutex_trylock(&queue->send_mutex)) { 1134 result = nvme_tcp_try_send(queue); 1135 mutex_unlock(&queue->send_mutex); 1136 if (result > 0) 1137 pending = true; 1138 else if (unlikely(result < 0)) 1139 break; 1140 } 1141 1142 result = nvme_tcp_try_recv(queue); 1143 if (result > 0) 1144 pending = true; 1145 else if (unlikely(result < 0)) 1146 return; 1147 1148 if (!pending) 1149 return; 1150 1151 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1152 1153 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1154 } 1155 1156 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1157 { 1158 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1159 1160 ahash_request_free(queue->rcv_hash); 1161 ahash_request_free(queue->snd_hash); 1162 crypto_free_ahash(tfm); 1163 } 1164 1165 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1166 { 1167 struct crypto_ahash *tfm; 1168 1169 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1170 if (IS_ERR(tfm)) 1171 return PTR_ERR(tfm); 1172 1173 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1174 if (!queue->snd_hash) 1175 goto free_tfm; 1176 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1177 1178 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1179 if (!queue->rcv_hash) 1180 goto free_snd_hash; 1181 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1182 1183 return 0; 1184 free_snd_hash: 1185 ahash_request_free(queue->snd_hash); 1186 free_tfm: 1187 crypto_free_ahash(tfm); 1188 return -ENOMEM; 1189 } 1190 1191 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1192 { 1193 struct nvme_tcp_request *async = &ctrl->async_req; 1194 1195 page_frag_free(async->pdu); 1196 } 1197 1198 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1199 { 1200 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1201 struct nvme_tcp_request *async = &ctrl->async_req; 1202 u8 hdgst = nvme_tcp_hdgst_len(queue); 1203 1204 async->pdu = page_frag_alloc(&queue->pf_cache, 1205 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1206 GFP_KERNEL | __GFP_ZERO); 1207 if (!async->pdu) 1208 return -ENOMEM; 1209 1210 async->queue = &ctrl->queues[0]; 1211 return 0; 1212 } 1213 1214 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1215 { 1216 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1217 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1218 1219 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1220 return; 1221 1222 if (queue->hdr_digest || queue->data_digest) 1223 nvme_tcp_free_crypto(queue); 1224 1225 sock_release(queue->sock); 1226 kfree(queue->pdu); 1227 mutex_destroy(&queue->queue_lock); 1228 } 1229 1230 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1231 { 1232 struct nvme_tcp_icreq_pdu *icreq; 1233 struct nvme_tcp_icresp_pdu *icresp; 1234 struct msghdr msg = {}; 1235 struct kvec iov; 1236 bool ctrl_hdgst, ctrl_ddgst; 1237 int ret; 1238 1239 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1240 if (!icreq) 1241 return -ENOMEM; 1242 1243 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1244 if (!icresp) { 1245 ret = -ENOMEM; 1246 goto free_icreq; 1247 } 1248 1249 icreq->hdr.type = nvme_tcp_icreq; 1250 icreq->hdr.hlen = sizeof(*icreq); 1251 icreq->hdr.pdo = 0; 1252 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1253 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1254 icreq->maxr2t = 0; /* single inflight r2t supported */ 1255 icreq->hpda = 0; /* no alignment constraint */ 1256 if (queue->hdr_digest) 1257 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1258 if (queue->data_digest) 1259 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1260 1261 iov.iov_base = icreq; 1262 iov.iov_len = sizeof(*icreq); 1263 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1264 if (ret < 0) 1265 goto free_icresp; 1266 1267 memset(&msg, 0, sizeof(msg)); 1268 iov.iov_base = icresp; 1269 iov.iov_len = sizeof(*icresp); 1270 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1271 iov.iov_len, msg.msg_flags); 1272 if (ret < 0) 1273 goto free_icresp; 1274 1275 ret = -EINVAL; 1276 if (icresp->hdr.type != nvme_tcp_icresp) { 1277 pr_err("queue %d: bad type returned %d\n", 1278 nvme_tcp_queue_id(queue), icresp->hdr.type); 1279 goto free_icresp; 1280 } 1281 1282 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1283 pr_err("queue %d: bad pdu length returned %d\n", 1284 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1285 goto free_icresp; 1286 } 1287 1288 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1289 pr_err("queue %d: bad pfv returned %d\n", 1290 nvme_tcp_queue_id(queue), icresp->pfv); 1291 goto free_icresp; 1292 } 1293 1294 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1295 if ((queue->data_digest && !ctrl_ddgst) || 1296 (!queue->data_digest && ctrl_ddgst)) { 1297 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1298 nvme_tcp_queue_id(queue), 1299 queue->data_digest ? "enabled" : "disabled", 1300 ctrl_ddgst ? "enabled" : "disabled"); 1301 goto free_icresp; 1302 } 1303 1304 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1305 if ((queue->hdr_digest && !ctrl_hdgst) || 1306 (!queue->hdr_digest && ctrl_hdgst)) { 1307 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1308 nvme_tcp_queue_id(queue), 1309 queue->hdr_digest ? "enabled" : "disabled", 1310 ctrl_hdgst ? "enabled" : "disabled"); 1311 goto free_icresp; 1312 } 1313 1314 if (icresp->cpda != 0) { 1315 pr_err("queue %d: unsupported cpda returned %d\n", 1316 nvme_tcp_queue_id(queue), icresp->cpda); 1317 goto free_icresp; 1318 } 1319 1320 ret = 0; 1321 free_icresp: 1322 kfree(icresp); 1323 free_icreq: 1324 kfree(icreq); 1325 return ret; 1326 } 1327 1328 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1329 { 1330 return nvme_tcp_queue_id(queue) == 0; 1331 } 1332 1333 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1334 { 1335 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1336 int qid = nvme_tcp_queue_id(queue); 1337 1338 return !nvme_tcp_admin_queue(queue) && 1339 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1340 } 1341 1342 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1343 { 1344 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1345 int qid = nvme_tcp_queue_id(queue); 1346 1347 return !nvme_tcp_admin_queue(queue) && 1348 !nvme_tcp_default_queue(queue) && 1349 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1350 ctrl->io_queues[HCTX_TYPE_READ]; 1351 } 1352 1353 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1354 { 1355 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1356 int qid = nvme_tcp_queue_id(queue); 1357 1358 return !nvme_tcp_admin_queue(queue) && 1359 !nvme_tcp_default_queue(queue) && 1360 !nvme_tcp_read_queue(queue) && 1361 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1362 ctrl->io_queues[HCTX_TYPE_READ] + 1363 ctrl->io_queues[HCTX_TYPE_POLL]; 1364 } 1365 1366 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1367 { 1368 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1369 int qid = nvme_tcp_queue_id(queue); 1370 int n = 0; 1371 1372 if (nvme_tcp_default_queue(queue)) 1373 n = qid - 1; 1374 else if (nvme_tcp_read_queue(queue)) 1375 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1376 else if (nvme_tcp_poll_queue(queue)) 1377 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1378 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1379 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1380 } 1381 1382 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1383 int qid, size_t queue_size) 1384 { 1385 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1386 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1387 int ret, rcv_pdu_size; 1388 1389 mutex_init(&queue->queue_lock); 1390 queue->ctrl = ctrl; 1391 init_llist_head(&queue->req_list); 1392 INIT_LIST_HEAD(&queue->send_list); 1393 mutex_init(&queue->send_mutex); 1394 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1395 queue->queue_size = queue_size; 1396 1397 if (qid > 0) 1398 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1399 else 1400 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1401 NVME_TCP_ADMIN_CCSZ; 1402 1403 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1404 IPPROTO_TCP, &queue->sock); 1405 if (ret) { 1406 dev_err(nctrl->device, 1407 "failed to create socket: %d\n", ret); 1408 goto err_destroy_mutex; 1409 } 1410 1411 /* Single syn retry */ 1412 tcp_sock_set_syncnt(queue->sock->sk, 1); 1413 1414 /* Set TCP no delay */ 1415 tcp_sock_set_nodelay(queue->sock->sk); 1416 1417 /* 1418 * Cleanup whatever is sitting in the TCP transmit queue on socket 1419 * close. This is done to prevent stale data from being sent should 1420 * the network connection be restored before TCP times out. 1421 */ 1422 sock_no_linger(queue->sock->sk); 1423 1424 if (so_priority > 0) 1425 sock_set_priority(queue->sock->sk, so_priority); 1426 1427 /* Set socket type of service */ 1428 if (nctrl->opts->tos >= 0) 1429 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1430 1431 /* Set 10 seconds timeout for icresp recvmsg */ 1432 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1433 1434 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1435 nvme_tcp_set_queue_io_cpu(queue); 1436 queue->request = NULL; 1437 queue->data_remaining = 0; 1438 queue->ddgst_remaining = 0; 1439 queue->pdu_remaining = 0; 1440 queue->pdu_offset = 0; 1441 sk_set_memalloc(queue->sock->sk); 1442 1443 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1444 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1445 sizeof(ctrl->src_addr)); 1446 if (ret) { 1447 dev_err(nctrl->device, 1448 "failed to bind queue %d socket %d\n", 1449 qid, ret); 1450 goto err_sock; 1451 } 1452 } 1453 1454 queue->hdr_digest = nctrl->opts->hdr_digest; 1455 queue->data_digest = nctrl->opts->data_digest; 1456 if (queue->hdr_digest || queue->data_digest) { 1457 ret = nvme_tcp_alloc_crypto(queue); 1458 if (ret) { 1459 dev_err(nctrl->device, 1460 "failed to allocate queue %d crypto\n", qid); 1461 goto err_sock; 1462 } 1463 } 1464 1465 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1466 nvme_tcp_hdgst_len(queue); 1467 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1468 if (!queue->pdu) { 1469 ret = -ENOMEM; 1470 goto err_crypto; 1471 } 1472 1473 dev_dbg(nctrl->device, "connecting queue %d\n", 1474 nvme_tcp_queue_id(queue)); 1475 1476 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1477 sizeof(ctrl->addr), 0); 1478 if (ret) { 1479 dev_err(nctrl->device, 1480 "failed to connect socket: %d\n", ret); 1481 goto err_rcv_pdu; 1482 } 1483 1484 ret = nvme_tcp_init_connection(queue); 1485 if (ret) 1486 goto err_init_connect; 1487 1488 queue->rd_enabled = true; 1489 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1490 nvme_tcp_init_recv_ctx(queue); 1491 1492 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1493 queue->sock->sk->sk_user_data = queue; 1494 queue->state_change = queue->sock->sk->sk_state_change; 1495 queue->data_ready = queue->sock->sk->sk_data_ready; 1496 queue->write_space = queue->sock->sk->sk_write_space; 1497 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1498 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1499 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1500 #ifdef CONFIG_NET_RX_BUSY_POLL 1501 queue->sock->sk->sk_ll_usec = 1; 1502 #endif 1503 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1504 1505 return 0; 1506 1507 err_init_connect: 1508 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1509 err_rcv_pdu: 1510 kfree(queue->pdu); 1511 err_crypto: 1512 if (queue->hdr_digest || queue->data_digest) 1513 nvme_tcp_free_crypto(queue); 1514 err_sock: 1515 sock_release(queue->sock); 1516 queue->sock = NULL; 1517 err_destroy_mutex: 1518 mutex_destroy(&queue->queue_lock); 1519 return ret; 1520 } 1521 1522 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1523 { 1524 struct socket *sock = queue->sock; 1525 1526 write_lock_bh(&sock->sk->sk_callback_lock); 1527 sock->sk->sk_user_data = NULL; 1528 sock->sk->sk_data_ready = queue->data_ready; 1529 sock->sk->sk_state_change = queue->state_change; 1530 sock->sk->sk_write_space = queue->write_space; 1531 write_unlock_bh(&sock->sk->sk_callback_lock); 1532 } 1533 1534 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1535 { 1536 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1537 nvme_tcp_restore_sock_calls(queue); 1538 cancel_work_sync(&queue->io_work); 1539 } 1540 1541 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1542 { 1543 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1544 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1545 1546 mutex_lock(&queue->queue_lock); 1547 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1548 __nvme_tcp_stop_queue(queue); 1549 mutex_unlock(&queue->queue_lock); 1550 } 1551 1552 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1553 { 1554 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1555 int ret; 1556 1557 if (idx) 1558 ret = nvmf_connect_io_queue(nctrl, idx, false); 1559 else 1560 ret = nvmf_connect_admin_queue(nctrl); 1561 1562 if (!ret) { 1563 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1564 } else { 1565 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1566 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1567 dev_err(nctrl->device, 1568 "failed to connect queue: %d ret=%d\n", idx, ret); 1569 } 1570 return ret; 1571 } 1572 1573 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1574 bool admin) 1575 { 1576 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1577 struct blk_mq_tag_set *set; 1578 int ret; 1579 1580 if (admin) { 1581 set = &ctrl->admin_tag_set; 1582 memset(set, 0, sizeof(*set)); 1583 set->ops = &nvme_tcp_admin_mq_ops; 1584 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1585 set->reserved_tags = NVMF_RESERVED_TAGS; 1586 set->numa_node = nctrl->numa_node; 1587 set->flags = BLK_MQ_F_BLOCKING; 1588 set->cmd_size = sizeof(struct nvme_tcp_request); 1589 set->driver_data = ctrl; 1590 set->nr_hw_queues = 1; 1591 set->timeout = NVME_ADMIN_TIMEOUT; 1592 } else { 1593 set = &ctrl->tag_set; 1594 memset(set, 0, sizeof(*set)); 1595 set->ops = &nvme_tcp_mq_ops; 1596 set->queue_depth = nctrl->sqsize + 1; 1597 set->reserved_tags = NVMF_RESERVED_TAGS; 1598 set->numa_node = nctrl->numa_node; 1599 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1600 set->cmd_size = sizeof(struct nvme_tcp_request); 1601 set->driver_data = ctrl; 1602 set->nr_hw_queues = nctrl->queue_count - 1; 1603 set->timeout = NVME_IO_TIMEOUT; 1604 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1605 } 1606 1607 ret = blk_mq_alloc_tag_set(set); 1608 if (ret) 1609 return ERR_PTR(ret); 1610 1611 return set; 1612 } 1613 1614 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1615 { 1616 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1617 cancel_work_sync(&ctrl->async_event_work); 1618 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1619 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1620 } 1621 1622 nvme_tcp_free_queue(ctrl, 0); 1623 } 1624 1625 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1626 { 1627 int i; 1628 1629 for (i = 1; i < ctrl->queue_count; i++) 1630 nvme_tcp_free_queue(ctrl, i); 1631 } 1632 1633 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1634 { 1635 int i; 1636 1637 for (i = 1; i < ctrl->queue_count; i++) 1638 nvme_tcp_stop_queue(ctrl, i); 1639 } 1640 1641 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1642 { 1643 int i, ret = 0; 1644 1645 for (i = 1; i < ctrl->queue_count; i++) { 1646 ret = nvme_tcp_start_queue(ctrl, i); 1647 if (ret) 1648 goto out_stop_queues; 1649 } 1650 1651 return 0; 1652 1653 out_stop_queues: 1654 for (i--; i >= 1; i--) 1655 nvme_tcp_stop_queue(ctrl, i); 1656 return ret; 1657 } 1658 1659 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1660 { 1661 int ret; 1662 1663 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1664 if (ret) 1665 return ret; 1666 1667 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1668 if (ret) 1669 goto out_free_queue; 1670 1671 return 0; 1672 1673 out_free_queue: 1674 nvme_tcp_free_queue(ctrl, 0); 1675 return ret; 1676 } 1677 1678 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1679 { 1680 int i, ret; 1681 1682 for (i = 1; i < ctrl->queue_count; i++) { 1683 ret = nvme_tcp_alloc_queue(ctrl, i, 1684 ctrl->sqsize + 1); 1685 if (ret) 1686 goto out_free_queues; 1687 } 1688 1689 return 0; 1690 1691 out_free_queues: 1692 for (i--; i >= 1; i--) 1693 nvme_tcp_free_queue(ctrl, i); 1694 1695 return ret; 1696 } 1697 1698 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1699 { 1700 unsigned int nr_io_queues; 1701 1702 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1703 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1704 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1705 1706 return nr_io_queues; 1707 } 1708 1709 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1710 unsigned int nr_io_queues) 1711 { 1712 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1713 struct nvmf_ctrl_options *opts = nctrl->opts; 1714 1715 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1716 /* 1717 * separate read/write queues 1718 * hand out dedicated default queues only after we have 1719 * sufficient read queues. 1720 */ 1721 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1722 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1723 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1724 min(opts->nr_write_queues, nr_io_queues); 1725 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1726 } else { 1727 /* 1728 * shared read/write queues 1729 * either no write queues were requested, or we don't have 1730 * sufficient queue count to have dedicated default queues. 1731 */ 1732 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1733 min(opts->nr_io_queues, nr_io_queues); 1734 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1735 } 1736 1737 if (opts->nr_poll_queues && nr_io_queues) { 1738 /* map dedicated poll queues only if we have queues left */ 1739 ctrl->io_queues[HCTX_TYPE_POLL] = 1740 min(opts->nr_poll_queues, nr_io_queues); 1741 } 1742 } 1743 1744 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1745 { 1746 unsigned int nr_io_queues; 1747 int ret; 1748 1749 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1750 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1751 if (ret) 1752 return ret; 1753 1754 ctrl->queue_count = nr_io_queues + 1; 1755 if (ctrl->queue_count < 2) { 1756 dev_err(ctrl->device, 1757 "unable to set any I/O queues\n"); 1758 return -ENOMEM; 1759 } 1760 1761 dev_info(ctrl->device, 1762 "creating %d I/O queues.\n", nr_io_queues); 1763 1764 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1765 1766 return __nvme_tcp_alloc_io_queues(ctrl); 1767 } 1768 1769 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1770 { 1771 nvme_tcp_stop_io_queues(ctrl); 1772 if (remove) { 1773 blk_cleanup_queue(ctrl->connect_q); 1774 blk_mq_free_tag_set(ctrl->tagset); 1775 } 1776 nvme_tcp_free_io_queues(ctrl); 1777 } 1778 1779 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1780 { 1781 int ret; 1782 1783 ret = nvme_tcp_alloc_io_queues(ctrl); 1784 if (ret) 1785 return ret; 1786 1787 if (new) { 1788 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1789 if (IS_ERR(ctrl->tagset)) { 1790 ret = PTR_ERR(ctrl->tagset); 1791 goto out_free_io_queues; 1792 } 1793 1794 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1795 if (IS_ERR(ctrl->connect_q)) { 1796 ret = PTR_ERR(ctrl->connect_q); 1797 goto out_free_tag_set; 1798 } 1799 } 1800 1801 ret = nvme_tcp_start_io_queues(ctrl); 1802 if (ret) 1803 goto out_cleanup_connect_q; 1804 1805 if (!new) { 1806 nvme_start_queues(ctrl); 1807 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1808 /* 1809 * If we timed out waiting for freeze we are likely to 1810 * be stuck. Fail the controller initialization just 1811 * to be safe. 1812 */ 1813 ret = -ENODEV; 1814 goto out_wait_freeze_timed_out; 1815 } 1816 blk_mq_update_nr_hw_queues(ctrl->tagset, 1817 ctrl->queue_count - 1); 1818 nvme_unfreeze(ctrl); 1819 } 1820 1821 return 0; 1822 1823 out_wait_freeze_timed_out: 1824 nvme_stop_queues(ctrl); 1825 nvme_sync_io_queues(ctrl); 1826 nvme_tcp_stop_io_queues(ctrl); 1827 out_cleanup_connect_q: 1828 nvme_cancel_tagset(ctrl); 1829 if (new) 1830 blk_cleanup_queue(ctrl->connect_q); 1831 out_free_tag_set: 1832 if (new) 1833 blk_mq_free_tag_set(ctrl->tagset); 1834 out_free_io_queues: 1835 nvme_tcp_free_io_queues(ctrl); 1836 return ret; 1837 } 1838 1839 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1840 { 1841 nvme_tcp_stop_queue(ctrl, 0); 1842 if (remove) { 1843 blk_cleanup_queue(ctrl->admin_q); 1844 blk_cleanup_queue(ctrl->fabrics_q); 1845 blk_mq_free_tag_set(ctrl->admin_tagset); 1846 } 1847 nvme_tcp_free_admin_queue(ctrl); 1848 } 1849 1850 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1851 { 1852 int error; 1853 1854 error = nvme_tcp_alloc_admin_queue(ctrl); 1855 if (error) 1856 return error; 1857 1858 if (new) { 1859 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1860 if (IS_ERR(ctrl->admin_tagset)) { 1861 error = PTR_ERR(ctrl->admin_tagset); 1862 goto out_free_queue; 1863 } 1864 1865 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1866 if (IS_ERR(ctrl->fabrics_q)) { 1867 error = PTR_ERR(ctrl->fabrics_q); 1868 goto out_free_tagset; 1869 } 1870 1871 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1872 if (IS_ERR(ctrl->admin_q)) { 1873 error = PTR_ERR(ctrl->admin_q); 1874 goto out_cleanup_fabrics_q; 1875 } 1876 } 1877 1878 error = nvme_tcp_start_queue(ctrl, 0); 1879 if (error) 1880 goto out_cleanup_queue; 1881 1882 error = nvme_enable_ctrl(ctrl); 1883 if (error) 1884 goto out_stop_queue; 1885 1886 blk_mq_unquiesce_queue(ctrl->admin_q); 1887 1888 error = nvme_init_identify(ctrl); 1889 if (error) 1890 goto out_quiesce_queue; 1891 1892 return 0; 1893 1894 out_quiesce_queue: 1895 blk_mq_quiesce_queue(ctrl->admin_q); 1896 blk_sync_queue(ctrl->admin_q); 1897 out_stop_queue: 1898 nvme_tcp_stop_queue(ctrl, 0); 1899 nvme_cancel_admin_tagset(ctrl); 1900 out_cleanup_queue: 1901 if (new) 1902 blk_cleanup_queue(ctrl->admin_q); 1903 out_cleanup_fabrics_q: 1904 if (new) 1905 blk_cleanup_queue(ctrl->fabrics_q); 1906 out_free_tagset: 1907 if (new) 1908 blk_mq_free_tag_set(ctrl->admin_tagset); 1909 out_free_queue: 1910 nvme_tcp_free_admin_queue(ctrl); 1911 return error; 1912 } 1913 1914 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1915 bool remove) 1916 { 1917 blk_mq_quiesce_queue(ctrl->admin_q); 1918 blk_sync_queue(ctrl->admin_q); 1919 nvme_tcp_stop_queue(ctrl, 0); 1920 nvme_cancel_admin_tagset(ctrl); 1921 if (remove) 1922 blk_mq_unquiesce_queue(ctrl->admin_q); 1923 nvme_tcp_destroy_admin_queue(ctrl, remove); 1924 } 1925 1926 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1927 bool remove) 1928 { 1929 if (ctrl->queue_count <= 1) 1930 return; 1931 blk_mq_quiesce_queue(ctrl->admin_q); 1932 nvme_start_freeze(ctrl); 1933 nvme_stop_queues(ctrl); 1934 nvme_sync_io_queues(ctrl); 1935 nvme_tcp_stop_io_queues(ctrl); 1936 nvme_cancel_tagset(ctrl); 1937 if (remove) 1938 nvme_start_queues(ctrl); 1939 nvme_tcp_destroy_io_queues(ctrl, remove); 1940 } 1941 1942 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1943 { 1944 /* If we are resetting/deleting then do nothing */ 1945 if (ctrl->state != NVME_CTRL_CONNECTING) { 1946 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1947 ctrl->state == NVME_CTRL_LIVE); 1948 return; 1949 } 1950 1951 if (nvmf_should_reconnect(ctrl)) { 1952 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1953 ctrl->opts->reconnect_delay); 1954 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1955 ctrl->opts->reconnect_delay * HZ); 1956 } else { 1957 dev_info(ctrl->device, "Removing controller...\n"); 1958 nvme_delete_ctrl(ctrl); 1959 } 1960 } 1961 1962 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1963 { 1964 struct nvmf_ctrl_options *opts = ctrl->opts; 1965 int ret; 1966 1967 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1968 if (ret) 1969 return ret; 1970 1971 if (ctrl->icdoff) { 1972 dev_err(ctrl->device, "icdoff is not supported!\n"); 1973 goto destroy_admin; 1974 } 1975 1976 if (opts->queue_size > ctrl->sqsize + 1) 1977 dev_warn(ctrl->device, 1978 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1979 opts->queue_size, ctrl->sqsize + 1); 1980 1981 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1982 dev_warn(ctrl->device, 1983 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1984 ctrl->sqsize + 1, ctrl->maxcmd); 1985 ctrl->sqsize = ctrl->maxcmd - 1; 1986 } 1987 1988 if (ctrl->queue_count > 1) { 1989 ret = nvme_tcp_configure_io_queues(ctrl, new); 1990 if (ret) 1991 goto destroy_admin; 1992 } 1993 1994 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1995 /* 1996 * state change failure is ok if we started ctrl delete, 1997 * unless we're during creation of a new controller to 1998 * avoid races with teardown flow. 1999 */ 2000 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2001 ctrl->state != NVME_CTRL_DELETING_NOIO); 2002 WARN_ON_ONCE(new); 2003 ret = -EINVAL; 2004 goto destroy_io; 2005 } 2006 2007 nvme_start_ctrl(ctrl); 2008 return 0; 2009 2010 destroy_io: 2011 if (ctrl->queue_count > 1) { 2012 nvme_stop_queues(ctrl); 2013 nvme_sync_io_queues(ctrl); 2014 nvme_tcp_stop_io_queues(ctrl); 2015 nvme_cancel_tagset(ctrl); 2016 nvme_tcp_destroy_io_queues(ctrl, new); 2017 } 2018 destroy_admin: 2019 blk_mq_quiesce_queue(ctrl->admin_q); 2020 blk_sync_queue(ctrl->admin_q); 2021 nvme_tcp_stop_queue(ctrl, 0); 2022 nvme_cancel_admin_tagset(ctrl); 2023 nvme_tcp_destroy_admin_queue(ctrl, new); 2024 return ret; 2025 } 2026 2027 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2028 { 2029 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2030 struct nvme_tcp_ctrl, connect_work); 2031 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2032 2033 ++ctrl->nr_reconnects; 2034 2035 if (nvme_tcp_setup_ctrl(ctrl, false)) 2036 goto requeue; 2037 2038 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2039 ctrl->nr_reconnects); 2040 2041 ctrl->nr_reconnects = 0; 2042 2043 return; 2044 2045 requeue: 2046 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2047 ctrl->nr_reconnects); 2048 nvme_tcp_reconnect_or_remove(ctrl); 2049 } 2050 2051 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2052 { 2053 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2054 struct nvme_tcp_ctrl, err_work); 2055 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2056 2057 nvme_stop_keep_alive(ctrl); 2058 nvme_tcp_teardown_io_queues(ctrl, false); 2059 /* unquiesce to fail fast pending requests */ 2060 nvme_start_queues(ctrl); 2061 nvme_tcp_teardown_admin_queue(ctrl, false); 2062 blk_mq_unquiesce_queue(ctrl->admin_q); 2063 2064 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2065 /* state change failure is ok if we started ctrl delete */ 2066 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2067 ctrl->state != NVME_CTRL_DELETING_NOIO); 2068 return; 2069 } 2070 2071 nvme_tcp_reconnect_or_remove(ctrl); 2072 } 2073 2074 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2075 { 2076 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2077 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2078 2079 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2080 blk_mq_quiesce_queue(ctrl->admin_q); 2081 if (shutdown) 2082 nvme_shutdown_ctrl(ctrl); 2083 else 2084 nvme_disable_ctrl(ctrl); 2085 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2086 } 2087 2088 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2089 { 2090 nvme_tcp_teardown_ctrl(ctrl, true); 2091 } 2092 2093 static void nvme_reset_ctrl_work(struct work_struct *work) 2094 { 2095 struct nvme_ctrl *ctrl = 2096 container_of(work, struct nvme_ctrl, reset_work); 2097 2098 nvme_stop_ctrl(ctrl); 2099 nvme_tcp_teardown_ctrl(ctrl, false); 2100 2101 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2102 /* state change failure is ok if we started ctrl delete */ 2103 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2104 ctrl->state != NVME_CTRL_DELETING_NOIO); 2105 return; 2106 } 2107 2108 if (nvme_tcp_setup_ctrl(ctrl, false)) 2109 goto out_fail; 2110 2111 return; 2112 2113 out_fail: 2114 ++ctrl->nr_reconnects; 2115 nvme_tcp_reconnect_or_remove(ctrl); 2116 } 2117 2118 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2119 { 2120 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2121 2122 if (list_empty(&ctrl->list)) 2123 goto free_ctrl; 2124 2125 mutex_lock(&nvme_tcp_ctrl_mutex); 2126 list_del(&ctrl->list); 2127 mutex_unlock(&nvme_tcp_ctrl_mutex); 2128 2129 nvmf_free_options(nctrl->opts); 2130 free_ctrl: 2131 kfree(ctrl->queues); 2132 kfree(ctrl); 2133 } 2134 2135 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2136 { 2137 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2138 2139 sg->addr = 0; 2140 sg->length = 0; 2141 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2142 NVME_SGL_FMT_TRANSPORT_A; 2143 } 2144 2145 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2146 struct nvme_command *c, u32 data_len) 2147 { 2148 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2149 2150 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2151 sg->length = cpu_to_le32(data_len); 2152 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2153 } 2154 2155 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2156 u32 data_len) 2157 { 2158 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2159 2160 sg->addr = 0; 2161 sg->length = cpu_to_le32(data_len); 2162 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2163 NVME_SGL_FMT_TRANSPORT_A; 2164 } 2165 2166 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2167 { 2168 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2169 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2170 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2171 struct nvme_command *cmd = &pdu->cmd; 2172 u8 hdgst = nvme_tcp_hdgst_len(queue); 2173 2174 memset(pdu, 0, sizeof(*pdu)); 2175 pdu->hdr.type = nvme_tcp_cmd; 2176 if (queue->hdr_digest) 2177 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2178 pdu->hdr.hlen = sizeof(*pdu); 2179 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2180 2181 cmd->common.opcode = nvme_admin_async_event; 2182 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2183 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2184 nvme_tcp_set_sg_null(cmd); 2185 2186 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2187 ctrl->async_req.offset = 0; 2188 ctrl->async_req.curr_bio = NULL; 2189 ctrl->async_req.data_len = 0; 2190 2191 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2192 } 2193 2194 static void nvme_tcp_complete_timed_out(struct request *rq) 2195 { 2196 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2197 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2198 2199 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2200 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2201 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2202 blk_mq_complete_request(rq); 2203 } 2204 } 2205 2206 static enum blk_eh_timer_return 2207 nvme_tcp_timeout(struct request *rq, bool reserved) 2208 { 2209 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2210 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2211 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2212 2213 dev_warn(ctrl->device, 2214 "queue %d: timeout request %#x type %d\n", 2215 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2216 2217 if (ctrl->state != NVME_CTRL_LIVE) { 2218 /* 2219 * If we are resetting, connecting or deleting we should 2220 * complete immediately because we may block controller 2221 * teardown or setup sequence 2222 * - ctrl disable/shutdown fabrics requests 2223 * - connect requests 2224 * - initialization admin requests 2225 * - I/O requests that entered after unquiescing and 2226 * the controller stopped responding 2227 * 2228 * All other requests should be cancelled by the error 2229 * recovery work, so it's fine that we fail it here. 2230 */ 2231 nvme_tcp_complete_timed_out(rq); 2232 return BLK_EH_DONE; 2233 } 2234 2235 /* 2236 * LIVE state should trigger the normal error recovery which will 2237 * handle completing this request. 2238 */ 2239 nvme_tcp_error_recovery(ctrl); 2240 return BLK_EH_RESET_TIMER; 2241 } 2242 2243 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2244 struct request *rq) 2245 { 2246 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2247 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2248 struct nvme_command *c = &pdu->cmd; 2249 2250 c->common.flags |= NVME_CMD_SGL_METABUF; 2251 2252 if (!blk_rq_nr_phys_segments(rq)) 2253 nvme_tcp_set_sg_null(c); 2254 else if (rq_data_dir(rq) == WRITE && 2255 req->data_len <= nvme_tcp_inline_data_size(queue)) 2256 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2257 else 2258 nvme_tcp_set_sg_host_data(c, req->data_len); 2259 2260 return 0; 2261 } 2262 2263 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2264 struct request *rq) 2265 { 2266 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2267 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2268 struct nvme_tcp_queue *queue = req->queue; 2269 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2270 blk_status_t ret; 2271 2272 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2273 if (ret) 2274 return ret; 2275 2276 req->state = NVME_TCP_SEND_CMD_PDU; 2277 req->offset = 0; 2278 req->data_sent = 0; 2279 req->pdu_len = 0; 2280 req->pdu_sent = 0; 2281 req->data_len = blk_rq_nr_phys_segments(rq) ? 2282 blk_rq_payload_bytes(rq) : 0; 2283 req->curr_bio = rq->bio; 2284 if (req->curr_bio && req->data_len) 2285 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2286 2287 if (rq_data_dir(rq) == WRITE && 2288 req->data_len <= nvme_tcp_inline_data_size(queue)) 2289 req->pdu_len = req->data_len; 2290 2291 pdu->hdr.type = nvme_tcp_cmd; 2292 pdu->hdr.flags = 0; 2293 if (queue->hdr_digest) 2294 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2295 if (queue->data_digest && req->pdu_len) { 2296 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2297 ddgst = nvme_tcp_ddgst_len(queue); 2298 } 2299 pdu->hdr.hlen = sizeof(*pdu); 2300 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2301 pdu->hdr.plen = 2302 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2303 2304 ret = nvme_tcp_map_data(queue, rq); 2305 if (unlikely(ret)) { 2306 nvme_cleanup_cmd(rq); 2307 dev_err(queue->ctrl->ctrl.device, 2308 "Failed to map data (%d)\n", ret); 2309 return ret; 2310 } 2311 2312 return 0; 2313 } 2314 2315 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2316 { 2317 struct nvme_tcp_queue *queue = hctx->driver_data; 2318 2319 if (!llist_empty(&queue->req_list)) 2320 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2321 } 2322 2323 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2324 const struct blk_mq_queue_data *bd) 2325 { 2326 struct nvme_ns *ns = hctx->queue->queuedata; 2327 struct nvme_tcp_queue *queue = hctx->driver_data; 2328 struct request *rq = bd->rq; 2329 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2330 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2331 blk_status_t ret; 2332 2333 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2334 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2335 2336 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2337 if (unlikely(ret)) 2338 return ret; 2339 2340 blk_mq_start_request(rq); 2341 2342 nvme_tcp_queue_request(req, true, bd->last); 2343 2344 return BLK_STS_OK; 2345 } 2346 2347 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2348 { 2349 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2350 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2351 2352 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2353 /* separate read/write queues */ 2354 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2355 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2356 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2357 set->map[HCTX_TYPE_READ].nr_queues = 2358 ctrl->io_queues[HCTX_TYPE_READ]; 2359 set->map[HCTX_TYPE_READ].queue_offset = 2360 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2361 } else { 2362 /* shared read/write queues */ 2363 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2364 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2365 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2366 set->map[HCTX_TYPE_READ].nr_queues = 2367 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2368 set->map[HCTX_TYPE_READ].queue_offset = 0; 2369 } 2370 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2371 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2372 2373 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2374 /* map dedicated poll queues only if we have queues left */ 2375 set->map[HCTX_TYPE_POLL].nr_queues = 2376 ctrl->io_queues[HCTX_TYPE_POLL]; 2377 set->map[HCTX_TYPE_POLL].queue_offset = 2378 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2379 ctrl->io_queues[HCTX_TYPE_READ]; 2380 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2381 } 2382 2383 dev_info(ctrl->ctrl.device, 2384 "mapped %d/%d/%d default/read/poll queues.\n", 2385 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2386 ctrl->io_queues[HCTX_TYPE_READ], 2387 ctrl->io_queues[HCTX_TYPE_POLL]); 2388 2389 return 0; 2390 } 2391 2392 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2393 { 2394 struct nvme_tcp_queue *queue = hctx->driver_data; 2395 struct sock *sk = queue->sock->sk; 2396 2397 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2398 return 0; 2399 2400 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2401 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2402 sk_busy_loop(sk, true); 2403 nvme_tcp_try_recv(queue); 2404 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2405 return queue->nr_cqe; 2406 } 2407 2408 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2409 .queue_rq = nvme_tcp_queue_rq, 2410 .commit_rqs = nvme_tcp_commit_rqs, 2411 .complete = nvme_complete_rq, 2412 .init_request = nvme_tcp_init_request, 2413 .exit_request = nvme_tcp_exit_request, 2414 .init_hctx = nvme_tcp_init_hctx, 2415 .timeout = nvme_tcp_timeout, 2416 .map_queues = nvme_tcp_map_queues, 2417 .poll = nvme_tcp_poll, 2418 }; 2419 2420 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2421 .queue_rq = nvme_tcp_queue_rq, 2422 .complete = nvme_complete_rq, 2423 .init_request = nvme_tcp_init_request, 2424 .exit_request = nvme_tcp_exit_request, 2425 .init_hctx = nvme_tcp_init_admin_hctx, 2426 .timeout = nvme_tcp_timeout, 2427 }; 2428 2429 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2430 .name = "tcp", 2431 .module = THIS_MODULE, 2432 .flags = NVME_F_FABRICS, 2433 .reg_read32 = nvmf_reg_read32, 2434 .reg_read64 = nvmf_reg_read64, 2435 .reg_write32 = nvmf_reg_write32, 2436 .free_ctrl = nvme_tcp_free_ctrl, 2437 .submit_async_event = nvme_tcp_submit_async_event, 2438 .delete_ctrl = nvme_tcp_delete_ctrl, 2439 .get_address = nvmf_get_address, 2440 }; 2441 2442 static bool 2443 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2444 { 2445 struct nvme_tcp_ctrl *ctrl; 2446 bool found = false; 2447 2448 mutex_lock(&nvme_tcp_ctrl_mutex); 2449 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2450 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2451 if (found) 2452 break; 2453 } 2454 mutex_unlock(&nvme_tcp_ctrl_mutex); 2455 2456 return found; 2457 } 2458 2459 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2460 struct nvmf_ctrl_options *opts) 2461 { 2462 struct nvme_tcp_ctrl *ctrl; 2463 int ret; 2464 2465 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2466 if (!ctrl) 2467 return ERR_PTR(-ENOMEM); 2468 2469 INIT_LIST_HEAD(&ctrl->list); 2470 ctrl->ctrl.opts = opts; 2471 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2472 opts->nr_poll_queues + 1; 2473 ctrl->ctrl.sqsize = opts->queue_size - 1; 2474 ctrl->ctrl.kato = opts->kato; 2475 2476 INIT_DELAYED_WORK(&ctrl->connect_work, 2477 nvme_tcp_reconnect_ctrl_work); 2478 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2479 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2480 2481 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2482 opts->trsvcid = 2483 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2484 if (!opts->trsvcid) { 2485 ret = -ENOMEM; 2486 goto out_free_ctrl; 2487 } 2488 opts->mask |= NVMF_OPT_TRSVCID; 2489 } 2490 2491 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2492 opts->traddr, opts->trsvcid, &ctrl->addr); 2493 if (ret) { 2494 pr_err("malformed address passed: %s:%s\n", 2495 opts->traddr, opts->trsvcid); 2496 goto out_free_ctrl; 2497 } 2498 2499 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2500 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2501 opts->host_traddr, NULL, &ctrl->src_addr); 2502 if (ret) { 2503 pr_err("malformed src address passed: %s\n", 2504 opts->host_traddr); 2505 goto out_free_ctrl; 2506 } 2507 } 2508 2509 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2510 ret = -EALREADY; 2511 goto out_free_ctrl; 2512 } 2513 2514 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2515 GFP_KERNEL); 2516 if (!ctrl->queues) { 2517 ret = -ENOMEM; 2518 goto out_free_ctrl; 2519 } 2520 2521 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2522 if (ret) 2523 goto out_kfree_queues; 2524 2525 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2526 WARN_ON_ONCE(1); 2527 ret = -EINTR; 2528 goto out_uninit_ctrl; 2529 } 2530 2531 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2532 if (ret) 2533 goto out_uninit_ctrl; 2534 2535 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2536 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2537 2538 mutex_lock(&nvme_tcp_ctrl_mutex); 2539 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2540 mutex_unlock(&nvme_tcp_ctrl_mutex); 2541 2542 return &ctrl->ctrl; 2543 2544 out_uninit_ctrl: 2545 nvme_uninit_ctrl(&ctrl->ctrl); 2546 nvme_put_ctrl(&ctrl->ctrl); 2547 if (ret > 0) 2548 ret = -EIO; 2549 return ERR_PTR(ret); 2550 out_kfree_queues: 2551 kfree(ctrl->queues); 2552 out_free_ctrl: 2553 kfree(ctrl); 2554 return ERR_PTR(ret); 2555 } 2556 2557 static struct nvmf_transport_ops nvme_tcp_transport = { 2558 .name = "tcp", 2559 .module = THIS_MODULE, 2560 .required_opts = NVMF_OPT_TRADDR, 2561 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2562 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2563 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2564 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2565 NVMF_OPT_TOS, 2566 .create_ctrl = nvme_tcp_create_ctrl, 2567 }; 2568 2569 static int __init nvme_tcp_init_module(void) 2570 { 2571 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2572 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2573 if (!nvme_tcp_wq) 2574 return -ENOMEM; 2575 2576 nvmf_register_transport(&nvme_tcp_transport); 2577 return 0; 2578 } 2579 2580 static void __exit nvme_tcp_cleanup_module(void) 2581 { 2582 struct nvme_tcp_ctrl *ctrl; 2583 2584 nvmf_unregister_transport(&nvme_tcp_transport); 2585 2586 mutex_lock(&nvme_tcp_ctrl_mutex); 2587 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2588 nvme_delete_ctrl(&ctrl->ctrl); 2589 mutex_unlock(&nvme_tcp_ctrl_mutex); 2590 flush_workqueue(nvme_delete_wq); 2591 2592 destroy_workqueue(nvme_tcp_wq); 2593 } 2594 2595 module_init(nvme_tcp_init_module); 2596 module_exit(nvme_tcp_cleanup_module); 2597 2598 MODULE_LICENSE("GPL v2"); 2599