xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision ca48739e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		queue_lock;
80 	struct mutex		send_mutex;
81 	struct llist_head	req_list;
82 	struct list_head	send_list;
83 	bool			more_requests;
84 
85 	/* recv state */
86 	void			*pdu;
87 	int			pdu_remaining;
88 	int			pdu_offset;
89 	size_t			data_remaining;
90 	size_t			ddgst_remaining;
91 	unsigned int		nr_cqe;
92 
93 	/* send state */
94 	struct nvme_tcp_request *request;
95 
96 	int			queue_size;
97 	size_t			cmnd_capsule_len;
98 	struct nvme_tcp_ctrl	*ctrl;
99 	unsigned long		flags;
100 	bool			rd_enabled;
101 
102 	bool			hdr_digest;
103 	bool			data_digest;
104 	struct ahash_request	*rcv_hash;
105 	struct ahash_request	*snd_hash;
106 	__le32			exp_ddgst;
107 	__le32			recv_ddgst;
108 
109 	struct page_frag_cache	pf_cache;
110 
111 	void (*state_change)(struct sock *);
112 	void (*data_ready)(struct sock *);
113 	void (*write_space)(struct sock *);
114 };
115 
116 struct nvme_tcp_ctrl {
117 	/* read only in the hot path */
118 	struct nvme_tcp_queue	*queues;
119 	struct blk_mq_tag_set	tag_set;
120 
121 	/* other member variables */
122 	struct list_head	list;
123 	struct blk_mq_tag_set	admin_tag_set;
124 	struct sockaddr_storage addr;
125 	struct sockaddr_storage src_addr;
126 	struct nvme_ctrl	ctrl;
127 
128 	struct work_struct	err_work;
129 	struct delayed_work	connect_work;
130 	struct nvme_tcp_request async_req;
131 	u32			io_queues[HCTX_MAX_TYPES];
132 };
133 
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140 
141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 {
143 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
144 }
145 
146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 {
148 	return queue - queue->ctrl->queues;
149 }
150 
151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 {
153 	u32 queue_idx = nvme_tcp_queue_id(queue);
154 
155 	if (queue_idx == 0)
156 		return queue->ctrl->admin_tag_set.tags[queue_idx];
157 	return queue->ctrl->tag_set.tags[queue_idx - 1];
158 }
159 
160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 {
162 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
163 }
164 
165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 {
167 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
168 }
169 
170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 {
172 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174 
175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 {
177 	return req == &req->queue->ctrl->async_req;
178 }
179 
180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
181 {
182 	struct request *rq;
183 
184 	if (unlikely(nvme_tcp_async_req(req)))
185 		return false; /* async events don't have a request */
186 
187 	rq = blk_mq_rq_from_pdu(req);
188 
189 	return rq_data_dir(rq) == WRITE && req->data_len &&
190 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
191 }
192 
193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 {
195 	return req->iter.bvec->bv_page;
196 }
197 
198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 {
200 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
201 }
202 
203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 {
205 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
206 			req->pdu_len - req->pdu_sent);
207 }
208 
209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
210 {
211 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
212 			req->pdu_len - req->pdu_sent : 0;
213 }
214 
215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
216 		int len)
217 {
218 	return nvme_tcp_pdu_data_left(req) <= len;
219 }
220 
221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
222 		unsigned int dir)
223 {
224 	struct request *rq = blk_mq_rq_from_pdu(req);
225 	struct bio_vec *vec;
226 	unsigned int size;
227 	int nr_bvec;
228 	size_t offset;
229 
230 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
231 		vec = &rq->special_vec;
232 		nr_bvec = 1;
233 		size = blk_rq_payload_bytes(rq);
234 		offset = 0;
235 	} else {
236 		struct bio *bio = req->curr_bio;
237 		struct bvec_iter bi;
238 		struct bio_vec bv;
239 
240 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
241 		nr_bvec = 0;
242 		bio_for_each_bvec(bv, bio, bi) {
243 			nr_bvec++;
244 		}
245 		size = bio->bi_iter.bi_size;
246 		offset = bio->bi_iter.bi_bvec_done;
247 	}
248 
249 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
250 	req->iter.iov_offset = offset;
251 }
252 
253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
254 		int len)
255 {
256 	req->data_sent += len;
257 	req->pdu_sent += len;
258 	iov_iter_advance(&req->iter, len);
259 	if (!iov_iter_count(&req->iter) &&
260 	    req->data_sent < req->data_len) {
261 		req->curr_bio = req->curr_bio->bi_next;
262 		nvme_tcp_init_iter(req, WRITE);
263 	}
264 }
265 
266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
267 {
268 	int ret;
269 
270 	/* drain the send queue as much as we can... */
271 	do {
272 		ret = nvme_tcp_try_send(queue);
273 	} while (ret > 0);
274 }
275 
276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
277 		bool sync, bool last)
278 {
279 	struct nvme_tcp_queue *queue = req->queue;
280 	bool empty;
281 
282 	empty = llist_add(&req->lentry, &queue->req_list) &&
283 		list_empty(&queue->send_list) && !queue->request;
284 
285 	/*
286 	 * if we're the first on the send_list and we can try to send
287 	 * directly, otherwise queue io_work. Also, only do that if we
288 	 * are on the same cpu, so we don't introduce contention.
289 	 */
290 	if (queue->io_cpu == __smp_processor_id() &&
291 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
292 		queue->more_requests = !last;
293 		nvme_tcp_send_all(queue);
294 		queue->more_requests = false;
295 		mutex_unlock(&queue->send_mutex);
296 	} else if (last) {
297 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
298 	}
299 }
300 
301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
302 {
303 	struct nvme_tcp_request *req;
304 	struct llist_node *node;
305 
306 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
307 		req = llist_entry(node, struct nvme_tcp_request, lentry);
308 		list_add(&req->entry, &queue->send_list);
309 	}
310 }
311 
312 static inline struct nvme_tcp_request *
313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
314 {
315 	struct nvme_tcp_request *req;
316 
317 	req = list_first_entry_or_null(&queue->send_list,
318 			struct nvme_tcp_request, entry);
319 	if (!req) {
320 		nvme_tcp_process_req_list(queue);
321 		req = list_first_entry_or_null(&queue->send_list,
322 				struct nvme_tcp_request, entry);
323 		if (unlikely(!req))
324 			return NULL;
325 	}
326 
327 	list_del(&req->entry);
328 	return req;
329 }
330 
331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
332 		__le32 *dgst)
333 {
334 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
335 	crypto_ahash_final(hash);
336 }
337 
338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
339 		struct page *page, off_t off, size_t len)
340 {
341 	struct scatterlist sg;
342 
343 	sg_init_marker(&sg, 1);
344 	sg_set_page(&sg, page, len, off);
345 	ahash_request_set_crypt(hash, &sg, NULL, len);
346 	crypto_ahash_update(hash);
347 }
348 
349 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
350 		void *pdu, size_t len)
351 {
352 	struct scatterlist sg;
353 
354 	sg_init_one(&sg, pdu, len);
355 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
356 	crypto_ahash_digest(hash);
357 }
358 
359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
360 		void *pdu, size_t pdu_len)
361 {
362 	struct nvme_tcp_hdr *hdr = pdu;
363 	__le32 recv_digest;
364 	__le32 exp_digest;
365 
366 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
367 		dev_err(queue->ctrl->ctrl.device,
368 			"queue %d: header digest flag is cleared\n",
369 			nvme_tcp_queue_id(queue));
370 		return -EPROTO;
371 	}
372 
373 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
374 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
375 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
376 	if (recv_digest != exp_digest) {
377 		dev_err(queue->ctrl->ctrl.device,
378 			"header digest error: recv %#x expected %#x\n",
379 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
380 		return -EIO;
381 	}
382 
383 	return 0;
384 }
385 
386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
387 {
388 	struct nvme_tcp_hdr *hdr = pdu;
389 	u8 digest_len = nvme_tcp_hdgst_len(queue);
390 	u32 len;
391 
392 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
393 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
394 
395 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
396 		dev_err(queue->ctrl->ctrl.device,
397 			"queue %d: data digest flag is cleared\n",
398 		nvme_tcp_queue_id(queue));
399 		return -EPROTO;
400 	}
401 	crypto_ahash_init(queue->rcv_hash);
402 
403 	return 0;
404 }
405 
406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
407 		struct request *rq, unsigned int hctx_idx)
408 {
409 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
410 
411 	page_frag_free(req->pdu);
412 }
413 
414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
415 		struct request *rq, unsigned int hctx_idx,
416 		unsigned int numa_node)
417 {
418 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
419 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
420 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
421 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
422 	u8 hdgst = nvme_tcp_hdgst_len(queue);
423 
424 	req->pdu = page_frag_alloc(&queue->pf_cache,
425 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
426 		GFP_KERNEL | __GFP_ZERO);
427 	if (!req->pdu)
428 		return -ENOMEM;
429 
430 	req->queue = queue;
431 	nvme_req(rq)->ctrl = &ctrl->ctrl;
432 
433 	return 0;
434 }
435 
436 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
437 		unsigned int hctx_idx)
438 {
439 	struct nvme_tcp_ctrl *ctrl = data;
440 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
441 
442 	hctx->driver_data = queue;
443 	return 0;
444 }
445 
446 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
447 		unsigned int hctx_idx)
448 {
449 	struct nvme_tcp_ctrl *ctrl = data;
450 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
451 
452 	hctx->driver_data = queue;
453 	return 0;
454 }
455 
456 static enum nvme_tcp_recv_state
457 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
458 {
459 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
460 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
461 		NVME_TCP_RECV_DATA;
462 }
463 
464 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
465 {
466 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
467 				nvme_tcp_hdgst_len(queue);
468 	queue->pdu_offset = 0;
469 	queue->data_remaining = -1;
470 	queue->ddgst_remaining = 0;
471 }
472 
473 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
474 {
475 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
476 		return;
477 
478 	dev_warn(ctrl->device, "starting error recovery\n");
479 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
480 }
481 
482 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
483 		struct nvme_completion *cqe)
484 {
485 	struct request *rq;
486 
487 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
488 	if (!rq) {
489 		dev_err(queue->ctrl->ctrl.device,
490 			"queue %d tag 0x%x not found\n",
491 			nvme_tcp_queue_id(queue), cqe->command_id);
492 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
493 		return -EINVAL;
494 	}
495 
496 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
497 		nvme_complete_rq(rq);
498 	queue->nr_cqe++;
499 
500 	return 0;
501 }
502 
503 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
504 		struct nvme_tcp_data_pdu *pdu)
505 {
506 	struct request *rq;
507 
508 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
509 	if (!rq) {
510 		dev_err(queue->ctrl->ctrl.device,
511 			"queue %d tag %#x not found\n",
512 			nvme_tcp_queue_id(queue), pdu->command_id);
513 		return -ENOENT;
514 	}
515 
516 	if (!blk_rq_payload_bytes(rq)) {
517 		dev_err(queue->ctrl->ctrl.device,
518 			"queue %d tag %#x unexpected data\n",
519 			nvme_tcp_queue_id(queue), rq->tag);
520 		return -EIO;
521 	}
522 
523 	queue->data_remaining = le32_to_cpu(pdu->data_length);
524 
525 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
526 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
527 		dev_err(queue->ctrl->ctrl.device,
528 			"queue %d tag %#x SUCCESS set but not last PDU\n",
529 			nvme_tcp_queue_id(queue), rq->tag);
530 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
531 		return -EPROTO;
532 	}
533 
534 	return 0;
535 }
536 
537 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
538 		struct nvme_tcp_rsp_pdu *pdu)
539 {
540 	struct nvme_completion *cqe = &pdu->cqe;
541 	int ret = 0;
542 
543 	/*
544 	 * AEN requests are special as they don't time out and can
545 	 * survive any kind of queue freeze and often don't respond to
546 	 * aborts.  We don't even bother to allocate a struct request
547 	 * for them but rather special case them here.
548 	 */
549 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
550 				     cqe->command_id)))
551 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
552 				&cqe->result);
553 	else
554 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
555 
556 	return ret;
557 }
558 
559 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
560 		struct nvme_tcp_r2t_pdu *pdu)
561 {
562 	struct nvme_tcp_data_pdu *data = req->pdu;
563 	struct nvme_tcp_queue *queue = req->queue;
564 	struct request *rq = blk_mq_rq_from_pdu(req);
565 	u8 hdgst = nvme_tcp_hdgst_len(queue);
566 	u8 ddgst = nvme_tcp_ddgst_len(queue);
567 
568 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
569 	req->pdu_sent = 0;
570 
571 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
572 		dev_err(queue->ctrl->ctrl.device,
573 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
574 			rq->tag, req->pdu_len, req->data_len,
575 			req->data_sent);
576 		return -EPROTO;
577 	}
578 
579 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
580 		dev_err(queue->ctrl->ctrl.device,
581 			"req %d unexpected r2t offset %u (expected %zu)\n",
582 			rq->tag, le32_to_cpu(pdu->r2t_offset),
583 			req->data_sent);
584 		return -EPROTO;
585 	}
586 
587 	memset(data, 0, sizeof(*data));
588 	data->hdr.type = nvme_tcp_h2c_data;
589 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
590 	if (queue->hdr_digest)
591 		data->hdr.flags |= NVME_TCP_F_HDGST;
592 	if (queue->data_digest)
593 		data->hdr.flags |= NVME_TCP_F_DDGST;
594 	data->hdr.hlen = sizeof(*data);
595 	data->hdr.pdo = data->hdr.hlen + hdgst;
596 	data->hdr.plen =
597 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
598 	data->ttag = pdu->ttag;
599 	data->command_id = rq->tag;
600 	data->data_offset = cpu_to_le32(req->data_sent);
601 	data->data_length = cpu_to_le32(req->pdu_len);
602 	return 0;
603 }
604 
605 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
606 		struct nvme_tcp_r2t_pdu *pdu)
607 {
608 	struct nvme_tcp_request *req;
609 	struct request *rq;
610 	int ret;
611 
612 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
613 	if (!rq) {
614 		dev_err(queue->ctrl->ctrl.device,
615 			"queue %d tag %#x not found\n",
616 			nvme_tcp_queue_id(queue), pdu->command_id);
617 		return -ENOENT;
618 	}
619 	req = blk_mq_rq_to_pdu(rq);
620 
621 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
622 	if (unlikely(ret))
623 		return ret;
624 
625 	req->state = NVME_TCP_SEND_H2C_PDU;
626 	req->offset = 0;
627 
628 	nvme_tcp_queue_request(req, false, true);
629 
630 	return 0;
631 }
632 
633 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
634 		unsigned int *offset, size_t *len)
635 {
636 	struct nvme_tcp_hdr *hdr;
637 	char *pdu = queue->pdu;
638 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
639 	int ret;
640 
641 	ret = skb_copy_bits(skb, *offset,
642 		&pdu[queue->pdu_offset], rcv_len);
643 	if (unlikely(ret))
644 		return ret;
645 
646 	queue->pdu_remaining -= rcv_len;
647 	queue->pdu_offset += rcv_len;
648 	*offset += rcv_len;
649 	*len -= rcv_len;
650 	if (queue->pdu_remaining)
651 		return 0;
652 
653 	hdr = queue->pdu;
654 	if (queue->hdr_digest) {
655 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
656 		if (unlikely(ret))
657 			return ret;
658 	}
659 
660 
661 	if (queue->data_digest) {
662 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
663 		if (unlikely(ret))
664 			return ret;
665 	}
666 
667 	switch (hdr->type) {
668 	case nvme_tcp_c2h_data:
669 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
670 	case nvme_tcp_rsp:
671 		nvme_tcp_init_recv_ctx(queue);
672 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
673 	case nvme_tcp_r2t:
674 		nvme_tcp_init_recv_ctx(queue);
675 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
676 	default:
677 		dev_err(queue->ctrl->ctrl.device,
678 			"unsupported pdu type (%d)\n", hdr->type);
679 		return -EINVAL;
680 	}
681 }
682 
683 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
684 {
685 	union nvme_result res = {};
686 
687 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
688 		nvme_complete_rq(rq);
689 }
690 
691 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
692 			      unsigned int *offset, size_t *len)
693 {
694 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
695 	struct nvme_tcp_request *req;
696 	struct request *rq;
697 
698 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
699 	if (!rq) {
700 		dev_err(queue->ctrl->ctrl.device,
701 			"queue %d tag %#x not found\n",
702 			nvme_tcp_queue_id(queue), pdu->command_id);
703 		return -ENOENT;
704 	}
705 	req = blk_mq_rq_to_pdu(rq);
706 
707 	while (true) {
708 		int recv_len, ret;
709 
710 		recv_len = min_t(size_t, *len, queue->data_remaining);
711 		if (!recv_len)
712 			break;
713 
714 		if (!iov_iter_count(&req->iter)) {
715 			req->curr_bio = req->curr_bio->bi_next;
716 
717 			/*
718 			 * If we don`t have any bios it means that controller
719 			 * sent more data than we requested, hence error
720 			 */
721 			if (!req->curr_bio) {
722 				dev_err(queue->ctrl->ctrl.device,
723 					"queue %d no space in request %#x",
724 					nvme_tcp_queue_id(queue), rq->tag);
725 				nvme_tcp_init_recv_ctx(queue);
726 				return -EIO;
727 			}
728 			nvme_tcp_init_iter(req, READ);
729 		}
730 
731 		/* we can read only from what is left in this bio */
732 		recv_len = min_t(size_t, recv_len,
733 				iov_iter_count(&req->iter));
734 
735 		if (queue->data_digest)
736 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
737 				&req->iter, recv_len, queue->rcv_hash);
738 		else
739 			ret = skb_copy_datagram_iter(skb, *offset,
740 					&req->iter, recv_len);
741 		if (ret) {
742 			dev_err(queue->ctrl->ctrl.device,
743 				"queue %d failed to copy request %#x data",
744 				nvme_tcp_queue_id(queue), rq->tag);
745 			return ret;
746 		}
747 
748 		*len -= recv_len;
749 		*offset += recv_len;
750 		queue->data_remaining -= recv_len;
751 	}
752 
753 	if (!queue->data_remaining) {
754 		if (queue->data_digest) {
755 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
756 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
757 		} else {
758 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
759 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
760 				queue->nr_cqe++;
761 			}
762 			nvme_tcp_init_recv_ctx(queue);
763 		}
764 	}
765 
766 	return 0;
767 }
768 
769 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
770 		struct sk_buff *skb, unsigned int *offset, size_t *len)
771 {
772 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
773 	char *ddgst = (char *)&queue->recv_ddgst;
774 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
775 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
776 	int ret;
777 
778 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
779 	if (unlikely(ret))
780 		return ret;
781 
782 	queue->ddgst_remaining -= recv_len;
783 	*offset += recv_len;
784 	*len -= recv_len;
785 	if (queue->ddgst_remaining)
786 		return 0;
787 
788 	if (queue->recv_ddgst != queue->exp_ddgst) {
789 		dev_err(queue->ctrl->ctrl.device,
790 			"data digest error: recv %#x expected %#x\n",
791 			le32_to_cpu(queue->recv_ddgst),
792 			le32_to_cpu(queue->exp_ddgst));
793 		return -EIO;
794 	}
795 
796 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
797 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
798 						pdu->command_id);
799 
800 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
801 		queue->nr_cqe++;
802 	}
803 
804 	nvme_tcp_init_recv_ctx(queue);
805 	return 0;
806 }
807 
808 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
809 			     unsigned int offset, size_t len)
810 {
811 	struct nvme_tcp_queue *queue = desc->arg.data;
812 	size_t consumed = len;
813 	int result;
814 
815 	while (len) {
816 		switch (nvme_tcp_recv_state(queue)) {
817 		case NVME_TCP_RECV_PDU:
818 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
819 			break;
820 		case NVME_TCP_RECV_DATA:
821 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
822 			break;
823 		case NVME_TCP_RECV_DDGST:
824 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
825 			break;
826 		default:
827 			result = -EFAULT;
828 		}
829 		if (result) {
830 			dev_err(queue->ctrl->ctrl.device,
831 				"receive failed:  %d\n", result);
832 			queue->rd_enabled = false;
833 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
834 			return result;
835 		}
836 	}
837 
838 	return consumed;
839 }
840 
841 static void nvme_tcp_data_ready(struct sock *sk)
842 {
843 	struct nvme_tcp_queue *queue;
844 
845 	read_lock_bh(&sk->sk_callback_lock);
846 	queue = sk->sk_user_data;
847 	if (likely(queue && queue->rd_enabled) &&
848 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
849 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
850 	read_unlock_bh(&sk->sk_callback_lock);
851 }
852 
853 static void nvme_tcp_write_space(struct sock *sk)
854 {
855 	struct nvme_tcp_queue *queue;
856 
857 	read_lock_bh(&sk->sk_callback_lock);
858 	queue = sk->sk_user_data;
859 	if (likely(queue && sk_stream_is_writeable(sk))) {
860 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
861 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
862 	}
863 	read_unlock_bh(&sk->sk_callback_lock);
864 }
865 
866 static void nvme_tcp_state_change(struct sock *sk)
867 {
868 	struct nvme_tcp_queue *queue;
869 
870 	read_lock(&sk->sk_callback_lock);
871 	queue = sk->sk_user_data;
872 	if (!queue)
873 		goto done;
874 
875 	switch (sk->sk_state) {
876 	case TCP_CLOSE:
877 	case TCP_CLOSE_WAIT:
878 	case TCP_LAST_ACK:
879 	case TCP_FIN_WAIT1:
880 	case TCP_FIN_WAIT2:
881 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
882 		break;
883 	default:
884 		dev_info(queue->ctrl->ctrl.device,
885 			"queue %d socket state %d\n",
886 			nvme_tcp_queue_id(queue), sk->sk_state);
887 	}
888 
889 	queue->state_change(sk);
890 done:
891 	read_unlock(&sk->sk_callback_lock);
892 }
893 
894 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
895 {
896 	return !list_empty(&queue->send_list) ||
897 		!llist_empty(&queue->req_list) || queue->more_requests;
898 }
899 
900 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
901 {
902 	queue->request = NULL;
903 }
904 
905 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
906 {
907 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
908 }
909 
910 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
911 {
912 	struct nvme_tcp_queue *queue = req->queue;
913 
914 	while (true) {
915 		struct page *page = nvme_tcp_req_cur_page(req);
916 		size_t offset = nvme_tcp_req_cur_offset(req);
917 		size_t len = nvme_tcp_req_cur_length(req);
918 		bool last = nvme_tcp_pdu_last_send(req, len);
919 		int ret, flags = MSG_DONTWAIT;
920 
921 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
922 			flags |= MSG_EOR;
923 		else
924 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
925 
926 		if (sendpage_ok(page)) {
927 			ret = kernel_sendpage(queue->sock, page, offset, len,
928 					flags);
929 		} else {
930 			ret = sock_no_sendpage(queue->sock, page, offset, len,
931 					flags);
932 		}
933 		if (ret <= 0)
934 			return ret;
935 
936 		nvme_tcp_advance_req(req, ret);
937 		if (queue->data_digest)
938 			nvme_tcp_ddgst_update(queue->snd_hash, page,
939 					offset, ret);
940 
941 		/* fully successful last write*/
942 		if (last && ret == len) {
943 			if (queue->data_digest) {
944 				nvme_tcp_ddgst_final(queue->snd_hash,
945 					&req->ddgst);
946 				req->state = NVME_TCP_SEND_DDGST;
947 				req->offset = 0;
948 			} else {
949 				nvme_tcp_done_send_req(queue);
950 			}
951 			return 1;
952 		}
953 	}
954 	return -EAGAIN;
955 }
956 
957 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
958 {
959 	struct nvme_tcp_queue *queue = req->queue;
960 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
961 	bool inline_data = nvme_tcp_has_inline_data(req);
962 	u8 hdgst = nvme_tcp_hdgst_len(queue);
963 	int len = sizeof(*pdu) + hdgst - req->offset;
964 	int flags = MSG_DONTWAIT;
965 	int ret;
966 
967 	if (inline_data || nvme_tcp_queue_more(queue))
968 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
969 	else
970 		flags |= MSG_EOR;
971 
972 	if (queue->hdr_digest && !req->offset)
973 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
974 
975 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
976 			offset_in_page(pdu) + req->offset, len,  flags);
977 	if (unlikely(ret <= 0))
978 		return ret;
979 
980 	len -= ret;
981 	if (!len) {
982 		if (inline_data) {
983 			req->state = NVME_TCP_SEND_DATA;
984 			if (queue->data_digest)
985 				crypto_ahash_init(queue->snd_hash);
986 		} else {
987 			nvme_tcp_done_send_req(queue);
988 		}
989 		return 1;
990 	}
991 	req->offset += ret;
992 
993 	return -EAGAIN;
994 }
995 
996 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
997 {
998 	struct nvme_tcp_queue *queue = req->queue;
999 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1000 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1001 	int len = sizeof(*pdu) - req->offset + hdgst;
1002 	int ret;
1003 
1004 	if (queue->hdr_digest && !req->offset)
1005 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1006 
1007 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1008 			offset_in_page(pdu) + req->offset, len,
1009 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1010 	if (unlikely(ret <= 0))
1011 		return ret;
1012 
1013 	len -= ret;
1014 	if (!len) {
1015 		req->state = NVME_TCP_SEND_DATA;
1016 		if (queue->data_digest)
1017 			crypto_ahash_init(queue->snd_hash);
1018 		return 1;
1019 	}
1020 	req->offset += ret;
1021 
1022 	return -EAGAIN;
1023 }
1024 
1025 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1026 {
1027 	struct nvme_tcp_queue *queue = req->queue;
1028 	int ret;
1029 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1030 	struct kvec iov = {
1031 		.iov_base = &req->ddgst + req->offset,
1032 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1033 	};
1034 
1035 	if (nvme_tcp_queue_more(queue))
1036 		msg.msg_flags |= MSG_MORE;
1037 	else
1038 		msg.msg_flags |= MSG_EOR;
1039 
1040 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1041 	if (unlikely(ret <= 0))
1042 		return ret;
1043 
1044 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1045 		nvme_tcp_done_send_req(queue);
1046 		return 1;
1047 	}
1048 
1049 	req->offset += ret;
1050 	return -EAGAIN;
1051 }
1052 
1053 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1054 {
1055 	struct nvme_tcp_request *req;
1056 	int ret = 1;
1057 
1058 	if (!queue->request) {
1059 		queue->request = nvme_tcp_fetch_request(queue);
1060 		if (!queue->request)
1061 			return 0;
1062 	}
1063 	req = queue->request;
1064 
1065 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1066 		ret = nvme_tcp_try_send_cmd_pdu(req);
1067 		if (ret <= 0)
1068 			goto done;
1069 		if (!nvme_tcp_has_inline_data(req))
1070 			return ret;
1071 	}
1072 
1073 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1074 		ret = nvme_tcp_try_send_data_pdu(req);
1075 		if (ret <= 0)
1076 			goto done;
1077 	}
1078 
1079 	if (req->state == NVME_TCP_SEND_DATA) {
1080 		ret = nvme_tcp_try_send_data(req);
1081 		if (ret <= 0)
1082 			goto done;
1083 	}
1084 
1085 	if (req->state == NVME_TCP_SEND_DDGST)
1086 		ret = nvme_tcp_try_send_ddgst(req);
1087 done:
1088 	if (ret == -EAGAIN) {
1089 		ret = 0;
1090 	} else if (ret < 0) {
1091 		dev_err(queue->ctrl->ctrl.device,
1092 			"failed to send request %d\n", ret);
1093 		if (ret != -EPIPE && ret != -ECONNRESET)
1094 			nvme_tcp_fail_request(queue->request);
1095 		nvme_tcp_done_send_req(queue);
1096 	}
1097 	return ret;
1098 }
1099 
1100 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1101 {
1102 	struct socket *sock = queue->sock;
1103 	struct sock *sk = sock->sk;
1104 	read_descriptor_t rd_desc;
1105 	int consumed;
1106 
1107 	rd_desc.arg.data = queue;
1108 	rd_desc.count = 1;
1109 	lock_sock(sk);
1110 	queue->nr_cqe = 0;
1111 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1112 	release_sock(sk);
1113 	return consumed;
1114 }
1115 
1116 static void nvme_tcp_io_work(struct work_struct *w)
1117 {
1118 	struct nvme_tcp_queue *queue =
1119 		container_of(w, struct nvme_tcp_queue, io_work);
1120 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1121 
1122 	do {
1123 		bool pending = false;
1124 		int result;
1125 
1126 		if (mutex_trylock(&queue->send_mutex)) {
1127 			result = nvme_tcp_try_send(queue);
1128 			mutex_unlock(&queue->send_mutex);
1129 			if (result > 0)
1130 				pending = true;
1131 			else if (unlikely(result < 0))
1132 				break;
1133 		}
1134 
1135 		result = nvme_tcp_try_recv(queue);
1136 		if (result > 0)
1137 			pending = true;
1138 		else if (unlikely(result < 0))
1139 			return;
1140 
1141 		if (!pending)
1142 			return;
1143 
1144 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1145 
1146 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1147 }
1148 
1149 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1150 {
1151 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1152 
1153 	ahash_request_free(queue->rcv_hash);
1154 	ahash_request_free(queue->snd_hash);
1155 	crypto_free_ahash(tfm);
1156 }
1157 
1158 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1159 {
1160 	struct crypto_ahash *tfm;
1161 
1162 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1163 	if (IS_ERR(tfm))
1164 		return PTR_ERR(tfm);
1165 
1166 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1167 	if (!queue->snd_hash)
1168 		goto free_tfm;
1169 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1170 
1171 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1172 	if (!queue->rcv_hash)
1173 		goto free_snd_hash;
1174 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1175 
1176 	return 0;
1177 free_snd_hash:
1178 	ahash_request_free(queue->snd_hash);
1179 free_tfm:
1180 	crypto_free_ahash(tfm);
1181 	return -ENOMEM;
1182 }
1183 
1184 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1185 {
1186 	struct nvme_tcp_request *async = &ctrl->async_req;
1187 
1188 	page_frag_free(async->pdu);
1189 }
1190 
1191 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1192 {
1193 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1194 	struct nvme_tcp_request *async = &ctrl->async_req;
1195 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1196 
1197 	async->pdu = page_frag_alloc(&queue->pf_cache,
1198 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1199 		GFP_KERNEL | __GFP_ZERO);
1200 	if (!async->pdu)
1201 		return -ENOMEM;
1202 
1203 	async->queue = &ctrl->queues[0];
1204 	return 0;
1205 }
1206 
1207 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1208 {
1209 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1210 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1211 
1212 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1213 		return;
1214 
1215 	if (queue->hdr_digest || queue->data_digest)
1216 		nvme_tcp_free_crypto(queue);
1217 
1218 	sock_release(queue->sock);
1219 	kfree(queue->pdu);
1220 	mutex_destroy(&queue->queue_lock);
1221 }
1222 
1223 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1224 {
1225 	struct nvme_tcp_icreq_pdu *icreq;
1226 	struct nvme_tcp_icresp_pdu *icresp;
1227 	struct msghdr msg = {};
1228 	struct kvec iov;
1229 	bool ctrl_hdgst, ctrl_ddgst;
1230 	int ret;
1231 
1232 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1233 	if (!icreq)
1234 		return -ENOMEM;
1235 
1236 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1237 	if (!icresp) {
1238 		ret = -ENOMEM;
1239 		goto free_icreq;
1240 	}
1241 
1242 	icreq->hdr.type = nvme_tcp_icreq;
1243 	icreq->hdr.hlen = sizeof(*icreq);
1244 	icreq->hdr.pdo = 0;
1245 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1246 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1247 	icreq->maxr2t = 0; /* single inflight r2t supported */
1248 	icreq->hpda = 0; /* no alignment constraint */
1249 	if (queue->hdr_digest)
1250 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1251 	if (queue->data_digest)
1252 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1253 
1254 	iov.iov_base = icreq;
1255 	iov.iov_len = sizeof(*icreq);
1256 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1257 	if (ret < 0)
1258 		goto free_icresp;
1259 
1260 	memset(&msg, 0, sizeof(msg));
1261 	iov.iov_base = icresp;
1262 	iov.iov_len = sizeof(*icresp);
1263 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1264 			iov.iov_len, msg.msg_flags);
1265 	if (ret < 0)
1266 		goto free_icresp;
1267 
1268 	ret = -EINVAL;
1269 	if (icresp->hdr.type != nvme_tcp_icresp) {
1270 		pr_err("queue %d: bad type returned %d\n",
1271 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1272 		goto free_icresp;
1273 	}
1274 
1275 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1276 		pr_err("queue %d: bad pdu length returned %d\n",
1277 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1278 		goto free_icresp;
1279 	}
1280 
1281 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1282 		pr_err("queue %d: bad pfv returned %d\n",
1283 			nvme_tcp_queue_id(queue), icresp->pfv);
1284 		goto free_icresp;
1285 	}
1286 
1287 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1288 	if ((queue->data_digest && !ctrl_ddgst) ||
1289 	    (!queue->data_digest && ctrl_ddgst)) {
1290 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1291 			nvme_tcp_queue_id(queue),
1292 			queue->data_digest ? "enabled" : "disabled",
1293 			ctrl_ddgst ? "enabled" : "disabled");
1294 		goto free_icresp;
1295 	}
1296 
1297 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1298 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1299 	    (!queue->hdr_digest && ctrl_hdgst)) {
1300 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1301 			nvme_tcp_queue_id(queue),
1302 			queue->hdr_digest ? "enabled" : "disabled",
1303 			ctrl_hdgst ? "enabled" : "disabled");
1304 		goto free_icresp;
1305 	}
1306 
1307 	if (icresp->cpda != 0) {
1308 		pr_err("queue %d: unsupported cpda returned %d\n",
1309 			nvme_tcp_queue_id(queue), icresp->cpda);
1310 		goto free_icresp;
1311 	}
1312 
1313 	ret = 0;
1314 free_icresp:
1315 	kfree(icresp);
1316 free_icreq:
1317 	kfree(icreq);
1318 	return ret;
1319 }
1320 
1321 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1322 {
1323 	return nvme_tcp_queue_id(queue) == 0;
1324 }
1325 
1326 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1327 {
1328 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1329 	int qid = nvme_tcp_queue_id(queue);
1330 
1331 	return !nvme_tcp_admin_queue(queue) &&
1332 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1333 }
1334 
1335 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1336 {
1337 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1338 	int qid = nvme_tcp_queue_id(queue);
1339 
1340 	return !nvme_tcp_admin_queue(queue) &&
1341 		!nvme_tcp_default_queue(queue) &&
1342 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1343 			  ctrl->io_queues[HCTX_TYPE_READ];
1344 }
1345 
1346 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1347 {
1348 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1349 	int qid = nvme_tcp_queue_id(queue);
1350 
1351 	return !nvme_tcp_admin_queue(queue) &&
1352 		!nvme_tcp_default_queue(queue) &&
1353 		!nvme_tcp_read_queue(queue) &&
1354 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1355 			  ctrl->io_queues[HCTX_TYPE_READ] +
1356 			  ctrl->io_queues[HCTX_TYPE_POLL];
1357 }
1358 
1359 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1360 {
1361 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1362 	int qid = nvme_tcp_queue_id(queue);
1363 	int n = 0;
1364 
1365 	if (nvme_tcp_default_queue(queue))
1366 		n = qid - 1;
1367 	else if (nvme_tcp_read_queue(queue))
1368 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1369 	else if (nvme_tcp_poll_queue(queue))
1370 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1371 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1372 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1373 }
1374 
1375 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1376 		int qid, size_t queue_size)
1377 {
1378 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1379 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1380 	int ret, rcv_pdu_size;
1381 
1382 	mutex_init(&queue->queue_lock);
1383 	queue->ctrl = ctrl;
1384 	init_llist_head(&queue->req_list);
1385 	INIT_LIST_HEAD(&queue->send_list);
1386 	mutex_init(&queue->send_mutex);
1387 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1388 	queue->queue_size = queue_size;
1389 
1390 	if (qid > 0)
1391 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1392 	else
1393 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1394 						NVME_TCP_ADMIN_CCSZ;
1395 
1396 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1397 			IPPROTO_TCP, &queue->sock);
1398 	if (ret) {
1399 		dev_err(nctrl->device,
1400 			"failed to create socket: %d\n", ret);
1401 		goto err_destroy_mutex;
1402 	}
1403 
1404 	/* Single syn retry */
1405 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1406 
1407 	/* Set TCP no delay */
1408 	tcp_sock_set_nodelay(queue->sock->sk);
1409 
1410 	/*
1411 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1412 	 * close. This is done to prevent stale data from being sent should
1413 	 * the network connection be restored before TCP times out.
1414 	 */
1415 	sock_no_linger(queue->sock->sk);
1416 
1417 	if (so_priority > 0)
1418 		sock_set_priority(queue->sock->sk, so_priority);
1419 
1420 	/* Set socket type of service */
1421 	if (nctrl->opts->tos >= 0)
1422 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1423 
1424 	/* Set 10 seconds timeout for icresp recvmsg */
1425 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1426 
1427 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1428 	nvme_tcp_set_queue_io_cpu(queue);
1429 	queue->request = NULL;
1430 	queue->data_remaining = 0;
1431 	queue->ddgst_remaining = 0;
1432 	queue->pdu_remaining = 0;
1433 	queue->pdu_offset = 0;
1434 	sk_set_memalloc(queue->sock->sk);
1435 
1436 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1437 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1438 			sizeof(ctrl->src_addr));
1439 		if (ret) {
1440 			dev_err(nctrl->device,
1441 				"failed to bind queue %d socket %d\n",
1442 				qid, ret);
1443 			goto err_sock;
1444 		}
1445 	}
1446 
1447 	queue->hdr_digest = nctrl->opts->hdr_digest;
1448 	queue->data_digest = nctrl->opts->data_digest;
1449 	if (queue->hdr_digest || queue->data_digest) {
1450 		ret = nvme_tcp_alloc_crypto(queue);
1451 		if (ret) {
1452 			dev_err(nctrl->device,
1453 				"failed to allocate queue %d crypto\n", qid);
1454 			goto err_sock;
1455 		}
1456 	}
1457 
1458 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1459 			nvme_tcp_hdgst_len(queue);
1460 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1461 	if (!queue->pdu) {
1462 		ret = -ENOMEM;
1463 		goto err_crypto;
1464 	}
1465 
1466 	dev_dbg(nctrl->device, "connecting queue %d\n",
1467 			nvme_tcp_queue_id(queue));
1468 
1469 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1470 		sizeof(ctrl->addr), 0);
1471 	if (ret) {
1472 		dev_err(nctrl->device,
1473 			"failed to connect socket: %d\n", ret);
1474 		goto err_rcv_pdu;
1475 	}
1476 
1477 	ret = nvme_tcp_init_connection(queue);
1478 	if (ret)
1479 		goto err_init_connect;
1480 
1481 	queue->rd_enabled = true;
1482 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1483 	nvme_tcp_init_recv_ctx(queue);
1484 
1485 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1486 	queue->sock->sk->sk_user_data = queue;
1487 	queue->state_change = queue->sock->sk->sk_state_change;
1488 	queue->data_ready = queue->sock->sk->sk_data_ready;
1489 	queue->write_space = queue->sock->sk->sk_write_space;
1490 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1491 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1492 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1493 #ifdef CONFIG_NET_RX_BUSY_POLL
1494 	queue->sock->sk->sk_ll_usec = 1;
1495 #endif
1496 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1497 
1498 	return 0;
1499 
1500 err_init_connect:
1501 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1502 err_rcv_pdu:
1503 	kfree(queue->pdu);
1504 err_crypto:
1505 	if (queue->hdr_digest || queue->data_digest)
1506 		nvme_tcp_free_crypto(queue);
1507 err_sock:
1508 	sock_release(queue->sock);
1509 	queue->sock = NULL;
1510 err_destroy_mutex:
1511 	mutex_destroy(&queue->queue_lock);
1512 	return ret;
1513 }
1514 
1515 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1516 {
1517 	struct socket *sock = queue->sock;
1518 
1519 	write_lock_bh(&sock->sk->sk_callback_lock);
1520 	sock->sk->sk_user_data  = NULL;
1521 	sock->sk->sk_data_ready = queue->data_ready;
1522 	sock->sk->sk_state_change = queue->state_change;
1523 	sock->sk->sk_write_space  = queue->write_space;
1524 	write_unlock_bh(&sock->sk->sk_callback_lock);
1525 }
1526 
1527 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1528 {
1529 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1530 	nvme_tcp_restore_sock_calls(queue);
1531 	cancel_work_sync(&queue->io_work);
1532 }
1533 
1534 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1535 {
1536 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1537 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1538 
1539 	mutex_lock(&queue->queue_lock);
1540 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1541 		__nvme_tcp_stop_queue(queue);
1542 	mutex_unlock(&queue->queue_lock);
1543 }
1544 
1545 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1546 {
1547 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1548 	int ret;
1549 
1550 	if (idx)
1551 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1552 	else
1553 		ret = nvmf_connect_admin_queue(nctrl);
1554 
1555 	if (!ret) {
1556 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1557 	} else {
1558 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1559 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1560 		dev_err(nctrl->device,
1561 			"failed to connect queue: %d ret=%d\n", idx, ret);
1562 	}
1563 	return ret;
1564 }
1565 
1566 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1567 		bool admin)
1568 {
1569 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1570 	struct blk_mq_tag_set *set;
1571 	int ret;
1572 
1573 	if (admin) {
1574 		set = &ctrl->admin_tag_set;
1575 		memset(set, 0, sizeof(*set));
1576 		set->ops = &nvme_tcp_admin_mq_ops;
1577 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1578 		set->reserved_tags = 2; /* connect + keep-alive */
1579 		set->numa_node = nctrl->numa_node;
1580 		set->flags = BLK_MQ_F_BLOCKING;
1581 		set->cmd_size = sizeof(struct nvme_tcp_request);
1582 		set->driver_data = ctrl;
1583 		set->nr_hw_queues = 1;
1584 		set->timeout = NVME_ADMIN_TIMEOUT;
1585 	} else {
1586 		set = &ctrl->tag_set;
1587 		memset(set, 0, sizeof(*set));
1588 		set->ops = &nvme_tcp_mq_ops;
1589 		set->queue_depth = nctrl->sqsize + 1;
1590 		set->reserved_tags = 1; /* fabric connect */
1591 		set->numa_node = nctrl->numa_node;
1592 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1593 		set->cmd_size = sizeof(struct nvme_tcp_request);
1594 		set->driver_data = ctrl;
1595 		set->nr_hw_queues = nctrl->queue_count - 1;
1596 		set->timeout = NVME_IO_TIMEOUT;
1597 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1598 	}
1599 
1600 	ret = blk_mq_alloc_tag_set(set);
1601 	if (ret)
1602 		return ERR_PTR(ret);
1603 
1604 	return set;
1605 }
1606 
1607 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1608 {
1609 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1610 		cancel_work_sync(&ctrl->async_event_work);
1611 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1612 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1613 	}
1614 
1615 	nvme_tcp_free_queue(ctrl, 0);
1616 }
1617 
1618 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1619 {
1620 	int i;
1621 
1622 	for (i = 1; i < ctrl->queue_count; i++)
1623 		nvme_tcp_free_queue(ctrl, i);
1624 }
1625 
1626 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1627 {
1628 	int i;
1629 
1630 	for (i = 1; i < ctrl->queue_count; i++)
1631 		nvme_tcp_stop_queue(ctrl, i);
1632 }
1633 
1634 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1635 {
1636 	int i, ret = 0;
1637 
1638 	for (i = 1; i < ctrl->queue_count; i++) {
1639 		ret = nvme_tcp_start_queue(ctrl, i);
1640 		if (ret)
1641 			goto out_stop_queues;
1642 	}
1643 
1644 	return 0;
1645 
1646 out_stop_queues:
1647 	for (i--; i >= 1; i--)
1648 		nvme_tcp_stop_queue(ctrl, i);
1649 	return ret;
1650 }
1651 
1652 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1653 {
1654 	int ret;
1655 
1656 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1657 	if (ret)
1658 		return ret;
1659 
1660 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1661 	if (ret)
1662 		goto out_free_queue;
1663 
1664 	return 0;
1665 
1666 out_free_queue:
1667 	nvme_tcp_free_queue(ctrl, 0);
1668 	return ret;
1669 }
1670 
1671 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1672 {
1673 	int i, ret;
1674 
1675 	for (i = 1; i < ctrl->queue_count; i++) {
1676 		ret = nvme_tcp_alloc_queue(ctrl, i,
1677 				ctrl->sqsize + 1);
1678 		if (ret)
1679 			goto out_free_queues;
1680 	}
1681 
1682 	return 0;
1683 
1684 out_free_queues:
1685 	for (i--; i >= 1; i--)
1686 		nvme_tcp_free_queue(ctrl, i);
1687 
1688 	return ret;
1689 }
1690 
1691 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1692 {
1693 	unsigned int nr_io_queues;
1694 
1695 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1696 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1697 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1698 
1699 	return nr_io_queues;
1700 }
1701 
1702 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1703 		unsigned int nr_io_queues)
1704 {
1705 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1706 	struct nvmf_ctrl_options *opts = nctrl->opts;
1707 
1708 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1709 		/*
1710 		 * separate read/write queues
1711 		 * hand out dedicated default queues only after we have
1712 		 * sufficient read queues.
1713 		 */
1714 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1715 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1716 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1717 			min(opts->nr_write_queues, nr_io_queues);
1718 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1719 	} else {
1720 		/*
1721 		 * shared read/write queues
1722 		 * either no write queues were requested, or we don't have
1723 		 * sufficient queue count to have dedicated default queues.
1724 		 */
1725 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1726 			min(opts->nr_io_queues, nr_io_queues);
1727 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1728 	}
1729 
1730 	if (opts->nr_poll_queues && nr_io_queues) {
1731 		/* map dedicated poll queues only if we have queues left */
1732 		ctrl->io_queues[HCTX_TYPE_POLL] =
1733 			min(opts->nr_poll_queues, nr_io_queues);
1734 	}
1735 }
1736 
1737 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1738 {
1739 	unsigned int nr_io_queues;
1740 	int ret;
1741 
1742 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1743 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1744 	if (ret)
1745 		return ret;
1746 
1747 	ctrl->queue_count = nr_io_queues + 1;
1748 	if (ctrl->queue_count < 2)
1749 		return 0;
1750 
1751 	dev_info(ctrl->device,
1752 		"creating %d I/O queues.\n", nr_io_queues);
1753 
1754 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1755 
1756 	return __nvme_tcp_alloc_io_queues(ctrl);
1757 }
1758 
1759 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1760 {
1761 	nvme_tcp_stop_io_queues(ctrl);
1762 	if (remove) {
1763 		blk_cleanup_queue(ctrl->connect_q);
1764 		blk_mq_free_tag_set(ctrl->tagset);
1765 	}
1766 	nvme_tcp_free_io_queues(ctrl);
1767 }
1768 
1769 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1770 {
1771 	int ret;
1772 
1773 	ret = nvme_tcp_alloc_io_queues(ctrl);
1774 	if (ret)
1775 		return ret;
1776 
1777 	if (new) {
1778 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1779 		if (IS_ERR(ctrl->tagset)) {
1780 			ret = PTR_ERR(ctrl->tagset);
1781 			goto out_free_io_queues;
1782 		}
1783 
1784 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1785 		if (IS_ERR(ctrl->connect_q)) {
1786 			ret = PTR_ERR(ctrl->connect_q);
1787 			goto out_free_tag_set;
1788 		}
1789 	}
1790 
1791 	ret = nvme_tcp_start_io_queues(ctrl);
1792 	if (ret)
1793 		goto out_cleanup_connect_q;
1794 
1795 	if (!new) {
1796 		nvme_start_queues(ctrl);
1797 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1798 			/*
1799 			 * If we timed out waiting for freeze we are likely to
1800 			 * be stuck.  Fail the controller initialization just
1801 			 * to be safe.
1802 			 */
1803 			ret = -ENODEV;
1804 			goto out_wait_freeze_timed_out;
1805 		}
1806 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1807 			ctrl->queue_count - 1);
1808 		nvme_unfreeze(ctrl);
1809 	}
1810 
1811 	return 0;
1812 
1813 out_wait_freeze_timed_out:
1814 	nvme_stop_queues(ctrl);
1815 	nvme_sync_io_queues(ctrl);
1816 	nvme_tcp_stop_io_queues(ctrl);
1817 out_cleanup_connect_q:
1818 	nvme_cancel_tagset(ctrl);
1819 	if (new)
1820 		blk_cleanup_queue(ctrl->connect_q);
1821 out_free_tag_set:
1822 	if (new)
1823 		blk_mq_free_tag_set(ctrl->tagset);
1824 out_free_io_queues:
1825 	nvme_tcp_free_io_queues(ctrl);
1826 	return ret;
1827 }
1828 
1829 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1830 {
1831 	nvme_tcp_stop_queue(ctrl, 0);
1832 	if (remove) {
1833 		blk_cleanup_queue(ctrl->admin_q);
1834 		blk_cleanup_queue(ctrl->fabrics_q);
1835 		blk_mq_free_tag_set(ctrl->admin_tagset);
1836 	}
1837 	nvme_tcp_free_admin_queue(ctrl);
1838 }
1839 
1840 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1841 {
1842 	int error;
1843 
1844 	error = nvme_tcp_alloc_admin_queue(ctrl);
1845 	if (error)
1846 		return error;
1847 
1848 	if (new) {
1849 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1850 		if (IS_ERR(ctrl->admin_tagset)) {
1851 			error = PTR_ERR(ctrl->admin_tagset);
1852 			goto out_free_queue;
1853 		}
1854 
1855 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1856 		if (IS_ERR(ctrl->fabrics_q)) {
1857 			error = PTR_ERR(ctrl->fabrics_q);
1858 			goto out_free_tagset;
1859 		}
1860 
1861 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1862 		if (IS_ERR(ctrl->admin_q)) {
1863 			error = PTR_ERR(ctrl->admin_q);
1864 			goto out_cleanup_fabrics_q;
1865 		}
1866 	}
1867 
1868 	error = nvme_tcp_start_queue(ctrl, 0);
1869 	if (error)
1870 		goto out_cleanup_queue;
1871 
1872 	error = nvme_enable_ctrl(ctrl);
1873 	if (error)
1874 		goto out_stop_queue;
1875 
1876 	blk_mq_unquiesce_queue(ctrl->admin_q);
1877 
1878 	error = nvme_init_identify(ctrl);
1879 	if (error)
1880 		goto out_quiesce_queue;
1881 
1882 	return 0;
1883 
1884 out_quiesce_queue:
1885 	blk_mq_quiesce_queue(ctrl->admin_q);
1886 	blk_sync_queue(ctrl->admin_q);
1887 out_stop_queue:
1888 	nvme_tcp_stop_queue(ctrl, 0);
1889 	nvme_cancel_admin_tagset(ctrl);
1890 out_cleanup_queue:
1891 	if (new)
1892 		blk_cleanup_queue(ctrl->admin_q);
1893 out_cleanup_fabrics_q:
1894 	if (new)
1895 		blk_cleanup_queue(ctrl->fabrics_q);
1896 out_free_tagset:
1897 	if (new)
1898 		blk_mq_free_tag_set(ctrl->admin_tagset);
1899 out_free_queue:
1900 	nvme_tcp_free_admin_queue(ctrl);
1901 	return error;
1902 }
1903 
1904 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1905 		bool remove)
1906 {
1907 	blk_mq_quiesce_queue(ctrl->admin_q);
1908 	blk_sync_queue(ctrl->admin_q);
1909 	nvme_tcp_stop_queue(ctrl, 0);
1910 	nvme_cancel_admin_tagset(ctrl);
1911 	if (remove)
1912 		blk_mq_unquiesce_queue(ctrl->admin_q);
1913 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1914 }
1915 
1916 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1917 		bool remove)
1918 {
1919 	if (ctrl->queue_count <= 1)
1920 		return;
1921 	blk_mq_quiesce_queue(ctrl->admin_q);
1922 	nvme_start_freeze(ctrl);
1923 	nvme_stop_queues(ctrl);
1924 	nvme_sync_io_queues(ctrl);
1925 	nvme_tcp_stop_io_queues(ctrl);
1926 	nvme_cancel_tagset(ctrl);
1927 	if (remove)
1928 		nvme_start_queues(ctrl);
1929 	nvme_tcp_destroy_io_queues(ctrl, remove);
1930 }
1931 
1932 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1933 {
1934 	/* If we are resetting/deleting then do nothing */
1935 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1936 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1937 			ctrl->state == NVME_CTRL_LIVE);
1938 		return;
1939 	}
1940 
1941 	if (nvmf_should_reconnect(ctrl)) {
1942 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1943 			ctrl->opts->reconnect_delay);
1944 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1945 				ctrl->opts->reconnect_delay * HZ);
1946 	} else {
1947 		dev_info(ctrl->device, "Removing controller...\n");
1948 		nvme_delete_ctrl(ctrl);
1949 	}
1950 }
1951 
1952 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1953 {
1954 	struct nvmf_ctrl_options *opts = ctrl->opts;
1955 	int ret;
1956 
1957 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1958 	if (ret)
1959 		return ret;
1960 
1961 	if (ctrl->icdoff) {
1962 		dev_err(ctrl->device, "icdoff is not supported!\n");
1963 		goto destroy_admin;
1964 	}
1965 
1966 	if (opts->queue_size > ctrl->sqsize + 1)
1967 		dev_warn(ctrl->device,
1968 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1969 			opts->queue_size, ctrl->sqsize + 1);
1970 
1971 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1972 		dev_warn(ctrl->device,
1973 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1974 			ctrl->sqsize + 1, ctrl->maxcmd);
1975 		ctrl->sqsize = ctrl->maxcmd - 1;
1976 	}
1977 
1978 	if (ctrl->queue_count > 1) {
1979 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1980 		if (ret)
1981 			goto destroy_admin;
1982 	}
1983 
1984 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1985 		/*
1986 		 * state change failure is ok if we started ctrl delete,
1987 		 * unless we're during creation of a new controller to
1988 		 * avoid races with teardown flow.
1989 		 */
1990 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1991 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
1992 		WARN_ON_ONCE(new);
1993 		ret = -EINVAL;
1994 		goto destroy_io;
1995 	}
1996 
1997 	nvme_start_ctrl(ctrl);
1998 	return 0;
1999 
2000 destroy_io:
2001 	if (ctrl->queue_count > 1) {
2002 		nvme_stop_queues(ctrl);
2003 		nvme_sync_io_queues(ctrl);
2004 		nvme_tcp_stop_io_queues(ctrl);
2005 		nvme_cancel_tagset(ctrl);
2006 		nvme_tcp_destroy_io_queues(ctrl, new);
2007 	}
2008 destroy_admin:
2009 	blk_mq_quiesce_queue(ctrl->admin_q);
2010 	blk_sync_queue(ctrl->admin_q);
2011 	nvme_tcp_stop_queue(ctrl, 0);
2012 	nvme_cancel_admin_tagset(ctrl);
2013 	nvme_tcp_destroy_admin_queue(ctrl, new);
2014 	return ret;
2015 }
2016 
2017 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2018 {
2019 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2020 			struct nvme_tcp_ctrl, connect_work);
2021 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2022 
2023 	++ctrl->nr_reconnects;
2024 
2025 	if (nvme_tcp_setup_ctrl(ctrl, false))
2026 		goto requeue;
2027 
2028 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2029 			ctrl->nr_reconnects);
2030 
2031 	ctrl->nr_reconnects = 0;
2032 
2033 	return;
2034 
2035 requeue:
2036 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2037 			ctrl->nr_reconnects);
2038 	nvme_tcp_reconnect_or_remove(ctrl);
2039 }
2040 
2041 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2042 {
2043 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2044 				struct nvme_tcp_ctrl, err_work);
2045 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2046 
2047 	nvme_stop_keep_alive(ctrl);
2048 	nvme_tcp_teardown_io_queues(ctrl, false);
2049 	/* unquiesce to fail fast pending requests */
2050 	nvme_start_queues(ctrl);
2051 	nvme_tcp_teardown_admin_queue(ctrl, false);
2052 	blk_mq_unquiesce_queue(ctrl->admin_q);
2053 
2054 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2055 		/* state change failure is ok if we started ctrl delete */
2056 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2057 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2058 		return;
2059 	}
2060 
2061 	nvme_tcp_reconnect_or_remove(ctrl);
2062 }
2063 
2064 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2065 {
2066 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2067 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2068 
2069 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2070 	blk_mq_quiesce_queue(ctrl->admin_q);
2071 	if (shutdown)
2072 		nvme_shutdown_ctrl(ctrl);
2073 	else
2074 		nvme_disable_ctrl(ctrl);
2075 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2076 }
2077 
2078 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2079 {
2080 	nvme_tcp_teardown_ctrl(ctrl, true);
2081 }
2082 
2083 static void nvme_reset_ctrl_work(struct work_struct *work)
2084 {
2085 	struct nvme_ctrl *ctrl =
2086 		container_of(work, struct nvme_ctrl, reset_work);
2087 
2088 	nvme_stop_ctrl(ctrl);
2089 	nvme_tcp_teardown_ctrl(ctrl, false);
2090 
2091 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2092 		/* state change failure is ok if we started ctrl delete */
2093 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2094 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2095 		return;
2096 	}
2097 
2098 	if (nvme_tcp_setup_ctrl(ctrl, false))
2099 		goto out_fail;
2100 
2101 	return;
2102 
2103 out_fail:
2104 	++ctrl->nr_reconnects;
2105 	nvme_tcp_reconnect_or_remove(ctrl);
2106 }
2107 
2108 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2109 {
2110 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2111 
2112 	if (list_empty(&ctrl->list))
2113 		goto free_ctrl;
2114 
2115 	mutex_lock(&nvme_tcp_ctrl_mutex);
2116 	list_del(&ctrl->list);
2117 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2118 
2119 	nvmf_free_options(nctrl->opts);
2120 free_ctrl:
2121 	kfree(ctrl->queues);
2122 	kfree(ctrl);
2123 }
2124 
2125 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2126 {
2127 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2128 
2129 	sg->addr = 0;
2130 	sg->length = 0;
2131 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2132 			NVME_SGL_FMT_TRANSPORT_A;
2133 }
2134 
2135 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2136 		struct nvme_command *c, u32 data_len)
2137 {
2138 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2139 
2140 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2141 	sg->length = cpu_to_le32(data_len);
2142 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2143 }
2144 
2145 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2146 		u32 data_len)
2147 {
2148 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2149 
2150 	sg->addr = 0;
2151 	sg->length = cpu_to_le32(data_len);
2152 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2153 			NVME_SGL_FMT_TRANSPORT_A;
2154 }
2155 
2156 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2157 {
2158 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2159 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2160 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2161 	struct nvme_command *cmd = &pdu->cmd;
2162 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2163 
2164 	memset(pdu, 0, sizeof(*pdu));
2165 	pdu->hdr.type = nvme_tcp_cmd;
2166 	if (queue->hdr_digest)
2167 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2168 	pdu->hdr.hlen = sizeof(*pdu);
2169 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2170 
2171 	cmd->common.opcode = nvme_admin_async_event;
2172 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2173 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2174 	nvme_tcp_set_sg_null(cmd);
2175 
2176 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2177 	ctrl->async_req.offset = 0;
2178 	ctrl->async_req.curr_bio = NULL;
2179 	ctrl->async_req.data_len = 0;
2180 
2181 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2182 }
2183 
2184 static void nvme_tcp_complete_timed_out(struct request *rq)
2185 {
2186 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2187 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2188 
2189 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2190 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2191 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2192 		blk_mq_complete_request(rq);
2193 	}
2194 }
2195 
2196 static enum blk_eh_timer_return
2197 nvme_tcp_timeout(struct request *rq, bool reserved)
2198 {
2199 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2200 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2201 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2202 
2203 	dev_warn(ctrl->device,
2204 		"queue %d: timeout request %#x type %d\n",
2205 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2206 
2207 	if (ctrl->state != NVME_CTRL_LIVE) {
2208 		/*
2209 		 * If we are resetting, connecting or deleting we should
2210 		 * complete immediately because we may block controller
2211 		 * teardown or setup sequence
2212 		 * - ctrl disable/shutdown fabrics requests
2213 		 * - connect requests
2214 		 * - initialization admin requests
2215 		 * - I/O requests that entered after unquiescing and
2216 		 *   the controller stopped responding
2217 		 *
2218 		 * All other requests should be cancelled by the error
2219 		 * recovery work, so it's fine that we fail it here.
2220 		 */
2221 		nvme_tcp_complete_timed_out(rq);
2222 		return BLK_EH_DONE;
2223 	}
2224 
2225 	/*
2226 	 * LIVE state should trigger the normal error recovery which will
2227 	 * handle completing this request.
2228 	 */
2229 	nvme_tcp_error_recovery(ctrl);
2230 	return BLK_EH_RESET_TIMER;
2231 }
2232 
2233 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2234 			struct request *rq)
2235 {
2236 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2237 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2238 	struct nvme_command *c = &pdu->cmd;
2239 
2240 	c->common.flags |= NVME_CMD_SGL_METABUF;
2241 
2242 	if (!blk_rq_nr_phys_segments(rq))
2243 		nvme_tcp_set_sg_null(c);
2244 	else if (rq_data_dir(rq) == WRITE &&
2245 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2246 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2247 	else
2248 		nvme_tcp_set_sg_host_data(c, req->data_len);
2249 
2250 	return 0;
2251 }
2252 
2253 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2254 		struct request *rq)
2255 {
2256 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2257 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2258 	struct nvme_tcp_queue *queue = req->queue;
2259 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2260 	blk_status_t ret;
2261 
2262 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2263 	if (ret)
2264 		return ret;
2265 
2266 	req->state = NVME_TCP_SEND_CMD_PDU;
2267 	req->offset = 0;
2268 	req->data_sent = 0;
2269 	req->pdu_len = 0;
2270 	req->pdu_sent = 0;
2271 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2272 				blk_rq_payload_bytes(rq) : 0;
2273 	req->curr_bio = rq->bio;
2274 	if (req->curr_bio && req->data_len)
2275 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2276 
2277 	if (rq_data_dir(rq) == WRITE &&
2278 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2279 		req->pdu_len = req->data_len;
2280 
2281 	pdu->hdr.type = nvme_tcp_cmd;
2282 	pdu->hdr.flags = 0;
2283 	if (queue->hdr_digest)
2284 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2285 	if (queue->data_digest && req->pdu_len) {
2286 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2287 		ddgst = nvme_tcp_ddgst_len(queue);
2288 	}
2289 	pdu->hdr.hlen = sizeof(*pdu);
2290 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2291 	pdu->hdr.plen =
2292 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2293 
2294 	ret = nvme_tcp_map_data(queue, rq);
2295 	if (unlikely(ret)) {
2296 		nvme_cleanup_cmd(rq);
2297 		dev_err(queue->ctrl->ctrl.device,
2298 			"Failed to map data (%d)\n", ret);
2299 		return ret;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2306 {
2307 	struct nvme_tcp_queue *queue = hctx->driver_data;
2308 
2309 	if (!llist_empty(&queue->req_list))
2310 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2311 }
2312 
2313 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2314 		const struct blk_mq_queue_data *bd)
2315 {
2316 	struct nvme_ns *ns = hctx->queue->queuedata;
2317 	struct nvme_tcp_queue *queue = hctx->driver_data;
2318 	struct request *rq = bd->rq;
2319 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2320 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2321 	blk_status_t ret;
2322 
2323 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2324 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2325 
2326 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2327 	if (unlikely(ret))
2328 		return ret;
2329 
2330 	blk_mq_start_request(rq);
2331 
2332 	nvme_tcp_queue_request(req, true, bd->last);
2333 
2334 	return BLK_STS_OK;
2335 }
2336 
2337 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2338 {
2339 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2340 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2341 
2342 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2343 		/* separate read/write queues */
2344 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2345 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2346 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2347 		set->map[HCTX_TYPE_READ].nr_queues =
2348 			ctrl->io_queues[HCTX_TYPE_READ];
2349 		set->map[HCTX_TYPE_READ].queue_offset =
2350 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2351 	} else {
2352 		/* shared read/write queues */
2353 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2354 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2355 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2356 		set->map[HCTX_TYPE_READ].nr_queues =
2357 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2358 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2359 	}
2360 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2361 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2362 
2363 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2364 		/* map dedicated poll queues only if we have queues left */
2365 		set->map[HCTX_TYPE_POLL].nr_queues =
2366 				ctrl->io_queues[HCTX_TYPE_POLL];
2367 		set->map[HCTX_TYPE_POLL].queue_offset =
2368 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2369 			ctrl->io_queues[HCTX_TYPE_READ];
2370 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2371 	}
2372 
2373 	dev_info(ctrl->ctrl.device,
2374 		"mapped %d/%d/%d default/read/poll queues.\n",
2375 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2376 		ctrl->io_queues[HCTX_TYPE_READ],
2377 		ctrl->io_queues[HCTX_TYPE_POLL]);
2378 
2379 	return 0;
2380 }
2381 
2382 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2383 {
2384 	struct nvme_tcp_queue *queue = hctx->driver_data;
2385 	struct sock *sk = queue->sock->sk;
2386 
2387 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2388 		return 0;
2389 
2390 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2391 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2392 		sk_busy_loop(sk, true);
2393 	nvme_tcp_try_recv(queue);
2394 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2395 	return queue->nr_cqe;
2396 }
2397 
2398 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2399 	.queue_rq	= nvme_tcp_queue_rq,
2400 	.commit_rqs	= nvme_tcp_commit_rqs,
2401 	.complete	= nvme_complete_rq,
2402 	.init_request	= nvme_tcp_init_request,
2403 	.exit_request	= nvme_tcp_exit_request,
2404 	.init_hctx	= nvme_tcp_init_hctx,
2405 	.timeout	= nvme_tcp_timeout,
2406 	.map_queues	= nvme_tcp_map_queues,
2407 	.poll		= nvme_tcp_poll,
2408 };
2409 
2410 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2411 	.queue_rq	= nvme_tcp_queue_rq,
2412 	.complete	= nvme_complete_rq,
2413 	.init_request	= nvme_tcp_init_request,
2414 	.exit_request	= nvme_tcp_exit_request,
2415 	.init_hctx	= nvme_tcp_init_admin_hctx,
2416 	.timeout	= nvme_tcp_timeout,
2417 };
2418 
2419 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2420 	.name			= "tcp",
2421 	.module			= THIS_MODULE,
2422 	.flags			= NVME_F_FABRICS,
2423 	.reg_read32		= nvmf_reg_read32,
2424 	.reg_read64		= nvmf_reg_read64,
2425 	.reg_write32		= nvmf_reg_write32,
2426 	.free_ctrl		= nvme_tcp_free_ctrl,
2427 	.submit_async_event	= nvme_tcp_submit_async_event,
2428 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2429 	.get_address		= nvmf_get_address,
2430 };
2431 
2432 static bool
2433 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2434 {
2435 	struct nvme_tcp_ctrl *ctrl;
2436 	bool found = false;
2437 
2438 	mutex_lock(&nvme_tcp_ctrl_mutex);
2439 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2440 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2441 		if (found)
2442 			break;
2443 	}
2444 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2445 
2446 	return found;
2447 }
2448 
2449 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2450 		struct nvmf_ctrl_options *opts)
2451 {
2452 	struct nvme_tcp_ctrl *ctrl;
2453 	int ret;
2454 
2455 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2456 	if (!ctrl)
2457 		return ERR_PTR(-ENOMEM);
2458 
2459 	INIT_LIST_HEAD(&ctrl->list);
2460 	ctrl->ctrl.opts = opts;
2461 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2462 				opts->nr_poll_queues + 1;
2463 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2464 	ctrl->ctrl.kato = opts->kato;
2465 
2466 	INIT_DELAYED_WORK(&ctrl->connect_work,
2467 			nvme_tcp_reconnect_ctrl_work);
2468 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2469 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2470 
2471 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2472 		opts->trsvcid =
2473 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2474 		if (!opts->trsvcid) {
2475 			ret = -ENOMEM;
2476 			goto out_free_ctrl;
2477 		}
2478 		opts->mask |= NVMF_OPT_TRSVCID;
2479 	}
2480 
2481 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2482 			opts->traddr, opts->trsvcid, &ctrl->addr);
2483 	if (ret) {
2484 		pr_err("malformed address passed: %s:%s\n",
2485 			opts->traddr, opts->trsvcid);
2486 		goto out_free_ctrl;
2487 	}
2488 
2489 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2490 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2491 			opts->host_traddr, NULL, &ctrl->src_addr);
2492 		if (ret) {
2493 			pr_err("malformed src address passed: %s\n",
2494 			       opts->host_traddr);
2495 			goto out_free_ctrl;
2496 		}
2497 	}
2498 
2499 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2500 		ret = -EALREADY;
2501 		goto out_free_ctrl;
2502 	}
2503 
2504 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2505 				GFP_KERNEL);
2506 	if (!ctrl->queues) {
2507 		ret = -ENOMEM;
2508 		goto out_free_ctrl;
2509 	}
2510 
2511 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2512 	if (ret)
2513 		goto out_kfree_queues;
2514 
2515 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2516 		WARN_ON_ONCE(1);
2517 		ret = -EINTR;
2518 		goto out_uninit_ctrl;
2519 	}
2520 
2521 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2522 	if (ret)
2523 		goto out_uninit_ctrl;
2524 
2525 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2526 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2527 
2528 	mutex_lock(&nvme_tcp_ctrl_mutex);
2529 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2530 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2531 
2532 	return &ctrl->ctrl;
2533 
2534 out_uninit_ctrl:
2535 	nvme_uninit_ctrl(&ctrl->ctrl);
2536 	nvme_put_ctrl(&ctrl->ctrl);
2537 	if (ret > 0)
2538 		ret = -EIO;
2539 	return ERR_PTR(ret);
2540 out_kfree_queues:
2541 	kfree(ctrl->queues);
2542 out_free_ctrl:
2543 	kfree(ctrl);
2544 	return ERR_PTR(ret);
2545 }
2546 
2547 static struct nvmf_transport_ops nvme_tcp_transport = {
2548 	.name		= "tcp",
2549 	.module		= THIS_MODULE,
2550 	.required_opts	= NVMF_OPT_TRADDR,
2551 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2552 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2553 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2554 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2555 			  NVMF_OPT_TOS,
2556 	.create_ctrl	= nvme_tcp_create_ctrl,
2557 };
2558 
2559 static int __init nvme_tcp_init_module(void)
2560 {
2561 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2562 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2563 	if (!nvme_tcp_wq)
2564 		return -ENOMEM;
2565 
2566 	nvmf_register_transport(&nvme_tcp_transport);
2567 	return 0;
2568 }
2569 
2570 static void __exit nvme_tcp_cleanup_module(void)
2571 {
2572 	struct nvme_tcp_ctrl *ctrl;
2573 
2574 	nvmf_unregister_transport(&nvme_tcp_transport);
2575 
2576 	mutex_lock(&nvme_tcp_ctrl_mutex);
2577 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2578 		nvme_delete_ctrl(&ctrl->ctrl);
2579 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2580 	flush_workqueue(nvme_delete_wq);
2581 
2582 	destroy_workqueue(nvme_tcp_wq);
2583 }
2584 
2585 module_init(nvme_tcp_init_module);
2586 module_exit(nvme_tcp_cleanup_module);
2587 
2588 MODULE_LICENSE("GPL v2");
2589