1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex send_mutex; 80 struct llist_head req_list; 81 struct list_head send_list; 82 bool more_requests; 83 84 /* recv state */ 85 void *pdu; 86 int pdu_remaining; 87 int pdu_offset; 88 size_t data_remaining; 89 size_t ddgst_remaining; 90 unsigned int nr_cqe; 91 92 /* send state */ 93 struct nvme_tcp_request *request; 94 95 int queue_size; 96 size_t cmnd_capsule_len; 97 struct nvme_tcp_ctrl *ctrl; 98 unsigned long flags; 99 bool rd_enabled; 100 101 bool hdr_digest; 102 bool data_digest; 103 struct ahash_request *rcv_hash; 104 struct ahash_request *snd_hash; 105 __le32 exp_ddgst; 106 __le32 recv_ddgst; 107 108 struct page_frag_cache pf_cache; 109 110 void (*state_change)(struct sock *); 111 void (*data_ready)(struct sock *); 112 void (*write_space)(struct sock *); 113 }; 114 115 struct nvme_tcp_ctrl { 116 /* read only in the hot path */ 117 struct nvme_tcp_queue *queues; 118 struct blk_mq_tag_set tag_set; 119 120 /* other member variables */ 121 struct list_head list; 122 struct blk_mq_tag_set admin_tag_set; 123 struct sockaddr_storage addr; 124 struct sockaddr_storage src_addr; 125 struct nvme_ctrl ctrl; 126 127 struct work_struct err_work; 128 struct delayed_work connect_work; 129 struct nvme_tcp_request async_req; 130 u32 io_queues[HCTX_MAX_TYPES]; 131 }; 132 133 static LIST_HEAD(nvme_tcp_ctrl_list); 134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 135 static struct workqueue_struct *nvme_tcp_wq; 136 static const struct blk_mq_ops nvme_tcp_mq_ops; 137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 139 140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 141 { 142 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 143 } 144 145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 146 { 147 return queue - queue->ctrl->queues; 148 } 149 150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 151 { 152 u32 queue_idx = nvme_tcp_queue_id(queue); 153 154 if (queue_idx == 0) 155 return queue->ctrl->admin_tag_set.tags[queue_idx]; 156 return queue->ctrl->tag_set.tags[queue_idx - 1]; 157 } 158 159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 160 { 161 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 162 } 163 164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 165 { 166 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 167 } 168 169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 170 { 171 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 172 } 173 174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 175 { 176 return req == &req->queue->ctrl->async_req; 177 } 178 179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 180 { 181 struct request *rq; 182 183 if (unlikely(nvme_tcp_async_req(req))) 184 return false; /* async events don't have a request */ 185 186 rq = blk_mq_rq_from_pdu(req); 187 188 return rq_data_dir(rq) == WRITE && req->data_len && 189 req->data_len <= nvme_tcp_inline_data_size(req->queue); 190 } 191 192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 193 { 194 return req->iter.bvec->bv_page; 195 } 196 197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 198 { 199 return req->iter.bvec->bv_offset + req->iter.iov_offset; 200 } 201 202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 203 { 204 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 205 req->pdu_len - req->pdu_sent); 206 } 207 208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 209 { 210 return req->iter.iov_offset; 211 } 212 213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 214 { 215 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 216 req->pdu_len - req->pdu_sent : 0; 217 } 218 219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 220 int len) 221 { 222 return nvme_tcp_pdu_data_left(req) <= len; 223 } 224 225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 226 unsigned int dir) 227 { 228 struct request *rq = blk_mq_rq_from_pdu(req); 229 struct bio_vec *vec; 230 unsigned int size; 231 int nsegs; 232 size_t offset; 233 234 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 235 vec = &rq->special_vec; 236 nsegs = 1; 237 size = blk_rq_payload_bytes(rq); 238 offset = 0; 239 } else { 240 struct bio *bio = req->curr_bio; 241 242 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 243 nsegs = bio_segments(bio); 244 size = bio->bi_iter.bi_size; 245 offset = bio->bi_iter.bi_bvec_done; 246 } 247 248 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 249 req->iter.iov_offset = offset; 250 } 251 252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 253 int len) 254 { 255 req->data_sent += len; 256 req->pdu_sent += len; 257 iov_iter_advance(&req->iter, len); 258 if (!iov_iter_count(&req->iter) && 259 req->data_sent < req->data_len) { 260 req->curr_bio = req->curr_bio->bi_next; 261 nvme_tcp_init_iter(req, WRITE); 262 } 263 } 264 265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 266 bool sync, bool last) 267 { 268 struct nvme_tcp_queue *queue = req->queue; 269 bool empty; 270 271 empty = llist_add(&req->lentry, &queue->req_list) && 272 list_empty(&queue->send_list) && !queue->request; 273 274 /* 275 * if we're the first on the send_list and we can try to send 276 * directly, otherwise queue io_work. Also, only do that if we 277 * are on the same cpu, so we don't introduce contention. 278 */ 279 if (queue->io_cpu == smp_processor_id() && 280 sync && empty && mutex_trylock(&queue->send_mutex)) { 281 queue->more_requests = !last; 282 nvme_tcp_try_send(queue); 283 queue->more_requests = false; 284 mutex_unlock(&queue->send_mutex); 285 } else if (last) { 286 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 287 } 288 } 289 290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 291 { 292 struct nvme_tcp_request *req; 293 struct llist_node *node; 294 295 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 296 req = llist_entry(node, struct nvme_tcp_request, lentry); 297 list_add(&req->entry, &queue->send_list); 298 } 299 } 300 301 static inline struct nvme_tcp_request * 302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 303 { 304 struct nvme_tcp_request *req; 305 306 req = list_first_entry_or_null(&queue->send_list, 307 struct nvme_tcp_request, entry); 308 if (!req) { 309 nvme_tcp_process_req_list(queue); 310 req = list_first_entry_or_null(&queue->send_list, 311 struct nvme_tcp_request, entry); 312 if (unlikely(!req)) 313 return NULL; 314 } 315 316 list_del(&req->entry); 317 return req; 318 } 319 320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 321 __le32 *dgst) 322 { 323 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 324 crypto_ahash_final(hash); 325 } 326 327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 328 struct page *page, off_t off, size_t len) 329 { 330 struct scatterlist sg; 331 332 sg_init_marker(&sg, 1); 333 sg_set_page(&sg, page, len, off); 334 ahash_request_set_crypt(hash, &sg, NULL, len); 335 crypto_ahash_update(hash); 336 } 337 338 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 339 void *pdu, size_t len) 340 { 341 struct scatterlist sg; 342 343 sg_init_one(&sg, pdu, len); 344 ahash_request_set_crypt(hash, &sg, pdu + len, len); 345 crypto_ahash_digest(hash); 346 } 347 348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 349 void *pdu, size_t pdu_len) 350 { 351 struct nvme_tcp_hdr *hdr = pdu; 352 __le32 recv_digest; 353 __le32 exp_digest; 354 355 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 356 dev_err(queue->ctrl->ctrl.device, 357 "queue %d: header digest flag is cleared\n", 358 nvme_tcp_queue_id(queue)); 359 return -EPROTO; 360 } 361 362 recv_digest = *(__le32 *)(pdu + hdr->hlen); 363 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 364 exp_digest = *(__le32 *)(pdu + hdr->hlen); 365 if (recv_digest != exp_digest) { 366 dev_err(queue->ctrl->ctrl.device, 367 "header digest error: recv %#x expected %#x\n", 368 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 369 return -EIO; 370 } 371 372 return 0; 373 } 374 375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 376 { 377 struct nvme_tcp_hdr *hdr = pdu; 378 u8 digest_len = nvme_tcp_hdgst_len(queue); 379 u32 len; 380 381 len = le32_to_cpu(hdr->plen) - hdr->hlen - 382 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 383 384 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 385 dev_err(queue->ctrl->ctrl.device, 386 "queue %d: data digest flag is cleared\n", 387 nvme_tcp_queue_id(queue)); 388 return -EPROTO; 389 } 390 crypto_ahash_init(queue->rcv_hash); 391 392 return 0; 393 } 394 395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 396 struct request *rq, unsigned int hctx_idx) 397 { 398 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 399 400 page_frag_free(req->pdu); 401 } 402 403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 404 struct request *rq, unsigned int hctx_idx, 405 unsigned int numa_node) 406 { 407 struct nvme_tcp_ctrl *ctrl = set->driver_data; 408 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 409 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 410 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 411 u8 hdgst = nvme_tcp_hdgst_len(queue); 412 413 req->pdu = page_frag_alloc(&queue->pf_cache, 414 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 415 GFP_KERNEL | __GFP_ZERO); 416 if (!req->pdu) 417 return -ENOMEM; 418 419 req->queue = queue; 420 nvme_req(rq)->ctrl = &ctrl->ctrl; 421 422 return 0; 423 } 424 425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 426 unsigned int hctx_idx) 427 { 428 struct nvme_tcp_ctrl *ctrl = data; 429 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 430 431 hctx->driver_data = queue; 432 return 0; 433 } 434 435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 436 unsigned int hctx_idx) 437 { 438 struct nvme_tcp_ctrl *ctrl = data; 439 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 440 441 hctx->driver_data = queue; 442 return 0; 443 } 444 445 static enum nvme_tcp_recv_state 446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 447 { 448 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 449 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 450 NVME_TCP_RECV_DATA; 451 } 452 453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 454 { 455 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 456 nvme_tcp_hdgst_len(queue); 457 queue->pdu_offset = 0; 458 queue->data_remaining = -1; 459 queue->ddgst_remaining = 0; 460 } 461 462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 463 { 464 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 465 return; 466 467 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 468 } 469 470 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 471 struct nvme_completion *cqe) 472 { 473 struct request *rq; 474 475 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 476 if (!rq) { 477 dev_err(queue->ctrl->ctrl.device, 478 "queue %d tag 0x%x not found\n", 479 nvme_tcp_queue_id(queue), cqe->command_id); 480 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 481 return -EINVAL; 482 } 483 484 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 485 nvme_complete_rq(rq); 486 queue->nr_cqe++; 487 488 return 0; 489 } 490 491 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 492 struct nvme_tcp_data_pdu *pdu) 493 { 494 struct request *rq; 495 496 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 497 if (!rq) { 498 dev_err(queue->ctrl->ctrl.device, 499 "queue %d tag %#x not found\n", 500 nvme_tcp_queue_id(queue), pdu->command_id); 501 return -ENOENT; 502 } 503 504 if (!blk_rq_payload_bytes(rq)) { 505 dev_err(queue->ctrl->ctrl.device, 506 "queue %d tag %#x unexpected data\n", 507 nvme_tcp_queue_id(queue), rq->tag); 508 return -EIO; 509 } 510 511 queue->data_remaining = le32_to_cpu(pdu->data_length); 512 513 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 514 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 515 dev_err(queue->ctrl->ctrl.device, 516 "queue %d tag %#x SUCCESS set but not last PDU\n", 517 nvme_tcp_queue_id(queue), rq->tag); 518 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 519 return -EPROTO; 520 } 521 522 return 0; 523 } 524 525 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 526 struct nvme_tcp_rsp_pdu *pdu) 527 { 528 struct nvme_completion *cqe = &pdu->cqe; 529 int ret = 0; 530 531 /* 532 * AEN requests are special as they don't time out and can 533 * survive any kind of queue freeze and often don't respond to 534 * aborts. We don't even bother to allocate a struct request 535 * for them but rather special case them here. 536 */ 537 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 538 cqe->command_id))) 539 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 540 &cqe->result); 541 else 542 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 543 544 return ret; 545 } 546 547 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 548 struct nvme_tcp_r2t_pdu *pdu) 549 { 550 struct nvme_tcp_data_pdu *data = req->pdu; 551 struct nvme_tcp_queue *queue = req->queue; 552 struct request *rq = blk_mq_rq_from_pdu(req); 553 u8 hdgst = nvme_tcp_hdgst_len(queue); 554 u8 ddgst = nvme_tcp_ddgst_len(queue); 555 556 req->pdu_len = le32_to_cpu(pdu->r2t_length); 557 req->pdu_sent = 0; 558 559 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 560 dev_err(queue->ctrl->ctrl.device, 561 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 562 rq->tag, req->pdu_len, req->data_len, 563 req->data_sent); 564 return -EPROTO; 565 } 566 567 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 568 dev_err(queue->ctrl->ctrl.device, 569 "req %d unexpected r2t offset %u (expected %zu)\n", 570 rq->tag, le32_to_cpu(pdu->r2t_offset), 571 req->data_sent); 572 return -EPROTO; 573 } 574 575 memset(data, 0, sizeof(*data)); 576 data->hdr.type = nvme_tcp_h2c_data; 577 data->hdr.flags = NVME_TCP_F_DATA_LAST; 578 if (queue->hdr_digest) 579 data->hdr.flags |= NVME_TCP_F_HDGST; 580 if (queue->data_digest) 581 data->hdr.flags |= NVME_TCP_F_DDGST; 582 data->hdr.hlen = sizeof(*data); 583 data->hdr.pdo = data->hdr.hlen + hdgst; 584 data->hdr.plen = 585 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 586 data->ttag = pdu->ttag; 587 data->command_id = rq->tag; 588 data->data_offset = cpu_to_le32(req->data_sent); 589 data->data_length = cpu_to_le32(req->pdu_len); 590 return 0; 591 } 592 593 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 594 struct nvme_tcp_r2t_pdu *pdu) 595 { 596 struct nvme_tcp_request *req; 597 struct request *rq; 598 int ret; 599 600 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 601 if (!rq) { 602 dev_err(queue->ctrl->ctrl.device, 603 "queue %d tag %#x not found\n", 604 nvme_tcp_queue_id(queue), pdu->command_id); 605 return -ENOENT; 606 } 607 req = blk_mq_rq_to_pdu(rq); 608 609 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 610 if (unlikely(ret)) 611 return ret; 612 613 req->state = NVME_TCP_SEND_H2C_PDU; 614 req->offset = 0; 615 616 nvme_tcp_queue_request(req, false, true); 617 618 return 0; 619 } 620 621 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 622 unsigned int *offset, size_t *len) 623 { 624 struct nvme_tcp_hdr *hdr; 625 char *pdu = queue->pdu; 626 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 627 int ret; 628 629 ret = skb_copy_bits(skb, *offset, 630 &pdu[queue->pdu_offset], rcv_len); 631 if (unlikely(ret)) 632 return ret; 633 634 queue->pdu_remaining -= rcv_len; 635 queue->pdu_offset += rcv_len; 636 *offset += rcv_len; 637 *len -= rcv_len; 638 if (queue->pdu_remaining) 639 return 0; 640 641 hdr = queue->pdu; 642 if (queue->hdr_digest) { 643 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 644 if (unlikely(ret)) 645 return ret; 646 } 647 648 649 if (queue->data_digest) { 650 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 651 if (unlikely(ret)) 652 return ret; 653 } 654 655 switch (hdr->type) { 656 case nvme_tcp_c2h_data: 657 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 658 case nvme_tcp_rsp: 659 nvme_tcp_init_recv_ctx(queue); 660 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 661 case nvme_tcp_r2t: 662 nvme_tcp_init_recv_ctx(queue); 663 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 664 default: 665 dev_err(queue->ctrl->ctrl.device, 666 "unsupported pdu type (%d)\n", hdr->type); 667 return -EINVAL; 668 } 669 } 670 671 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 672 { 673 union nvme_result res = {}; 674 675 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 676 nvme_complete_rq(rq); 677 } 678 679 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 680 unsigned int *offset, size_t *len) 681 { 682 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 683 struct nvme_tcp_request *req; 684 struct request *rq; 685 686 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 687 if (!rq) { 688 dev_err(queue->ctrl->ctrl.device, 689 "queue %d tag %#x not found\n", 690 nvme_tcp_queue_id(queue), pdu->command_id); 691 return -ENOENT; 692 } 693 req = blk_mq_rq_to_pdu(rq); 694 695 while (true) { 696 int recv_len, ret; 697 698 recv_len = min_t(size_t, *len, queue->data_remaining); 699 if (!recv_len) 700 break; 701 702 if (!iov_iter_count(&req->iter)) { 703 req->curr_bio = req->curr_bio->bi_next; 704 705 /* 706 * If we don`t have any bios it means that controller 707 * sent more data than we requested, hence error 708 */ 709 if (!req->curr_bio) { 710 dev_err(queue->ctrl->ctrl.device, 711 "queue %d no space in request %#x", 712 nvme_tcp_queue_id(queue), rq->tag); 713 nvme_tcp_init_recv_ctx(queue); 714 return -EIO; 715 } 716 nvme_tcp_init_iter(req, READ); 717 } 718 719 /* we can read only from what is left in this bio */ 720 recv_len = min_t(size_t, recv_len, 721 iov_iter_count(&req->iter)); 722 723 if (queue->data_digest) 724 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 725 &req->iter, recv_len, queue->rcv_hash); 726 else 727 ret = skb_copy_datagram_iter(skb, *offset, 728 &req->iter, recv_len); 729 if (ret) { 730 dev_err(queue->ctrl->ctrl.device, 731 "queue %d failed to copy request %#x data", 732 nvme_tcp_queue_id(queue), rq->tag); 733 return ret; 734 } 735 736 *len -= recv_len; 737 *offset += recv_len; 738 queue->data_remaining -= recv_len; 739 } 740 741 if (!queue->data_remaining) { 742 if (queue->data_digest) { 743 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 744 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 745 } else { 746 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 747 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 748 queue->nr_cqe++; 749 } 750 nvme_tcp_init_recv_ctx(queue); 751 } 752 } 753 754 return 0; 755 } 756 757 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 758 struct sk_buff *skb, unsigned int *offset, size_t *len) 759 { 760 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 761 char *ddgst = (char *)&queue->recv_ddgst; 762 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 763 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 764 int ret; 765 766 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 767 if (unlikely(ret)) 768 return ret; 769 770 queue->ddgst_remaining -= recv_len; 771 *offset += recv_len; 772 *len -= recv_len; 773 if (queue->ddgst_remaining) 774 return 0; 775 776 if (queue->recv_ddgst != queue->exp_ddgst) { 777 dev_err(queue->ctrl->ctrl.device, 778 "data digest error: recv %#x expected %#x\n", 779 le32_to_cpu(queue->recv_ddgst), 780 le32_to_cpu(queue->exp_ddgst)); 781 return -EIO; 782 } 783 784 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 785 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 786 pdu->command_id); 787 788 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 789 queue->nr_cqe++; 790 } 791 792 nvme_tcp_init_recv_ctx(queue); 793 return 0; 794 } 795 796 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 797 unsigned int offset, size_t len) 798 { 799 struct nvme_tcp_queue *queue = desc->arg.data; 800 size_t consumed = len; 801 int result; 802 803 while (len) { 804 switch (nvme_tcp_recv_state(queue)) { 805 case NVME_TCP_RECV_PDU: 806 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 807 break; 808 case NVME_TCP_RECV_DATA: 809 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 810 break; 811 case NVME_TCP_RECV_DDGST: 812 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 813 break; 814 default: 815 result = -EFAULT; 816 } 817 if (result) { 818 dev_err(queue->ctrl->ctrl.device, 819 "receive failed: %d\n", result); 820 queue->rd_enabled = false; 821 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 822 return result; 823 } 824 } 825 826 return consumed; 827 } 828 829 static void nvme_tcp_data_ready(struct sock *sk) 830 { 831 struct nvme_tcp_queue *queue; 832 833 read_lock_bh(&sk->sk_callback_lock); 834 queue = sk->sk_user_data; 835 if (likely(queue && queue->rd_enabled) && 836 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 837 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 838 read_unlock_bh(&sk->sk_callback_lock); 839 } 840 841 static void nvme_tcp_write_space(struct sock *sk) 842 { 843 struct nvme_tcp_queue *queue; 844 845 read_lock_bh(&sk->sk_callback_lock); 846 queue = sk->sk_user_data; 847 if (likely(queue && sk_stream_is_writeable(sk))) { 848 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 849 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 850 } 851 read_unlock_bh(&sk->sk_callback_lock); 852 } 853 854 static void nvme_tcp_state_change(struct sock *sk) 855 { 856 struct nvme_tcp_queue *queue; 857 858 read_lock(&sk->sk_callback_lock); 859 queue = sk->sk_user_data; 860 if (!queue) 861 goto done; 862 863 switch (sk->sk_state) { 864 case TCP_CLOSE: 865 case TCP_CLOSE_WAIT: 866 case TCP_LAST_ACK: 867 case TCP_FIN_WAIT1: 868 case TCP_FIN_WAIT2: 869 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 870 break; 871 default: 872 dev_info(queue->ctrl->ctrl.device, 873 "queue %d socket state %d\n", 874 nvme_tcp_queue_id(queue), sk->sk_state); 875 } 876 877 queue->state_change(sk); 878 done: 879 read_unlock(&sk->sk_callback_lock); 880 } 881 882 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 883 { 884 return !list_empty(&queue->send_list) || 885 !llist_empty(&queue->req_list) || queue->more_requests; 886 } 887 888 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 889 { 890 queue->request = NULL; 891 } 892 893 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 894 { 895 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 896 } 897 898 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 899 { 900 struct nvme_tcp_queue *queue = req->queue; 901 902 while (true) { 903 struct page *page = nvme_tcp_req_cur_page(req); 904 size_t offset = nvme_tcp_req_cur_offset(req); 905 size_t len = nvme_tcp_req_cur_length(req); 906 bool last = nvme_tcp_pdu_last_send(req, len); 907 int ret, flags = MSG_DONTWAIT; 908 909 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 910 flags |= MSG_EOR; 911 else 912 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 913 914 /* can't zcopy slab pages */ 915 if (unlikely(PageSlab(page))) { 916 ret = sock_no_sendpage(queue->sock, page, offset, len, 917 flags); 918 } else { 919 ret = kernel_sendpage(queue->sock, page, offset, len, 920 flags); 921 } 922 if (ret <= 0) 923 return ret; 924 925 nvme_tcp_advance_req(req, ret); 926 if (queue->data_digest) 927 nvme_tcp_ddgst_update(queue->snd_hash, page, 928 offset, ret); 929 930 /* fully successful last write*/ 931 if (last && ret == len) { 932 if (queue->data_digest) { 933 nvme_tcp_ddgst_final(queue->snd_hash, 934 &req->ddgst); 935 req->state = NVME_TCP_SEND_DDGST; 936 req->offset = 0; 937 } else { 938 nvme_tcp_done_send_req(queue); 939 } 940 return 1; 941 } 942 } 943 return -EAGAIN; 944 } 945 946 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 947 { 948 struct nvme_tcp_queue *queue = req->queue; 949 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 950 bool inline_data = nvme_tcp_has_inline_data(req); 951 u8 hdgst = nvme_tcp_hdgst_len(queue); 952 int len = sizeof(*pdu) + hdgst - req->offset; 953 int flags = MSG_DONTWAIT; 954 int ret; 955 956 if (inline_data || nvme_tcp_queue_more(queue)) 957 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 958 else 959 flags |= MSG_EOR; 960 961 if (queue->hdr_digest && !req->offset) 962 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 963 964 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 965 offset_in_page(pdu) + req->offset, len, flags); 966 if (unlikely(ret <= 0)) 967 return ret; 968 969 len -= ret; 970 if (!len) { 971 if (inline_data) { 972 req->state = NVME_TCP_SEND_DATA; 973 if (queue->data_digest) 974 crypto_ahash_init(queue->snd_hash); 975 nvme_tcp_init_iter(req, WRITE); 976 } else { 977 nvme_tcp_done_send_req(queue); 978 } 979 return 1; 980 } 981 req->offset += ret; 982 983 return -EAGAIN; 984 } 985 986 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 987 { 988 struct nvme_tcp_queue *queue = req->queue; 989 struct nvme_tcp_data_pdu *pdu = req->pdu; 990 u8 hdgst = nvme_tcp_hdgst_len(queue); 991 int len = sizeof(*pdu) - req->offset + hdgst; 992 int ret; 993 994 if (queue->hdr_digest && !req->offset) 995 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 996 997 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 998 offset_in_page(pdu) + req->offset, len, 999 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1000 if (unlikely(ret <= 0)) 1001 return ret; 1002 1003 len -= ret; 1004 if (!len) { 1005 req->state = NVME_TCP_SEND_DATA; 1006 if (queue->data_digest) 1007 crypto_ahash_init(queue->snd_hash); 1008 if (!req->data_sent) 1009 nvme_tcp_init_iter(req, WRITE); 1010 return 1; 1011 } 1012 req->offset += ret; 1013 1014 return -EAGAIN; 1015 } 1016 1017 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1018 { 1019 struct nvme_tcp_queue *queue = req->queue; 1020 int ret; 1021 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1022 struct kvec iov = { 1023 .iov_base = &req->ddgst + req->offset, 1024 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1025 }; 1026 1027 if (nvme_tcp_queue_more(queue)) 1028 msg.msg_flags |= MSG_MORE; 1029 else 1030 msg.msg_flags |= MSG_EOR; 1031 1032 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1033 if (unlikely(ret <= 0)) 1034 return ret; 1035 1036 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1037 nvme_tcp_done_send_req(queue); 1038 return 1; 1039 } 1040 1041 req->offset += ret; 1042 return -EAGAIN; 1043 } 1044 1045 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1046 { 1047 struct nvme_tcp_request *req; 1048 int ret = 1; 1049 1050 if (!queue->request) { 1051 queue->request = nvme_tcp_fetch_request(queue); 1052 if (!queue->request) 1053 return 0; 1054 } 1055 req = queue->request; 1056 1057 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1058 ret = nvme_tcp_try_send_cmd_pdu(req); 1059 if (ret <= 0) 1060 goto done; 1061 if (!nvme_tcp_has_inline_data(req)) 1062 return ret; 1063 } 1064 1065 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1066 ret = nvme_tcp_try_send_data_pdu(req); 1067 if (ret <= 0) 1068 goto done; 1069 } 1070 1071 if (req->state == NVME_TCP_SEND_DATA) { 1072 ret = nvme_tcp_try_send_data(req); 1073 if (ret <= 0) 1074 goto done; 1075 } 1076 1077 if (req->state == NVME_TCP_SEND_DDGST) 1078 ret = nvme_tcp_try_send_ddgst(req); 1079 done: 1080 if (ret == -EAGAIN) { 1081 ret = 0; 1082 } else if (ret < 0) { 1083 dev_err(queue->ctrl->ctrl.device, 1084 "failed to send request %d\n", ret); 1085 if (ret != -EPIPE && ret != -ECONNRESET) 1086 nvme_tcp_fail_request(queue->request); 1087 nvme_tcp_done_send_req(queue); 1088 } 1089 return ret; 1090 } 1091 1092 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1093 { 1094 struct socket *sock = queue->sock; 1095 struct sock *sk = sock->sk; 1096 read_descriptor_t rd_desc; 1097 int consumed; 1098 1099 rd_desc.arg.data = queue; 1100 rd_desc.count = 1; 1101 lock_sock(sk); 1102 queue->nr_cqe = 0; 1103 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1104 release_sock(sk); 1105 return consumed; 1106 } 1107 1108 static void nvme_tcp_io_work(struct work_struct *w) 1109 { 1110 struct nvme_tcp_queue *queue = 1111 container_of(w, struct nvme_tcp_queue, io_work); 1112 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1113 1114 do { 1115 bool pending = false; 1116 int result; 1117 1118 if (mutex_trylock(&queue->send_mutex)) { 1119 result = nvme_tcp_try_send(queue); 1120 mutex_unlock(&queue->send_mutex); 1121 if (result > 0) 1122 pending = true; 1123 else if (unlikely(result < 0)) 1124 break; 1125 } 1126 1127 result = nvme_tcp_try_recv(queue); 1128 if (result > 0) 1129 pending = true; 1130 else if (unlikely(result < 0)) 1131 return; 1132 1133 if (!pending) 1134 return; 1135 1136 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1137 1138 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1139 } 1140 1141 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1142 { 1143 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1144 1145 ahash_request_free(queue->rcv_hash); 1146 ahash_request_free(queue->snd_hash); 1147 crypto_free_ahash(tfm); 1148 } 1149 1150 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1151 { 1152 struct crypto_ahash *tfm; 1153 1154 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1155 if (IS_ERR(tfm)) 1156 return PTR_ERR(tfm); 1157 1158 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1159 if (!queue->snd_hash) 1160 goto free_tfm; 1161 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1162 1163 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1164 if (!queue->rcv_hash) 1165 goto free_snd_hash; 1166 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1167 1168 return 0; 1169 free_snd_hash: 1170 ahash_request_free(queue->snd_hash); 1171 free_tfm: 1172 crypto_free_ahash(tfm); 1173 return -ENOMEM; 1174 } 1175 1176 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1177 { 1178 struct nvme_tcp_request *async = &ctrl->async_req; 1179 1180 page_frag_free(async->pdu); 1181 } 1182 1183 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1184 { 1185 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1186 struct nvme_tcp_request *async = &ctrl->async_req; 1187 u8 hdgst = nvme_tcp_hdgst_len(queue); 1188 1189 async->pdu = page_frag_alloc(&queue->pf_cache, 1190 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1191 GFP_KERNEL | __GFP_ZERO); 1192 if (!async->pdu) 1193 return -ENOMEM; 1194 1195 async->queue = &ctrl->queues[0]; 1196 return 0; 1197 } 1198 1199 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1200 { 1201 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1202 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1203 1204 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1205 return; 1206 1207 if (queue->hdr_digest || queue->data_digest) 1208 nvme_tcp_free_crypto(queue); 1209 1210 sock_release(queue->sock); 1211 kfree(queue->pdu); 1212 } 1213 1214 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1215 { 1216 struct nvme_tcp_icreq_pdu *icreq; 1217 struct nvme_tcp_icresp_pdu *icresp; 1218 struct msghdr msg = {}; 1219 struct kvec iov; 1220 bool ctrl_hdgst, ctrl_ddgst; 1221 int ret; 1222 1223 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1224 if (!icreq) 1225 return -ENOMEM; 1226 1227 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1228 if (!icresp) { 1229 ret = -ENOMEM; 1230 goto free_icreq; 1231 } 1232 1233 icreq->hdr.type = nvme_tcp_icreq; 1234 icreq->hdr.hlen = sizeof(*icreq); 1235 icreq->hdr.pdo = 0; 1236 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1237 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1238 icreq->maxr2t = 0; /* single inflight r2t supported */ 1239 icreq->hpda = 0; /* no alignment constraint */ 1240 if (queue->hdr_digest) 1241 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1242 if (queue->data_digest) 1243 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1244 1245 iov.iov_base = icreq; 1246 iov.iov_len = sizeof(*icreq); 1247 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1248 if (ret < 0) 1249 goto free_icresp; 1250 1251 memset(&msg, 0, sizeof(msg)); 1252 iov.iov_base = icresp; 1253 iov.iov_len = sizeof(*icresp); 1254 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1255 iov.iov_len, msg.msg_flags); 1256 if (ret < 0) 1257 goto free_icresp; 1258 1259 ret = -EINVAL; 1260 if (icresp->hdr.type != nvme_tcp_icresp) { 1261 pr_err("queue %d: bad type returned %d\n", 1262 nvme_tcp_queue_id(queue), icresp->hdr.type); 1263 goto free_icresp; 1264 } 1265 1266 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1267 pr_err("queue %d: bad pdu length returned %d\n", 1268 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1269 goto free_icresp; 1270 } 1271 1272 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1273 pr_err("queue %d: bad pfv returned %d\n", 1274 nvme_tcp_queue_id(queue), icresp->pfv); 1275 goto free_icresp; 1276 } 1277 1278 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1279 if ((queue->data_digest && !ctrl_ddgst) || 1280 (!queue->data_digest && ctrl_ddgst)) { 1281 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1282 nvme_tcp_queue_id(queue), 1283 queue->data_digest ? "enabled" : "disabled", 1284 ctrl_ddgst ? "enabled" : "disabled"); 1285 goto free_icresp; 1286 } 1287 1288 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1289 if ((queue->hdr_digest && !ctrl_hdgst) || 1290 (!queue->hdr_digest && ctrl_hdgst)) { 1291 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1292 nvme_tcp_queue_id(queue), 1293 queue->hdr_digest ? "enabled" : "disabled", 1294 ctrl_hdgst ? "enabled" : "disabled"); 1295 goto free_icresp; 1296 } 1297 1298 if (icresp->cpda != 0) { 1299 pr_err("queue %d: unsupported cpda returned %d\n", 1300 nvme_tcp_queue_id(queue), icresp->cpda); 1301 goto free_icresp; 1302 } 1303 1304 ret = 0; 1305 free_icresp: 1306 kfree(icresp); 1307 free_icreq: 1308 kfree(icreq); 1309 return ret; 1310 } 1311 1312 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1313 { 1314 return nvme_tcp_queue_id(queue) == 0; 1315 } 1316 1317 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1318 { 1319 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1320 int qid = nvme_tcp_queue_id(queue); 1321 1322 return !nvme_tcp_admin_queue(queue) && 1323 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1324 } 1325 1326 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1327 { 1328 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1329 int qid = nvme_tcp_queue_id(queue); 1330 1331 return !nvme_tcp_admin_queue(queue) && 1332 !nvme_tcp_default_queue(queue) && 1333 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1334 ctrl->io_queues[HCTX_TYPE_READ]; 1335 } 1336 1337 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1338 { 1339 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1340 int qid = nvme_tcp_queue_id(queue); 1341 1342 return !nvme_tcp_admin_queue(queue) && 1343 !nvme_tcp_default_queue(queue) && 1344 !nvme_tcp_read_queue(queue) && 1345 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1346 ctrl->io_queues[HCTX_TYPE_READ] + 1347 ctrl->io_queues[HCTX_TYPE_POLL]; 1348 } 1349 1350 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1351 { 1352 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1353 int qid = nvme_tcp_queue_id(queue); 1354 int n = 0; 1355 1356 if (nvme_tcp_default_queue(queue)) 1357 n = qid - 1; 1358 else if (nvme_tcp_read_queue(queue)) 1359 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1360 else if (nvme_tcp_poll_queue(queue)) 1361 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1362 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1363 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1364 } 1365 1366 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1367 int qid, size_t queue_size) 1368 { 1369 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1370 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1371 int ret, rcv_pdu_size; 1372 1373 queue->ctrl = ctrl; 1374 init_llist_head(&queue->req_list); 1375 INIT_LIST_HEAD(&queue->send_list); 1376 mutex_init(&queue->send_mutex); 1377 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1378 queue->queue_size = queue_size; 1379 1380 if (qid > 0) 1381 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1382 else 1383 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1384 NVME_TCP_ADMIN_CCSZ; 1385 1386 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1387 IPPROTO_TCP, &queue->sock); 1388 if (ret) { 1389 dev_err(nctrl->device, 1390 "failed to create socket: %d\n", ret); 1391 return ret; 1392 } 1393 1394 /* Single syn retry */ 1395 tcp_sock_set_syncnt(queue->sock->sk, 1); 1396 1397 /* Set TCP no delay */ 1398 tcp_sock_set_nodelay(queue->sock->sk); 1399 1400 /* 1401 * Cleanup whatever is sitting in the TCP transmit queue on socket 1402 * close. This is done to prevent stale data from being sent should 1403 * the network connection be restored before TCP times out. 1404 */ 1405 sock_no_linger(queue->sock->sk); 1406 1407 if (so_priority > 0) 1408 sock_set_priority(queue->sock->sk, so_priority); 1409 1410 /* Set socket type of service */ 1411 if (nctrl->opts->tos >= 0) 1412 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1413 1414 /* Set 10 seconds timeout for icresp recvmsg */ 1415 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1416 1417 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1418 nvme_tcp_set_queue_io_cpu(queue); 1419 queue->request = NULL; 1420 queue->data_remaining = 0; 1421 queue->ddgst_remaining = 0; 1422 queue->pdu_remaining = 0; 1423 queue->pdu_offset = 0; 1424 sk_set_memalloc(queue->sock->sk); 1425 1426 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1427 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1428 sizeof(ctrl->src_addr)); 1429 if (ret) { 1430 dev_err(nctrl->device, 1431 "failed to bind queue %d socket %d\n", 1432 qid, ret); 1433 goto err_sock; 1434 } 1435 } 1436 1437 queue->hdr_digest = nctrl->opts->hdr_digest; 1438 queue->data_digest = nctrl->opts->data_digest; 1439 if (queue->hdr_digest || queue->data_digest) { 1440 ret = nvme_tcp_alloc_crypto(queue); 1441 if (ret) { 1442 dev_err(nctrl->device, 1443 "failed to allocate queue %d crypto\n", qid); 1444 goto err_sock; 1445 } 1446 } 1447 1448 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1449 nvme_tcp_hdgst_len(queue); 1450 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1451 if (!queue->pdu) { 1452 ret = -ENOMEM; 1453 goto err_crypto; 1454 } 1455 1456 dev_dbg(nctrl->device, "connecting queue %d\n", 1457 nvme_tcp_queue_id(queue)); 1458 1459 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1460 sizeof(ctrl->addr), 0); 1461 if (ret) { 1462 dev_err(nctrl->device, 1463 "failed to connect socket: %d\n", ret); 1464 goto err_rcv_pdu; 1465 } 1466 1467 ret = nvme_tcp_init_connection(queue); 1468 if (ret) 1469 goto err_init_connect; 1470 1471 queue->rd_enabled = true; 1472 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1473 nvme_tcp_init_recv_ctx(queue); 1474 1475 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1476 queue->sock->sk->sk_user_data = queue; 1477 queue->state_change = queue->sock->sk->sk_state_change; 1478 queue->data_ready = queue->sock->sk->sk_data_ready; 1479 queue->write_space = queue->sock->sk->sk_write_space; 1480 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1481 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1482 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1483 #ifdef CONFIG_NET_RX_BUSY_POLL 1484 queue->sock->sk->sk_ll_usec = 1; 1485 #endif 1486 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1487 1488 return 0; 1489 1490 err_init_connect: 1491 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1492 err_rcv_pdu: 1493 kfree(queue->pdu); 1494 err_crypto: 1495 if (queue->hdr_digest || queue->data_digest) 1496 nvme_tcp_free_crypto(queue); 1497 err_sock: 1498 sock_release(queue->sock); 1499 queue->sock = NULL; 1500 return ret; 1501 } 1502 1503 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1504 { 1505 struct socket *sock = queue->sock; 1506 1507 write_lock_bh(&sock->sk->sk_callback_lock); 1508 sock->sk->sk_user_data = NULL; 1509 sock->sk->sk_data_ready = queue->data_ready; 1510 sock->sk->sk_state_change = queue->state_change; 1511 sock->sk->sk_write_space = queue->write_space; 1512 write_unlock_bh(&sock->sk->sk_callback_lock); 1513 } 1514 1515 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1516 { 1517 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1518 nvme_tcp_restore_sock_calls(queue); 1519 cancel_work_sync(&queue->io_work); 1520 } 1521 1522 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1523 { 1524 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1525 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1526 1527 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1528 return; 1529 1530 __nvme_tcp_stop_queue(queue); 1531 } 1532 1533 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1534 { 1535 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1536 int ret; 1537 1538 if (idx) 1539 ret = nvmf_connect_io_queue(nctrl, idx, false); 1540 else 1541 ret = nvmf_connect_admin_queue(nctrl); 1542 1543 if (!ret) { 1544 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1545 } else { 1546 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1547 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1548 dev_err(nctrl->device, 1549 "failed to connect queue: %d ret=%d\n", idx, ret); 1550 } 1551 return ret; 1552 } 1553 1554 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1555 bool admin) 1556 { 1557 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1558 struct blk_mq_tag_set *set; 1559 int ret; 1560 1561 if (admin) { 1562 set = &ctrl->admin_tag_set; 1563 memset(set, 0, sizeof(*set)); 1564 set->ops = &nvme_tcp_admin_mq_ops; 1565 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1566 set->reserved_tags = 2; /* connect + keep-alive */ 1567 set->numa_node = nctrl->numa_node; 1568 set->flags = BLK_MQ_F_BLOCKING; 1569 set->cmd_size = sizeof(struct nvme_tcp_request); 1570 set->driver_data = ctrl; 1571 set->nr_hw_queues = 1; 1572 set->timeout = ADMIN_TIMEOUT; 1573 } else { 1574 set = &ctrl->tag_set; 1575 memset(set, 0, sizeof(*set)); 1576 set->ops = &nvme_tcp_mq_ops; 1577 set->queue_depth = nctrl->sqsize + 1; 1578 set->reserved_tags = 1; /* fabric connect */ 1579 set->numa_node = nctrl->numa_node; 1580 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1581 set->cmd_size = sizeof(struct nvme_tcp_request); 1582 set->driver_data = ctrl; 1583 set->nr_hw_queues = nctrl->queue_count - 1; 1584 set->timeout = NVME_IO_TIMEOUT; 1585 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1586 } 1587 1588 ret = blk_mq_alloc_tag_set(set); 1589 if (ret) 1590 return ERR_PTR(ret); 1591 1592 return set; 1593 } 1594 1595 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1596 { 1597 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1598 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1599 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1600 } 1601 1602 nvme_tcp_free_queue(ctrl, 0); 1603 } 1604 1605 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1606 { 1607 int i; 1608 1609 for (i = 1; i < ctrl->queue_count; i++) 1610 nvme_tcp_free_queue(ctrl, i); 1611 } 1612 1613 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1614 { 1615 int i; 1616 1617 for (i = 1; i < ctrl->queue_count; i++) 1618 nvme_tcp_stop_queue(ctrl, i); 1619 } 1620 1621 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1622 { 1623 int i, ret = 0; 1624 1625 for (i = 1; i < ctrl->queue_count; i++) { 1626 ret = nvme_tcp_start_queue(ctrl, i); 1627 if (ret) 1628 goto out_stop_queues; 1629 } 1630 1631 return 0; 1632 1633 out_stop_queues: 1634 for (i--; i >= 1; i--) 1635 nvme_tcp_stop_queue(ctrl, i); 1636 return ret; 1637 } 1638 1639 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1640 { 1641 int ret; 1642 1643 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1644 if (ret) 1645 return ret; 1646 1647 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1648 if (ret) 1649 goto out_free_queue; 1650 1651 return 0; 1652 1653 out_free_queue: 1654 nvme_tcp_free_queue(ctrl, 0); 1655 return ret; 1656 } 1657 1658 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1659 { 1660 int i, ret; 1661 1662 for (i = 1; i < ctrl->queue_count; i++) { 1663 ret = nvme_tcp_alloc_queue(ctrl, i, 1664 ctrl->sqsize + 1); 1665 if (ret) 1666 goto out_free_queues; 1667 } 1668 1669 return 0; 1670 1671 out_free_queues: 1672 for (i--; i >= 1; i--) 1673 nvme_tcp_free_queue(ctrl, i); 1674 1675 return ret; 1676 } 1677 1678 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1679 { 1680 unsigned int nr_io_queues; 1681 1682 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1683 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1684 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1685 1686 return nr_io_queues; 1687 } 1688 1689 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1690 unsigned int nr_io_queues) 1691 { 1692 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1693 struct nvmf_ctrl_options *opts = nctrl->opts; 1694 1695 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1696 /* 1697 * separate read/write queues 1698 * hand out dedicated default queues only after we have 1699 * sufficient read queues. 1700 */ 1701 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1702 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1703 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1704 min(opts->nr_write_queues, nr_io_queues); 1705 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1706 } else { 1707 /* 1708 * shared read/write queues 1709 * either no write queues were requested, or we don't have 1710 * sufficient queue count to have dedicated default queues. 1711 */ 1712 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1713 min(opts->nr_io_queues, nr_io_queues); 1714 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1715 } 1716 1717 if (opts->nr_poll_queues && nr_io_queues) { 1718 /* map dedicated poll queues only if we have queues left */ 1719 ctrl->io_queues[HCTX_TYPE_POLL] = 1720 min(opts->nr_poll_queues, nr_io_queues); 1721 } 1722 } 1723 1724 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1725 { 1726 unsigned int nr_io_queues; 1727 int ret; 1728 1729 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1730 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1731 if (ret) 1732 return ret; 1733 1734 ctrl->queue_count = nr_io_queues + 1; 1735 if (ctrl->queue_count < 2) 1736 return 0; 1737 1738 dev_info(ctrl->device, 1739 "creating %d I/O queues.\n", nr_io_queues); 1740 1741 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1742 1743 return __nvme_tcp_alloc_io_queues(ctrl); 1744 } 1745 1746 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1747 { 1748 nvme_tcp_stop_io_queues(ctrl); 1749 if (remove) { 1750 blk_cleanup_queue(ctrl->connect_q); 1751 blk_mq_free_tag_set(ctrl->tagset); 1752 } 1753 nvme_tcp_free_io_queues(ctrl); 1754 } 1755 1756 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1757 { 1758 int ret; 1759 1760 ret = nvme_tcp_alloc_io_queues(ctrl); 1761 if (ret) 1762 return ret; 1763 1764 if (new) { 1765 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1766 if (IS_ERR(ctrl->tagset)) { 1767 ret = PTR_ERR(ctrl->tagset); 1768 goto out_free_io_queues; 1769 } 1770 1771 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1772 if (IS_ERR(ctrl->connect_q)) { 1773 ret = PTR_ERR(ctrl->connect_q); 1774 goto out_free_tag_set; 1775 } 1776 } 1777 1778 ret = nvme_tcp_start_io_queues(ctrl); 1779 if (ret) 1780 goto out_cleanup_connect_q; 1781 1782 if (!new) { 1783 nvme_start_queues(ctrl); 1784 nvme_wait_freeze(ctrl); 1785 blk_mq_update_nr_hw_queues(ctrl->tagset, 1786 ctrl->queue_count - 1); 1787 nvme_unfreeze(ctrl); 1788 } 1789 1790 return 0; 1791 1792 out_cleanup_connect_q: 1793 if (new) 1794 blk_cleanup_queue(ctrl->connect_q); 1795 out_free_tag_set: 1796 if (new) 1797 blk_mq_free_tag_set(ctrl->tagset); 1798 out_free_io_queues: 1799 nvme_tcp_free_io_queues(ctrl); 1800 return ret; 1801 } 1802 1803 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1804 { 1805 nvme_tcp_stop_queue(ctrl, 0); 1806 if (remove) { 1807 blk_cleanup_queue(ctrl->admin_q); 1808 blk_cleanup_queue(ctrl->fabrics_q); 1809 blk_mq_free_tag_set(ctrl->admin_tagset); 1810 } 1811 nvme_tcp_free_admin_queue(ctrl); 1812 } 1813 1814 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1815 { 1816 int error; 1817 1818 error = nvme_tcp_alloc_admin_queue(ctrl); 1819 if (error) 1820 return error; 1821 1822 if (new) { 1823 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1824 if (IS_ERR(ctrl->admin_tagset)) { 1825 error = PTR_ERR(ctrl->admin_tagset); 1826 goto out_free_queue; 1827 } 1828 1829 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1830 if (IS_ERR(ctrl->fabrics_q)) { 1831 error = PTR_ERR(ctrl->fabrics_q); 1832 goto out_free_tagset; 1833 } 1834 1835 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1836 if (IS_ERR(ctrl->admin_q)) { 1837 error = PTR_ERR(ctrl->admin_q); 1838 goto out_cleanup_fabrics_q; 1839 } 1840 } 1841 1842 error = nvme_tcp_start_queue(ctrl, 0); 1843 if (error) 1844 goto out_cleanup_queue; 1845 1846 error = nvme_enable_ctrl(ctrl); 1847 if (error) 1848 goto out_stop_queue; 1849 1850 blk_mq_unquiesce_queue(ctrl->admin_q); 1851 1852 error = nvme_init_identify(ctrl); 1853 if (error) 1854 goto out_stop_queue; 1855 1856 return 0; 1857 1858 out_stop_queue: 1859 nvme_tcp_stop_queue(ctrl, 0); 1860 out_cleanup_queue: 1861 if (new) 1862 blk_cleanup_queue(ctrl->admin_q); 1863 out_cleanup_fabrics_q: 1864 if (new) 1865 blk_cleanup_queue(ctrl->fabrics_q); 1866 out_free_tagset: 1867 if (new) 1868 blk_mq_free_tag_set(ctrl->admin_tagset); 1869 out_free_queue: 1870 nvme_tcp_free_admin_queue(ctrl); 1871 return error; 1872 } 1873 1874 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1875 bool remove) 1876 { 1877 blk_mq_quiesce_queue(ctrl->admin_q); 1878 nvme_tcp_stop_queue(ctrl, 0); 1879 if (ctrl->admin_tagset) { 1880 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1881 nvme_cancel_request, ctrl); 1882 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1883 } 1884 if (remove) 1885 blk_mq_unquiesce_queue(ctrl->admin_q); 1886 nvme_tcp_destroy_admin_queue(ctrl, remove); 1887 } 1888 1889 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1890 bool remove) 1891 { 1892 if (ctrl->queue_count <= 1) 1893 return; 1894 nvme_start_freeze(ctrl); 1895 nvme_stop_queues(ctrl); 1896 nvme_tcp_stop_io_queues(ctrl); 1897 if (ctrl->tagset) { 1898 blk_mq_tagset_busy_iter(ctrl->tagset, 1899 nvme_cancel_request, ctrl); 1900 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1901 } 1902 if (remove) 1903 nvme_start_queues(ctrl); 1904 nvme_tcp_destroy_io_queues(ctrl, remove); 1905 } 1906 1907 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1908 { 1909 /* If we are resetting/deleting then do nothing */ 1910 if (ctrl->state != NVME_CTRL_CONNECTING) { 1911 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1912 ctrl->state == NVME_CTRL_LIVE); 1913 return; 1914 } 1915 1916 if (nvmf_should_reconnect(ctrl)) { 1917 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1918 ctrl->opts->reconnect_delay); 1919 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1920 ctrl->opts->reconnect_delay * HZ); 1921 } else { 1922 dev_info(ctrl->device, "Removing controller...\n"); 1923 nvme_delete_ctrl(ctrl); 1924 } 1925 } 1926 1927 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1928 { 1929 struct nvmf_ctrl_options *opts = ctrl->opts; 1930 int ret; 1931 1932 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1933 if (ret) 1934 return ret; 1935 1936 if (ctrl->icdoff) { 1937 dev_err(ctrl->device, "icdoff is not supported!\n"); 1938 goto destroy_admin; 1939 } 1940 1941 if (opts->queue_size > ctrl->sqsize + 1) 1942 dev_warn(ctrl->device, 1943 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1944 opts->queue_size, ctrl->sqsize + 1); 1945 1946 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1947 dev_warn(ctrl->device, 1948 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1949 ctrl->sqsize + 1, ctrl->maxcmd); 1950 ctrl->sqsize = ctrl->maxcmd - 1; 1951 } 1952 1953 if (ctrl->queue_count > 1) { 1954 ret = nvme_tcp_configure_io_queues(ctrl, new); 1955 if (ret) 1956 goto destroy_admin; 1957 } 1958 1959 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1960 /* 1961 * state change failure is ok if we started ctrl delete, 1962 * unless we're during creation of a new controller to 1963 * avoid races with teardown flow. 1964 */ 1965 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 1966 ctrl->state != NVME_CTRL_DELETING_NOIO); 1967 WARN_ON_ONCE(new); 1968 ret = -EINVAL; 1969 goto destroy_io; 1970 } 1971 1972 nvme_start_ctrl(ctrl); 1973 return 0; 1974 1975 destroy_io: 1976 if (ctrl->queue_count > 1) 1977 nvme_tcp_destroy_io_queues(ctrl, new); 1978 destroy_admin: 1979 nvme_tcp_stop_queue(ctrl, 0); 1980 nvme_tcp_destroy_admin_queue(ctrl, new); 1981 return ret; 1982 } 1983 1984 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1985 { 1986 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1987 struct nvme_tcp_ctrl, connect_work); 1988 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1989 1990 ++ctrl->nr_reconnects; 1991 1992 if (nvme_tcp_setup_ctrl(ctrl, false)) 1993 goto requeue; 1994 1995 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1996 ctrl->nr_reconnects); 1997 1998 ctrl->nr_reconnects = 0; 1999 2000 return; 2001 2002 requeue: 2003 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2004 ctrl->nr_reconnects); 2005 nvme_tcp_reconnect_or_remove(ctrl); 2006 } 2007 2008 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2009 { 2010 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2011 struct nvme_tcp_ctrl, err_work); 2012 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2013 2014 nvme_stop_keep_alive(ctrl); 2015 nvme_tcp_teardown_io_queues(ctrl, false); 2016 /* unquiesce to fail fast pending requests */ 2017 nvme_start_queues(ctrl); 2018 nvme_tcp_teardown_admin_queue(ctrl, false); 2019 blk_mq_unquiesce_queue(ctrl->admin_q); 2020 2021 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2022 /* state change failure is ok if we started ctrl delete */ 2023 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2024 ctrl->state != NVME_CTRL_DELETING_NOIO); 2025 return; 2026 } 2027 2028 nvme_tcp_reconnect_or_remove(ctrl); 2029 } 2030 2031 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2032 { 2033 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2034 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2035 2036 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2037 blk_mq_quiesce_queue(ctrl->admin_q); 2038 if (shutdown) 2039 nvme_shutdown_ctrl(ctrl); 2040 else 2041 nvme_disable_ctrl(ctrl); 2042 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2043 } 2044 2045 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2046 { 2047 nvme_tcp_teardown_ctrl(ctrl, true); 2048 } 2049 2050 static void nvme_reset_ctrl_work(struct work_struct *work) 2051 { 2052 struct nvme_ctrl *ctrl = 2053 container_of(work, struct nvme_ctrl, reset_work); 2054 2055 nvme_stop_ctrl(ctrl); 2056 nvme_tcp_teardown_ctrl(ctrl, false); 2057 2058 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2059 /* state change failure is ok if we started ctrl delete */ 2060 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2061 ctrl->state != NVME_CTRL_DELETING_NOIO); 2062 return; 2063 } 2064 2065 if (nvme_tcp_setup_ctrl(ctrl, false)) 2066 goto out_fail; 2067 2068 return; 2069 2070 out_fail: 2071 ++ctrl->nr_reconnects; 2072 nvme_tcp_reconnect_or_remove(ctrl); 2073 } 2074 2075 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2076 { 2077 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2078 2079 if (list_empty(&ctrl->list)) 2080 goto free_ctrl; 2081 2082 mutex_lock(&nvme_tcp_ctrl_mutex); 2083 list_del(&ctrl->list); 2084 mutex_unlock(&nvme_tcp_ctrl_mutex); 2085 2086 nvmf_free_options(nctrl->opts); 2087 free_ctrl: 2088 kfree(ctrl->queues); 2089 kfree(ctrl); 2090 } 2091 2092 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2093 { 2094 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2095 2096 sg->addr = 0; 2097 sg->length = 0; 2098 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2099 NVME_SGL_FMT_TRANSPORT_A; 2100 } 2101 2102 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2103 struct nvme_command *c, u32 data_len) 2104 { 2105 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2106 2107 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2108 sg->length = cpu_to_le32(data_len); 2109 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2110 } 2111 2112 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2113 u32 data_len) 2114 { 2115 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2116 2117 sg->addr = 0; 2118 sg->length = cpu_to_le32(data_len); 2119 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2120 NVME_SGL_FMT_TRANSPORT_A; 2121 } 2122 2123 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2124 { 2125 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2126 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2127 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2128 struct nvme_command *cmd = &pdu->cmd; 2129 u8 hdgst = nvme_tcp_hdgst_len(queue); 2130 2131 memset(pdu, 0, sizeof(*pdu)); 2132 pdu->hdr.type = nvme_tcp_cmd; 2133 if (queue->hdr_digest) 2134 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2135 pdu->hdr.hlen = sizeof(*pdu); 2136 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2137 2138 cmd->common.opcode = nvme_admin_async_event; 2139 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2140 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2141 nvme_tcp_set_sg_null(cmd); 2142 2143 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2144 ctrl->async_req.offset = 0; 2145 ctrl->async_req.curr_bio = NULL; 2146 ctrl->async_req.data_len = 0; 2147 2148 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2149 } 2150 2151 static enum blk_eh_timer_return 2152 nvme_tcp_timeout(struct request *rq, bool reserved) 2153 { 2154 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2155 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2156 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2157 2158 /* 2159 * Restart the timer if a controller reset is already scheduled. Any 2160 * timed out commands would be handled before entering the connecting 2161 * state. 2162 */ 2163 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 2164 return BLK_EH_RESET_TIMER; 2165 2166 dev_warn(ctrl->ctrl.device, 2167 "queue %d: timeout request %#x type %d\n", 2168 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2169 2170 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2171 /* 2172 * Teardown immediately if controller times out while starting 2173 * or we are already started error recovery. all outstanding 2174 * requests are completed on shutdown, so we return BLK_EH_DONE. 2175 */ 2176 flush_work(&ctrl->err_work); 2177 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2178 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2179 return BLK_EH_DONE; 2180 } 2181 2182 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2183 nvme_tcp_error_recovery(&ctrl->ctrl); 2184 2185 return BLK_EH_RESET_TIMER; 2186 } 2187 2188 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2189 struct request *rq) 2190 { 2191 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2192 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2193 struct nvme_command *c = &pdu->cmd; 2194 2195 c->common.flags |= NVME_CMD_SGL_METABUF; 2196 2197 if (!blk_rq_nr_phys_segments(rq)) 2198 nvme_tcp_set_sg_null(c); 2199 else if (rq_data_dir(rq) == WRITE && 2200 req->data_len <= nvme_tcp_inline_data_size(queue)) 2201 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2202 else 2203 nvme_tcp_set_sg_host_data(c, req->data_len); 2204 2205 return 0; 2206 } 2207 2208 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2209 struct request *rq) 2210 { 2211 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2212 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2213 struct nvme_tcp_queue *queue = req->queue; 2214 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2215 blk_status_t ret; 2216 2217 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2218 if (ret) 2219 return ret; 2220 2221 req->state = NVME_TCP_SEND_CMD_PDU; 2222 req->offset = 0; 2223 req->data_sent = 0; 2224 req->pdu_len = 0; 2225 req->pdu_sent = 0; 2226 req->data_len = blk_rq_nr_phys_segments(rq) ? 2227 blk_rq_payload_bytes(rq) : 0; 2228 req->curr_bio = rq->bio; 2229 2230 if (rq_data_dir(rq) == WRITE && 2231 req->data_len <= nvme_tcp_inline_data_size(queue)) 2232 req->pdu_len = req->data_len; 2233 else if (req->curr_bio) 2234 nvme_tcp_init_iter(req, READ); 2235 2236 pdu->hdr.type = nvme_tcp_cmd; 2237 pdu->hdr.flags = 0; 2238 if (queue->hdr_digest) 2239 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2240 if (queue->data_digest && req->pdu_len) { 2241 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2242 ddgst = nvme_tcp_ddgst_len(queue); 2243 } 2244 pdu->hdr.hlen = sizeof(*pdu); 2245 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2246 pdu->hdr.plen = 2247 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2248 2249 ret = nvme_tcp_map_data(queue, rq); 2250 if (unlikely(ret)) { 2251 nvme_cleanup_cmd(rq); 2252 dev_err(queue->ctrl->ctrl.device, 2253 "Failed to map data (%d)\n", ret); 2254 return ret; 2255 } 2256 2257 return 0; 2258 } 2259 2260 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2261 { 2262 struct nvme_tcp_queue *queue = hctx->driver_data; 2263 2264 if (!llist_empty(&queue->req_list)) 2265 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2266 } 2267 2268 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2269 const struct blk_mq_queue_data *bd) 2270 { 2271 struct nvme_ns *ns = hctx->queue->queuedata; 2272 struct nvme_tcp_queue *queue = hctx->driver_data; 2273 struct request *rq = bd->rq; 2274 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2275 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2276 blk_status_t ret; 2277 2278 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2279 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2280 2281 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2282 if (unlikely(ret)) 2283 return ret; 2284 2285 blk_mq_start_request(rq); 2286 2287 nvme_tcp_queue_request(req, true, bd->last); 2288 2289 return BLK_STS_OK; 2290 } 2291 2292 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2293 { 2294 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2295 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2296 2297 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2298 /* separate read/write queues */ 2299 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2300 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2301 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2302 set->map[HCTX_TYPE_READ].nr_queues = 2303 ctrl->io_queues[HCTX_TYPE_READ]; 2304 set->map[HCTX_TYPE_READ].queue_offset = 2305 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2306 } else { 2307 /* shared read/write queues */ 2308 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2309 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2310 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2311 set->map[HCTX_TYPE_READ].nr_queues = 2312 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2313 set->map[HCTX_TYPE_READ].queue_offset = 0; 2314 } 2315 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2316 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2317 2318 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2319 /* map dedicated poll queues only if we have queues left */ 2320 set->map[HCTX_TYPE_POLL].nr_queues = 2321 ctrl->io_queues[HCTX_TYPE_POLL]; 2322 set->map[HCTX_TYPE_POLL].queue_offset = 2323 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2324 ctrl->io_queues[HCTX_TYPE_READ]; 2325 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2326 } 2327 2328 dev_info(ctrl->ctrl.device, 2329 "mapped %d/%d/%d default/read/poll queues.\n", 2330 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2331 ctrl->io_queues[HCTX_TYPE_READ], 2332 ctrl->io_queues[HCTX_TYPE_POLL]); 2333 2334 return 0; 2335 } 2336 2337 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2338 { 2339 struct nvme_tcp_queue *queue = hctx->driver_data; 2340 struct sock *sk = queue->sock->sk; 2341 2342 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2343 return 0; 2344 2345 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2346 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2347 sk_busy_loop(sk, true); 2348 nvme_tcp_try_recv(queue); 2349 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2350 return queue->nr_cqe; 2351 } 2352 2353 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2354 .queue_rq = nvme_tcp_queue_rq, 2355 .commit_rqs = nvme_tcp_commit_rqs, 2356 .complete = nvme_complete_rq, 2357 .init_request = nvme_tcp_init_request, 2358 .exit_request = nvme_tcp_exit_request, 2359 .init_hctx = nvme_tcp_init_hctx, 2360 .timeout = nvme_tcp_timeout, 2361 .map_queues = nvme_tcp_map_queues, 2362 .poll = nvme_tcp_poll, 2363 }; 2364 2365 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2366 .queue_rq = nvme_tcp_queue_rq, 2367 .complete = nvme_complete_rq, 2368 .init_request = nvme_tcp_init_request, 2369 .exit_request = nvme_tcp_exit_request, 2370 .init_hctx = nvme_tcp_init_admin_hctx, 2371 .timeout = nvme_tcp_timeout, 2372 }; 2373 2374 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2375 .name = "tcp", 2376 .module = THIS_MODULE, 2377 .flags = NVME_F_FABRICS, 2378 .reg_read32 = nvmf_reg_read32, 2379 .reg_read64 = nvmf_reg_read64, 2380 .reg_write32 = nvmf_reg_write32, 2381 .free_ctrl = nvme_tcp_free_ctrl, 2382 .submit_async_event = nvme_tcp_submit_async_event, 2383 .delete_ctrl = nvme_tcp_delete_ctrl, 2384 .get_address = nvmf_get_address, 2385 }; 2386 2387 static bool 2388 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2389 { 2390 struct nvme_tcp_ctrl *ctrl; 2391 bool found = false; 2392 2393 mutex_lock(&nvme_tcp_ctrl_mutex); 2394 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2395 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2396 if (found) 2397 break; 2398 } 2399 mutex_unlock(&nvme_tcp_ctrl_mutex); 2400 2401 return found; 2402 } 2403 2404 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2405 struct nvmf_ctrl_options *opts) 2406 { 2407 struct nvme_tcp_ctrl *ctrl; 2408 int ret; 2409 2410 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2411 if (!ctrl) 2412 return ERR_PTR(-ENOMEM); 2413 2414 INIT_LIST_HEAD(&ctrl->list); 2415 ctrl->ctrl.opts = opts; 2416 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2417 opts->nr_poll_queues + 1; 2418 ctrl->ctrl.sqsize = opts->queue_size - 1; 2419 ctrl->ctrl.kato = opts->kato; 2420 2421 INIT_DELAYED_WORK(&ctrl->connect_work, 2422 nvme_tcp_reconnect_ctrl_work); 2423 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2424 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2425 2426 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2427 opts->trsvcid = 2428 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2429 if (!opts->trsvcid) { 2430 ret = -ENOMEM; 2431 goto out_free_ctrl; 2432 } 2433 opts->mask |= NVMF_OPT_TRSVCID; 2434 } 2435 2436 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2437 opts->traddr, opts->trsvcid, &ctrl->addr); 2438 if (ret) { 2439 pr_err("malformed address passed: %s:%s\n", 2440 opts->traddr, opts->trsvcid); 2441 goto out_free_ctrl; 2442 } 2443 2444 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2445 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2446 opts->host_traddr, NULL, &ctrl->src_addr); 2447 if (ret) { 2448 pr_err("malformed src address passed: %s\n", 2449 opts->host_traddr); 2450 goto out_free_ctrl; 2451 } 2452 } 2453 2454 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2455 ret = -EALREADY; 2456 goto out_free_ctrl; 2457 } 2458 2459 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2460 GFP_KERNEL); 2461 if (!ctrl->queues) { 2462 ret = -ENOMEM; 2463 goto out_free_ctrl; 2464 } 2465 2466 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2467 if (ret) 2468 goto out_kfree_queues; 2469 2470 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2471 WARN_ON_ONCE(1); 2472 ret = -EINTR; 2473 goto out_uninit_ctrl; 2474 } 2475 2476 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2477 if (ret) 2478 goto out_uninit_ctrl; 2479 2480 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2481 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2482 2483 mutex_lock(&nvme_tcp_ctrl_mutex); 2484 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2485 mutex_unlock(&nvme_tcp_ctrl_mutex); 2486 2487 return &ctrl->ctrl; 2488 2489 out_uninit_ctrl: 2490 nvme_uninit_ctrl(&ctrl->ctrl); 2491 nvme_put_ctrl(&ctrl->ctrl); 2492 if (ret > 0) 2493 ret = -EIO; 2494 return ERR_PTR(ret); 2495 out_kfree_queues: 2496 kfree(ctrl->queues); 2497 out_free_ctrl: 2498 kfree(ctrl); 2499 return ERR_PTR(ret); 2500 } 2501 2502 static struct nvmf_transport_ops nvme_tcp_transport = { 2503 .name = "tcp", 2504 .module = THIS_MODULE, 2505 .required_opts = NVMF_OPT_TRADDR, 2506 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2507 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2508 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2509 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2510 NVMF_OPT_TOS, 2511 .create_ctrl = nvme_tcp_create_ctrl, 2512 }; 2513 2514 static int __init nvme_tcp_init_module(void) 2515 { 2516 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2517 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2518 if (!nvme_tcp_wq) 2519 return -ENOMEM; 2520 2521 nvmf_register_transport(&nvme_tcp_transport); 2522 return 0; 2523 } 2524 2525 static void __exit nvme_tcp_cleanup_module(void) 2526 { 2527 struct nvme_tcp_ctrl *ctrl; 2528 2529 nvmf_unregister_transport(&nvme_tcp_transport); 2530 2531 mutex_lock(&nvme_tcp_ctrl_mutex); 2532 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2533 nvme_delete_ctrl(&ctrl->ctrl); 2534 mutex_unlock(&nvme_tcp_ctrl_mutex); 2535 flush_workqueue(nvme_delete_wq); 2536 2537 destroy_workqueue(nvme_tcp_wq); 2538 } 2539 2540 module_init(nvme_tcp_init_module); 2541 module_exit(nvme_tcp_cleanup_module); 2542 2543 MODULE_LICENSE("GPL v2"); 2544