xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision c3651fef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 #include <trace/events/sock.h>
18 
19 #include "nvme.h"
20 #include "fabrics.h"
21 
22 struct nvme_tcp_queue;
23 
24 /* Define the socket priority to use for connections were it is desirable
25  * that the NIC consider performing optimized packet processing or filtering.
26  * A non-zero value being sufficient to indicate general consideration of any
27  * possible optimization.  Making it a module param allows for alternative
28  * values that may be unique for some NIC implementations.
29  */
30 static int so_priority;
31 module_param(so_priority, int, 0644);
32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33 
34 #ifdef CONFIG_DEBUG_LOCK_ALLOC
35 /* lockdep can detect a circular dependency of the form
36  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
37  * because dependencies are tracked for both nvme-tcp and user contexts. Using
38  * a separate class prevents lockdep from conflating nvme-tcp socket use with
39  * user-space socket API use.
40  */
41 static struct lock_class_key nvme_tcp_sk_key[2];
42 static struct lock_class_key nvme_tcp_slock_key[2];
43 
44 static void nvme_tcp_reclassify_socket(struct socket *sock)
45 {
46 	struct sock *sk = sock->sk;
47 
48 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
49 		return;
50 
51 	switch (sk->sk_family) {
52 	case AF_INET:
53 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
54 					      &nvme_tcp_slock_key[0],
55 					      "sk_lock-AF_INET-NVME",
56 					      &nvme_tcp_sk_key[0]);
57 		break;
58 	case AF_INET6:
59 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
60 					      &nvme_tcp_slock_key[1],
61 					      "sk_lock-AF_INET6-NVME",
62 					      &nvme_tcp_sk_key[1]);
63 		break;
64 	default:
65 		WARN_ON_ONCE(1);
66 	}
67 }
68 #else
69 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
70 #endif
71 
72 enum nvme_tcp_send_state {
73 	NVME_TCP_SEND_CMD_PDU = 0,
74 	NVME_TCP_SEND_H2C_PDU,
75 	NVME_TCP_SEND_DATA,
76 	NVME_TCP_SEND_DDGST,
77 };
78 
79 struct nvme_tcp_request {
80 	struct nvme_request	req;
81 	void			*pdu;
82 	struct nvme_tcp_queue	*queue;
83 	u32			data_len;
84 	u32			pdu_len;
85 	u32			pdu_sent;
86 	u32			h2cdata_left;
87 	u32			h2cdata_offset;
88 	u16			ttag;
89 	__le16			status;
90 	struct list_head	entry;
91 	struct llist_node	lentry;
92 	__le32			ddgst;
93 
94 	struct bio		*curr_bio;
95 	struct iov_iter		iter;
96 
97 	/* send state */
98 	size_t			offset;
99 	size_t			data_sent;
100 	enum nvme_tcp_send_state state;
101 };
102 
103 enum nvme_tcp_queue_flags {
104 	NVME_TCP_Q_ALLOCATED	= 0,
105 	NVME_TCP_Q_LIVE		= 1,
106 	NVME_TCP_Q_POLLING	= 2,
107 };
108 
109 enum nvme_tcp_recv_state {
110 	NVME_TCP_RECV_PDU = 0,
111 	NVME_TCP_RECV_DATA,
112 	NVME_TCP_RECV_DDGST,
113 };
114 
115 struct nvme_tcp_ctrl;
116 struct nvme_tcp_queue {
117 	struct socket		*sock;
118 	struct work_struct	io_work;
119 	int			io_cpu;
120 
121 	struct mutex		queue_lock;
122 	struct mutex		send_mutex;
123 	struct llist_head	req_list;
124 	struct list_head	send_list;
125 
126 	/* recv state */
127 	void			*pdu;
128 	int			pdu_remaining;
129 	int			pdu_offset;
130 	size_t			data_remaining;
131 	size_t			ddgst_remaining;
132 	unsigned int		nr_cqe;
133 
134 	/* send state */
135 	struct nvme_tcp_request *request;
136 
137 	u32			maxh2cdata;
138 	size_t			cmnd_capsule_len;
139 	struct nvme_tcp_ctrl	*ctrl;
140 	unsigned long		flags;
141 	bool			rd_enabled;
142 
143 	bool			hdr_digest;
144 	bool			data_digest;
145 	struct ahash_request	*rcv_hash;
146 	struct ahash_request	*snd_hash;
147 	__le32			exp_ddgst;
148 	__le32			recv_ddgst;
149 
150 	struct page_frag_cache	pf_cache;
151 
152 	void (*state_change)(struct sock *);
153 	void (*data_ready)(struct sock *);
154 	void (*write_space)(struct sock *);
155 };
156 
157 struct nvme_tcp_ctrl {
158 	/* read only in the hot path */
159 	struct nvme_tcp_queue	*queues;
160 	struct blk_mq_tag_set	tag_set;
161 
162 	/* other member variables */
163 	struct list_head	list;
164 	struct blk_mq_tag_set	admin_tag_set;
165 	struct sockaddr_storage addr;
166 	struct sockaddr_storage src_addr;
167 	struct nvme_ctrl	ctrl;
168 
169 	struct work_struct	err_work;
170 	struct delayed_work	connect_work;
171 	struct nvme_tcp_request async_req;
172 	u32			io_queues[HCTX_MAX_TYPES];
173 };
174 
175 static LIST_HEAD(nvme_tcp_ctrl_list);
176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
177 static struct workqueue_struct *nvme_tcp_wq;
178 static const struct blk_mq_ops nvme_tcp_mq_ops;
179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
181 
182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
183 {
184 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
185 }
186 
187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
188 {
189 	return queue - queue->ctrl->queues;
190 }
191 
192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
193 {
194 	u32 queue_idx = nvme_tcp_queue_id(queue);
195 
196 	if (queue_idx == 0)
197 		return queue->ctrl->admin_tag_set.tags[queue_idx];
198 	return queue->ctrl->tag_set.tags[queue_idx - 1];
199 }
200 
201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
202 {
203 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
204 }
205 
206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
207 {
208 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
209 }
210 
211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
212 {
213 	return req->pdu;
214 }
215 
216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
217 {
218 	/* use the pdu space in the back for the data pdu */
219 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
220 		sizeof(struct nvme_tcp_data_pdu);
221 }
222 
223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
224 {
225 	if (nvme_is_fabrics(req->req.cmd))
226 		return NVME_TCP_ADMIN_CCSZ;
227 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
228 }
229 
230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
231 {
232 	return req == &req->queue->ctrl->async_req;
233 }
234 
235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
236 {
237 	struct request *rq;
238 
239 	if (unlikely(nvme_tcp_async_req(req)))
240 		return false; /* async events don't have a request */
241 
242 	rq = blk_mq_rq_from_pdu(req);
243 
244 	return rq_data_dir(rq) == WRITE && req->data_len &&
245 		req->data_len <= nvme_tcp_inline_data_size(req);
246 }
247 
248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
249 {
250 	return req->iter.bvec->bv_page;
251 }
252 
253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
254 {
255 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
256 }
257 
258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
259 {
260 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
261 			req->pdu_len - req->pdu_sent);
262 }
263 
264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
265 {
266 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
267 			req->pdu_len - req->pdu_sent : 0;
268 }
269 
270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
271 		int len)
272 {
273 	return nvme_tcp_pdu_data_left(req) <= len;
274 }
275 
276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
277 		unsigned int dir)
278 {
279 	struct request *rq = blk_mq_rq_from_pdu(req);
280 	struct bio_vec *vec;
281 	unsigned int size;
282 	int nr_bvec;
283 	size_t offset;
284 
285 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
286 		vec = &rq->special_vec;
287 		nr_bvec = 1;
288 		size = blk_rq_payload_bytes(rq);
289 		offset = 0;
290 	} else {
291 		struct bio *bio = req->curr_bio;
292 		struct bvec_iter bi;
293 		struct bio_vec bv;
294 
295 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
296 		nr_bvec = 0;
297 		bio_for_each_bvec(bv, bio, bi) {
298 			nr_bvec++;
299 		}
300 		size = bio->bi_iter.bi_size;
301 		offset = bio->bi_iter.bi_bvec_done;
302 	}
303 
304 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
305 	req->iter.iov_offset = offset;
306 }
307 
308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
309 		int len)
310 {
311 	req->data_sent += len;
312 	req->pdu_sent += len;
313 	iov_iter_advance(&req->iter, len);
314 	if (!iov_iter_count(&req->iter) &&
315 	    req->data_sent < req->data_len) {
316 		req->curr_bio = req->curr_bio->bi_next;
317 		nvme_tcp_init_iter(req, ITER_SOURCE);
318 	}
319 }
320 
321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
322 {
323 	int ret;
324 
325 	/* drain the send queue as much as we can... */
326 	do {
327 		ret = nvme_tcp_try_send(queue);
328 	} while (ret > 0);
329 }
330 
331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
332 {
333 	return !list_empty(&queue->send_list) ||
334 		!llist_empty(&queue->req_list);
335 }
336 
337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
338 		bool sync, bool last)
339 {
340 	struct nvme_tcp_queue *queue = req->queue;
341 	bool empty;
342 
343 	empty = llist_add(&req->lentry, &queue->req_list) &&
344 		list_empty(&queue->send_list) && !queue->request;
345 
346 	/*
347 	 * if we're the first on the send_list and we can try to send
348 	 * directly, otherwise queue io_work. Also, only do that if we
349 	 * are on the same cpu, so we don't introduce contention.
350 	 */
351 	if (queue->io_cpu == raw_smp_processor_id() &&
352 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
353 		nvme_tcp_send_all(queue);
354 		mutex_unlock(&queue->send_mutex);
355 	}
356 
357 	if (last && nvme_tcp_queue_more(queue))
358 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
359 }
360 
361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
362 {
363 	struct nvme_tcp_request *req;
364 	struct llist_node *node;
365 
366 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
367 		req = llist_entry(node, struct nvme_tcp_request, lentry);
368 		list_add(&req->entry, &queue->send_list);
369 	}
370 }
371 
372 static inline struct nvme_tcp_request *
373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
374 {
375 	struct nvme_tcp_request *req;
376 
377 	req = list_first_entry_or_null(&queue->send_list,
378 			struct nvme_tcp_request, entry);
379 	if (!req) {
380 		nvme_tcp_process_req_list(queue);
381 		req = list_first_entry_or_null(&queue->send_list,
382 				struct nvme_tcp_request, entry);
383 		if (unlikely(!req))
384 			return NULL;
385 	}
386 
387 	list_del(&req->entry);
388 	return req;
389 }
390 
391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
392 		__le32 *dgst)
393 {
394 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
395 	crypto_ahash_final(hash);
396 }
397 
398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
399 		struct page *page, off_t off, size_t len)
400 {
401 	struct scatterlist sg;
402 
403 	sg_init_table(&sg, 1);
404 	sg_set_page(&sg, page, len, off);
405 	ahash_request_set_crypt(hash, &sg, NULL, len);
406 	crypto_ahash_update(hash);
407 }
408 
409 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
410 		void *pdu, size_t len)
411 {
412 	struct scatterlist sg;
413 
414 	sg_init_one(&sg, pdu, len);
415 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
416 	crypto_ahash_digest(hash);
417 }
418 
419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
420 		void *pdu, size_t pdu_len)
421 {
422 	struct nvme_tcp_hdr *hdr = pdu;
423 	__le32 recv_digest;
424 	__le32 exp_digest;
425 
426 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
427 		dev_err(queue->ctrl->ctrl.device,
428 			"queue %d: header digest flag is cleared\n",
429 			nvme_tcp_queue_id(queue));
430 		return -EPROTO;
431 	}
432 
433 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
434 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
435 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
436 	if (recv_digest != exp_digest) {
437 		dev_err(queue->ctrl->ctrl.device,
438 			"header digest error: recv %#x expected %#x\n",
439 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
440 		return -EIO;
441 	}
442 
443 	return 0;
444 }
445 
446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
447 {
448 	struct nvme_tcp_hdr *hdr = pdu;
449 	u8 digest_len = nvme_tcp_hdgst_len(queue);
450 	u32 len;
451 
452 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
453 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
454 
455 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
456 		dev_err(queue->ctrl->ctrl.device,
457 			"queue %d: data digest flag is cleared\n",
458 		nvme_tcp_queue_id(queue));
459 		return -EPROTO;
460 	}
461 	crypto_ahash_init(queue->rcv_hash);
462 
463 	return 0;
464 }
465 
466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
467 		struct request *rq, unsigned int hctx_idx)
468 {
469 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
470 
471 	page_frag_free(req->pdu);
472 }
473 
474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
475 		struct request *rq, unsigned int hctx_idx,
476 		unsigned int numa_node)
477 {
478 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
479 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
480 	struct nvme_tcp_cmd_pdu *pdu;
481 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
482 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
483 	u8 hdgst = nvme_tcp_hdgst_len(queue);
484 
485 	req->pdu = page_frag_alloc(&queue->pf_cache,
486 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
487 		GFP_KERNEL | __GFP_ZERO);
488 	if (!req->pdu)
489 		return -ENOMEM;
490 
491 	pdu = req->pdu;
492 	req->queue = queue;
493 	nvme_req(rq)->ctrl = &ctrl->ctrl;
494 	nvme_req(rq)->cmd = &pdu->cmd;
495 
496 	return 0;
497 }
498 
499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
500 		unsigned int hctx_idx)
501 {
502 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
503 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
504 
505 	hctx->driver_data = queue;
506 	return 0;
507 }
508 
509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
510 		unsigned int hctx_idx)
511 {
512 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
513 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
514 
515 	hctx->driver_data = queue;
516 	return 0;
517 }
518 
519 static enum nvme_tcp_recv_state
520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
521 {
522 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
523 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
524 		NVME_TCP_RECV_DATA;
525 }
526 
527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
528 {
529 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
530 				nvme_tcp_hdgst_len(queue);
531 	queue->pdu_offset = 0;
532 	queue->data_remaining = -1;
533 	queue->ddgst_remaining = 0;
534 }
535 
536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
537 {
538 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
539 		return;
540 
541 	dev_warn(ctrl->device, "starting error recovery\n");
542 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
543 }
544 
545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
546 		struct nvme_completion *cqe)
547 {
548 	struct nvme_tcp_request *req;
549 	struct request *rq;
550 
551 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
552 	if (!rq) {
553 		dev_err(queue->ctrl->ctrl.device,
554 			"got bad cqe.command_id %#x on queue %d\n",
555 			cqe->command_id, nvme_tcp_queue_id(queue));
556 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
557 		return -EINVAL;
558 	}
559 
560 	req = blk_mq_rq_to_pdu(rq);
561 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
562 		req->status = cqe->status;
563 
564 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
565 		nvme_complete_rq(rq);
566 	queue->nr_cqe++;
567 
568 	return 0;
569 }
570 
571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
572 		struct nvme_tcp_data_pdu *pdu)
573 {
574 	struct request *rq;
575 
576 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
577 	if (!rq) {
578 		dev_err(queue->ctrl->ctrl.device,
579 			"got bad c2hdata.command_id %#x on queue %d\n",
580 			pdu->command_id, nvme_tcp_queue_id(queue));
581 		return -ENOENT;
582 	}
583 
584 	if (!blk_rq_payload_bytes(rq)) {
585 		dev_err(queue->ctrl->ctrl.device,
586 			"queue %d tag %#x unexpected data\n",
587 			nvme_tcp_queue_id(queue), rq->tag);
588 		return -EIO;
589 	}
590 
591 	queue->data_remaining = le32_to_cpu(pdu->data_length);
592 
593 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
594 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
595 		dev_err(queue->ctrl->ctrl.device,
596 			"queue %d tag %#x SUCCESS set but not last PDU\n",
597 			nvme_tcp_queue_id(queue), rq->tag);
598 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
599 		return -EPROTO;
600 	}
601 
602 	return 0;
603 }
604 
605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
606 		struct nvme_tcp_rsp_pdu *pdu)
607 {
608 	struct nvme_completion *cqe = &pdu->cqe;
609 	int ret = 0;
610 
611 	/*
612 	 * AEN requests are special as they don't time out and can
613 	 * survive any kind of queue freeze and often don't respond to
614 	 * aborts.  We don't even bother to allocate a struct request
615 	 * for them but rather special case them here.
616 	 */
617 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
618 				     cqe->command_id)))
619 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
620 				&cqe->result);
621 	else
622 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
623 
624 	return ret;
625 }
626 
627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
628 {
629 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
630 	struct nvme_tcp_queue *queue = req->queue;
631 	struct request *rq = blk_mq_rq_from_pdu(req);
632 	u32 h2cdata_sent = req->pdu_len;
633 	u8 hdgst = nvme_tcp_hdgst_len(queue);
634 	u8 ddgst = nvme_tcp_ddgst_len(queue);
635 
636 	req->state = NVME_TCP_SEND_H2C_PDU;
637 	req->offset = 0;
638 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
639 	req->pdu_sent = 0;
640 	req->h2cdata_left -= req->pdu_len;
641 	req->h2cdata_offset += h2cdata_sent;
642 
643 	memset(data, 0, sizeof(*data));
644 	data->hdr.type = nvme_tcp_h2c_data;
645 	if (!req->h2cdata_left)
646 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
647 	if (queue->hdr_digest)
648 		data->hdr.flags |= NVME_TCP_F_HDGST;
649 	if (queue->data_digest)
650 		data->hdr.flags |= NVME_TCP_F_DDGST;
651 	data->hdr.hlen = sizeof(*data);
652 	data->hdr.pdo = data->hdr.hlen + hdgst;
653 	data->hdr.plen =
654 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
655 	data->ttag = req->ttag;
656 	data->command_id = nvme_cid(rq);
657 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
658 	data->data_length = cpu_to_le32(req->pdu_len);
659 }
660 
661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
662 		struct nvme_tcp_r2t_pdu *pdu)
663 {
664 	struct nvme_tcp_request *req;
665 	struct request *rq;
666 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
667 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
668 
669 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
670 	if (!rq) {
671 		dev_err(queue->ctrl->ctrl.device,
672 			"got bad r2t.command_id %#x on queue %d\n",
673 			pdu->command_id, nvme_tcp_queue_id(queue));
674 		return -ENOENT;
675 	}
676 	req = blk_mq_rq_to_pdu(rq);
677 
678 	if (unlikely(!r2t_length)) {
679 		dev_err(queue->ctrl->ctrl.device,
680 			"req %d r2t len is %u, probably a bug...\n",
681 			rq->tag, r2t_length);
682 		return -EPROTO;
683 	}
684 
685 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
686 		dev_err(queue->ctrl->ctrl.device,
687 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
688 			rq->tag, r2t_length, req->data_len, req->data_sent);
689 		return -EPROTO;
690 	}
691 
692 	if (unlikely(r2t_offset < req->data_sent)) {
693 		dev_err(queue->ctrl->ctrl.device,
694 			"req %d unexpected r2t offset %u (expected %zu)\n",
695 			rq->tag, r2t_offset, req->data_sent);
696 		return -EPROTO;
697 	}
698 
699 	req->pdu_len = 0;
700 	req->h2cdata_left = r2t_length;
701 	req->h2cdata_offset = r2t_offset;
702 	req->ttag = pdu->ttag;
703 
704 	nvme_tcp_setup_h2c_data_pdu(req);
705 	nvme_tcp_queue_request(req, false, true);
706 
707 	return 0;
708 }
709 
710 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
711 		unsigned int *offset, size_t *len)
712 {
713 	struct nvme_tcp_hdr *hdr;
714 	char *pdu = queue->pdu;
715 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
716 	int ret;
717 
718 	ret = skb_copy_bits(skb, *offset,
719 		&pdu[queue->pdu_offset], rcv_len);
720 	if (unlikely(ret))
721 		return ret;
722 
723 	queue->pdu_remaining -= rcv_len;
724 	queue->pdu_offset += rcv_len;
725 	*offset += rcv_len;
726 	*len -= rcv_len;
727 	if (queue->pdu_remaining)
728 		return 0;
729 
730 	hdr = queue->pdu;
731 	if (queue->hdr_digest) {
732 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
733 		if (unlikely(ret))
734 			return ret;
735 	}
736 
737 
738 	if (queue->data_digest) {
739 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
740 		if (unlikely(ret))
741 			return ret;
742 	}
743 
744 	switch (hdr->type) {
745 	case nvme_tcp_c2h_data:
746 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
747 	case nvme_tcp_rsp:
748 		nvme_tcp_init_recv_ctx(queue);
749 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
750 	case nvme_tcp_r2t:
751 		nvme_tcp_init_recv_ctx(queue);
752 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
753 	default:
754 		dev_err(queue->ctrl->ctrl.device,
755 			"unsupported pdu type (%d)\n", hdr->type);
756 		return -EINVAL;
757 	}
758 }
759 
760 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
761 {
762 	union nvme_result res = {};
763 
764 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
765 		nvme_complete_rq(rq);
766 }
767 
768 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
769 			      unsigned int *offset, size_t *len)
770 {
771 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
772 	struct request *rq =
773 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
774 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
775 
776 	while (true) {
777 		int recv_len, ret;
778 
779 		recv_len = min_t(size_t, *len, queue->data_remaining);
780 		if (!recv_len)
781 			break;
782 
783 		if (!iov_iter_count(&req->iter)) {
784 			req->curr_bio = req->curr_bio->bi_next;
785 
786 			/*
787 			 * If we don`t have any bios it means that controller
788 			 * sent more data than we requested, hence error
789 			 */
790 			if (!req->curr_bio) {
791 				dev_err(queue->ctrl->ctrl.device,
792 					"queue %d no space in request %#x",
793 					nvme_tcp_queue_id(queue), rq->tag);
794 				nvme_tcp_init_recv_ctx(queue);
795 				return -EIO;
796 			}
797 			nvme_tcp_init_iter(req, ITER_DEST);
798 		}
799 
800 		/* we can read only from what is left in this bio */
801 		recv_len = min_t(size_t, recv_len,
802 				iov_iter_count(&req->iter));
803 
804 		if (queue->data_digest)
805 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
806 				&req->iter, recv_len, queue->rcv_hash);
807 		else
808 			ret = skb_copy_datagram_iter(skb, *offset,
809 					&req->iter, recv_len);
810 		if (ret) {
811 			dev_err(queue->ctrl->ctrl.device,
812 				"queue %d failed to copy request %#x data",
813 				nvme_tcp_queue_id(queue), rq->tag);
814 			return ret;
815 		}
816 
817 		*len -= recv_len;
818 		*offset += recv_len;
819 		queue->data_remaining -= recv_len;
820 	}
821 
822 	if (!queue->data_remaining) {
823 		if (queue->data_digest) {
824 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
825 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
826 		} else {
827 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
828 				nvme_tcp_end_request(rq,
829 						le16_to_cpu(req->status));
830 				queue->nr_cqe++;
831 			}
832 			nvme_tcp_init_recv_ctx(queue);
833 		}
834 	}
835 
836 	return 0;
837 }
838 
839 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
840 		struct sk_buff *skb, unsigned int *offset, size_t *len)
841 {
842 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
843 	char *ddgst = (char *)&queue->recv_ddgst;
844 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
845 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
846 	int ret;
847 
848 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
849 	if (unlikely(ret))
850 		return ret;
851 
852 	queue->ddgst_remaining -= recv_len;
853 	*offset += recv_len;
854 	*len -= recv_len;
855 	if (queue->ddgst_remaining)
856 		return 0;
857 
858 	if (queue->recv_ddgst != queue->exp_ddgst) {
859 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
860 					pdu->command_id);
861 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
862 
863 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
864 
865 		dev_err(queue->ctrl->ctrl.device,
866 			"data digest error: recv %#x expected %#x\n",
867 			le32_to_cpu(queue->recv_ddgst),
868 			le32_to_cpu(queue->exp_ddgst));
869 	}
870 
871 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
872 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
873 					pdu->command_id);
874 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
875 
876 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
877 		queue->nr_cqe++;
878 	}
879 
880 	nvme_tcp_init_recv_ctx(queue);
881 	return 0;
882 }
883 
884 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
885 			     unsigned int offset, size_t len)
886 {
887 	struct nvme_tcp_queue *queue = desc->arg.data;
888 	size_t consumed = len;
889 	int result;
890 
891 	if (unlikely(!queue->rd_enabled))
892 		return -EFAULT;
893 
894 	while (len) {
895 		switch (nvme_tcp_recv_state(queue)) {
896 		case NVME_TCP_RECV_PDU:
897 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
898 			break;
899 		case NVME_TCP_RECV_DATA:
900 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
901 			break;
902 		case NVME_TCP_RECV_DDGST:
903 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
904 			break;
905 		default:
906 			result = -EFAULT;
907 		}
908 		if (result) {
909 			dev_err(queue->ctrl->ctrl.device,
910 				"receive failed:  %d\n", result);
911 			queue->rd_enabled = false;
912 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
913 			return result;
914 		}
915 	}
916 
917 	return consumed;
918 }
919 
920 static void nvme_tcp_data_ready(struct sock *sk)
921 {
922 	struct nvme_tcp_queue *queue;
923 
924 	trace_sk_data_ready(sk);
925 
926 	read_lock_bh(&sk->sk_callback_lock);
927 	queue = sk->sk_user_data;
928 	if (likely(queue && queue->rd_enabled) &&
929 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
930 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
931 	read_unlock_bh(&sk->sk_callback_lock);
932 }
933 
934 static void nvme_tcp_write_space(struct sock *sk)
935 {
936 	struct nvme_tcp_queue *queue;
937 
938 	read_lock_bh(&sk->sk_callback_lock);
939 	queue = sk->sk_user_data;
940 	if (likely(queue && sk_stream_is_writeable(sk))) {
941 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
942 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
943 	}
944 	read_unlock_bh(&sk->sk_callback_lock);
945 }
946 
947 static void nvme_tcp_state_change(struct sock *sk)
948 {
949 	struct nvme_tcp_queue *queue;
950 
951 	read_lock_bh(&sk->sk_callback_lock);
952 	queue = sk->sk_user_data;
953 	if (!queue)
954 		goto done;
955 
956 	switch (sk->sk_state) {
957 	case TCP_CLOSE:
958 	case TCP_CLOSE_WAIT:
959 	case TCP_LAST_ACK:
960 	case TCP_FIN_WAIT1:
961 	case TCP_FIN_WAIT2:
962 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
963 		break;
964 	default:
965 		dev_info(queue->ctrl->ctrl.device,
966 			"queue %d socket state %d\n",
967 			nvme_tcp_queue_id(queue), sk->sk_state);
968 	}
969 
970 	queue->state_change(sk);
971 done:
972 	read_unlock_bh(&sk->sk_callback_lock);
973 }
974 
975 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
976 {
977 	queue->request = NULL;
978 }
979 
980 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
981 {
982 	if (nvme_tcp_async_req(req)) {
983 		union nvme_result res = {};
984 
985 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
986 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
987 	} else {
988 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
989 				NVME_SC_HOST_PATH_ERROR);
990 	}
991 }
992 
993 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
994 {
995 	struct nvme_tcp_queue *queue = req->queue;
996 	int req_data_len = req->data_len;
997 	u32 h2cdata_left = req->h2cdata_left;
998 
999 	while (true) {
1000 		struct bio_vec bvec;
1001 		struct msghdr msg = {
1002 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1003 		};
1004 		struct page *page = nvme_tcp_req_cur_page(req);
1005 		size_t offset = nvme_tcp_req_cur_offset(req);
1006 		size_t len = nvme_tcp_req_cur_length(req);
1007 		bool last = nvme_tcp_pdu_last_send(req, len);
1008 		int req_data_sent = req->data_sent;
1009 		int ret;
1010 
1011 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1012 			msg.msg_flags |= MSG_EOR;
1013 		else
1014 			msg.msg_flags |= MSG_MORE;
1015 
1016 		if (!sendpage_ok(page))
1017 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1018 
1019 		bvec_set_page(&bvec, page, len, offset);
1020 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1021 		ret = sock_sendmsg(queue->sock, &msg);
1022 		if (ret <= 0)
1023 			return ret;
1024 
1025 		if (queue->data_digest)
1026 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1027 					offset, ret);
1028 
1029 		/*
1030 		 * update the request iterator except for the last payload send
1031 		 * in the request where we don't want to modify it as we may
1032 		 * compete with the RX path completing the request.
1033 		 */
1034 		if (req_data_sent + ret < req_data_len)
1035 			nvme_tcp_advance_req(req, ret);
1036 
1037 		/* fully successful last send in current PDU */
1038 		if (last && ret == len) {
1039 			if (queue->data_digest) {
1040 				nvme_tcp_ddgst_final(queue->snd_hash,
1041 					&req->ddgst);
1042 				req->state = NVME_TCP_SEND_DDGST;
1043 				req->offset = 0;
1044 			} else {
1045 				if (h2cdata_left)
1046 					nvme_tcp_setup_h2c_data_pdu(req);
1047 				else
1048 					nvme_tcp_done_send_req(queue);
1049 			}
1050 			return 1;
1051 		}
1052 	}
1053 	return -EAGAIN;
1054 }
1055 
1056 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1057 {
1058 	struct nvme_tcp_queue *queue = req->queue;
1059 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1060 	struct bio_vec bvec;
1061 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1062 	bool inline_data = nvme_tcp_has_inline_data(req);
1063 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1064 	int len = sizeof(*pdu) + hdgst - req->offset;
1065 	int ret;
1066 
1067 	if (inline_data || nvme_tcp_queue_more(queue))
1068 		msg.msg_flags |= MSG_MORE;
1069 	else
1070 		msg.msg_flags |= MSG_EOR;
1071 
1072 	if (queue->hdr_digest && !req->offset)
1073 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1074 
1075 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1076 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1077 	ret = sock_sendmsg(queue->sock, &msg);
1078 	if (unlikely(ret <= 0))
1079 		return ret;
1080 
1081 	len -= ret;
1082 	if (!len) {
1083 		if (inline_data) {
1084 			req->state = NVME_TCP_SEND_DATA;
1085 			if (queue->data_digest)
1086 				crypto_ahash_init(queue->snd_hash);
1087 		} else {
1088 			nvme_tcp_done_send_req(queue);
1089 		}
1090 		return 1;
1091 	}
1092 	req->offset += ret;
1093 
1094 	return -EAGAIN;
1095 }
1096 
1097 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1098 {
1099 	struct nvme_tcp_queue *queue = req->queue;
1100 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1101 	struct bio_vec bvec;
1102 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1103 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1104 	int len = sizeof(*pdu) - req->offset + hdgst;
1105 	int ret;
1106 
1107 	if (queue->hdr_digest && !req->offset)
1108 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1109 
1110 	if (!req->h2cdata_left)
1111 		msg.msg_flags |= MSG_SPLICE_PAGES;
1112 
1113 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1114 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1115 	ret = sock_sendmsg(queue->sock, &msg);
1116 	if (unlikely(ret <= 0))
1117 		return ret;
1118 
1119 	len -= ret;
1120 	if (!len) {
1121 		req->state = NVME_TCP_SEND_DATA;
1122 		if (queue->data_digest)
1123 			crypto_ahash_init(queue->snd_hash);
1124 		return 1;
1125 	}
1126 	req->offset += ret;
1127 
1128 	return -EAGAIN;
1129 }
1130 
1131 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1132 {
1133 	struct nvme_tcp_queue *queue = req->queue;
1134 	size_t offset = req->offset;
1135 	u32 h2cdata_left = req->h2cdata_left;
1136 	int ret;
1137 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1138 	struct kvec iov = {
1139 		.iov_base = (u8 *)&req->ddgst + req->offset,
1140 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1141 	};
1142 
1143 	if (nvme_tcp_queue_more(queue))
1144 		msg.msg_flags |= MSG_MORE;
1145 	else
1146 		msg.msg_flags |= MSG_EOR;
1147 
1148 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1149 	if (unlikely(ret <= 0))
1150 		return ret;
1151 
1152 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1153 		if (h2cdata_left)
1154 			nvme_tcp_setup_h2c_data_pdu(req);
1155 		else
1156 			nvme_tcp_done_send_req(queue);
1157 		return 1;
1158 	}
1159 
1160 	req->offset += ret;
1161 	return -EAGAIN;
1162 }
1163 
1164 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1165 {
1166 	struct nvme_tcp_request *req;
1167 	unsigned int noreclaim_flag;
1168 	int ret = 1;
1169 
1170 	if (!queue->request) {
1171 		queue->request = nvme_tcp_fetch_request(queue);
1172 		if (!queue->request)
1173 			return 0;
1174 	}
1175 	req = queue->request;
1176 
1177 	noreclaim_flag = memalloc_noreclaim_save();
1178 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1179 		ret = nvme_tcp_try_send_cmd_pdu(req);
1180 		if (ret <= 0)
1181 			goto done;
1182 		if (!nvme_tcp_has_inline_data(req))
1183 			goto out;
1184 	}
1185 
1186 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1187 		ret = nvme_tcp_try_send_data_pdu(req);
1188 		if (ret <= 0)
1189 			goto done;
1190 	}
1191 
1192 	if (req->state == NVME_TCP_SEND_DATA) {
1193 		ret = nvme_tcp_try_send_data(req);
1194 		if (ret <= 0)
1195 			goto done;
1196 	}
1197 
1198 	if (req->state == NVME_TCP_SEND_DDGST)
1199 		ret = nvme_tcp_try_send_ddgst(req);
1200 done:
1201 	if (ret == -EAGAIN) {
1202 		ret = 0;
1203 	} else if (ret < 0) {
1204 		dev_err(queue->ctrl->ctrl.device,
1205 			"failed to send request %d\n", ret);
1206 		nvme_tcp_fail_request(queue->request);
1207 		nvme_tcp_done_send_req(queue);
1208 	}
1209 out:
1210 	memalloc_noreclaim_restore(noreclaim_flag);
1211 	return ret;
1212 }
1213 
1214 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1215 {
1216 	struct socket *sock = queue->sock;
1217 	struct sock *sk = sock->sk;
1218 	read_descriptor_t rd_desc;
1219 	int consumed;
1220 
1221 	rd_desc.arg.data = queue;
1222 	rd_desc.count = 1;
1223 	lock_sock(sk);
1224 	queue->nr_cqe = 0;
1225 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1226 	release_sock(sk);
1227 	return consumed;
1228 }
1229 
1230 static void nvme_tcp_io_work(struct work_struct *w)
1231 {
1232 	struct nvme_tcp_queue *queue =
1233 		container_of(w, struct nvme_tcp_queue, io_work);
1234 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1235 
1236 	do {
1237 		bool pending = false;
1238 		int result;
1239 
1240 		if (mutex_trylock(&queue->send_mutex)) {
1241 			result = nvme_tcp_try_send(queue);
1242 			mutex_unlock(&queue->send_mutex);
1243 			if (result > 0)
1244 				pending = true;
1245 			else if (unlikely(result < 0))
1246 				break;
1247 		}
1248 
1249 		result = nvme_tcp_try_recv(queue);
1250 		if (result > 0)
1251 			pending = true;
1252 		else if (unlikely(result < 0))
1253 			return;
1254 
1255 		if (!pending || !queue->rd_enabled)
1256 			return;
1257 
1258 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1259 
1260 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1261 }
1262 
1263 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1264 {
1265 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1266 
1267 	ahash_request_free(queue->rcv_hash);
1268 	ahash_request_free(queue->snd_hash);
1269 	crypto_free_ahash(tfm);
1270 }
1271 
1272 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1273 {
1274 	struct crypto_ahash *tfm;
1275 
1276 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1277 	if (IS_ERR(tfm))
1278 		return PTR_ERR(tfm);
1279 
1280 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1281 	if (!queue->snd_hash)
1282 		goto free_tfm;
1283 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1284 
1285 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1286 	if (!queue->rcv_hash)
1287 		goto free_snd_hash;
1288 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1289 
1290 	return 0;
1291 free_snd_hash:
1292 	ahash_request_free(queue->snd_hash);
1293 free_tfm:
1294 	crypto_free_ahash(tfm);
1295 	return -ENOMEM;
1296 }
1297 
1298 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1299 {
1300 	struct nvme_tcp_request *async = &ctrl->async_req;
1301 
1302 	page_frag_free(async->pdu);
1303 }
1304 
1305 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1306 {
1307 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1308 	struct nvme_tcp_request *async = &ctrl->async_req;
1309 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1310 
1311 	async->pdu = page_frag_alloc(&queue->pf_cache,
1312 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1313 		GFP_KERNEL | __GFP_ZERO);
1314 	if (!async->pdu)
1315 		return -ENOMEM;
1316 
1317 	async->queue = &ctrl->queues[0];
1318 	return 0;
1319 }
1320 
1321 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1322 {
1323 	struct page *page;
1324 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1325 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1326 	unsigned int noreclaim_flag;
1327 
1328 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1329 		return;
1330 
1331 	if (queue->hdr_digest || queue->data_digest)
1332 		nvme_tcp_free_crypto(queue);
1333 
1334 	if (queue->pf_cache.va) {
1335 		page = virt_to_head_page(queue->pf_cache.va);
1336 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1337 		queue->pf_cache.va = NULL;
1338 	}
1339 
1340 	noreclaim_flag = memalloc_noreclaim_save();
1341 	sock_release(queue->sock);
1342 	memalloc_noreclaim_restore(noreclaim_flag);
1343 
1344 	kfree(queue->pdu);
1345 	mutex_destroy(&queue->send_mutex);
1346 	mutex_destroy(&queue->queue_lock);
1347 }
1348 
1349 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1350 {
1351 	struct nvme_tcp_icreq_pdu *icreq;
1352 	struct nvme_tcp_icresp_pdu *icresp;
1353 	struct msghdr msg = {};
1354 	struct kvec iov;
1355 	bool ctrl_hdgst, ctrl_ddgst;
1356 	u32 maxh2cdata;
1357 	int ret;
1358 
1359 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1360 	if (!icreq)
1361 		return -ENOMEM;
1362 
1363 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1364 	if (!icresp) {
1365 		ret = -ENOMEM;
1366 		goto free_icreq;
1367 	}
1368 
1369 	icreq->hdr.type = nvme_tcp_icreq;
1370 	icreq->hdr.hlen = sizeof(*icreq);
1371 	icreq->hdr.pdo = 0;
1372 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1373 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1374 	icreq->maxr2t = 0; /* single inflight r2t supported */
1375 	icreq->hpda = 0; /* no alignment constraint */
1376 	if (queue->hdr_digest)
1377 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1378 	if (queue->data_digest)
1379 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1380 
1381 	iov.iov_base = icreq;
1382 	iov.iov_len = sizeof(*icreq);
1383 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1384 	if (ret < 0)
1385 		goto free_icresp;
1386 
1387 	memset(&msg, 0, sizeof(msg));
1388 	iov.iov_base = icresp;
1389 	iov.iov_len = sizeof(*icresp);
1390 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1391 			iov.iov_len, msg.msg_flags);
1392 	if (ret < 0)
1393 		goto free_icresp;
1394 
1395 	ret = -EINVAL;
1396 	if (icresp->hdr.type != nvme_tcp_icresp) {
1397 		pr_err("queue %d: bad type returned %d\n",
1398 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1399 		goto free_icresp;
1400 	}
1401 
1402 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1403 		pr_err("queue %d: bad pdu length returned %d\n",
1404 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1405 		goto free_icresp;
1406 	}
1407 
1408 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1409 		pr_err("queue %d: bad pfv returned %d\n",
1410 			nvme_tcp_queue_id(queue), icresp->pfv);
1411 		goto free_icresp;
1412 	}
1413 
1414 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1415 	if ((queue->data_digest && !ctrl_ddgst) ||
1416 	    (!queue->data_digest && ctrl_ddgst)) {
1417 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1418 			nvme_tcp_queue_id(queue),
1419 			queue->data_digest ? "enabled" : "disabled",
1420 			ctrl_ddgst ? "enabled" : "disabled");
1421 		goto free_icresp;
1422 	}
1423 
1424 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1425 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1426 	    (!queue->hdr_digest && ctrl_hdgst)) {
1427 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1428 			nvme_tcp_queue_id(queue),
1429 			queue->hdr_digest ? "enabled" : "disabled",
1430 			ctrl_hdgst ? "enabled" : "disabled");
1431 		goto free_icresp;
1432 	}
1433 
1434 	if (icresp->cpda != 0) {
1435 		pr_err("queue %d: unsupported cpda returned %d\n",
1436 			nvme_tcp_queue_id(queue), icresp->cpda);
1437 		goto free_icresp;
1438 	}
1439 
1440 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1441 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1442 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1443 		       nvme_tcp_queue_id(queue), maxh2cdata);
1444 		goto free_icresp;
1445 	}
1446 	queue->maxh2cdata = maxh2cdata;
1447 
1448 	ret = 0;
1449 free_icresp:
1450 	kfree(icresp);
1451 free_icreq:
1452 	kfree(icreq);
1453 	return ret;
1454 }
1455 
1456 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1457 {
1458 	return nvme_tcp_queue_id(queue) == 0;
1459 }
1460 
1461 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1462 {
1463 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1464 	int qid = nvme_tcp_queue_id(queue);
1465 
1466 	return !nvme_tcp_admin_queue(queue) &&
1467 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1468 }
1469 
1470 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1471 {
1472 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1473 	int qid = nvme_tcp_queue_id(queue);
1474 
1475 	return !nvme_tcp_admin_queue(queue) &&
1476 		!nvme_tcp_default_queue(queue) &&
1477 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1478 			  ctrl->io_queues[HCTX_TYPE_READ];
1479 }
1480 
1481 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1482 {
1483 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1484 	int qid = nvme_tcp_queue_id(queue);
1485 
1486 	return !nvme_tcp_admin_queue(queue) &&
1487 		!nvme_tcp_default_queue(queue) &&
1488 		!nvme_tcp_read_queue(queue) &&
1489 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1490 			  ctrl->io_queues[HCTX_TYPE_READ] +
1491 			  ctrl->io_queues[HCTX_TYPE_POLL];
1492 }
1493 
1494 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1495 {
1496 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1497 	int qid = nvme_tcp_queue_id(queue);
1498 	int n = 0;
1499 
1500 	if (nvme_tcp_default_queue(queue))
1501 		n = qid - 1;
1502 	else if (nvme_tcp_read_queue(queue))
1503 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1504 	else if (nvme_tcp_poll_queue(queue))
1505 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1506 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1507 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1508 }
1509 
1510 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1511 {
1512 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1513 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1514 	int ret, rcv_pdu_size;
1515 
1516 	mutex_init(&queue->queue_lock);
1517 	queue->ctrl = ctrl;
1518 	init_llist_head(&queue->req_list);
1519 	INIT_LIST_HEAD(&queue->send_list);
1520 	mutex_init(&queue->send_mutex);
1521 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1522 
1523 	if (qid > 0)
1524 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1525 	else
1526 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1527 						NVME_TCP_ADMIN_CCSZ;
1528 
1529 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1530 			IPPROTO_TCP, &queue->sock);
1531 	if (ret) {
1532 		dev_err(nctrl->device,
1533 			"failed to create socket: %d\n", ret);
1534 		goto err_destroy_mutex;
1535 	}
1536 
1537 	nvme_tcp_reclassify_socket(queue->sock);
1538 
1539 	/* Single syn retry */
1540 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1541 
1542 	/* Set TCP no delay */
1543 	tcp_sock_set_nodelay(queue->sock->sk);
1544 
1545 	/*
1546 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1547 	 * close. This is done to prevent stale data from being sent should
1548 	 * the network connection be restored before TCP times out.
1549 	 */
1550 	sock_no_linger(queue->sock->sk);
1551 
1552 	if (so_priority > 0)
1553 		sock_set_priority(queue->sock->sk, so_priority);
1554 
1555 	/* Set socket type of service */
1556 	if (nctrl->opts->tos >= 0)
1557 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1558 
1559 	/* Set 10 seconds timeout for icresp recvmsg */
1560 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1561 
1562 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1563 	queue->sock->sk->sk_use_task_frag = false;
1564 	nvme_tcp_set_queue_io_cpu(queue);
1565 	queue->request = NULL;
1566 	queue->data_remaining = 0;
1567 	queue->ddgst_remaining = 0;
1568 	queue->pdu_remaining = 0;
1569 	queue->pdu_offset = 0;
1570 	sk_set_memalloc(queue->sock->sk);
1571 
1572 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1573 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1574 			sizeof(ctrl->src_addr));
1575 		if (ret) {
1576 			dev_err(nctrl->device,
1577 				"failed to bind queue %d socket %d\n",
1578 				qid, ret);
1579 			goto err_sock;
1580 		}
1581 	}
1582 
1583 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1584 		char *iface = nctrl->opts->host_iface;
1585 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1586 
1587 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1588 				      optval, strlen(iface));
1589 		if (ret) {
1590 			dev_err(nctrl->device,
1591 			  "failed to bind to interface %s queue %d err %d\n",
1592 			  iface, qid, ret);
1593 			goto err_sock;
1594 		}
1595 	}
1596 
1597 	queue->hdr_digest = nctrl->opts->hdr_digest;
1598 	queue->data_digest = nctrl->opts->data_digest;
1599 	if (queue->hdr_digest || queue->data_digest) {
1600 		ret = nvme_tcp_alloc_crypto(queue);
1601 		if (ret) {
1602 			dev_err(nctrl->device,
1603 				"failed to allocate queue %d crypto\n", qid);
1604 			goto err_sock;
1605 		}
1606 	}
1607 
1608 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1609 			nvme_tcp_hdgst_len(queue);
1610 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1611 	if (!queue->pdu) {
1612 		ret = -ENOMEM;
1613 		goto err_crypto;
1614 	}
1615 
1616 	dev_dbg(nctrl->device, "connecting queue %d\n",
1617 			nvme_tcp_queue_id(queue));
1618 
1619 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1620 		sizeof(ctrl->addr), 0);
1621 	if (ret) {
1622 		dev_err(nctrl->device,
1623 			"failed to connect socket: %d\n", ret);
1624 		goto err_rcv_pdu;
1625 	}
1626 
1627 	ret = nvme_tcp_init_connection(queue);
1628 	if (ret)
1629 		goto err_init_connect;
1630 
1631 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1632 
1633 	return 0;
1634 
1635 err_init_connect:
1636 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1637 err_rcv_pdu:
1638 	kfree(queue->pdu);
1639 err_crypto:
1640 	if (queue->hdr_digest || queue->data_digest)
1641 		nvme_tcp_free_crypto(queue);
1642 err_sock:
1643 	sock_release(queue->sock);
1644 	queue->sock = NULL;
1645 err_destroy_mutex:
1646 	mutex_destroy(&queue->send_mutex);
1647 	mutex_destroy(&queue->queue_lock);
1648 	return ret;
1649 }
1650 
1651 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1652 {
1653 	struct socket *sock = queue->sock;
1654 
1655 	write_lock_bh(&sock->sk->sk_callback_lock);
1656 	sock->sk->sk_user_data  = NULL;
1657 	sock->sk->sk_data_ready = queue->data_ready;
1658 	sock->sk->sk_state_change = queue->state_change;
1659 	sock->sk->sk_write_space  = queue->write_space;
1660 	write_unlock_bh(&sock->sk->sk_callback_lock);
1661 }
1662 
1663 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1664 {
1665 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1666 	nvme_tcp_restore_sock_ops(queue);
1667 	cancel_work_sync(&queue->io_work);
1668 }
1669 
1670 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1671 {
1672 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1673 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1674 
1675 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1676 		return;
1677 
1678 	mutex_lock(&queue->queue_lock);
1679 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1680 		__nvme_tcp_stop_queue(queue);
1681 	mutex_unlock(&queue->queue_lock);
1682 }
1683 
1684 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1685 {
1686 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1687 	queue->sock->sk->sk_user_data = queue;
1688 	queue->state_change = queue->sock->sk->sk_state_change;
1689 	queue->data_ready = queue->sock->sk->sk_data_ready;
1690 	queue->write_space = queue->sock->sk->sk_write_space;
1691 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1692 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1693 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1694 #ifdef CONFIG_NET_RX_BUSY_POLL
1695 	queue->sock->sk->sk_ll_usec = 1;
1696 #endif
1697 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1698 }
1699 
1700 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1701 {
1702 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1703 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1704 	int ret;
1705 
1706 	queue->rd_enabled = true;
1707 	nvme_tcp_init_recv_ctx(queue);
1708 	nvme_tcp_setup_sock_ops(queue);
1709 
1710 	if (idx)
1711 		ret = nvmf_connect_io_queue(nctrl, idx);
1712 	else
1713 		ret = nvmf_connect_admin_queue(nctrl);
1714 
1715 	if (!ret) {
1716 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1717 	} else {
1718 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1719 			__nvme_tcp_stop_queue(queue);
1720 		dev_err(nctrl->device,
1721 			"failed to connect queue: %d ret=%d\n", idx, ret);
1722 	}
1723 	return ret;
1724 }
1725 
1726 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1727 {
1728 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1729 		cancel_work_sync(&ctrl->async_event_work);
1730 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1731 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1732 	}
1733 
1734 	nvme_tcp_free_queue(ctrl, 0);
1735 }
1736 
1737 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1738 {
1739 	int i;
1740 
1741 	for (i = 1; i < ctrl->queue_count; i++)
1742 		nvme_tcp_free_queue(ctrl, i);
1743 }
1744 
1745 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1746 {
1747 	int i;
1748 
1749 	for (i = 1; i < ctrl->queue_count; i++)
1750 		nvme_tcp_stop_queue(ctrl, i);
1751 }
1752 
1753 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1754 				    int first, int last)
1755 {
1756 	int i, ret;
1757 
1758 	for (i = first; i < last; i++) {
1759 		ret = nvme_tcp_start_queue(ctrl, i);
1760 		if (ret)
1761 			goto out_stop_queues;
1762 	}
1763 
1764 	return 0;
1765 
1766 out_stop_queues:
1767 	for (i--; i >= first; i--)
1768 		nvme_tcp_stop_queue(ctrl, i);
1769 	return ret;
1770 }
1771 
1772 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1773 {
1774 	int ret;
1775 
1776 	ret = nvme_tcp_alloc_queue(ctrl, 0);
1777 	if (ret)
1778 		return ret;
1779 
1780 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1781 	if (ret)
1782 		goto out_free_queue;
1783 
1784 	return 0;
1785 
1786 out_free_queue:
1787 	nvme_tcp_free_queue(ctrl, 0);
1788 	return ret;
1789 }
1790 
1791 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1792 {
1793 	int i, ret;
1794 
1795 	for (i = 1; i < ctrl->queue_count; i++) {
1796 		ret = nvme_tcp_alloc_queue(ctrl, i);
1797 		if (ret)
1798 			goto out_free_queues;
1799 	}
1800 
1801 	return 0;
1802 
1803 out_free_queues:
1804 	for (i--; i >= 1; i--)
1805 		nvme_tcp_free_queue(ctrl, i);
1806 
1807 	return ret;
1808 }
1809 
1810 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1811 {
1812 	unsigned int nr_io_queues;
1813 	int ret;
1814 
1815 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1816 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1817 	if (ret)
1818 		return ret;
1819 
1820 	if (nr_io_queues == 0) {
1821 		dev_err(ctrl->device,
1822 			"unable to set any I/O queues\n");
1823 		return -ENOMEM;
1824 	}
1825 
1826 	ctrl->queue_count = nr_io_queues + 1;
1827 	dev_info(ctrl->device,
1828 		"creating %d I/O queues.\n", nr_io_queues);
1829 
1830 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1831 			   to_tcp_ctrl(ctrl)->io_queues);
1832 	return __nvme_tcp_alloc_io_queues(ctrl);
1833 }
1834 
1835 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1836 {
1837 	nvme_tcp_stop_io_queues(ctrl);
1838 	if (remove)
1839 		nvme_remove_io_tag_set(ctrl);
1840 	nvme_tcp_free_io_queues(ctrl);
1841 }
1842 
1843 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1844 {
1845 	int ret, nr_queues;
1846 
1847 	ret = nvme_tcp_alloc_io_queues(ctrl);
1848 	if (ret)
1849 		return ret;
1850 
1851 	if (new) {
1852 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1853 				&nvme_tcp_mq_ops,
1854 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
1855 				sizeof(struct nvme_tcp_request));
1856 		if (ret)
1857 			goto out_free_io_queues;
1858 	}
1859 
1860 	/*
1861 	 * Only start IO queues for which we have allocated the tagset
1862 	 * and limitted it to the available queues. On reconnects, the
1863 	 * queue number might have changed.
1864 	 */
1865 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1866 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1867 	if (ret)
1868 		goto out_cleanup_connect_q;
1869 
1870 	if (!new) {
1871 		nvme_unquiesce_io_queues(ctrl);
1872 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1873 			/*
1874 			 * If we timed out waiting for freeze we are likely to
1875 			 * be stuck.  Fail the controller initialization just
1876 			 * to be safe.
1877 			 */
1878 			ret = -ENODEV;
1879 			goto out_wait_freeze_timed_out;
1880 		}
1881 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1882 			ctrl->queue_count - 1);
1883 		nvme_unfreeze(ctrl);
1884 	}
1885 
1886 	/*
1887 	 * If the number of queues has increased (reconnect case)
1888 	 * start all new queues now.
1889 	 */
1890 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1891 				       ctrl->tagset->nr_hw_queues + 1);
1892 	if (ret)
1893 		goto out_wait_freeze_timed_out;
1894 
1895 	return 0;
1896 
1897 out_wait_freeze_timed_out:
1898 	nvme_quiesce_io_queues(ctrl);
1899 	nvme_sync_io_queues(ctrl);
1900 	nvme_tcp_stop_io_queues(ctrl);
1901 out_cleanup_connect_q:
1902 	nvme_cancel_tagset(ctrl);
1903 	if (new)
1904 		nvme_remove_io_tag_set(ctrl);
1905 out_free_io_queues:
1906 	nvme_tcp_free_io_queues(ctrl);
1907 	return ret;
1908 }
1909 
1910 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1911 {
1912 	nvme_tcp_stop_queue(ctrl, 0);
1913 	if (remove)
1914 		nvme_remove_admin_tag_set(ctrl);
1915 	nvme_tcp_free_admin_queue(ctrl);
1916 }
1917 
1918 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1919 {
1920 	int error;
1921 
1922 	error = nvme_tcp_alloc_admin_queue(ctrl);
1923 	if (error)
1924 		return error;
1925 
1926 	if (new) {
1927 		error = nvme_alloc_admin_tag_set(ctrl,
1928 				&to_tcp_ctrl(ctrl)->admin_tag_set,
1929 				&nvme_tcp_admin_mq_ops,
1930 				sizeof(struct nvme_tcp_request));
1931 		if (error)
1932 			goto out_free_queue;
1933 	}
1934 
1935 	error = nvme_tcp_start_queue(ctrl, 0);
1936 	if (error)
1937 		goto out_cleanup_tagset;
1938 
1939 	error = nvme_enable_ctrl(ctrl);
1940 	if (error)
1941 		goto out_stop_queue;
1942 
1943 	nvme_unquiesce_admin_queue(ctrl);
1944 
1945 	error = nvme_init_ctrl_finish(ctrl, false);
1946 	if (error)
1947 		goto out_quiesce_queue;
1948 
1949 	return 0;
1950 
1951 out_quiesce_queue:
1952 	nvme_quiesce_admin_queue(ctrl);
1953 	blk_sync_queue(ctrl->admin_q);
1954 out_stop_queue:
1955 	nvme_tcp_stop_queue(ctrl, 0);
1956 	nvme_cancel_admin_tagset(ctrl);
1957 out_cleanup_tagset:
1958 	if (new)
1959 		nvme_remove_admin_tag_set(ctrl);
1960 out_free_queue:
1961 	nvme_tcp_free_admin_queue(ctrl);
1962 	return error;
1963 }
1964 
1965 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1966 		bool remove)
1967 {
1968 	nvme_quiesce_admin_queue(ctrl);
1969 	blk_sync_queue(ctrl->admin_q);
1970 	nvme_tcp_stop_queue(ctrl, 0);
1971 	nvme_cancel_admin_tagset(ctrl);
1972 	if (remove)
1973 		nvme_unquiesce_admin_queue(ctrl);
1974 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1975 }
1976 
1977 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1978 		bool remove)
1979 {
1980 	if (ctrl->queue_count <= 1)
1981 		return;
1982 	nvme_quiesce_admin_queue(ctrl);
1983 	nvme_start_freeze(ctrl);
1984 	nvme_quiesce_io_queues(ctrl);
1985 	nvme_sync_io_queues(ctrl);
1986 	nvme_tcp_stop_io_queues(ctrl);
1987 	nvme_cancel_tagset(ctrl);
1988 	if (remove)
1989 		nvme_unquiesce_io_queues(ctrl);
1990 	nvme_tcp_destroy_io_queues(ctrl, remove);
1991 }
1992 
1993 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1994 {
1995 	/* If we are resetting/deleting then do nothing */
1996 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1997 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1998 			ctrl->state == NVME_CTRL_LIVE);
1999 		return;
2000 	}
2001 
2002 	if (nvmf_should_reconnect(ctrl)) {
2003 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2004 			ctrl->opts->reconnect_delay);
2005 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2006 				ctrl->opts->reconnect_delay * HZ);
2007 	} else {
2008 		dev_info(ctrl->device, "Removing controller...\n");
2009 		nvme_delete_ctrl(ctrl);
2010 	}
2011 }
2012 
2013 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2014 {
2015 	struct nvmf_ctrl_options *opts = ctrl->opts;
2016 	int ret;
2017 
2018 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2019 	if (ret)
2020 		return ret;
2021 
2022 	if (ctrl->icdoff) {
2023 		ret = -EOPNOTSUPP;
2024 		dev_err(ctrl->device, "icdoff is not supported!\n");
2025 		goto destroy_admin;
2026 	}
2027 
2028 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2029 		ret = -EOPNOTSUPP;
2030 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2031 		goto destroy_admin;
2032 	}
2033 
2034 	if (opts->queue_size > ctrl->sqsize + 1)
2035 		dev_warn(ctrl->device,
2036 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2037 			opts->queue_size, ctrl->sqsize + 1);
2038 
2039 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2040 		dev_warn(ctrl->device,
2041 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2042 			ctrl->sqsize + 1, ctrl->maxcmd);
2043 		ctrl->sqsize = ctrl->maxcmd - 1;
2044 	}
2045 
2046 	if (ctrl->queue_count > 1) {
2047 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2048 		if (ret)
2049 			goto destroy_admin;
2050 	}
2051 
2052 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2053 		/*
2054 		 * state change failure is ok if we started ctrl delete,
2055 		 * unless we're during creation of a new controller to
2056 		 * avoid races with teardown flow.
2057 		 */
2058 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2059 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2060 		WARN_ON_ONCE(new);
2061 		ret = -EINVAL;
2062 		goto destroy_io;
2063 	}
2064 
2065 	nvme_start_ctrl(ctrl);
2066 	return 0;
2067 
2068 destroy_io:
2069 	if (ctrl->queue_count > 1) {
2070 		nvme_quiesce_io_queues(ctrl);
2071 		nvme_sync_io_queues(ctrl);
2072 		nvme_tcp_stop_io_queues(ctrl);
2073 		nvme_cancel_tagset(ctrl);
2074 		nvme_tcp_destroy_io_queues(ctrl, new);
2075 	}
2076 destroy_admin:
2077 	nvme_quiesce_admin_queue(ctrl);
2078 	blk_sync_queue(ctrl->admin_q);
2079 	nvme_tcp_stop_queue(ctrl, 0);
2080 	nvme_cancel_admin_tagset(ctrl);
2081 	nvme_tcp_destroy_admin_queue(ctrl, new);
2082 	return ret;
2083 }
2084 
2085 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2086 {
2087 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2088 			struct nvme_tcp_ctrl, connect_work);
2089 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2090 
2091 	++ctrl->nr_reconnects;
2092 
2093 	if (nvme_tcp_setup_ctrl(ctrl, false))
2094 		goto requeue;
2095 
2096 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2097 			ctrl->nr_reconnects);
2098 
2099 	ctrl->nr_reconnects = 0;
2100 
2101 	return;
2102 
2103 requeue:
2104 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2105 			ctrl->nr_reconnects);
2106 	nvme_tcp_reconnect_or_remove(ctrl);
2107 }
2108 
2109 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2110 {
2111 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2112 				struct nvme_tcp_ctrl, err_work);
2113 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2114 
2115 	nvme_stop_keep_alive(ctrl);
2116 	flush_work(&ctrl->async_event_work);
2117 	nvme_tcp_teardown_io_queues(ctrl, false);
2118 	/* unquiesce to fail fast pending requests */
2119 	nvme_unquiesce_io_queues(ctrl);
2120 	nvme_tcp_teardown_admin_queue(ctrl, false);
2121 	nvme_unquiesce_admin_queue(ctrl);
2122 	nvme_auth_stop(ctrl);
2123 
2124 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2125 		/* state change failure is ok if we started ctrl delete */
2126 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2127 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2128 		return;
2129 	}
2130 
2131 	nvme_tcp_reconnect_or_remove(ctrl);
2132 }
2133 
2134 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2135 {
2136 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2137 	nvme_quiesce_admin_queue(ctrl);
2138 	nvme_disable_ctrl(ctrl, shutdown);
2139 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2140 }
2141 
2142 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2143 {
2144 	nvme_tcp_teardown_ctrl(ctrl, true);
2145 }
2146 
2147 static void nvme_reset_ctrl_work(struct work_struct *work)
2148 {
2149 	struct nvme_ctrl *ctrl =
2150 		container_of(work, struct nvme_ctrl, reset_work);
2151 
2152 	nvme_stop_ctrl(ctrl);
2153 	nvme_tcp_teardown_ctrl(ctrl, false);
2154 
2155 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2156 		/* state change failure is ok if we started ctrl delete */
2157 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2158 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2159 		return;
2160 	}
2161 
2162 	if (nvme_tcp_setup_ctrl(ctrl, false))
2163 		goto out_fail;
2164 
2165 	return;
2166 
2167 out_fail:
2168 	++ctrl->nr_reconnects;
2169 	nvme_tcp_reconnect_or_remove(ctrl);
2170 }
2171 
2172 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2173 {
2174 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2175 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2176 }
2177 
2178 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2179 {
2180 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2181 
2182 	if (list_empty(&ctrl->list))
2183 		goto free_ctrl;
2184 
2185 	mutex_lock(&nvme_tcp_ctrl_mutex);
2186 	list_del(&ctrl->list);
2187 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2188 
2189 	nvmf_free_options(nctrl->opts);
2190 free_ctrl:
2191 	kfree(ctrl->queues);
2192 	kfree(ctrl);
2193 }
2194 
2195 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2196 {
2197 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2198 
2199 	sg->addr = 0;
2200 	sg->length = 0;
2201 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2202 			NVME_SGL_FMT_TRANSPORT_A;
2203 }
2204 
2205 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2206 		struct nvme_command *c, u32 data_len)
2207 {
2208 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2209 
2210 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2211 	sg->length = cpu_to_le32(data_len);
2212 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2213 }
2214 
2215 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2216 		u32 data_len)
2217 {
2218 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2219 
2220 	sg->addr = 0;
2221 	sg->length = cpu_to_le32(data_len);
2222 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2223 			NVME_SGL_FMT_TRANSPORT_A;
2224 }
2225 
2226 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2227 {
2228 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2229 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2230 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2231 	struct nvme_command *cmd = &pdu->cmd;
2232 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2233 
2234 	memset(pdu, 0, sizeof(*pdu));
2235 	pdu->hdr.type = nvme_tcp_cmd;
2236 	if (queue->hdr_digest)
2237 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2238 	pdu->hdr.hlen = sizeof(*pdu);
2239 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2240 
2241 	cmd->common.opcode = nvme_admin_async_event;
2242 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2243 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2244 	nvme_tcp_set_sg_null(cmd);
2245 
2246 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2247 	ctrl->async_req.offset = 0;
2248 	ctrl->async_req.curr_bio = NULL;
2249 	ctrl->async_req.data_len = 0;
2250 
2251 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2252 }
2253 
2254 static void nvme_tcp_complete_timed_out(struct request *rq)
2255 {
2256 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2257 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2258 
2259 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2260 	nvmf_complete_timed_out_request(rq);
2261 }
2262 
2263 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2264 {
2265 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2266 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2267 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2268 	u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2269 	int qid = nvme_tcp_queue_id(req->queue);
2270 
2271 	dev_warn(ctrl->device,
2272 		"queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2273 		nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2274 		opc, nvme_opcode_str(qid, opc, fctype));
2275 
2276 	if (ctrl->state != NVME_CTRL_LIVE) {
2277 		/*
2278 		 * If we are resetting, connecting or deleting we should
2279 		 * complete immediately because we may block controller
2280 		 * teardown or setup sequence
2281 		 * - ctrl disable/shutdown fabrics requests
2282 		 * - connect requests
2283 		 * - initialization admin requests
2284 		 * - I/O requests that entered after unquiescing and
2285 		 *   the controller stopped responding
2286 		 *
2287 		 * All other requests should be cancelled by the error
2288 		 * recovery work, so it's fine that we fail it here.
2289 		 */
2290 		nvme_tcp_complete_timed_out(rq);
2291 		return BLK_EH_DONE;
2292 	}
2293 
2294 	/*
2295 	 * LIVE state should trigger the normal error recovery which will
2296 	 * handle completing this request.
2297 	 */
2298 	nvme_tcp_error_recovery(ctrl);
2299 	return BLK_EH_RESET_TIMER;
2300 }
2301 
2302 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2303 			struct request *rq)
2304 {
2305 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2306 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2307 	struct nvme_command *c = &pdu->cmd;
2308 
2309 	c->common.flags |= NVME_CMD_SGL_METABUF;
2310 
2311 	if (!blk_rq_nr_phys_segments(rq))
2312 		nvme_tcp_set_sg_null(c);
2313 	else if (rq_data_dir(rq) == WRITE &&
2314 	    req->data_len <= nvme_tcp_inline_data_size(req))
2315 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2316 	else
2317 		nvme_tcp_set_sg_host_data(c, req->data_len);
2318 
2319 	return 0;
2320 }
2321 
2322 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2323 		struct request *rq)
2324 {
2325 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2326 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2327 	struct nvme_tcp_queue *queue = req->queue;
2328 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2329 	blk_status_t ret;
2330 
2331 	ret = nvme_setup_cmd(ns, rq);
2332 	if (ret)
2333 		return ret;
2334 
2335 	req->state = NVME_TCP_SEND_CMD_PDU;
2336 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2337 	req->offset = 0;
2338 	req->data_sent = 0;
2339 	req->pdu_len = 0;
2340 	req->pdu_sent = 0;
2341 	req->h2cdata_left = 0;
2342 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2343 				blk_rq_payload_bytes(rq) : 0;
2344 	req->curr_bio = rq->bio;
2345 	if (req->curr_bio && req->data_len)
2346 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2347 
2348 	if (rq_data_dir(rq) == WRITE &&
2349 	    req->data_len <= nvme_tcp_inline_data_size(req))
2350 		req->pdu_len = req->data_len;
2351 
2352 	pdu->hdr.type = nvme_tcp_cmd;
2353 	pdu->hdr.flags = 0;
2354 	if (queue->hdr_digest)
2355 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2356 	if (queue->data_digest && req->pdu_len) {
2357 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2358 		ddgst = nvme_tcp_ddgst_len(queue);
2359 	}
2360 	pdu->hdr.hlen = sizeof(*pdu);
2361 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2362 	pdu->hdr.plen =
2363 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2364 
2365 	ret = nvme_tcp_map_data(queue, rq);
2366 	if (unlikely(ret)) {
2367 		nvme_cleanup_cmd(rq);
2368 		dev_err(queue->ctrl->ctrl.device,
2369 			"Failed to map data (%d)\n", ret);
2370 		return ret;
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2377 {
2378 	struct nvme_tcp_queue *queue = hctx->driver_data;
2379 
2380 	if (!llist_empty(&queue->req_list))
2381 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2382 }
2383 
2384 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2385 		const struct blk_mq_queue_data *bd)
2386 {
2387 	struct nvme_ns *ns = hctx->queue->queuedata;
2388 	struct nvme_tcp_queue *queue = hctx->driver_data;
2389 	struct request *rq = bd->rq;
2390 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2391 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2392 	blk_status_t ret;
2393 
2394 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2395 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2396 
2397 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2398 	if (unlikely(ret))
2399 		return ret;
2400 
2401 	nvme_start_request(rq);
2402 
2403 	nvme_tcp_queue_request(req, true, bd->last);
2404 
2405 	return BLK_STS_OK;
2406 }
2407 
2408 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2409 {
2410 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2411 
2412 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2413 }
2414 
2415 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2416 {
2417 	struct nvme_tcp_queue *queue = hctx->driver_data;
2418 	struct sock *sk = queue->sock->sk;
2419 
2420 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2421 		return 0;
2422 
2423 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2424 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2425 		sk_busy_loop(sk, true);
2426 	nvme_tcp_try_recv(queue);
2427 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2428 	return queue->nr_cqe;
2429 }
2430 
2431 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2432 {
2433 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2434 	struct sockaddr_storage src_addr;
2435 	int ret, len;
2436 
2437 	len = nvmf_get_address(ctrl, buf, size);
2438 
2439 	mutex_lock(&queue->queue_lock);
2440 
2441 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2442 		goto done;
2443 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2444 	if (ret > 0) {
2445 		if (len > 0)
2446 			len--; /* strip trailing newline */
2447 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2448 				(len) ? "," : "", &src_addr);
2449 	}
2450 done:
2451 	mutex_unlock(&queue->queue_lock);
2452 
2453 	return len;
2454 }
2455 
2456 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2457 	.queue_rq	= nvme_tcp_queue_rq,
2458 	.commit_rqs	= nvme_tcp_commit_rqs,
2459 	.complete	= nvme_complete_rq,
2460 	.init_request	= nvme_tcp_init_request,
2461 	.exit_request	= nvme_tcp_exit_request,
2462 	.init_hctx	= nvme_tcp_init_hctx,
2463 	.timeout	= nvme_tcp_timeout,
2464 	.map_queues	= nvme_tcp_map_queues,
2465 	.poll		= nvme_tcp_poll,
2466 };
2467 
2468 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2469 	.queue_rq	= nvme_tcp_queue_rq,
2470 	.complete	= nvme_complete_rq,
2471 	.init_request	= nvme_tcp_init_request,
2472 	.exit_request	= nvme_tcp_exit_request,
2473 	.init_hctx	= nvme_tcp_init_admin_hctx,
2474 	.timeout	= nvme_tcp_timeout,
2475 };
2476 
2477 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2478 	.name			= "tcp",
2479 	.module			= THIS_MODULE,
2480 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2481 	.reg_read32		= nvmf_reg_read32,
2482 	.reg_read64		= nvmf_reg_read64,
2483 	.reg_write32		= nvmf_reg_write32,
2484 	.free_ctrl		= nvme_tcp_free_ctrl,
2485 	.submit_async_event	= nvme_tcp_submit_async_event,
2486 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2487 	.get_address		= nvme_tcp_get_address,
2488 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2489 };
2490 
2491 static bool
2492 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2493 {
2494 	struct nvme_tcp_ctrl *ctrl;
2495 	bool found = false;
2496 
2497 	mutex_lock(&nvme_tcp_ctrl_mutex);
2498 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2499 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2500 		if (found)
2501 			break;
2502 	}
2503 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2504 
2505 	return found;
2506 }
2507 
2508 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2509 		struct nvmf_ctrl_options *opts)
2510 {
2511 	struct nvme_tcp_ctrl *ctrl;
2512 	int ret;
2513 
2514 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2515 	if (!ctrl)
2516 		return ERR_PTR(-ENOMEM);
2517 
2518 	INIT_LIST_HEAD(&ctrl->list);
2519 	ctrl->ctrl.opts = opts;
2520 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2521 				opts->nr_poll_queues + 1;
2522 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2523 	ctrl->ctrl.kato = opts->kato;
2524 
2525 	INIT_DELAYED_WORK(&ctrl->connect_work,
2526 			nvme_tcp_reconnect_ctrl_work);
2527 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2528 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2529 
2530 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2531 		opts->trsvcid =
2532 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2533 		if (!opts->trsvcid) {
2534 			ret = -ENOMEM;
2535 			goto out_free_ctrl;
2536 		}
2537 		opts->mask |= NVMF_OPT_TRSVCID;
2538 	}
2539 
2540 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2541 			opts->traddr, opts->trsvcid, &ctrl->addr);
2542 	if (ret) {
2543 		pr_err("malformed address passed: %s:%s\n",
2544 			opts->traddr, opts->trsvcid);
2545 		goto out_free_ctrl;
2546 	}
2547 
2548 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2549 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2550 			opts->host_traddr, NULL, &ctrl->src_addr);
2551 		if (ret) {
2552 			pr_err("malformed src address passed: %s\n",
2553 			       opts->host_traddr);
2554 			goto out_free_ctrl;
2555 		}
2556 	}
2557 
2558 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2559 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2560 			pr_err("invalid interface passed: %s\n",
2561 			       opts->host_iface);
2562 			ret = -ENODEV;
2563 			goto out_free_ctrl;
2564 		}
2565 	}
2566 
2567 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2568 		ret = -EALREADY;
2569 		goto out_free_ctrl;
2570 	}
2571 
2572 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2573 				GFP_KERNEL);
2574 	if (!ctrl->queues) {
2575 		ret = -ENOMEM;
2576 		goto out_free_ctrl;
2577 	}
2578 
2579 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2580 	if (ret)
2581 		goto out_kfree_queues;
2582 
2583 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2584 		WARN_ON_ONCE(1);
2585 		ret = -EINTR;
2586 		goto out_uninit_ctrl;
2587 	}
2588 
2589 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2590 	if (ret)
2591 		goto out_uninit_ctrl;
2592 
2593 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2594 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2595 
2596 	mutex_lock(&nvme_tcp_ctrl_mutex);
2597 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2598 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2599 
2600 	return &ctrl->ctrl;
2601 
2602 out_uninit_ctrl:
2603 	nvme_uninit_ctrl(&ctrl->ctrl);
2604 	nvme_put_ctrl(&ctrl->ctrl);
2605 	if (ret > 0)
2606 		ret = -EIO;
2607 	return ERR_PTR(ret);
2608 out_kfree_queues:
2609 	kfree(ctrl->queues);
2610 out_free_ctrl:
2611 	kfree(ctrl);
2612 	return ERR_PTR(ret);
2613 }
2614 
2615 static struct nvmf_transport_ops nvme_tcp_transport = {
2616 	.name		= "tcp",
2617 	.module		= THIS_MODULE,
2618 	.required_opts	= NVMF_OPT_TRADDR,
2619 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2620 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2621 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2622 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2623 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2624 	.create_ctrl	= nvme_tcp_create_ctrl,
2625 };
2626 
2627 static int __init nvme_tcp_init_module(void)
2628 {
2629 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2630 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2631 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2632 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2633 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2634 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2635 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2636 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2637 
2638 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2639 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2640 	if (!nvme_tcp_wq)
2641 		return -ENOMEM;
2642 
2643 	nvmf_register_transport(&nvme_tcp_transport);
2644 	return 0;
2645 }
2646 
2647 static void __exit nvme_tcp_cleanup_module(void)
2648 {
2649 	struct nvme_tcp_ctrl *ctrl;
2650 
2651 	nvmf_unregister_transport(&nvme_tcp_transport);
2652 
2653 	mutex_lock(&nvme_tcp_ctrl_mutex);
2654 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2655 		nvme_delete_ctrl(&ctrl->ctrl);
2656 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2657 	flush_workqueue(nvme_delete_wq);
2658 
2659 	destroy_workqueue(nvme_tcp_wq);
2660 }
2661 
2662 module_init(nvme_tcp_init_module);
2663 module_exit(nvme_tcp_cleanup_module);
2664 
2665 MODULE_LICENSE("GPL v2");
2666