xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		send_mutex;
80 	struct llist_head	req_list;
81 	struct list_head	send_list;
82 	bool			more_requests;
83 
84 	/* recv state */
85 	void			*pdu;
86 	int			pdu_remaining;
87 	int			pdu_offset;
88 	size_t			data_remaining;
89 	size_t			ddgst_remaining;
90 	unsigned int		nr_cqe;
91 
92 	/* send state */
93 	struct nvme_tcp_request *request;
94 
95 	int			queue_size;
96 	size_t			cmnd_capsule_len;
97 	struct nvme_tcp_ctrl	*ctrl;
98 	unsigned long		flags;
99 	bool			rd_enabled;
100 
101 	bool			hdr_digest;
102 	bool			data_digest;
103 	struct ahash_request	*rcv_hash;
104 	struct ahash_request	*snd_hash;
105 	__le32			exp_ddgst;
106 	__le32			recv_ddgst;
107 
108 	struct page_frag_cache	pf_cache;
109 
110 	void (*state_change)(struct sock *);
111 	void (*data_ready)(struct sock *);
112 	void (*write_space)(struct sock *);
113 };
114 
115 struct nvme_tcp_ctrl {
116 	/* read only in the hot path */
117 	struct nvme_tcp_queue	*queues;
118 	struct blk_mq_tag_set	tag_set;
119 
120 	/* other member variables */
121 	struct list_head	list;
122 	struct blk_mq_tag_set	admin_tag_set;
123 	struct sockaddr_storage addr;
124 	struct sockaddr_storage src_addr;
125 	struct nvme_ctrl	ctrl;
126 
127 	struct work_struct	err_work;
128 	struct delayed_work	connect_work;
129 	struct nvme_tcp_request async_req;
130 	u32			io_queues[HCTX_MAX_TYPES];
131 };
132 
133 static LIST_HEAD(nvme_tcp_ctrl_list);
134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
135 static struct workqueue_struct *nvme_tcp_wq;
136 static const struct blk_mq_ops nvme_tcp_mq_ops;
137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
139 
140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
141 {
142 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
143 }
144 
145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
146 {
147 	return queue - queue->ctrl->queues;
148 }
149 
150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
151 {
152 	u32 queue_idx = nvme_tcp_queue_id(queue);
153 
154 	if (queue_idx == 0)
155 		return queue->ctrl->admin_tag_set.tags[queue_idx];
156 	return queue->ctrl->tag_set.tags[queue_idx - 1];
157 }
158 
159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
160 {
161 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
162 }
163 
164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
165 {
166 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
167 }
168 
169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
170 {
171 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173 
174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
175 {
176 	return req == &req->queue->ctrl->async_req;
177 }
178 
179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
180 {
181 	struct request *rq;
182 
183 	if (unlikely(nvme_tcp_async_req(req)))
184 		return false; /* async events don't have a request */
185 
186 	rq = blk_mq_rq_from_pdu(req);
187 
188 	return rq_data_dir(rq) == WRITE && req->data_len &&
189 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
190 }
191 
192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
193 {
194 	return req->iter.bvec->bv_page;
195 }
196 
197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
198 {
199 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
200 }
201 
202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
203 {
204 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
205 			req->pdu_len - req->pdu_sent);
206 }
207 
208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
209 {
210 	return req->iter.iov_offset;
211 }
212 
213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
214 {
215 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
216 			req->pdu_len - req->pdu_sent : 0;
217 }
218 
219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
220 		int len)
221 {
222 	return nvme_tcp_pdu_data_left(req) <= len;
223 }
224 
225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
226 		unsigned int dir)
227 {
228 	struct request *rq = blk_mq_rq_from_pdu(req);
229 	struct bio_vec *vec;
230 	unsigned int size;
231 	int nsegs;
232 	size_t offset;
233 
234 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
235 		vec = &rq->special_vec;
236 		nsegs = 1;
237 		size = blk_rq_payload_bytes(rq);
238 		offset = 0;
239 	} else {
240 		struct bio *bio = req->curr_bio;
241 
242 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
243 		nsegs = bio_segments(bio);
244 		size = bio->bi_iter.bi_size;
245 		offset = bio->bi_iter.bi_bvec_done;
246 	}
247 
248 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
249 	req->iter.iov_offset = offset;
250 }
251 
252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
253 		int len)
254 {
255 	req->data_sent += len;
256 	req->pdu_sent += len;
257 	iov_iter_advance(&req->iter, len);
258 	if (!iov_iter_count(&req->iter) &&
259 	    req->data_sent < req->data_len) {
260 		req->curr_bio = req->curr_bio->bi_next;
261 		nvme_tcp_init_iter(req, WRITE);
262 	}
263 }
264 
265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
266 		bool sync, bool last)
267 {
268 	struct nvme_tcp_queue *queue = req->queue;
269 	bool empty;
270 
271 	empty = llist_add(&req->lentry, &queue->req_list) &&
272 		list_empty(&queue->send_list) && !queue->request;
273 
274 	/*
275 	 * if we're the first on the send_list and we can try to send
276 	 * directly, otherwise queue io_work. Also, only do that if we
277 	 * are on the same cpu, so we don't introduce contention.
278 	 */
279 	if (queue->io_cpu == smp_processor_id() &&
280 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
281 		queue->more_requests = !last;
282 		nvme_tcp_try_send(queue);
283 		queue->more_requests = false;
284 		mutex_unlock(&queue->send_mutex);
285 	} else if (last) {
286 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
287 	}
288 }
289 
290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
291 {
292 	struct nvme_tcp_request *req;
293 	struct llist_node *node;
294 
295 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
296 		req = llist_entry(node, struct nvme_tcp_request, lentry);
297 		list_add(&req->entry, &queue->send_list);
298 	}
299 }
300 
301 static inline struct nvme_tcp_request *
302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
303 {
304 	struct nvme_tcp_request *req;
305 
306 	req = list_first_entry_or_null(&queue->send_list,
307 			struct nvme_tcp_request, entry);
308 	if (!req) {
309 		nvme_tcp_process_req_list(queue);
310 		req = list_first_entry_or_null(&queue->send_list,
311 				struct nvme_tcp_request, entry);
312 		if (unlikely(!req))
313 			return NULL;
314 	}
315 
316 	list_del(&req->entry);
317 	return req;
318 }
319 
320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
321 		__le32 *dgst)
322 {
323 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
324 	crypto_ahash_final(hash);
325 }
326 
327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
328 		struct page *page, off_t off, size_t len)
329 {
330 	struct scatterlist sg;
331 
332 	sg_init_marker(&sg, 1);
333 	sg_set_page(&sg, page, len, off);
334 	ahash_request_set_crypt(hash, &sg, NULL, len);
335 	crypto_ahash_update(hash);
336 }
337 
338 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
339 		void *pdu, size_t len)
340 {
341 	struct scatterlist sg;
342 
343 	sg_init_one(&sg, pdu, len);
344 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
345 	crypto_ahash_digest(hash);
346 }
347 
348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
349 		void *pdu, size_t pdu_len)
350 {
351 	struct nvme_tcp_hdr *hdr = pdu;
352 	__le32 recv_digest;
353 	__le32 exp_digest;
354 
355 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
356 		dev_err(queue->ctrl->ctrl.device,
357 			"queue %d: header digest flag is cleared\n",
358 			nvme_tcp_queue_id(queue));
359 		return -EPROTO;
360 	}
361 
362 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
363 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
364 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
365 	if (recv_digest != exp_digest) {
366 		dev_err(queue->ctrl->ctrl.device,
367 			"header digest error: recv %#x expected %#x\n",
368 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
369 		return -EIO;
370 	}
371 
372 	return 0;
373 }
374 
375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
376 {
377 	struct nvme_tcp_hdr *hdr = pdu;
378 	u8 digest_len = nvme_tcp_hdgst_len(queue);
379 	u32 len;
380 
381 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
382 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
383 
384 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
385 		dev_err(queue->ctrl->ctrl.device,
386 			"queue %d: data digest flag is cleared\n",
387 		nvme_tcp_queue_id(queue));
388 		return -EPROTO;
389 	}
390 	crypto_ahash_init(queue->rcv_hash);
391 
392 	return 0;
393 }
394 
395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
396 		struct request *rq, unsigned int hctx_idx)
397 {
398 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
399 
400 	page_frag_free(req->pdu);
401 }
402 
403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
404 		struct request *rq, unsigned int hctx_idx,
405 		unsigned int numa_node)
406 {
407 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
408 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
409 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
410 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
411 	u8 hdgst = nvme_tcp_hdgst_len(queue);
412 
413 	req->pdu = page_frag_alloc(&queue->pf_cache,
414 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
415 		GFP_KERNEL | __GFP_ZERO);
416 	if (!req->pdu)
417 		return -ENOMEM;
418 
419 	req->queue = queue;
420 	nvme_req(rq)->ctrl = &ctrl->ctrl;
421 
422 	return 0;
423 }
424 
425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
426 		unsigned int hctx_idx)
427 {
428 	struct nvme_tcp_ctrl *ctrl = data;
429 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
430 
431 	hctx->driver_data = queue;
432 	return 0;
433 }
434 
435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
436 		unsigned int hctx_idx)
437 {
438 	struct nvme_tcp_ctrl *ctrl = data;
439 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
440 
441 	hctx->driver_data = queue;
442 	return 0;
443 }
444 
445 static enum nvme_tcp_recv_state
446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
447 {
448 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
449 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
450 		NVME_TCP_RECV_DATA;
451 }
452 
453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
454 {
455 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
456 				nvme_tcp_hdgst_len(queue);
457 	queue->pdu_offset = 0;
458 	queue->data_remaining = -1;
459 	queue->ddgst_remaining = 0;
460 }
461 
462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
463 {
464 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
465 		return;
466 
467 	dev_warn(ctrl->device, "starting error recovery\n");
468 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
469 }
470 
471 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
472 		struct nvme_completion *cqe)
473 {
474 	struct request *rq;
475 
476 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
477 	if (!rq) {
478 		dev_err(queue->ctrl->ctrl.device,
479 			"queue %d tag 0x%x not found\n",
480 			nvme_tcp_queue_id(queue), cqe->command_id);
481 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
482 		return -EINVAL;
483 	}
484 
485 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
486 		nvme_complete_rq(rq);
487 	queue->nr_cqe++;
488 
489 	return 0;
490 }
491 
492 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
493 		struct nvme_tcp_data_pdu *pdu)
494 {
495 	struct request *rq;
496 
497 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
498 	if (!rq) {
499 		dev_err(queue->ctrl->ctrl.device,
500 			"queue %d tag %#x not found\n",
501 			nvme_tcp_queue_id(queue), pdu->command_id);
502 		return -ENOENT;
503 	}
504 
505 	if (!blk_rq_payload_bytes(rq)) {
506 		dev_err(queue->ctrl->ctrl.device,
507 			"queue %d tag %#x unexpected data\n",
508 			nvme_tcp_queue_id(queue), rq->tag);
509 		return -EIO;
510 	}
511 
512 	queue->data_remaining = le32_to_cpu(pdu->data_length);
513 
514 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
515 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
516 		dev_err(queue->ctrl->ctrl.device,
517 			"queue %d tag %#x SUCCESS set but not last PDU\n",
518 			nvme_tcp_queue_id(queue), rq->tag);
519 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
520 		return -EPROTO;
521 	}
522 
523 	return 0;
524 }
525 
526 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
527 		struct nvme_tcp_rsp_pdu *pdu)
528 {
529 	struct nvme_completion *cqe = &pdu->cqe;
530 	int ret = 0;
531 
532 	/*
533 	 * AEN requests are special as they don't time out and can
534 	 * survive any kind of queue freeze and often don't respond to
535 	 * aborts.  We don't even bother to allocate a struct request
536 	 * for them but rather special case them here.
537 	 */
538 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
539 				     cqe->command_id)))
540 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
541 				&cqe->result);
542 	else
543 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
544 
545 	return ret;
546 }
547 
548 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
549 		struct nvme_tcp_r2t_pdu *pdu)
550 {
551 	struct nvme_tcp_data_pdu *data = req->pdu;
552 	struct nvme_tcp_queue *queue = req->queue;
553 	struct request *rq = blk_mq_rq_from_pdu(req);
554 	u8 hdgst = nvme_tcp_hdgst_len(queue);
555 	u8 ddgst = nvme_tcp_ddgst_len(queue);
556 
557 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
558 	req->pdu_sent = 0;
559 
560 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
561 		dev_err(queue->ctrl->ctrl.device,
562 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
563 			rq->tag, req->pdu_len, req->data_len,
564 			req->data_sent);
565 		return -EPROTO;
566 	}
567 
568 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
569 		dev_err(queue->ctrl->ctrl.device,
570 			"req %d unexpected r2t offset %u (expected %zu)\n",
571 			rq->tag, le32_to_cpu(pdu->r2t_offset),
572 			req->data_sent);
573 		return -EPROTO;
574 	}
575 
576 	memset(data, 0, sizeof(*data));
577 	data->hdr.type = nvme_tcp_h2c_data;
578 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
579 	if (queue->hdr_digest)
580 		data->hdr.flags |= NVME_TCP_F_HDGST;
581 	if (queue->data_digest)
582 		data->hdr.flags |= NVME_TCP_F_DDGST;
583 	data->hdr.hlen = sizeof(*data);
584 	data->hdr.pdo = data->hdr.hlen + hdgst;
585 	data->hdr.plen =
586 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
587 	data->ttag = pdu->ttag;
588 	data->command_id = rq->tag;
589 	data->data_offset = cpu_to_le32(req->data_sent);
590 	data->data_length = cpu_to_le32(req->pdu_len);
591 	return 0;
592 }
593 
594 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
595 		struct nvme_tcp_r2t_pdu *pdu)
596 {
597 	struct nvme_tcp_request *req;
598 	struct request *rq;
599 	int ret;
600 
601 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
602 	if (!rq) {
603 		dev_err(queue->ctrl->ctrl.device,
604 			"queue %d tag %#x not found\n",
605 			nvme_tcp_queue_id(queue), pdu->command_id);
606 		return -ENOENT;
607 	}
608 	req = blk_mq_rq_to_pdu(rq);
609 
610 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
611 	if (unlikely(ret))
612 		return ret;
613 
614 	req->state = NVME_TCP_SEND_H2C_PDU;
615 	req->offset = 0;
616 
617 	nvme_tcp_queue_request(req, false, true);
618 
619 	return 0;
620 }
621 
622 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
623 		unsigned int *offset, size_t *len)
624 {
625 	struct nvme_tcp_hdr *hdr;
626 	char *pdu = queue->pdu;
627 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
628 	int ret;
629 
630 	ret = skb_copy_bits(skb, *offset,
631 		&pdu[queue->pdu_offset], rcv_len);
632 	if (unlikely(ret))
633 		return ret;
634 
635 	queue->pdu_remaining -= rcv_len;
636 	queue->pdu_offset += rcv_len;
637 	*offset += rcv_len;
638 	*len -= rcv_len;
639 	if (queue->pdu_remaining)
640 		return 0;
641 
642 	hdr = queue->pdu;
643 	if (queue->hdr_digest) {
644 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
645 		if (unlikely(ret))
646 			return ret;
647 	}
648 
649 
650 	if (queue->data_digest) {
651 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
652 		if (unlikely(ret))
653 			return ret;
654 	}
655 
656 	switch (hdr->type) {
657 	case nvme_tcp_c2h_data:
658 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
659 	case nvme_tcp_rsp:
660 		nvme_tcp_init_recv_ctx(queue);
661 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
662 	case nvme_tcp_r2t:
663 		nvme_tcp_init_recv_ctx(queue);
664 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
665 	default:
666 		dev_err(queue->ctrl->ctrl.device,
667 			"unsupported pdu type (%d)\n", hdr->type);
668 		return -EINVAL;
669 	}
670 }
671 
672 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
673 {
674 	union nvme_result res = {};
675 
676 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
677 		nvme_complete_rq(rq);
678 }
679 
680 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
681 			      unsigned int *offset, size_t *len)
682 {
683 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
684 	struct nvme_tcp_request *req;
685 	struct request *rq;
686 
687 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
688 	if (!rq) {
689 		dev_err(queue->ctrl->ctrl.device,
690 			"queue %d tag %#x not found\n",
691 			nvme_tcp_queue_id(queue), pdu->command_id);
692 		return -ENOENT;
693 	}
694 	req = blk_mq_rq_to_pdu(rq);
695 
696 	while (true) {
697 		int recv_len, ret;
698 
699 		recv_len = min_t(size_t, *len, queue->data_remaining);
700 		if (!recv_len)
701 			break;
702 
703 		if (!iov_iter_count(&req->iter)) {
704 			req->curr_bio = req->curr_bio->bi_next;
705 
706 			/*
707 			 * If we don`t have any bios it means that controller
708 			 * sent more data than we requested, hence error
709 			 */
710 			if (!req->curr_bio) {
711 				dev_err(queue->ctrl->ctrl.device,
712 					"queue %d no space in request %#x",
713 					nvme_tcp_queue_id(queue), rq->tag);
714 				nvme_tcp_init_recv_ctx(queue);
715 				return -EIO;
716 			}
717 			nvme_tcp_init_iter(req, READ);
718 		}
719 
720 		/* we can read only from what is left in this bio */
721 		recv_len = min_t(size_t, recv_len,
722 				iov_iter_count(&req->iter));
723 
724 		if (queue->data_digest)
725 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
726 				&req->iter, recv_len, queue->rcv_hash);
727 		else
728 			ret = skb_copy_datagram_iter(skb, *offset,
729 					&req->iter, recv_len);
730 		if (ret) {
731 			dev_err(queue->ctrl->ctrl.device,
732 				"queue %d failed to copy request %#x data",
733 				nvme_tcp_queue_id(queue), rq->tag);
734 			return ret;
735 		}
736 
737 		*len -= recv_len;
738 		*offset += recv_len;
739 		queue->data_remaining -= recv_len;
740 	}
741 
742 	if (!queue->data_remaining) {
743 		if (queue->data_digest) {
744 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
745 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
746 		} else {
747 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
748 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
749 				queue->nr_cqe++;
750 			}
751 			nvme_tcp_init_recv_ctx(queue);
752 		}
753 	}
754 
755 	return 0;
756 }
757 
758 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
759 		struct sk_buff *skb, unsigned int *offset, size_t *len)
760 {
761 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
762 	char *ddgst = (char *)&queue->recv_ddgst;
763 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
764 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
765 	int ret;
766 
767 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
768 	if (unlikely(ret))
769 		return ret;
770 
771 	queue->ddgst_remaining -= recv_len;
772 	*offset += recv_len;
773 	*len -= recv_len;
774 	if (queue->ddgst_remaining)
775 		return 0;
776 
777 	if (queue->recv_ddgst != queue->exp_ddgst) {
778 		dev_err(queue->ctrl->ctrl.device,
779 			"data digest error: recv %#x expected %#x\n",
780 			le32_to_cpu(queue->recv_ddgst),
781 			le32_to_cpu(queue->exp_ddgst));
782 		return -EIO;
783 	}
784 
785 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
786 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
787 						pdu->command_id);
788 
789 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
790 		queue->nr_cqe++;
791 	}
792 
793 	nvme_tcp_init_recv_ctx(queue);
794 	return 0;
795 }
796 
797 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
798 			     unsigned int offset, size_t len)
799 {
800 	struct nvme_tcp_queue *queue = desc->arg.data;
801 	size_t consumed = len;
802 	int result;
803 
804 	while (len) {
805 		switch (nvme_tcp_recv_state(queue)) {
806 		case NVME_TCP_RECV_PDU:
807 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
808 			break;
809 		case NVME_TCP_RECV_DATA:
810 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
811 			break;
812 		case NVME_TCP_RECV_DDGST:
813 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
814 			break;
815 		default:
816 			result = -EFAULT;
817 		}
818 		if (result) {
819 			dev_err(queue->ctrl->ctrl.device,
820 				"receive failed:  %d\n", result);
821 			queue->rd_enabled = false;
822 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
823 			return result;
824 		}
825 	}
826 
827 	return consumed;
828 }
829 
830 static void nvme_tcp_data_ready(struct sock *sk)
831 {
832 	struct nvme_tcp_queue *queue;
833 
834 	read_lock_bh(&sk->sk_callback_lock);
835 	queue = sk->sk_user_data;
836 	if (likely(queue && queue->rd_enabled) &&
837 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
838 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
839 	read_unlock_bh(&sk->sk_callback_lock);
840 }
841 
842 static void nvme_tcp_write_space(struct sock *sk)
843 {
844 	struct nvme_tcp_queue *queue;
845 
846 	read_lock_bh(&sk->sk_callback_lock);
847 	queue = sk->sk_user_data;
848 	if (likely(queue && sk_stream_is_writeable(sk))) {
849 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
850 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
851 	}
852 	read_unlock_bh(&sk->sk_callback_lock);
853 }
854 
855 static void nvme_tcp_state_change(struct sock *sk)
856 {
857 	struct nvme_tcp_queue *queue;
858 
859 	read_lock(&sk->sk_callback_lock);
860 	queue = sk->sk_user_data;
861 	if (!queue)
862 		goto done;
863 
864 	switch (sk->sk_state) {
865 	case TCP_CLOSE:
866 	case TCP_CLOSE_WAIT:
867 	case TCP_LAST_ACK:
868 	case TCP_FIN_WAIT1:
869 	case TCP_FIN_WAIT2:
870 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
871 		break;
872 	default:
873 		dev_info(queue->ctrl->ctrl.device,
874 			"queue %d socket state %d\n",
875 			nvme_tcp_queue_id(queue), sk->sk_state);
876 	}
877 
878 	queue->state_change(sk);
879 done:
880 	read_unlock(&sk->sk_callback_lock);
881 }
882 
883 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
884 {
885 	return !list_empty(&queue->send_list) ||
886 		!llist_empty(&queue->req_list) || queue->more_requests;
887 }
888 
889 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
890 {
891 	queue->request = NULL;
892 }
893 
894 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
895 {
896 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
897 }
898 
899 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
900 {
901 	struct nvme_tcp_queue *queue = req->queue;
902 
903 	while (true) {
904 		struct page *page = nvme_tcp_req_cur_page(req);
905 		size_t offset = nvme_tcp_req_cur_offset(req);
906 		size_t len = nvme_tcp_req_cur_length(req);
907 		bool last = nvme_tcp_pdu_last_send(req, len);
908 		int ret, flags = MSG_DONTWAIT;
909 
910 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
911 			flags |= MSG_EOR;
912 		else
913 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
914 
915 		if (sendpage_ok(page)) {
916 			ret = kernel_sendpage(queue->sock, page, offset, len,
917 					flags);
918 		} else {
919 			ret = sock_no_sendpage(queue->sock, page, offset, len,
920 					flags);
921 		}
922 		if (ret <= 0)
923 			return ret;
924 
925 		nvme_tcp_advance_req(req, ret);
926 		if (queue->data_digest)
927 			nvme_tcp_ddgst_update(queue->snd_hash, page,
928 					offset, ret);
929 
930 		/* fully successful last write*/
931 		if (last && ret == len) {
932 			if (queue->data_digest) {
933 				nvme_tcp_ddgst_final(queue->snd_hash,
934 					&req->ddgst);
935 				req->state = NVME_TCP_SEND_DDGST;
936 				req->offset = 0;
937 			} else {
938 				nvme_tcp_done_send_req(queue);
939 			}
940 			return 1;
941 		}
942 	}
943 	return -EAGAIN;
944 }
945 
946 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
947 {
948 	struct nvme_tcp_queue *queue = req->queue;
949 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
950 	bool inline_data = nvme_tcp_has_inline_data(req);
951 	u8 hdgst = nvme_tcp_hdgst_len(queue);
952 	int len = sizeof(*pdu) + hdgst - req->offset;
953 	int flags = MSG_DONTWAIT;
954 	int ret;
955 
956 	if (inline_data || nvme_tcp_queue_more(queue))
957 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
958 	else
959 		flags |= MSG_EOR;
960 
961 	if (queue->hdr_digest && !req->offset)
962 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
963 
964 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
965 			offset_in_page(pdu) + req->offset, len,  flags);
966 	if (unlikely(ret <= 0))
967 		return ret;
968 
969 	len -= ret;
970 	if (!len) {
971 		if (inline_data) {
972 			req->state = NVME_TCP_SEND_DATA;
973 			if (queue->data_digest)
974 				crypto_ahash_init(queue->snd_hash);
975 			nvme_tcp_init_iter(req, WRITE);
976 		} else {
977 			nvme_tcp_done_send_req(queue);
978 		}
979 		return 1;
980 	}
981 	req->offset += ret;
982 
983 	return -EAGAIN;
984 }
985 
986 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
987 {
988 	struct nvme_tcp_queue *queue = req->queue;
989 	struct nvme_tcp_data_pdu *pdu = req->pdu;
990 	u8 hdgst = nvme_tcp_hdgst_len(queue);
991 	int len = sizeof(*pdu) - req->offset + hdgst;
992 	int ret;
993 
994 	if (queue->hdr_digest && !req->offset)
995 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
996 
997 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
998 			offset_in_page(pdu) + req->offset, len,
999 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1000 	if (unlikely(ret <= 0))
1001 		return ret;
1002 
1003 	len -= ret;
1004 	if (!len) {
1005 		req->state = NVME_TCP_SEND_DATA;
1006 		if (queue->data_digest)
1007 			crypto_ahash_init(queue->snd_hash);
1008 		if (!req->data_sent)
1009 			nvme_tcp_init_iter(req, WRITE);
1010 		return 1;
1011 	}
1012 	req->offset += ret;
1013 
1014 	return -EAGAIN;
1015 }
1016 
1017 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1018 {
1019 	struct nvme_tcp_queue *queue = req->queue;
1020 	int ret;
1021 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1022 	struct kvec iov = {
1023 		.iov_base = &req->ddgst + req->offset,
1024 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1025 	};
1026 
1027 	if (nvme_tcp_queue_more(queue))
1028 		msg.msg_flags |= MSG_MORE;
1029 	else
1030 		msg.msg_flags |= MSG_EOR;
1031 
1032 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1033 	if (unlikely(ret <= 0))
1034 		return ret;
1035 
1036 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1037 		nvme_tcp_done_send_req(queue);
1038 		return 1;
1039 	}
1040 
1041 	req->offset += ret;
1042 	return -EAGAIN;
1043 }
1044 
1045 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1046 {
1047 	struct nvme_tcp_request *req;
1048 	int ret = 1;
1049 
1050 	if (!queue->request) {
1051 		queue->request = nvme_tcp_fetch_request(queue);
1052 		if (!queue->request)
1053 			return 0;
1054 	}
1055 	req = queue->request;
1056 
1057 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1058 		ret = nvme_tcp_try_send_cmd_pdu(req);
1059 		if (ret <= 0)
1060 			goto done;
1061 		if (!nvme_tcp_has_inline_data(req))
1062 			return ret;
1063 	}
1064 
1065 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1066 		ret = nvme_tcp_try_send_data_pdu(req);
1067 		if (ret <= 0)
1068 			goto done;
1069 	}
1070 
1071 	if (req->state == NVME_TCP_SEND_DATA) {
1072 		ret = nvme_tcp_try_send_data(req);
1073 		if (ret <= 0)
1074 			goto done;
1075 	}
1076 
1077 	if (req->state == NVME_TCP_SEND_DDGST)
1078 		ret = nvme_tcp_try_send_ddgst(req);
1079 done:
1080 	if (ret == -EAGAIN) {
1081 		ret = 0;
1082 	} else if (ret < 0) {
1083 		dev_err(queue->ctrl->ctrl.device,
1084 			"failed to send request %d\n", ret);
1085 		if (ret != -EPIPE && ret != -ECONNRESET)
1086 			nvme_tcp_fail_request(queue->request);
1087 		nvme_tcp_done_send_req(queue);
1088 	}
1089 	return ret;
1090 }
1091 
1092 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1093 {
1094 	struct socket *sock = queue->sock;
1095 	struct sock *sk = sock->sk;
1096 	read_descriptor_t rd_desc;
1097 	int consumed;
1098 
1099 	rd_desc.arg.data = queue;
1100 	rd_desc.count = 1;
1101 	lock_sock(sk);
1102 	queue->nr_cqe = 0;
1103 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1104 	release_sock(sk);
1105 	return consumed;
1106 }
1107 
1108 static void nvme_tcp_io_work(struct work_struct *w)
1109 {
1110 	struct nvme_tcp_queue *queue =
1111 		container_of(w, struct nvme_tcp_queue, io_work);
1112 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1113 
1114 	do {
1115 		bool pending = false;
1116 		int result;
1117 
1118 		if (mutex_trylock(&queue->send_mutex)) {
1119 			result = nvme_tcp_try_send(queue);
1120 			mutex_unlock(&queue->send_mutex);
1121 			if (result > 0)
1122 				pending = true;
1123 			else if (unlikely(result < 0))
1124 				break;
1125 		}
1126 
1127 		result = nvme_tcp_try_recv(queue);
1128 		if (result > 0)
1129 			pending = true;
1130 		else if (unlikely(result < 0))
1131 			return;
1132 
1133 		if (!pending)
1134 			return;
1135 
1136 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1137 
1138 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1139 }
1140 
1141 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1142 {
1143 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1144 
1145 	ahash_request_free(queue->rcv_hash);
1146 	ahash_request_free(queue->snd_hash);
1147 	crypto_free_ahash(tfm);
1148 }
1149 
1150 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1151 {
1152 	struct crypto_ahash *tfm;
1153 
1154 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1155 	if (IS_ERR(tfm))
1156 		return PTR_ERR(tfm);
1157 
1158 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1159 	if (!queue->snd_hash)
1160 		goto free_tfm;
1161 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1162 
1163 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1164 	if (!queue->rcv_hash)
1165 		goto free_snd_hash;
1166 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1167 
1168 	return 0;
1169 free_snd_hash:
1170 	ahash_request_free(queue->snd_hash);
1171 free_tfm:
1172 	crypto_free_ahash(tfm);
1173 	return -ENOMEM;
1174 }
1175 
1176 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1177 {
1178 	struct nvme_tcp_request *async = &ctrl->async_req;
1179 
1180 	page_frag_free(async->pdu);
1181 }
1182 
1183 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1184 {
1185 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1186 	struct nvme_tcp_request *async = &ctrl->async_req;
1187 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1188 
1189 	async->pdu = page_frag_alloc(&queue->pf_cache,
1190 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1191 		GFP_KERNEL | __GFP_ZERO);
1192 	if (!async->pdu)
1193 		return -ENOMEM;
1194 
1195 	async->queue = &ctrl->queues[0];
1196 	return 0;
1197 }
1198 
1199 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1200 {
1201 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1202 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1203 
1204 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1205 		return;
1206 
1207 	if (queue->hdr_digest || queue->data_digest)
1208 		nvme_tcp_free_crypto(queue);
1209 
1210 	sock_release(queue->sock);
1211 	kfree(queue->pdu);
1212 }
1213 
1214 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1215 {
1216 	struct nvme_tcp_icreq_pdu *icreq;
1217 	struct nvme_tcp_icresp_pdu *icresp;
1218 	struct msghdr msg = {};
1219 	struct kvec iov;
1220 	bool ctrl_hdgst, ctrl_ddgst;
1221 	int ret;
1222 
1223 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1224 	if (!icreq)
1225 		return -ENOMEM;
1226 
1227 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1228 	if (!icresp) {
1229 		ret = -ENOMEM;
1230 		goto free_icreq;
1231 	}
1232 
1233 	icreq->hdr.type = nvme_tcp_icreq;
1234 	icreq->hdr.hlen = sizeof(*icreq);
1235 	icreq->hdr.pdo = 0;
1236 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1237 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1238 	icreq->maxr2t = 0; /* single inflight r2t supported */
1239 	icreq->hpda = 0; /* no alignment constraint */
1240 	if (queue->hdr_digest)
1241 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1242 	if (queue->data_digest)
1243 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1244 
1245 	iov.iov_base = icreq;
1246 	iov.iov_len = sizeof(*icreq);
1247 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1248 	if (ret < 0)
1249 		goto free_icresp;
1250 
1251 	memset(&msg, 0, sizeof(msg));
1252 	iov.iov_base = icresp;
1253 	iov.iov_len = sizeof(*icresp);
1254 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1255 			iov.iov_len, msg.msg_flags);
1256 	if (ret < 0)
1257 		goto free_icresp;
1258 
1259 	ret = -EINVAL;
1260 	if (icresp->hdr.type != nvme_tcp_icresp) {
1261 		pr_err("queue %d: bad type returned %d\n",
1262 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1263 		goto free_icresp;
1264 	}
1265 
1266 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1267 		pr_err("queue %d: bad pdu length returned %d\n",
1268 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1269 		goto free_icresp;
1270 	}
1271 
1272 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1273 		pr_err("queue %d: bad pfv returned %d\n",
1274 			nvme_tcp_queue_id(queue), icresp->pfv);
1275 		goto free_icresp;
1276 	}
1277 
1278 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1279 	if ((queue->data_digest && !ctrl_ddgst) ||
1280 	    (!queue->data_digest && ctrl_ddgst)) {
1281 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1282 			nvme_tcp_queue_id(queue),
1283 			queue->data_digest ? "enabled" : "disabled",
1284 			ctrl_ddgst ? "enabled" : "disabled");
1285 		goto free_icresp;
1286 	}
1287 
1288 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1289 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1290 	    (!queue->hdr_digest && ctrl_hdgst)) {
1291 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1292 			nvme_tcp_queue_id(queue),
1293 			queue->hdr_digest ? "enabled" : "disabled",
1294 			ctrl_hdgst ? "enabled" : "disabled");
1295 		goto free_icresp;
1296 	}
1297 
1298 	if (icresp->cpda != 0) {
1299 		pr_err("queue %d: unsupported cpda returned %d\n",
1300 			nvme_tcp_queue_id(queue), icresp->cpda);
1301 		goto free_icresp;
1302 	}
1303 
1304 	ret = 0;
1305 free_icresp:
1306 	kfree(icresp);
1307 free_icreq:
1308 	kfree(icreq);
1309 	return ret;
1310 }
1311 
1312 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1313 {
1314 	return nvme_tcp_queue_id(queue) == 0;
1315 }
1316 
1317 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1318 {
1319 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1320 	int qid = nvme_tcp_queue_id(queue);
1321 
1322 	return !nvme_tcp_admin_queue(queue) &&
1323 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1324 }
1325 
1326 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1327 {
1328 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1329 	int qid = nvme_tcp_queue_id(queue);
1330 
1331 	return !nvme_tcp_admin_queue(queue) &&
1332 		!nvme_tcp_default_queue(queue) &&
1333 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1334 			  ctrl->io_queues[HCTX_TYPE_READ];
1335 }
1336 
1337 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1338 {
1339 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1340 	int qid = nvme_tcp_queue_id(queue);
1341 
1342 	return !nvme_tcp_admin_queue(queue) &&
1343 		!nvme_tcp_default_queue(queue) &&
1344 		!nvme_tcp_read_queue(queue) &&
1345 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1346 			  ctrl->io_queues[HCTX_TYPE_READ] +
1347 			  ctrl->io_queues[HCTX_TYPE_POLL];
1348 }
1349 
1350 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1351 {
1352 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1353 	int qid = nvme_tcp_queue_id(queue);
1354 	int n = 0;
1355 
1356 	if (nvme_tcp_default_queue(queue))
1357 		n = qid - 1;
1358 	else if (nvme_tcp_read_queue(queue))
1359 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1360 	else if (nvme_tcp_poll_queue(queue))
1361 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1362 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1363 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1364 }
1365 
1366 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1367 		int qid, size_t queue_size)
1368 {
1369 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1370 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1371 	int ret, rcv_pdu_size;
1372 
1373 	queue->ctrl = ctrl;
1374 	init_llist_head(&queue->req_list);
1375 	INIT_LIST_HEAD(&queue->send_list);
1376 	mutex_init(&queue->send_mutex);
1377 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1378 	queue->queue_size = queue_size;
1379 
1380 	if (qid > 0)
1381 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1382 	else
1383 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1384 						NVME_TCP_ADMIN_CCSZ;
1385 
1386 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1387 			IPPROTO_TCP, &queue->sock);
1388 	if (ret) {
1389 		dev_err(nctrl->device,
1390 			"failed to create socket: %d\n", ret);
1391 		return ret;
1392 	}
1393 
1394 	/* Single syn retry */
1395 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1396 
1397 	/* Set TCP no delay */
1398 	tcp_sock_set_nodelay(queue->sock->sk);
1399 
1400 	/*
1401 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1402 	 * close. This is done to prevent stale data from being sent should
1403 	 * the network connection be restored before TCP times out.
1404 	 */
1405 	sock_no_linger(queue->sock->sk);
1406 
1407 	if (so_priority > 0)
1408 		sock_set_priority(queue->sock->sk, so_priority);
1409 
1410 	/* Set socket type of service */
1411 	if (nctrl->opts->tos >= 0)
1412 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1413 
1414 	/* Set 10 seconds timeout for icresp recvmsg */
1415 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1416 
1417 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1418 	nvme_tcp_set_queue_io_cpu(queue);
1419 	queue->request = NULL;
1420 	queue->data_remaining = 0;
1421 	queue->ddgst_remaining = 0;
1422 	queue->pdu_remaining = 0;
1423 	queue->pdu_offset = 0;
1424 	sk_set_memalloc(queue->sock->sk);
1425 
1426 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1427 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1428 			sizeof(ctrl->src_addr));
1429 		if (ret) {
1430 			dev_err(nctrl->device,
1431 				"failed to bind queue %d socket %d\n",
1432 				qid, ret);
1433 			goto err_sock;
1434 		}
1435 	}
1436 
1437 	queue->hdr_digest = nctrl->opts->hdr_digest;
1438 	queue->data_digest = nctrl->opts->data_digest;
1439 	if (queue->hdr_digest || queue->data_digest) {
1440 		ret = nvme_tcp_alloc_crypto(queue);
1441 		if (ret) {
1442 			dev_err(nctrl->device,
1443 				"failed to allocate queue %d crypto\n", qid);
1444 			goto err_sock;
1445 		}
1446 	}
1447 
1448 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1449 			nvme_tcp_hdgst_len(queue);
1450 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1451 	if (!queue->pdu) {
1452 		ret = -ENOMEM;
1453 		goto err_crypto;
1454 	}
1455 
1456 	dev_dbg(nctrl->device, "connecting queue %d\n",
1457 			nvme_tcp_queue_id(queue));
1458 
1459 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1460 		sizeof(ctrl->addr), 0);
1461 	if (ret) {
1462 		dev_err(nctrl->device,
1463 			"failed to connect socket: %d\n", ret);
1464 		goto err_rcv_pdu;
1465 	}
1466 
1467 	ret = nvme_tcp_init_connection(queue);
1468 	if (ret)
1469 		goto err_init_connect;
1470 
1471 	queue->rd_enabled = true;
1472 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1473 	nvme_tcp_init_recv_ctx(queue);
1474 
1475 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1476 	queue->sock->sk->sk_user_data = queue;
1477 	queue->state_change = queue->sock->sk->sk_state_change;
1478 	queue->data_ready = queue->sock->sk->sk_data_ready;
1479 	queue->write_space = queue->sock->sk->sk_write_space;
1480 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1481 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1482 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1483 #ifdef CONFIG_NET_RX_BUSY_POLL
1484 	queue->sock->sk->sk_ll_usec = 1;
1485 #endif
1486 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1487 
1488 	return 0;
1489 
1490 err_init_connect:
1491 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1492 err_rcv_pdu:
1493 	kfree(queue->pdu);
1494 err_crypto:
1495 	if (queue->hdr_digest || queue->data_digest)
1496 		nvme_tcp_free_crypto(queue);
1497 err_sock:
1498 	sock_release(queue->sock);
1499 	queue->sock = NULL;
1500 	return ret;
1501 }
1502 
1503 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1504 {
1505 	struct socket *sock = queue->sock;
1506 
1507 	write_lock_bh(&sock->sk->sk_callback_lock);
1508 	sock->sk->sk_user_data  = NULL;
1509 	sock->sk->sk_data_ready = queue->data_ready;
1510 	sock->sk->sk_state_change = queue->state_change;
1511 	sock->sk->sk_write_space  = queue->write_space;
1512 	write_unlock_bh(&sock->sk->sk_callback_lock);
1513 }
1514 
1515 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1516 {
1517 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1518 	nvme_tcp_restore_sock_calls(queue);
1519 	cancel_work_sync(&queue->io_work);
1520 }
1521 
1522 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1523 {
1524 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1525 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1526 
1527 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1528 		return;
1529 	__nvme_tcp_stop_queue(queue);
1530 }
1531 
1532 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1533 {
1534 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1535 	int ret;
1536 
1537 	if (idx)
1538 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1539 	else
1540 		ret = nvmf_connect_admin_queue(nctrl);
1541 
1542 	if (!ret) {
1543 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1544 	} else {
1545 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1546 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1547 		dev_err(nctrl->device,
1548 			"failed to connect queue: %d ret=%d\n", idx, ret);
1549 	}
1550 	return ret;
1551 }
1552 
1553 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1554 		bool admin)
1555 {
1556 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1557 	struct blk_mq_tag_set *set;
1558 	int ret;
1559 
1560 	if (admin) {
1561 		set = &ctrl->admin_tag_set;
1562 		memset(set, 0, sizeof(*set));
1563 		set->ops = &nvme_tcp_admin_mq_ops;
1564 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1565 		set->reserved_tags = 2; /* connect + keep-alive */
1566 		set->numa_node = nctrl->numa_node;
1567 		set->flags = BLK_MQ_F_BLOCKING;
1568 		set->cmd_size = sizeof(struct nvme_tcp_request);
1569 		set->driver_data = ctrl;
1570 		set->nr_hw_queues = 1;
1571 		set->timeout = NVME_ADMIN_TIMEOUT;
1572 	} else {
1573 		set = &ctrl->tag_set;
1574 		memset(set, 0, sizeof(*set));
1575 		set->ops = &nvme_tcp_mq_ops;
1576 		set->queue_depth = nctrl->sqsize + 1;
1577 		set->reserved_tags = 1; /* fabric connect */
1578 		set->numa_node = nctrl->numa_node;
1579 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1580 		set->cmd_size = sizeof(struct nvme_tcp_request);
1581 		set->driver_data = ctrl;
1582 		set->nr_hw_queues = nctrl->queue_count - 1;
1583 		set->timeout = NVME_IO_TIMEOUT;
1584 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1585 	}
1586 
1587 	ret = blk_mq_alloc_tag_set(set);
1588 	if (ret)
1589 		return ERR_PTR(ret);
1590 
1591 	return set;
1592 }
1593 
1594 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1595 {
1596 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1597 		cancel_work_sync(&ctrl->async_event_work);
1598 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1599 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1600 	}
1601 
1602 	nvme_tcp_free_queue(ctrl, 0);
1603 }
1604 
1605 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1606 {
1607 	int i;
1608 
1609 	for (i = 1; i < ctrl->queue_count; i++)
1610 		nvme_tcp_free_queue(ctrl, i);
1611 }
1612 
1613 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1614 {
1615 	int i;
1616 
1617 	for (i = 1; i < ctrl->queue_count; i++)
1618 		nvme_tcp_stop_queue(ctrl, i);
1619 }
1620 
1621 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1622 {
1623 	int i, ret = 0;
1624 
1625 	for (i = 1; i < ctrl->queue_count; i++) {
1626 		ret = nvme_tcp_start_queue(ctrl, i);
1627 		if (ret)
1628 			goto out_stop_queues;
1629 	}
1630 
1631 	return 0;
1632 
1633 out_stop_queues:
1634 	for (i--; i >= 1; i--)
1635 		nvme_tcp_stop_queue(ctrl, i);
1636 	return ret;
1637 }
1638 
1639 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1640 {
1641 	int ret;
1642 
1643 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1644 	if (ret)
1645 		return ret;
1646 
1647 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1648 	if (ret)
1649 		goto out_free_queue;
1650 
1651 	return 0;
1652 
1653 out_free_queue:
1654 	nvme_tcp_free_queue(ctrl, 0);
1655 	return ret;
1656 }
1657 
1658 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1659 {
1660 	int i, ret;
1661 
1662 	for (i = 1; i < ctrl->queue_count; i++) {
1663 		ret = nvme_tcp_alloc_queue(ctrl, i,
1664 				ctrl->sqsize + 1);
1665 		if (ret)
1666 			goto out_free_queues;
1667 	}
1668 
1669 	return 0;
1670 
1671 out_free_queues:
1672 	for (i--; i >= 1; i--)
1673 		nvme_tcp_free_queue(ctrl, i);
1674 
1675 	return ret;
1676 }
1677 
1678 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1679 {
1680 	unsigned int nr_io_queues;
1681 
1682 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1683 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1684 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1685 
1686 	return nr_io_queues;
1687 }
1688 
1689 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1690 		unsigned int nr_io_queues)
1691 {
1692 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1693 	struct nvmf_ctrl_options *opts = nctrl->opts;
1694 
1695 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1696 		/*
1697 		 * separate read/write queues
1698 		 * hand out dedicated default queues only after we have
1699 		 * sufficient read queues.
1700 		 */
1701 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1702 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1703 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1704 			min(opts->nr_write_queues, nr_io_queues);
1705 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1706 	} else {
1707 		/*
1708 		 * shared read/write queues
1709 		 * either no write queues were requested, or we don't have
1710 		 * sufficient queue count to have dedicated default queues.
1711 		 */
1712 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1713 			min(opts->nr_io_queues, nr_io_queues);
1714 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1715 	}
1716 
1717 	if (opts->nr_poll_queues && nr_io_queues) {
1718 		/* map dedicated poll queues only if we have queues left */
1719 		ctrl->io_queues[HCTX_TYPE_POLL] =
1720 			min(opts->nr_poll_queues, nr_io_queues);
1721 	}
1722 }
1723 
1724 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1725 {
1726 	unsigned int nr_io_queues;
1727 	int ret;
1728 
1729 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1730 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1731 	if (ret)
1732 		return ret;
1733 
1734 	ctrl->queue_count = nr_io_queues + 1;
1735 	if (ctrl->queue_count < 2)
1736 		return 0;
1737 
1738 	dev_info(ctrl->device,
1739 		"creating %d I/O queues.\n", nr_io_queues);
1740 
1741 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1742 
1743 	return __nvme_tcp_alloc_io_queues(ctrl);
1744 }
1745 
1746 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1747 {
1748 	nvme_tcp_stop_io_queues(ctrl);
1749 	if (remove) {
1750 		blk_cleanup_queue(ctrl->connect_q);
1751 		blk_mq_free_tag_set(ctrl->tagset);
1752 	}
1753 	nvme_tcp_free_io_queues(ctrl);
1754 }
1755 
1756 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1757 {
1758 	int ret;
1759 
1760 	ret = nvme_tcp_alloc_io_queues(ctrl);
1761 	if (ret)
1762 		return ret;
1763 
1764 	if (new) {
1765 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1766 		if (IS_ERR(ctrl->tagset)) {
1767 			ret = PTR_ERR(ctrl->tagset);
1768 			goto out_free_io_queues;
1769 		}
1770 
1771 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1772 		if (IS_ERR(ctrl->connect_q)) {
1773 			ret = PTR_ERR(ctrl->connect_q);
1774 			goto out_free_tag_set;
1775 		}
1776 	}
1777 
1778 	ret = nvme_tcp_start_io_queues(ctrl);
1779 	if (ret)
1780 		goto out_cleanup_connect_q;
1781 
1782 	if (!new) {
1783 		nvme_start_queues(ctrl);
1784 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1785 			/*
1786 			 * If we timed out waiting for freeze we are likely to
1787 			 * be stuck.  Fail the controller initialization just
1788 			 * to be safe.
1789 			 */
1790 			ret = -ENODEV;
1791 			goto out_wait_freeze_timed_out;
1792 		}
1793 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1794 			ctrl->queue_count - 1);
1795 		nvme_unfreeze(ctrl);
1796 	}
1797 
1798 	return 0;
1799 
1800 out_wait_freeze_timed_out:
1801 	nvme_stop_queues(ctrl);
1802 	nvme_tcp_stop_io_queues(ctrl);
1803 out_cleanup_connect_q:
1804 	if (new)
1805 		blk_cleanup_queue(ctrl->connect_q);
1806 out_free_tag_set:
1807 	if (new)
1808 		blk_mq_free_tag_set(ctrl->tagset);
1809 out_free_io_queues:
1810 	nvme_tcp_free_io_queues(ctrl);
1811 	return ret;
1812 }
1813 
1814 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1815 {
1816 	nvme_tcp_stop_queue(ctrl, 0);
1817 	if (remove) {
1818 		blk_cleanup_queue(ctrl->admin_q);
1819 		blk_cleanup_queue(ctrl->fabrics_q);
1820 		blk_mq_free_tag_set(ctrl->admin_tagset);
1821 	}
1822 	nvme_tcp_free_admin_queue(ctrl);
1823 }
1824 
1825 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1826 {
1827 	int error;
1828 
1829 	error = nvme_tcp_alloc_admin_queue(ctrl);
1830 	if (error)
1831 		return error;
1832 
1833 	if (new) {
1834 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1835 		if (IS_ERR(ctrl->admin_tagset)) {
1836 			error = PTR_ERR(ctrl->admin_tagset);
1837 			goto out_free_queue;
1838 		}
1839 
1840 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1841 		if (IS_ERR(ctrl->fabrics_q)) {
1842 			error = PTR_ERR(ctrl->fabrics_q);
1843 			goto out_free_tagset;
1844 		}
1845 
1846 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1847 		if (IS_ERR(ctrl->admin_q)) {
1848 			error = PTR_ERR(ctrl->admin_q);
1849 			goto out_cleanup_fabrics_q;
1850 		}
1851 	}
1852 
1853 	error = nvme_tcp_start_queue(ctrl, 0);
1854 	if (error)
1855 		goto out_cleanup_queue;
1856 
1857 	error = nvme_enable_ctrl(ctrl);
1858 	if (error)
1859 		goto out_stop_queue;
1860 
1861 	blk_mq_unquiesce_queue(ctrl->admin_q);
1862 
1863 	error = nvme_init_identify(ctrl);
1864 	if (error)
1865 		goto out_stop_queue;
1866 
1867 	return 0;
1868 
1869 out_stop_queue:
1870 	nvme_tcp_stop_queue(ctrl, 0);
1871 out_cleanup_queue:
1872 	if (new)
1873 		blk_cleanup_queue(ctrl->admin_q);
1874 out_cleanup_fabrics_q:
1875 	if (new)
1876 		blk_cleanup_queue(ctrl->fabrics_q);
1877 out_free_tagset:
1878 	if (new)
1879 		blk_mq_free_tag_set(ctrl->admin_tagset);
1880 out_free_queue:
1881 	nvme_tcp_free_admin_queue(ctrl);
1882 	return error;
1883 }
1884 
1885 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1886 		bool remove)
1887 {
1888 	blk_mq_quiesce_queue(ctrl->admin_q);
1889 	blk_sync_queue(ctrl->admin_q);
1890 	nvme_tcp_stop_queue(ctrl, 0);
1891 	if (ctrl->admin_tagset) {
1892 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1893 			nvme_cancel_request, ctrl);
1894 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1895 	}
1896 	if (remove)
1897 		blk_mq_unquiesce_queue(ctrl->admin_q);
1898 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1899 }
1900 
1901 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1902 		bool remove)
1903 {
1904 	if (ctrl->queue_count <= 1)
1905 		return;
1906 	blk_mq_quiesce_queue(ctrl->admin_q);
1907 	nvme_start_freeze(ctrl);
1908 	nvme_stop_queues(ctrl);
1909 	nvme_sync_io_queues(ctrl);
1910 	nvme_tcp_stop_io_queues(ctrl);
1911 	if (ctrl->tagset) {
1912 		blk_mq_tagset_busy_iter(ctrl->tagset,
1913 			nvme_cancel_request, ctrl);
1914 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1915 	}
1916 	if (remove)
1917 		nvme_start_queues(ctrl);
1918 	nvme_tcp_destroy_io_queues(ctrl, remove);
1919 }
1920 
1921 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1922 {
1923 	/* If we are resetting/deleting then do nothing */
1924 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1925 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1926 			ctrl->state == NVME_CTRL_LIVE);
1927 		return;
1928 	}
1929 
1930 	if (nvmf_should_reconnect(ctrl)) {
1931 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1932 			ctrl->opts->reconnect_delay);
1933 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1934 				ctrl->opts->reconnect_delay * HZ);
1935 	} else {
1936 		dev_info(ctrl->device, "Removing controller...\n");
1937 		nvme_delete_ctrl(ctrl);
1938 	}
1939 }
1940 
1941 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1942 {
1943 	struct nvmf_ctrl_options *opts = ctrl->opts;
1944 	int ret;
1945 
1946 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1947 	if (ret)
1948 		return ret;
1949 
1950 	if (ctrl->icdoff) {
1951 		dev_err(ctrl->device, "icdoff is not supported!\n");
1952 		goto destroy_admin;
1953 	}
1954 
1955 	if (opts->queue_size > ctrl->sqsize + 1)
1956 		dev_warn(ctrl->device,
1957 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1958 			opts->queue_size, ctrl->sqsize + 1);
1959 
1960 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1961 		dev_warn(ctrl->device,
1962 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1963 			ctrl->sqsize + 1, ctrl->maxcmd);
1964 		ctrl->sqsize = ctrl->maxcmd - 1;
1965 	}
1966 
1967 	if (ctrl->queue_count > 1) {
1968 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1969 		if (ret)
1970 			goto destroy_admin;
1971 	}
1972 
1973 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1974 		/*
1975 		 * state change failure is ok if we started ctrl delete,
1976 		 * unless we're during creation of a new controller to
1977 		 * avoid races with teardown flow.
1978 		 */
1979 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1980 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
1981 		WARN_ON_ONCE(new);
1982 		ret = -EINVAL;
1983 		goto destroy_io;
1984 	}
1985 
1986 	nvme_start_ctrl(ctrl);
1987 	return 0;
1988 
1989 destroy_io:
1990 	if (ctrl->queue_count > 1)
1991 		nvme_tcp_destroy_io_queues(ctrl, new);
1992 destroy_admin:
1993 	nvme_tcp_stop_queue(ctrl, 0);
1994 	nvme_tcp_destroy_admin_queue(ctrl, new);
1995 	return ret;
1996 }
1997 
1998 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1999 {
2000 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2001 			struct nvme_tcp_ctrl, connect_work);
2002 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2003 
2004 	++ctrl->nr_reconnects;
2005 
2006 	if (nvme_tcp_setup_ctrl(ctrl, false))
2007 		goto requeue;
2008 
2009 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2010 			ctrl->nr_reconnects);
2011 
2012 	ctrl->nr_reconnects = 0;
2013 
2014 	return;
2015 
2016 requeue:
2017 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2018 			ctrl->nr_reconnects);
2019 	nvme_tcp_reconnect_or_remove(ctrl);
2020 }
2021 
2022 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2023 {
2024 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2025 				struct nvme_tcp_ctrl, err_work);
2026 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2027 
2028 	nvme_stop_keep_alive(ctrl);
2029 	nvme_tcp_teardown_io_queues(ctrl, false);
2030 	/* unquiesce to fail fast pending requests */
2031 	nvme_start_queues(ctrl);
2032 	nvme_tcp_teardown_admin_queue(ctrl, false);
2033 	blk_mq_unquiesce_queue(ctrl->admin_q);
2034 
2035 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2036 		/* state change failure is ok if we started ctrl delete */
2037 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2038 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2039 		return;
2040 	}
2041 
2042 	nvme_tcp_reconnect_or_remove(ctrl);
2043 }
2044 
2045 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2046 {
2047 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2048 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2049 
2050 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2051 	blk_mq_quiesce_queue(ctrl->admin_q);
2052 	if (shutdown)
2053 		nvme_shutdown_ctrl(ctrl);
2054 	else
2055 		nvme_disable_ctrl(ctrl);
2056 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2057 }
2058 
2059 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2060 {
2061 	nvme_tcp_teardown_ctrl(ctrl, true);
2062 }
2063 
2064 static void nvme_reset_ctrl_work(struct work_struct *work)
2065 {
2066 	struct nvme_ctrl *ctrl =
2067 		container_of(work, struct nvme_ctrl, reset_work);
2068 
2069 	nvme_stop_ctrl(ctrl);
2070 	nvme_tcp_teardown_ctrl(ctrl, false);
2071 
2072 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2073 		/* state change failure is ok if we started ctrl delete */
2074 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2075 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2076 		return;
2077 	}
2078 
2079 	if (nvme_tcp_setup_ctrl(ctrl, false))
2080 		goto out_fail;
2081 
2082 	return;
2083 
2084 out_fail:
2085 	++ctrl->nr_reconnects;
2086 	nvme_tcp_reconnect_or_remove(ctrl);
2087 }
2088 
2089 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2090 {
2091 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2092 
2093 	if (list_empty(&ctrl->list))
2094 		goto free_ctrl;
2095 
2096 	mutex_lock(&nvme_tcp_ctrl_mutex);
2097 	list_del(&ctrl->list);
2098 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2099 
2100 	nvmf_free_options(nctrl->opts);
2101 free_ctrl:
2102 	kfree(ctrl->queues);
2103 	kfree(ctrl);
2104 }
2105 
2106 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2107 {
2108 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2109 
2110 	sg->addr = 0;
2111 	sg->length = 0;
2112 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2113 			NVME_SGL_FMT_TRANSPORT_A;
2114 }
2115 
2116 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2117 		struct nvme_command *c, u32 data_len)
2118 {
2119 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2120 
2121 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2122 	sg->length = cpu_to_le32(data_len);
2123 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2124 }
2125 
2126 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2127 		u32 data_len)
2128 {
2129 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2130 
2131 	sg->addr = 0;
2132 	sg->length = cpu_to_le32(data_len);
2133 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2134 			NVME_SGL_FMT_TRANSPORT_A;
2135 }
2136 
2137 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2138 {
2139 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2140 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2141 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2142 	struct nvme_command *cmd = &pdu->cmd;
2143 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2144 
2145 	memset(pdu, 0, sizeof(*pdu));
2146 	pdu->hdr.type = nvme_tcp_cmd;
2147 	if (queue->hdr_digest)
2148 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2149 	pdu->hdr.hlen = sizeof(*pdu);
2150 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2151 
2152 	cmd->common.opcode = nvme_admin_async_event;
2153 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2154 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2155 	nvme_tcp_set_sg_null(cmd);
2156 
2157 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2158 	ctrl->async_req.offset = 0;
2159 	ctrl->async_req.curr_bio = NULL;
2160 	ctrl->async_req.data_len = 0;
2161 
2162 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2163 }
2164 
2165 static void nvme_tcp_complete_timed_out(struct request *rq)
2166 {
2167 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2168 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2169 
2170 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2171 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2172 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2173 		blk_mq_complete_request(rq);
2174 	}
2175 }
2176 
2177 static enum blk_eh_timer_return
2178 nvme_tcp_timeout(struct request *rq, bool reserved)
2179 {
2180 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2181 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2182 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2183 
2184 	dev_warn(ctrl->device,
2185 		"queue %d: timeout request %#x type %d\n",
2186 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2187 
2188 	if (ctrl->state != NVME_CTRL_LIVE) {
2189 		/*
2190 		 * If we are resetting, connecting or deleting we should
2191 		 * complete immediately because we may block controller
2192 		 * teardown or setup sequence
2193 		 * - ctrl disable/shutdown fabrics requests
2194 		 * - connect requests
2195 		 * - initialization admin requests
2196 		 * - I/O requests that entered after unquiescing and
2197 		 *   the controller stopped responding
2198 		 *
2199 		 * All other requests should be cancelled by the error
2200 		 * recovery work, so it's fine that we fail it here.
2201 		 */
2202 		nvme_tcp_complete_timed_out(rq);
2203 		return BLK_EH_DONE;
2204 	}
2205 
2206 	/*
2207 	 * LIVE state should trigger the normal error recovery which will
2208 	 * handle completing this request.
2209 	 */
2210 	nvme_tcp_error_recovery(ctrl);
2211 	return BLK_EH_RESET_TIMER;
2212 }
2213 
2214 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2215 			struct request *rq)
2216 {
2217 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2218 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2219 	struct nvme_command *c = &pdu->cmd;
2220 
2221 	c->common.flags |= NVME_CMD_SGL_METABUF;
2222 
2223 	if (!blk_rq_nr_phys_segments(rq))
2224 		nvme_tcp_set_sg_null(c);
2225 	else if (rq_data_dir(rq) == WRITE &&
2226 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2227 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2228 	else
2229 		nvme_tcp_set_sg_host_data(c, req->data_len);
2230 
2231 	return 0;
2232 }
2233 
2234 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2235 		struct request *rq)
2236 {
2237 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2238 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2239 	struct nvme_tcp_queue *queue = req->queue;
2240 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2241 	blk_status_t ret;
2242 
2243 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2244 	if (ret)
2245 		return ret;
2246 
2247 	req->state = NVME_TCP_SEND_CMD_PDU;
2248 	req->offset = 0;
2249 	req->data_sent = 0;
2250 	req->pdu_len = 0;
2251 	req->pdu_sent = 0;
2252 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2253 				blk_rq_payload_bytes(rq) : 0;
2254 	req->curr_bio = rq->bio;
2255 
2256 	if (rq_data_dir(rq) == WRITE &&
2257 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2258 		req->pdu_len = req->data_len;
2259 	else if (req->curr_bio)
2260 		nvme_tcp_init_iter(req, READ);
2261 
2262 	pdu->hdr.type = nvme_tcp_cmd;
2263 	pdu->hdr.flags = 0;
2264 	if (queue->hdr_digest)
2265 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2266 	if (queue->data_digest && req->pdu_len) {
2267 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2268 		ddgst = nvme_tcp_ddgst_len(queue);
2269 	}
2270 	pdu->hdr.hlen = sizeof(*pdu);
2271 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2272 	pdu->hdr.plen =
2273 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2274 
2275 	ret = nvme_tcp_map_data(queue, rq);
2276 	if (unlikely(ret)) {
2277 		nvme_cleanup_cmd(rq);
2278 		dev_err(queue->ctrl->ctrl.device,
2279 			"Failed to map data (%d)\n", ret);
2280 		return ret;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2287 {
2288 	struct nvme_tcp_queue *queue = hctx->driver_data;
2289 
2290 	if (!llist_empty(&queue->req_list))
2291 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2292 }
2293 
2294 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2295 		const struct blk_mq_queue_data *bd)
2296 {
2297 	struct nvme_ns *ns = hctx->queue->queuedata;
2298 	struct nvme_tcp_queue *queue = hctx->driver_data;
2299 	struct request *rq = bd->rq;
2300 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2301 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2302 	blk_status_t ret;
2303 
2304 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2305 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2306 
2307 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2308 	if (unlikely(ret))
2309 		return ret;
2310 
2311 	blk_mq_start_request(rq);
2312 
2313 	nvme_tcp_queue_request(req, true, bd->last);
2314 
2315 	return BLK_STS_OK;
2316 }
2317 
2318 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2319 {
2320 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2321 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2322 
2323 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2324 		/* separate read/write queues */
2325 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2326 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2327 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2328 		set->map[HCTX_TYPE_READ].nr_queues =
2329 			ctrl->io_queues[HCTX_TYPE_READ];
2330 		set->map[HCTX_TYPE_READ].queue_offset =
2331 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2332 	} else {
2333 		/* shared read/write queues */
2334 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2335 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2336 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2337 		set->map[HCTX_TYPE_READ].nr_queues =
2338 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2339 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2340 	}
2341 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2342 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2343 
2344 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2345 		/* map dedicated poll queues only if we have queues left */
2346 		set->map[HCTX_TYPE_POLL].nr_queues =
2347 				ctrl->io_queues[HCTX_TYPE_POLL];
2348 		set->map[HCTX_TYPE_POLL].queue_offset =
2349 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2350 			ctrl->io_queues[HCTX_TYPE_READ];
2351 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2352 	}
2353 
2354 	dev_info(ctrl->ctrl.device,
2355 		"mapped %d/%d/%d default/read/poll queues.\n",
2356 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2357 		ctrl->io_queues[HCTX_TYPE_READ],
2358 		ctrl->io_queues[HCTX_TYPE_POLL]);
2359 
2360 	return 0;
2361 }
2362 
2363 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2364 {
2365 	struct nvme_tcp_queue *queue = hctx->driver_data;
2366 	struct sock *sk = queue->sock->sk;
2367 
2368 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2369 		return 0;
2370 
2371 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2372 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2373 		sk_busy_loop(sk, true);
2374 	nvme_tcp_try_recv(queue);
2375 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2376 	return queue->nr_cqe;
2377 }
2378 
2379 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2380 	.queue_rq	= nvme_tcp_queue_rq,
2381 	.commit_rqs	= nvme_tcp_commit_rqs,
2382 	.complete	= nvme_complete_rq,
2383 	.init_request	= nvme_tcp_init_request,
2384 	.exit_request	= nvme_tcp_exit_request,
2385 	.init_hctx	= nvme_tcp_init_hctx,
2386 	.timeout	= nvme_tcp_timeout,
2387 	.map_queues	= nvme_tcp_map_queues,
2388 	.poll		= nvme_tcp_poll,
2389 };
2390 
2391 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2392 	.queue_rq	= nvme_tcp_queue_rq,
2393 	.complete	= nvme_complete_rq,
2394 	.init_request	= nvme_tcp_init_request,
2395 	.exit_request	= nvme_tcp_exit_request,
2396 	.init_hctx	= nvme_tcp_init_admin_hctx,
2397 	.timeout	= nvme_tcp_timeout,
2398 };
2399 
2400 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2401 	.name			= "tcp",
2402 	.module			= THIS_MODULE,
2403 	.flags			= NVME_F_FABRICS,
2404 	.reg_read32		= nvmf_reg_read32,
2405 	.reg_read64		= nvmf_reg_read64,
2406 	.reg_write32		= nvmf_reg_write32,
2407 	.free_ctrl		= nvme_tcp_free_ctrl,
2408 	.submit_async_event	= nvme_tcp_submit_async_event,
2409 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2410 	.get_address		= nvmf_get_address,
2411 };
2412 
2413 static bool
2414 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2415 {
2416 	struct nvme_tcp_ctrl *ctrl;
2417 	bool found = false;
2418 
2419 	mutex_lock(&nvme_tcp_ctrl_mutex);
2420 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2421 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2422 		if (found)
2423 			break;
2424 	}
2425 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2426 
2427 	return found;
2428 }
2429 
2430 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2431 		struct nvmf_ctrl_options *opts)
2432 {
2433 	struct nvme_tcp_ctrl *ctrl;
2434 	int ret;
2435 
2436 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2437 	if (!ctrl)
2438 		return ERR_PTR(-ENOMEM);
2439 
2440 	INIT_LIST_HEAD(&ctrl->list);
2441 	ctrl->ctrl.opts = opts;
2442 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2443 				opts->nr_poll_queues + 1;
2444 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2445 	ctrl->ctrl.kato = opts->kato;
2446 
2447 	INIT_DELAYED_WORK(&ctrl->connect_work,
2448 			nvme_tcp_reconnect_ctrl_work);
2449 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2450 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2451 
2452 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2453 		opts->trsvcid =
2454 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2455 		if (!opts->trsvcid) {
2456 			ret = -ENOMEM;
2457 			goto out_free_ctrl;
2458 		}
2459 		opts->mask |= NVMF_OPT_TRSVCID;
2460 	}
2461 
2462 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2463 			opts->traddr, opts->trsvcid, &ctrl->addr);
2464 	if (ret) {
2465 		pr_err("malformed address passed: %s:%s\n",
2466 			opts->traddr, opts->trsvcid);
2467 		goto out_free_ctrl;
2468 	}
2469 
2470 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2471 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2472 			opts->host_traddr, NULL, &ctrl->src_addr);
2473 		if (ret) {
2474 			pr_err("malformed src address passed: %s\n",
2475 			       opts->host_traddr);
2476 			goto out_free_ctrl;
2477 		}
2478 	}
2479 
2480 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2481 		ret = -EALREADY;
2482 		goto out_free_ctrl;
2483 	}
2484 
2485 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2486 				GFP_KERNEL);
2487 	if (!ctrl->queues) {
2488 		ret = -ENOMEM;
2489 		goto out_free_ctrl;
2490 	}
2491 
2492 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2493 	if (ret)
2494 		goto out_kfree_queues;
2495 
2496 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2497 		WARN_ON_ONCE(1);
2498 		ret = -EINTR;
2499 		goto out_uninit_ctrl;
2500 	}
2501 
2502 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2503 	if (ret)
2504 		goto out_uninit_ctrl;
2505 
2506 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2507 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2508 
2509 	mutex_lock(&nvme_tcp_ctrl_mutex);
2510 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2511 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2512 
2513 	return &ctrl->ctrl;
2514 
2515 out_uninit_ctrl:
2516 	nvme_uninit_ctrl(&ctrl->ctrl);
2517 	nvme_put_ctrl(&ctrl->ctrl);
2518 	if (ret > 0)
2519 		ret = -EIO;
2520 	return ERR_PTR(ret);
2521 out_kfree_queues:
2522 	kfree(ctrl->queues);
2523 out_free_ctrl:
2524 	kfree(ctrl);
2525 	return ERR_PTR(ret);
2526 }
2527 
2528 static struct nvmf_transport_ops nvme_tcp_transport = {
2529 	.name		= "tcp",
2530 	.module		= THIS_MODULE,
2531 	.required_opts	= NVMF_OPT_TRADDR,
2532 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2533 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2534 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2535 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2536 			  NVMF_OPT_TOS,
2537 	.create_ctrl	= nvme_tcp_create_ctrl,
2538 };
2539 
2540 static int __init nvme_tcp_init_module(void)
2541 {
2542 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2543 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2544 	if (!nvme_tcp_wq)
2545 		return -ENOMEM;
2546 
2547 	nvmf_register_transport(&nvme_tcp_transport);
2548 	return 0;
2549 }
2550 
2551 static void __exit nvme_tcp_cleanup_module(void)
2552 {
2553 	struct nvme_tcp_ctrl *ctrl;
2554 
2555 	nvmf_unregister_transport(&nvme_tcp_transport);
2556 
2557 	mutex_lock(&nvme_tcp_ctrl_mutex);
2558 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2559 		nvme_delete_ctrl(&ctrl->ctrl);
2560 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2561 	flush_workqueue(nvme_delete_wq);
2562 
2563 	destroy_workqueue(nvme_tcp_wq);
2564 }
2565 
2566 module_init(nvme_tcp_init_module);
2567 module_exit(nvme_tcp_cleanup_module);
2568 
2569 MODULE_LICENSE("GPL v2");
2570