xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 
17 #include "nvme.h"
18 #include "fabrics.h"
19 
20 struct nvme_tcp_queue;
21 
22 enum nvme_tcp_send_state {
23 	NVME_TCP_SEND_CMD_PDU = 0,
24 	NVME_TCP_SEND_H2C_PDU,
25 	NVME_TCP_SEND_DATA,
26 	NVME_TCP_SEND_DDGST,
27 };
28 
29 struct nvme_tcp_request {
30 	struct nvme_request	req;
31 	void			*pdu;
32 	struct nvme_tcp_queue	*queue;
33 	u32			data_len;
34 	u32			pdu_len;
35 	u32			pdu_sent;
36 	u16			ttag;
37 	struct list_head	entry;
38 	__le32			ddgst;
39 
40 	struct bio		*curr_bio;
41 	struct iov_iter		iter;
42 
43 	/* send state */
44 	size_t			offset;
45 	size_t			data_sent;
46 	enum nvme_tcp_send_state state;
47 };
48 
49 enum nvme_tcp_queue_flags {
50 	NVME_TCP_Q_ALLOCATED	= 0,
51 	NVME_TCP_Q_LIVE		= 1,
52 };
53 
54 enum nvme_tcp_recv_state {
55 	NVME_TCP_RECV_PDU = 0,
56 	NVME_TCP_RECV_DATA,
57 	NVME_TCP_RECV_DDGST,
58 };
59 
60 struct nvme_tcp_ctrl;
61 struct nvme_tcp_queue {
62 	struct socket		*sock;
63 	struct work_struct	io_work;
64 	int			io_cpu;
65 
66 	spinlock_t		lock;
67 	struct list_head	send_list;
68 
69 	/* recv state */
70 	void			*pdu;
71 	int			pdu_remaining;
72 	int			pdu_offset;
73 	size_t			data_remaining;
74 	size_t			ddgst_remaining;
75 
76 	/* send state */
77 	struct nvme_tcp_request *request;
78 
79 	int			queue_size;
80 	size_t			cmnd_capsule_len;
81 	struct nvme_tcp_ctrl	*ctrl;
82 	unsigned long		flags;
83 	bool			rd_enabled;
84 
85 	bool			hdr_digest;
86 	bool			data_digest;
87 	struct ahash_request	*rcv_hash;
88 	struct ahash_request	*snd_hash;
89 	__le32			exp_ddgst;
90 	__le32			recv_ddgst;
91 
92 	struct page_frag_cache	pf_cache;
93 
94 	void (*state_change)(struct sock *);
95 	void (*data_ready)(struct sock *);
96 	void (*write_space)(struct sock *);
97 };
98 
99 struct nvme_tcp_ctrl {
100 	/* read only in the hot path */
101 	struct nvme_tcp_queue	*queues;
102 	struct blk_mq_tag_set	tag_set;
103 
104 	/* other member variables */
105 	struct list_head	list;
106 	struct blk_mq_tag_set	admin_tag_set;
107 	struct sockaddr_storage addr;
108 	struct sockaddr_storage src_addr;
109 	struct nvme_ctrl	ctrl;
110 
111 	struct work_struct	err_work;
112 	struct delayed_work	connect_work;
113 	struct nvme_tcp_request async_req;
114 	u32			io_queues[HCTX_MAX_TYPES];
115 };
116 
117 static LIST_HEAD(nvme_tcp_ctrl_list);
118 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
119 static struct workqueue_struct *nvme_tcp_wq;
120 static struct blk_mq_ops nvme_tcp_mq_ops;
121 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
122 
123 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
124 {
125 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
126 }
127 
128 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
129 {
130 	return queue - queue->ctrl->queues;
131 }
132 
133 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
134 {
135 	u32 queue_idx = nvme_tcp_queue_id(queue);
136 
137 	if (queue_idx == 0)
138 		return queue->ctrl->admin_tag_set.tags[queue_idx];
139 	return queue->ctrl->tag_set.tags[queue_idx - 1];
140 }
141 
142 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
143 {
144 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
145 }
146 
147 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
148 {
149 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
150 }
151 
152 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
153 {
154 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
155 }
156 
157 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
158 {
159 	return req == &req->queue->ctrl->async_req;
160 }
161 
162 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
163 {
164 	struct request *rq;
165 	unsigned int bytes;
166 
167 	if (unlikely(nvme_tcp_async_req(req)))
168 		return false; /* async events don't have a request */
169 
170 	rq = blk_mq_rq_from_pdu(req);
171 	bytes = blk_rq_payload_bytes(rq);
172 
173 	return rq_data_dir(rq) == WRITE && bytes &&
174 		bytes <= nvme_tcp_inline_data_size(req->queue);
175 }
176 
177 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
178 {
179 	return req->iter.bvec->bv_page;
180 }
181 
182 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
183 {
184 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
185 }
186 
187 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
188 {
189 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
190 			req->pdu_len - req->pdu_sent);
191 }
192 
193 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
194 {
195 	return req->iter.iov_offset;
196 }
197 
198 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
199 {
200 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
201 			req->pdu_len - req->pdu_sent : 0;
202 }
203 
204 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
205 		int len)
206 {
207 	return nvme_tcp_pdu_data_left(req) <= len;
208 }
209 
210 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
211 		unsigned int dir)
212 {
213 	struct request *rq = blk_mq_rq_from_pdu(req);
214 	struct bio_vec *vec;
215 	unsigned int size;
216 	int nsegs;
217 	size_t offset;
218 
219 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
220 		vec = &rq->special_vec;
221 		nsegs = 1;
222 		size = blk_rq_payload_bytes(rq);
223 		offset = 0;
224 	} else {
225 		struct bio *bio = req->curr_bio;
226 
227 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
228 		nsegs = bio_segments(bio);
229 		size = bio->bi_iter.bi_size;
230 		offset = bio->bi_iter.bi_bvec_done;
231 	}
232 
233 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
234 	req->iter.iov_offset = offset;
235 }
236 
237 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
238 		int len)
239 {
240 	req->data_sent += len;
241 	req->pdu_sent += len;
242 	iov_iter_advance(&req->iter, len);
243 	if (!iov_iter_count(&req->iter) &&
244 	    req->data_sent < req->data_len) {
245 		req->curr_bio = req->curr_bio->bi_next;
246 		nvme_tcp_init_iter(req, WRITE);
247 	}
248 }
249 
250 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
251 {
252 	struct nvme_tcp_queue *queue = req->queue;
253 
254 	spin_lock(&queue->lock);
255 	list_add_tail(&req->entry, &queue->send_list);
256 	spin_unlock(&queue->lock);
257 
258 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
259 }
260 
261 static inline struct nvme_tcp_request *
262 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
263 {
264 	struct nvme_tcp_request *req;
265 
266 	spin_lock(&queue->lock);
267 	req = list_first_entry_or_null(&queue->send_list,
268 			struct nvme_tcp_request, entry);
269 	if (req)
270 		list_del(&req->entry);
271 	spin_unlock(&queue->lock);
272 
273 	return req;
274 }
275 
276 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
277 		__le32 *dgst)
278 {
279 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
280 	crypto_ahash_final(hash);
281 }
282 
283 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
284 		struct page *page, off_t off, size_t len)
285 {
286 	struct scatterlist sg;
287 
288 	sg_init_marker(&sg, 1);
289 	sg_set_page(&sg, page, len, off);
290 	ahash_request_set_crypt(hash, &sg, NULL, len);
291 	crypto_ahash_update(hash);
292 }
293 
294 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
295 		void *pdu, size_t len)
296 {
297 	struct scatterlist sg;
298 
299 	sg_init_one(&sg, pdu, len);
300 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
301 	crypto_ahash_digest(hash);
302 }
303 
304 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
305 		void *pdu, size_t pdu_len)
306 {
307 	struct nvme_tcp_hdr *hdr = pdu;
308 	__le32 recv_digest;
309 	__le32 exp_digest;
310 
311 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
312 		dev_err(queue->ctrl->ctrl.device,
313 			"queue %d: header digest flag is cleared\n",
314 			nvme_tcp_queue_id(queue));
315 		return -EPROTO;
316 	}
317 
318 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
319 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
320 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
321 	if (recv_digest != exp_digest) {
322 		dev_err(queue->ctrl->ctrl.device,
323 			"header digest error: recv %#x expected %#x\n",
324 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
325 		return -EIO;
326 	}
327 
328 	return 0;
329 }
330 
331 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
332 {
333 	struct nvme_tcp_hdr *hdr = pdu;
334 	u8 digest_len = nvme_tcp_hdgst_len(queue);
335 	u32 len;
336 
337 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
338 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
339 
340 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
341 		dev_err(queue->ctrl->ctrl.device,
342 			"queue %d: data digest flag is cleared\n",
343 		nvme_tcp_queue_id(queue));
344 		return -EPROTO;
345 	}
346 	crypto_ahash_init(queue->rcv_hash);
347 
348 	return 0;
349 }
350 
351 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
352 		struct request *rq, unsigned int hctx_idx)
353 {
354 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
355 
356 	page_frag_free(req->pdu);
357 }
358 
359 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
360 		struct request *rq, unsigned int hctx_idx,
361 		unsigned int numa_node)
362 {
363 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
364 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
365 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
366 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
367 	u8 hdgst = nvme_tcp_hdgst_len(queue);
368 
369 	req->pdu = page_frag_alloc(&queue->pf_cache,
370 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
371 		GFP_KERNEL | __GFP_ZERO);
372 	if (!req->pdu)
373 		return -ENOMEM;
374 
375 	req->queue = queue;
376 	nvme_req(rq)->ctrl = &ctrl->ctrl;
377 
378 	return 0;
379 }
380 
381 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
382 		unsigned int hctx_idx)
383 {
384 	struct nvme_tcp_ctrl *ctrl = data;
385 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
386 
387 	hctx->driver_data = queue;
388 	return 0;
389 }
390 
391 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
392 		unsigned int hctx_idx)
393 {
394 	struct nvme_tcp_ctrl *ctrl = data;
395 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
396 
397 	hctx->driver_data = queue;
398 	return 0;
399 }
400 
401 static enum nvme_tcp_recv_state
402 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
403 {
404 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
405 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
406 		NVME_TCP_RECV_DATA;
407 }
408 
409 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
410 {
411 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
412 				nvme_tcp_hdgst_len(queue);
413 	queue->pdu_offset = 0;
414 	queue->data_remaining = -1;
415 	queue->ddgst_remaining = 0;
416 }
417 
418 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
419 {
420 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
421 		return;
422 
423 	queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work);
424 }
425 
426 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
427 		struct nvme_completion *cqe)
428 {
429 	struct request *rq;
430 
431 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
432 	if (!rq) {
433 		dev_err(queue->ctrl->ctrl.device,
434 			"queue %d tag 0x%x not found\n",
435 			nvme_tcp_queue_id(queue), cqe->command_id);
436 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
437 		return -EINVAL;
438 	}
439 
440 	nvme_end_request(rq, cqe->status, cqe->result);
441 
442 	return 0;
443 }
444 
445 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
446 		struct nvme_tcp_data_pdu *pdu)
447 {
448 	struct request *rq;
449 
450 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
451 	if (!rq) {
452 		dev_err(queue->ctrl->ctrl.device,
453 			"queue %d tag %#x not found\n",
454 			nvme_tcp_queue_id(queue), pdu->command_id);
455 		return -ENOENT;
456 	}
457 
458 	if (!blk_rq_payload_bytes(rq)) {
459 		dev_err(queue->ctrl->ctrl.device,
460 			"queue %d tag %#x unexpected data\n",
461 			nvme_tcp_queue_id(queue), rq->tag);
462 		return -EIO;
463 	}
464 
465 	queue->data_remaining = le32_to_cpu(pdu->data_length);
466 
467 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
468 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
469 		dev_err(queue->ctrl->ctrl.device,
470 			"queue %d tag %#x SUCCESS set but not last PDU\n",
471 			nvme_tcp_queue_id(queue), rq->tag);
472 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
473 		return -EPROTO;
474 	}
475 
476 	return 0;
477 }
478 
479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
480 		struct nvme_tcp_rsp_pdu *pdu)
481 {
482 	struct nvme_completion *cqe = &pdu->cqe;
483 	int ret = 0;
484 
485 	/*
486 	 * AEN requests are special as they don't time out and can
487 	 * survive any kind of queue freeze and often don't respond to
488 	 * aborts.  We don't even bother to allocate a struct request
489 	 * for them but rather special case them here.
490 	 */
491 	if (unlikely(nvme_tcp_queue_id(queue) == 0 &&
492 	    cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
493 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
494 				&cqe->result);
495 	else
496 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
497 
498 	return ret;
499 }
500 
501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
502 		struct nvme_tcp_r2t_pdu *pdu)
503 {
504 	struct nvme_tcp_data_pdu *data = req->pdu;
505 	struct nvme_tcp_queue *queue = req->queue;
506 	struct request *rq = blk_mq_rq_from_pdu(req);
507 	u8 hdgst = nvme_tcp_hdgst_len(queue);
508 	u8 ddgst = nvme_tcp_ddgst_len(queue);
509 
510 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
511 	req->pdu_sent = 0;
512 
513 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
514 		dev_err(queue->ctrl->ctrl.device,
515 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
516 			rq->tag, req->pdu_len, req->data_len,
517 			req->data_sent);
518 		return -EPROTO;
519 	}
520 
521 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
522 		dev_err(queue->ctrl->ctrl.device,
523 			"req %d unexpected r2t offset %u (expected %zu)\n",
524 			rq->tag, le32_to_cpu(pdu->r2t_offset),
525 			req->data_sent);
526 		return -EPROTO;
527 	}
528 
529 	memset(data, 0, sizeof(*data));
530 	data->hdr.type = nvme_tcp_h2c_data;
531 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
532 	if (queue->hdr_digest)
533 		data->hdr.flags |= NVME_TCP_F_HDGST;
534 	if (queue->data_digest)
535 		data->hdr.flags |= NVME_TCP_F_DDGST;
536 	data->hdr.hlen = sizeof(*data);
537 	data->hdr.pdo = data->hdr.hlen + hdgst;
538 	data->hdr.plen =
539 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
540 	data->ttag = pdu->ttag;
541 	data->command_id = rq->tag;
542 	data->data_offset = cpu_to_le32(req->data_sent);
543 	data->data_length = cpu_to_le32(req->pdu_len);
544 	return 0;
545 }
546 
547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
548 		struct nvme_tcp_r2t_pdu *pdu)
549 {
550 	struct nvme_tcp_request *req;
551 	struct request *rq;
552 	int ret;
553 
554 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
555 	if (!rq) {
556 		dev_err(queue->ctrl->ctrl.device,
557 			"queue %d tag %#x not found\n",
558 			nvme_tcp_queue_id(queue), pdu->command_id);
559 		return -ENOENT;
560 	}
561 	req = blk_mq_rq_to_pdu(rq);
562 
563 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
564 	if (unlikely(ret))
565 		return ret;
566 
567 	req->state = NVME_TCP_SEND_H2C_PDU;
568 	req->offset = 0;
569 
570 	nvme_tcp_queue_request(req);
571 
572 	return 0;
573 }
574 
575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
576 		unsigned int *offset, size_t *len)
577 {
578 	struct nvme_tcp_hdr *hdr;
579 	char *pdu = queue->pdu;
580 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
581 	int ret;
582 
583 	ret = skb_copy_bits(skb, *offset,
584 		&pdu[queue->pdu_offset], rcv_len);
585 	if (unlikely(ret))
586 		return ret;
587 
588 	queue->pdu_remaining -= rcv_len;
589 	queue->pdu_offset += rcv_len;
590 	*offset += rcv_len;
591 	*len -= rcv_len;
592 	if (queue->pdu_remaining)
593 		return 0;
594 
595 	hdr = queue->pdu;
596 	if (queue->hdr_digest) {
597 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
598 		if (unlikely(ret))
599 			return ret;
600 	}
601 
602 
603 	if (queue->data_digest) {
604 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
605 		if (unlikely(ret))
606 			return ret;
607 	}
608 
609 	switch (hdr->type) {
610 	case nvme_tcp_c2h_data:
611 		ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
612 		break;
613 	case nvme_tcp_rsp:
614 		nvme_tcp_init_recv_ctx(queue);
615 		ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu);
616 		break;
617 	case nvme_tcp_r2t:
618 		nvme_tcp_init_recv_ctx(queue);
619 		ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
620 		break;
621 	default:
622 		dev_err(queue->ctrl->ctrl.device,
623 			"unsupported pdu type (%d)\n", hdr->type);
624 		return -EINVAL;
625 	}
626 
627 	return ret;
628 }
629 
630 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
631 {
632 	union nvme_result res = {};
633 
634 	nvme_end_request(rq, cpu_to_le16(status << 1), res);
635 }
636 
637 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
638 			      unsigned int *offset, size_t *len)
639 {
640 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
641 	struct nvme_tcp_request *req;
642 	struct request *rq;
643 
644 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
645 	if (!rq) {
646 		dev_err(queue->ctrl->ctrl.device,
647 			"queue %d tag %#x not found\n",
648 			nvme_tcp_queue_id(queue), pdu->command_id);
649 		return -ENOENT;
650 	}
651 	req = blk_mq_rq_to_pdu(rq);
652 
653 	while (true) {
654 		int recv_len, ret;
655 
656 		recv_len = min_t(size_t, *len, queue->data_remaining);
657 		if (!recv_len)
658 			break;
659 
660 		if (!iov_iter_count(&req->iter)) {
661 			req->curr_bio = req->curr_bio->bi_next;
662 
663 			/*
664 			 * If we don`t have any bios it means that controller
665 			 * sent more data than we requested, hence error
666 			 */
667 			if (!req->curr_bio) {
668 				dev_err(queue->ctrl->ctrl.device,
669 					"queue %d no space in request %#x",
670 					nvme_tcp_queue_id(queue), rq->tag);
671 				nvme_tcp_init_recv_ctx(queue);
672 				return -EIO;
673 			}
674 			nvme_tcp_init_iter(req, READ);
675 		}
676 
677 		/* we can read only from what is left in this bio */
678 		recv_len = min_t(size_t, recv_len,
679 				iov_iter_count(&req->iter));
680 
681 		if (queue->data_digest)
682 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
683 				&req->iter, recv_len, queue->rcv_hash);
684 		else
685 			ret = skb_copy_datagram_iter(skb, *offset,
686 					&req->iter, recv_len);
687 		if (ret) {
688 			dev_err(queue->ctrl->ctrl.device,
689 				"queue %d failed to copy request %#x data",
690 				nvme_tcp_queue_id(queue), rq->tag);
691 			return ret;
692 		}
693 
694 		*len -= recv_len;
695 		*offset += recv_len;
696 		queue->data_remaining -= recv_len;
697 	}
698 
699 	if (!queue->data_remaining) {
700 		if (queue->data_digest) {
701 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
702 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
703 		} else {
704 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS)
705 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
706 			nvme_tcp_init_recv_ctx(queue);
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
714 		struct sk_buff *skb, unsigned int *offset, size_t *len)
715 {
716 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
717 	char *ddgst = (char *)&queue->recv_ddgst;
718 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
719 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
720 	int ret;
721 
722 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
723 	if (unlikely(ret))
724 		return ret;
725 
726 	queue->ddgst_remaining -= recv_len;
727 	*offset += recv_len;
728 	*len -= recv_len;
729 	if (queue->ddgst_remaining)
730 		return 0;
731 
732 	if (queue->recv_ddgst != queue->exp_ddgst) {
733 		dev_err(queue->ctrl->ctrl.device,
734 			"data digest error: recv %#x expected %#x\n",
735 			le32_to_cpu(queue->recv_ddgst),
736 			le32_to_cpu(queue->exp_ddgst));
737 		return -EIO;
738 	}
739 
740 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
741 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
742 						pdu->command_id);
743 
744 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
745 	}
746 
747 	nvme_tcp_init_recv_ctx(queue);
748 	return 0;
749 }
750 
751 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
752 			     unsigned int offset, size_t len)
753 {
754 	struct nvme_tcp_queue *queue = desc->arg.data;
755 	size_t consumed = len;
756 	int result;
757 
758 	while (len) {
759 		switch (nvme_tcp_recv_state(queue)) {
760 		case NVME_TCP_RECV_PDU:
761 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
762 			break;
763 		case NVME_TCP_RECV_DATA:
764 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
765 			break;
766 		case NVME_TCP_RECV_DDGST:
767 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
768 			break;
769 		default:
770 			result = -EFAULT;
771 		}
772 		if (result) {
773 			dev_err(queue->ctrl->ctrl.device,
774 				"receive failed:  %d\n", result);
775 			queue->rd_enabled = false;
776 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
777 			return result;
778 		}
779 	}
780 
781 	return consumed;
782 }
783 
784 static void nvme_tcp_data_ready(struct sock *sk)
785 {
786 	struct nvme_tcp_queue *queue;
787 
788 	read_lock(&sk->sk_callback_lock);
789 	queue = sk->sk_user_data;
790 	if (likely(queue && queue->rd_enabled))
791 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
792 	read_unlock(&sk->sk_callback_lock);
793 }
794 
795 static void nvme_tcp_write_space(struct sock *sk)
796 {
797 	struct nvme_tcp_queue *queue;
798 
799 	read_lock_bh(&sk->sk_callback_lock);
800 	queue = sk->sk_user_data;
801 	if (likely(queue && sk_stream_is_writeable(sk))) {
802 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
803 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
804 	}
805 	read_unlock_bh(&sk->sk_callback_lock);
806 }
807 
808 static void nvme_tcp_state_change(struct sock *sk)
809 {
810 	struct nvme_tcp_queue *queue;
811 
812 	read_lock(&sk->sk_callback_lock);
813 	queue = sk->sk_user_data;
814 	if (!queue)
815 		goto done;
816 
817 	switch (sk->sk_state) {
818 	case TCP_CLOSE:
819 	case TCP_CLOSE_WAIT:
820 	case TCP_LAST_ACK:
821 	case TCP_FIN_WAIT1:
822 	case TCP_FIN_WAIT2:
823 		/* fallthrough */
824 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
825 		break;
826 	default:
827 		dev_info(queue->ctrl->ctrl.device,
828 			"queue %d socket state %d\n",
829 			nvme_tcp_queue_id(queue), sk->sk_state);
830 	}
831 
832 	queue->state_change(sk);
833 done:
834 	read_unlock(&sk->sk_callback_lock);
835 }
836 
837 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
838 {
839 	queue->request = NULL;
840 }
841 
842 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
843 {
844 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR);
845 }
846 
847 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
848 {
849 	struct nvme_tcp_queue *queue = req->queue;
850 
851 	while (true) {
852 		struct page *page = nvme_tcp_req_cur_page(req);
853 		size_t offset = nvme_tcp_req_cur_offset(req);
854 		size_t len = nvme_tcp_req_cur_length(req);
855 		bool last = nvme_tcp_pdu_last_send(req, len);
856 		int ret, flags = MSG_DONTWAIT;
857 
858 		if (last && !queue->data_digest)
859 			flags |= MSG_EOR;
860 		else
861 			flags |= MSG_MORE;
862 
863 		/* can't zcopy slab pages */
864 		if (unlikely(PageSlab(page))) {
865 			ret = sock_no_sendpage(queue->sock, page, offset, len,
866 					flags);
867 		} else {
868 			ret = kernel_sendpage(queue->sock, page, offset, len,
869 					flags);
870 		}
871 		if (ret <= 0)
872 			return ret;
873 
874 		nvme_tcp_advance_req(req, ret);
875 		if (queue->data_digest)
876 			nvme_tcp_ddgst_update(queue->snd_hash, page,
877 					offset, ret);
878 
879 		/* fully successful last write*/
880 		if (last && ret == len) {
881 			if (queue->data_digest) {
882 				nvme_tcp_ddgst_final(queue->snd_hash,
883 					&req->ddgst);
884 				req->state = NVME_TCP_SEND_DDGST;
885 				req->offset = 0;
886 			} else {
887 				nvme_tcp_done_send_req(queue);
888 			}
889 			return 1;
890 		}
891 	}
892 	return -EAGAIN;
893 }
894 
895 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
896 {
897 	struct nvme_tcp_queue *queue = req->queue;
898 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
899 	bool inline_data = nvme_tcp_has_inline_data(req);
900 	int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
901 	u8 hdgst = nvme_tcp_hdgst_len(queue);
902 	int len = sizeof(*pdu) + hdgst - req->offset;
903 	int ret;
904 
905 	if (queue->hdr_digest && !req->offset)
906 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
907 
908 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
909 			offset_in_page(pdu) + req->offset, len,  flags);
910 	if (unlikely(ret <= 0))
911 		return ret;
912 
913 	len -= ret;
914 	if (!len) {
915 		if (inline_data) {
916 			req->state = NVME_TCP_SEND_DATA;
917 			if (queue->data_digest)
918 				crypto_ahash_init(queue->snd_hash);
919 			nvme_tcp_init_iter(req, WRITE);
920 		} else {
921 			nvme_tcp_done_send_req(queue);
922 		}
923 		return 1;
924 	}
925 	req->offset += ret;
926 
927 	return -EAGAIN;
928 }
929 
930 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
931 {
932 	struct nvme_tcp_queue *queue = req->queue;
933 	struct nvme_tcp_data_pdu *pdu = req->pdu;
934 	u8 hdgst = nvme_tcp_hdgst_len(queue);
935 	int len = sizeof(*pdu) - req->offset + hdgst;
936 	int ret;
937 
938 	if (queue->hdr_digest && !req->offset)
939 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
940 
941 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
942 			offset_in_page(pdu) + req->offset, len,
943 			MSG_DONTWAIT | MSG_MORE);
944 	if (unlikely(ret <= 0))
945 		return ret;
946 
947 	len -= ret;
948 	if (!len) {
949 		req->state = NVME_TCP_SEND_DATA;
950 		if (queue->data_digest)
951 			crypto_ahash_init(queue->snd_hash);
952 		if (!req->data_sent)
953 			nvme_tcp_init_iter(req, WRITE);
954 		return 1;
955 	}
956 	req->offset += ret;
957 
958 	return -EAGAIN;
959 }
960 
961 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
962 {
963 	struct nvme_tcp_queue *queue = req->queue;
964 	int ret;
965 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
966 	struct kvec iov = {
967 		.iov_base = &req->ddgst + req->offset,
968 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
969 	};
970 
971 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
972 	if (unlikely(ret <= 0))
973 		return ret;
974 
975 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
976 		nvme_tcp_done_send_req(queue);
977 		return 1;
978 	}
979 
980 	req->offset += ret;
981 	return -EAGAIN;
982 }
983 
984 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
985 {
986 	struct nvme_tcp_request *req;
987 	int ret = 1;
988 
989 	if (!queue->request) {
990 		queue->request = nvme_tcp_fetch_request(queue);
991 		if (!queue->request)
992 			return 0;
993 	}
994 	req = queue->request;
995 
996 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
997 		ret = nvme_tcp_try_send_cmd_pdu(req);
998 		if (ret <= 0)
999 			goto done;
1000 		if (!nvme_tcp_has_inline_data(req))
1001 			return ret;
1002 	}
1003 
1004 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1005 		ret = nvme_tcp_try_send_data_pdu(req);
1006 		if (ret <= 0)
1007 			goto done;
1008 	}
1009 
1010 	if (req->state == NVME_TCP_SEND_DATA) {
1011 		ret = nvme_tcp_try_send_data(req);
1012 		if (ret <= 0)
1013 			goto done;
1014 	}
1015 
1016 	if (req->state == NVME_TCP_SEND_DDGST)
1017 		ret = nvme_tcp_try_send_ddgst(req);
1018 done:
1019 	if (ret == -EAGAIN)
1020 		ret = 0;
1021 	return ret;
1022 }
1023 
1024 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1025 {
1026 	struct sock *sk = queue->sock->sk;
1027 	read_descriptor_t rd_desc;
1028 	int consumed;
1029 
1030 	rd_desc.arg.data = queue;
1031 	rd_desc.count = 1;
1032 	lock_sock(sk);
1033 	consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1034 	release_sock(sk);
1035 	return consumed;
1036 }
1037 
1038 static void nvme_tcp_io_work(struct work_struct *w)
1039 {
1040 	struct nvme_tcp_queue *queue =
1041 		container_of(w, struct nvme_tcp_queue, io_work);
1042 	unsigned long start = jiffies + msecs_to_jiffies(1);
1043 
1044 	do {
1045 		bool pending = false;
1046 		int result;
1047 
1048 		result = nvme_tcp_try_send(queue);
1049 		if (result > 0) {
1050 			pending = true;
1051 		} else if (unlikely(result < 0)) {
1052 			dev_err(queue->ctrl->ctrl.device,
1053 				"failed to send request %d\n", result);
1054 			if (result != -EPIPE)
1055 				nvme_tcp_fail_request(queue->request);
1056 			nvme_tcp_done_send_req(queue);
1057 			return;
1058 		}
1059 
1060 		result = nvme_tcp_try_recv(queue);
1061 		if (result > 0)
1062 			pending = true;
1063 
1064 		if (!pending)
1065 			return;
1066 
1067 	} while (time_after(jiffies, start)); /* quota is exhausted */
1068 
1069 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1070 }
1071 
1072 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1073 {
1074 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1075 
1076 	ahash_request_free(queue->rcv_hash);
1077 	ahash_request_free(queue->snd_hash);
1078 	crypto_free_ahash(tfm);
1079 }
1080 
1081 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1082 {
1083 	struct crypto_ahash *tfm;
1084 
1085 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1086 	if (IS_ERR(tfm))
1087 		return PTR_ERR(tfm);
1088 
1089 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1090 	if (!queue->snd_hash)
1091 		goto free_tfm;
1092 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1093 
1094 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1095 	if (!queue->rcv_hash)
1096 		goto free_snd_hash;
1097 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1098 
1099 	return 0;
1100 free_snd_hash:
1101 	ahash_request_free(queue->snd_hash);
1102 free_tfm:
1103 	crypto_free_ahash(tfm);
1104 	return -ENOMEM;
1105 }
1106 
1107 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1108 {
1109 	struct nvme_tcp_request *async = &ctrl->async_req;
1110 
1111 	page_frag_free(async->pdu);
1112 }
1113 
1114 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1115 {
1116 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1117 	struct nvme_tcp_request *async = &ctrl->async_req;
1118 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1119 
1120 	async->pdu = page_frag_alloc(&queue->pf_cache,
1121 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1122 		GFP_KERNEL | __GFP_ZERO);
1123 	if (!async->pdu)
1124 		return -ENOMEM;
1125 
1126 	async->queue = &ctrl->queues[0];
1127 	return 0;
1128 }
1129 
1130 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1131 {
1132 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1133 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1134 
1135 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1136 		return;
1137 
1138 	if (queue->hdr_digest || queue->data_digest)
1139 		nvme_tcp_free_crypto(queue);
1140 
1141 	sock_release(queue->sock);
1142 	kfree(queue->pdu);
1143 }
1144 
1145 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1146 {
1147 	struct nvme_tcp_icreq_pdu *icreq;
1148 	struct nvme_tcp_icresp_pdu *icresp;
1149 	struct msghdr msg = {};
1150 	struct kvec iov;
1151 	bool ctrl_hdgst, ctrl_ddgst;
1152 	int ret;
1153 
1154 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1155 	if (!icreq)
1156 		return -ENOMEM;
1157 
1158 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1159 	if (!icresp) {
1160 		ret = -ENOMEM;
1161 		goto free_icreq;
1162 	}
1163 
1164 	icreq->hdr.type = nvme_tcp_icreq;
1165 	icreq->hdr.hlen = sizeof(*icreq);
1166 	icreq->hdr.pdo = 0;
1167 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1168 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1169 	icreq->maxr2t = 0; /* single inflight r2t supported */
1170 	icreq->hpda = 0; /* no alignment constraint */
1171 	if (queue->hdr_digest)
1172 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1173 	if (queue->data_digest)
1174 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1175 
1176 	iov.iov_base = icreq;
1177 	iov.iov_len = sizeof(*icreq);
1178 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1179 	if (ret < 0)
1180 		goto free_icresp;
1181 
1182 	memset(&msg, 0, sizeof(msg));
1183 	iov.iov_base = icresp;
1184 	iov.iov_len = sizeof(*icresp);
1185 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1186 			iov.iov_len, msg.msg_flags);
1187 	if (ret < 0)
1188 		goto free_icresp;
1189 
1190 	ret = -EINVAL;
1191 	if (icresp->hdr.type != nvme_tcp_icresp) {
1192 		pr_err("queue %d: bad type returned %d\n",
1193 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1194 		goto free_icresp;
1195 	}
1196 
1197 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1198 		pr_err("queue %d: bad pdu length returned %d\n",
1199 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1200 		goto free_icresp;
1201 	}
1202 
1203 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1204 		pr_err("queue %d: bad pfv returned %d\n",
1205 			nvme_tcp_queue_id(queue), icresp->pfv);
1206 		goto free_icresp;
1207 	}
1208 
1209 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1210 	if ((queue->data_digest && !ctrl_ddgst) ||
1211 	    (!queue->data_digest && ctrl_ddgst)) {
1212 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1213 			nvme_tcp_queue_id(queue),
1214 			queue->data_digest ? "enabled" : "disabled",
1215 			ctrl_ddgst ? "enabled" : "disabled");
1216 		goto free_icresp;
1217 	}
1218 
1219 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1220 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1221 	    (!queue->hdr_digest && ctrl_hdgst)) {
1222 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1223 			nvme_tcp_queue_id(queue),
1224 			queue->hdr_digest ? "enabled" : "disabled",
1225 			ctrl_hdgst ? "enabled" : "disabled");
1226 		goto free_icresp;
1227 	}
1228 
1229 	if (icresp->cpda != 0) {
1230 		pr_err("queue %d: unsupported cpda returned %d\n",
1231 			nvme_tcp_queue_id(queue), icresp->cpda);
1232 		goto free_icresp;
1233 	}
1234 
1235 	ret = 0;
1236 free_icresp:
1237 	kfree(icresp);
1238 free_icreq:
1239 	kfree(icreq);
1240 	return ret;
1241 }
1242 
1243 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1244 		int qid, size_t queue_size)
1245 {
1246 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1247 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1248 	struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1249 	int ret, opt, rcv_pdu_size, n;
1250 
1251 	queue->ctrl = ctrl;
1252 	INIT_LIST_HEAD(&queue->send_list);
1253 	spin_lock_init(&queue->lock);
1254 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1255 	queue->queue_size = queue_size;
1256 
1257 	if (qid > 0)
1258 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1259 	else
1260 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1261 						NVME_TCP_ADMIN_CCSZ;
1262 
1263 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1264 			IPPROTO_TCP, &queue->sock);
1265 	if (ret) {
1266 		dev_err(ctrl->ctrl.device,
1267 			"failed to create socket: %d\n", ret);
1268 		return ret;
1269 	}
1270 
1271 	/* Single syn retry */
1272 	opt = 1;
1273 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1274 			(char *)&opt, sizeof(opt));
1275 	if (ret) {
1276 		dev_err(ctrl->ctrl.device,
1277 			"failed to set TCP_SYNCNT sock opt %d\n", ret);
1278 		goto err_sock;
1279 	}
1280 
1281 	/* Set TCP no delay */
1282 	opt = 1;
1283 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1284 			TCP_NODELAY, (char *)&opt, sizeof(opt));
1285 	if (ret) {
1286 		dev_err(ctrl->ctrl.device,
1287 			"failed to set TCP_NODELAY sock opt %d\n", ret);
1288 		goto err_sock;
1289 	}
1290 
1291 	/*
1292 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1293 	 * close. This is done to prevent stale data from being sent should
1294 	 * the network connection be restored before TCP times out.
1295 	 */
1296 	ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1297 			(char *)&sol, sizeof(sol));
1298 	if (ret) {
1299 		dev_err(ctrl->ctrl.device,
1300 			"failed to set SO_LINGER sock opt %d\n", ret);
1301 		goto err_sock;
1302 	}
1303 
1304 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1305 	if (!qid)
1306 		n = 0;
1307 	else
1308 		n = (qid - 1) % num_online_cpus();
1309 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1310 	queue->request = NULL;
1311 	queue->data_remaining = 0;
1312 	queue->ddgst_remaining = 0;
1313 	queue->pdu_remaining = 0;
1314 	queue->pdu_offset = 0;
1315 	sk_set_memalloc(queue->sock->sk);
1316 
1317 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1318 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1319 			sizeof(ctrl->src_addr));
1320 		if (ret) {
1321 			dev_err(ctrl->ctrl.device,
1322 				"failed to bind queue %d socket %d\n",
1323 				qid, ret);
1324 			goto err_sock;
1325 		}
1326 	}
1327 
1328 	queue->hdr_digest = nctrl->opts->hdr_digest;
1329 	queue->data_digest = nctrl->opts->data_digest;
1330 	if (queue->hdr_digest || queue->data_digest) {
1331 		ret = nvme_tcp_alloc_crypto(queue);
1332 		if (ret) {
1333 			dev_err(ctrl->ctrl.device,
1334 				"failed to allocate queue %d crypto\n", qid);
1335 			goto err_sock;
1336 		}
1337 	}
1338 
1339 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1340 			nvme_tcp_hdgst_len(queue);
1341 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1342 	if (!queue->pdu) {
1343 		ret = -ENOMEM;
1344 		goto err_crypto;
1345 	}
1346 
1347 	dev_dbg(ctrl->ctrl.device, "connecting queue %d\n",
1348 			nvme_tcp_queue_id(queue));
1349 
1350 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1351 		sizeof(ctrl->addr), 0);
1352 	if (ret) {
1353 		dev_err(ctrl->ctrl.device,
1354 			"failed to connect socket: %d\n", ret);
1355 		goto err_rcv_pdu;
1356 	}
1357 
1358 	ret = nvme_tcp_init_connection(queue);
1359 	if (ret)
1360 		goto err_init_connect;
1361 
1362 	queue->rd_enabled = true;
1363 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1364 	nvme_tcp_init_recv_ctx(queue);
1365 
1366 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1367 	queue->sock->sk->sk_user_data = queue;
1368 	queue->state_change = queue->sock->sk->sk_state_change;
1369 	queue->data_ready = queue->sock->sk->sk_data_ready;
1370 	queue->write_space = queue->sock->sk->sk_write_space;
1371 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1372 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1373 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1374 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1375 
1376 	return 0;
1377 
1378 err_init_connect:
1379 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1380 err_rcv_pdu:
1381 	kfree(queue->pdu);
1382 err_crypto:
1383 	if (queue->hdr_digest || queue->data_digest)
1384 		nvme_tcp_free_crypto(queue);
1385 err_sock:
1386 	sock_release(queue->sock);
1387 	queue->sock = NULL;
1388 	return ret;
1389 }
1390 
1391 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1392 {
1393 	struct socket *sock = queue->sock;
1394 
1395 	write_lock_bh(&sock->sk->sk_callback_lock);
1396 	sock->sk->sk_user_data  = NULL;
1397 	sock->sk->sk_data_ready = queue->data_ready;
1398 	sock->sk->sk_state_change = queue->state_change;
1399 	sock->sk->sk_write_space  = queue->write_space;
1400 	write_unlock_bh(&sock->sk->sk_callback_lock);
1401 }
1402 
1403 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1404 {
1405 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1406 	nvme_tcp_restore_sock_calls(queue);
1407 	cancel_work_sync(&queue->io_work);
1408 }
1409 
1410 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1411 {
1412 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1413 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1414 
1415 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1416 		return;
1417 
1418 	__nvme_tcp_stop_queue(queue);
1419 }
1420 
1421 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1422 {
1423 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1424 	int ret;
1425 
1426 	if (idx)
1427 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1428 	else
1429 		ret = nvmf_connect_admin_queue(nctrl);
1430 
1431 	if (!ret) {
1432 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1433 	} else {
1434 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1435 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1436 		dev_err(nctrl->device,
1437 			"failed to connect queue: %d ret=%d\n", idx, ret);
1438 	}
1439 	return ret;
1440 }
1441 
1442 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1443 		bool admin)
1444 {
1445 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1446 	struct blk_mq_tag_set *set;
1447 	int ret;
1448 
1449 	if (admin) {
1450 		set = &ctrl->admin_tag_set;
1451 		memset(set, 0, sizeof(*set));
1452 		set->ops = &nvme_tcp_admin_mq_ops;
1453 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1454 		set->reserved_tags = 2; /* connect + keep-alive */
1455 		set->numa_node = NUMA_NO_NODE;
1456 		set->cmd_size = sizeof(struct nvme_tcp_request);
1457 		set->driver_data = ctrl;
1458 		set->nr_hw_queues = 1;
1459 		set->timeout = ADMIN_TIMEOUT;
1460 	} else {
1461 		set = &ctrl->tag_set;
1462 		memset(set, 0, sizeof(*set));
1463 		set->ops = &nvme_tcp_mq_ops;
1464 		set->queue_depth = nctrl->sqsize + 1;
1465 		set->reserved_tags = 1; /* fabric connect */
1466 		set->numa_node = NUMA_NO_NODE;
1467 		set->flags = BLK_MQ_F_SHOULD_MERGE;
1468 		set->cmd_size = sizeof(struct nvme_tcp_request);
1469 		set->driver_data = ctrl;
1470 		set->nr_hw_queues = nctrl->queue_count - 1;
1471 		set->timeout = NVME_IO_TIMEOUT;
1472 		set->nr_maps = 2 /* default + read */;
1473 	}
1474 
1475 	ret = blk_mq_alloc_tag_set(set);
1476 	if (ret)
1477 		return ERR_PTR(ret);
1478 
1479 	return set;
1480 }
1481 
1482 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1483 {
1484 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1485 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1486 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1487 	}
1488 
1489 	nvme_tcp_free_queue(ctrl, 0);
1490 }
1491 
1492 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1493 {
1494 	int i;
1495 
1496 	for (i = 1; i < ctrl->queue_count; i++)
1497 		nvme_tcp_free_queue(ctrl, i);
1498 }
1499 
1500 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1501 {
1502 	int i;
1503 
1504 	for (i = 1; i < ctrl->queue_count; i++)
1505 		nvme_tcp_stop_queue(ctrl, i);
1506 }
1507 
1508 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1509 {
1510 	int i, ret = 0;
1511 
1512 	for (i = 1; i < ctrl->queue_count; i++) {
1513 		ret = nvme_tcp_start_queue(ctrl, i);
1514 		if (ret)
1515 			goto out_stop_queues;
1516 	}
1517 
1518 	return 0;
1519 
1520 out_stop_queues:
1521 	for (i--; i >= 1; i--)
1522 		nvme_tcp_stop_queue(ctrl, i);
1523 	return ret;
1524 }
1525 
1526 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1527 {
1528 	int ret;
1529 
1530 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1531 	if (ret)
1532 		return ret;
1533 
1534 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1535 	if (ret)
1536 		goto out_free_queue;
1537 
1538 	return 0;
1539 
1540 out_free_queue:
1541 	nvme_tcp_free_queue(ctrl, 0);
1542 	return ret;
1543 }
1544 
1545 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1546 {
1547 	int i, ret;
1548 
1549 	for (i = 1; i < ctrl->queue_count; i++) {
1550 		ret = nvme_tcp_alloc_queue(ctrl, i,
1551 				ctrl->sqsize + 1);
1552 		if (ret)
1553 			goto out_free_queues;
1554 	}
1555 
1556 	return 0;
1557 
1558 out_free_queues:
1559 	for (i--; i >= 1; i--)
1560 		nvme_tcp_free_queue(ctrl, i);
1561 
1562 	return ret;
1563 }
1564 
1565 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1566 {
1567 	unsigned int nr_io_queues;
1568 
1569 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1570 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1571 
1572 	return nr_io_queues;
1573 }
1574 
1575 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1576 		unsigned int nr_io_queues)
1577 {
1578 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1579 	struct nvmf_ctrl_options *opts = nctrl->opts;
1580 
1581 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1582 		/*
1583 		 * separate read/write queues
1584 		 * hand out dedicated default queues only after we have
1585 		 * sufficient read queues.
1586 		 */
1587 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1588 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1589 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1590 			min(opts->nr_write_queues, nr_io_queues);
1591 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1592 	} else {
1593 		/*
1594 		 * shared read/write queues
1595 		 * either no write queues were requested, or we don't have
1596 		 * sufficient queue count to have dedicated default queues.
1597 		 */
1598 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1599 			min(opts->nr_io_queues, nr_io_queues);
1600 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1601 	}
1602 }
1603 
1604 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1605 {
1606 	unsigned int nr_io_queues;
1607 	int ret;
1608 
1609 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1610 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1611 	if (ret)
1612 		return ret;
1613 
1614 	ctrl->queue_count = nr_io_queues + 1;
1615 	if (ctrl->queue_count < 2)
1616 		return 0;
1617 
1618 	dev_info(ctrl->device,
1619 		"creating %d I/O queues.\n", nr_io_queues);
1620 
1621 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1622 
1623 	return __nvme_tcp_alloc_io_queues(ctrl);
1624 }
1625 
1626 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1627 {
1628 	nvme_tcp_stop_io_queues(ctrl);
1629 	if (remove) {
1630 		blk_cleanup_queue(ctrl->connect_q);
1631 		blk_mq_free_tag_set(ctrl->tagset);
1632 	}
1633 	nvme_tcp_free_io_queues(ctrl);
1634 }
1635 
1636 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1637 {
1638 	int ret;
1639 
1640 	ret = nvme_tcp_alloc_io_queues(ctrl);
1641 	if (ret)
1642 		return ret;
1643 
1644 	if (new) {
1645 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1646 		if (IS_ERR(ctrl->tagset)) {
1647 			ret = PTR_ERR(ctrl->tagset);
1648 			goto out_free_io_queues;
1649 		}
1650 
1651 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1652 		if (IS_ERR(ctrl->connect_q)) {
1653 			ret = PTR_ERR(ctrl->connect_q);
1654 			goto out_free_tag_set;
1655 		}
1656 	} else {
1657 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1658 			ctrl->queue_count - 1);
1659 	}
1660 
1661 	ret = nvme_tcp_start_io_queues(ctrl);
1662 	if (ret)
1663 		goto out_cleanup_connect_q;
1664 
1665 	return 0;
1666 
1667 out_cleanup_connect_q:
1668 	if (new)
1669 		blk_cleanup_queue(ctrl->connect_q);
1670 out_free_tag_set:
1671 	if (new)
1672 		blk_mq_free_tag_set(ctrl->tagset);
1673 out_free_io_queues:
1674 	nvme_tcp_free_io_queues(ctrl);
1675 	return ret;
1676 }
1677 
1678 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1679 {
1680 	nvme_tcp_stop_queue(ctrl, 0);
1681 	if (remove) {
1682 		blk_cleanup_queue(ctrl->admin_q);
1683 		blk_mq_free_tag_set(ctrl->admin_tagset);
1684 	}
1685 	nvme_tcp_free_admin_queue(ctrl);
1686 }
1687 
1688 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1689 {
1690 	int error;
1691 
1692 	error = nvme_tcp_alloc_admin_queue(ctrl);
1693 	if (error)
1694 		return error;
1695 
1696 	if (new) {
1697 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1698 		if (IS_ERR(ctrl->admin_tagset)) {
1699 			error = PTR_ERR(ctrl->admin_tagset);
1700 			goto out_free_queue;
1701 		}
1702 
1703 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1704 		if (IS_ERR(ctrl->admin_q)) {
1705 			error = PTR_ERR(ctrl->admin_q);
1706 			goto out_free_tagset;
1707 		}
1708 	}
1709 
1710 	error = nvme_tcp_start_queue(ctrl, 0);
1711 	if (error)
1712 		goto out_cleanup_queue;
1713 
1714 	error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
1715 	if (error) {
1716 		dev_err(ctrl->device,
1717 			"prop_get NVME_REG_CAP failed\n");
1718 		goto out_stop_queue;
1719 	}
1720 
1721 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
1722 
1723 	error = nvme_enable_ctrl(ctrl, ctrl->cap);
1724 	if (error)
1725 		goto out_stop_queue;
1726 
1727 	error = nvme_init_identify(ctrl);
1728 	if (error)
1729 		goto out_stop_queue;
1730 
1731 	return 0;
1732 
1733 out_stop_queue:
1734 	nvme_tcp_stop_queue(ctrl, 0);
1735 out_cleanup_queue:
1736 	if (new)
1737 		blk_cleanup_queue(ctrl->admin_q);
1738 out_free_tagset:
1739 	if (new)
1740 		blk_mq_free_tag_set(ctrl->admin_tagset);
1741 out_free_queue:
1742 	nvme_tcp_free_admin_queue(ctrl);
1743 	return error;
1744 }
1745 
1746 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1747 		bool remove)
1748 {
1749 	blk_mq_quiesce_queue(ctrl->admin_q);
1750 	nvme_tcp_stop_queue(ctrl, 0);
1751 	if (ctrl->admin_tagset)
1752 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1753 			nvme_cancel_request, ctrl);
1754 	blk_mq_unquiesce_queue(ctrl->admin_q);
1755 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1756 }
1757 
1758 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1759 		bool remove)
1760 {
1761 	if (ctrl->queue_count <= 1)
1762 		return;
1763 	nvme_stop_queues(ctrl);
1764 	nvme_tcp_stop_io_queues(ctrl);
1765 	if (ctrl->tagset)
1766 		blk_mq_tagset_busy_iter(ctrl->tagset,
1767 			nvme_cancel_request, ctrl);
1768 	if (remove)
1769 		nvme_start_queues(ctrl);
1770 	nvme_tcp_destroy_io_queues(ctrl, remove);
1771 }
1772 
1773 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1774 {
1775 	/* If we are resetting/deleting then do nothing */
1776 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1777 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1778 			ctrl->state == NVME_CTRL_LIVE);
1779 		return;
1780 	}
1781 
1782 	if (nvmf_should_reconnect(ctrl)) {
1783 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1784 			ctrl->opts->reconnect_delay);
1785 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1786 				ctrl->opts->reconnect_delay * HZ);
1787 	} else {
1788 		dev_info(ctrl->device, "Removing controller...\n");
1789 		nvme_delete_ctrl(ctrl);
1790 	}
1791 }
1792 
1793 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1794 {
1795 	struct nvmf_ctrl_options *opts = ctrl->opts;
1796 	int ret = -EINVAL;
1797 
1798 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1799 	if (ret)
1800 		return ret;
1801 
1802 	if (ctrl->icdoff) {
1803 		dev_err(ctrl->device, "icdoff is not supported!\n");
1804 		goto destroy_admin;
1805 	}
1806 
1807 	if (opts->queue_size > ctrl->sqsize + 1)
1808 		dev_warn(ctrl->device,
1809 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1810 			opts->queue_size, ctrl->sqsize + 1);
1811 
1812 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1813 		dev_warn(ctrl->device,
1814 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1815 			ctrl->sqsize + 1, ctrl->maxcmd);
1816 		ctrl->sqsize = ctrl->maxcmd - 1;
1817 	}
1818 
1819 	if (ctrl->queue_count > 1) {
1820 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1821 		if (ret)
1822 			goto destroy_admin;
1823 	}
1824 
1825 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1826 		/* state change failure is ok if we're in DELETING state */
1827 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1828 		ret = -EINVAL;
1829 		goto destroy_io;
1830 	}
1831 
1832 	nvme_start_ctrl(ctrl);
1833 	return 0;
1834 
1835 destroy_io:
1836 	if (ctrl->queue_count > 1)
1837 		nvme_tcp_destroy_io_queues(ctrl, new);
1838 destroy_admin:
1839 	nvme_tcp_stop_queue(ctrl, 0);
1840 	nvme_tcp_destroy_admin_queue(ctrl, new);
1841 	return ret;
1842 }
1843 
1844 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1845 {
1846 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1847 			struct nvme_tcp_ctrl, connect_work);
1848 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1849 
1850 	++ctrl->nr_reconnects;
1851 
1852 	if (nvme_tcp_setup_ctrl(ctrl, false))
1853 		goto requeue;
1854 
1855 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1856 			ctrl->nr_reconnects);
1857 
1858 	ctrl->nr_reconnects = 0;
1859 
1860 	return;
1861 
1862 requeue:
1863 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1864 			ctrl->nr_reconnects);
1865 	nvme_tcp_reconnect_or_remove(ctrl);
1866 }
1867 
1868 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1869 {
1870 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1871 				struct nvme_tcp_ctrl, err_work);
1872 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1873 
1874 	nvme_stop_keep_alive(ctrl);
1875 	nvme_tcp_teardown_io_queues(ctrl, false);
1876 	/* unquiesce to fail fast pending requests */
1877 	nvme_start_queues(ctrl);
1878 	nvme_tcp_teardown_admin_queue(ctrl, false);
1879 
1880 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1881 		/* state change failure is ok if we're in DELETING state */
1882 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1883 		return;
1884 	}
1885 
1886 	nvme_tcp_reconnect_or_remove(ctrl);
1887 }
1888 
1889 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1890 {
1891 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1892 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1893 
1894 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
1895 	if (shutdown)
1896 		nvme_shutdown_ctrl(ctrl);
1897 	else
1898 		nvme_disable_ctrl(ctrl, ctrl->cap);
1899 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
1900 }
1901 
1902 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
1903 {
1904 	nvme_tcp_teardown_ctrl(ctrl, true);
1905 }
1906 
1907 static void nvme_reset_ctrl_work(struct work_struct *work)
1908 {
1909 	struct nvme_ctrl *ctrl =
1910 		container_of(work, struct nvme_ctrl, reset_work);
1911 
1912 	nvme_stop_ctrl(ctrl);
1913 	nvme_tcp_teardown_ctrl(ctrl, false);
1914 
1915 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1916 		/* state change failure is ok if we're in DELETING state */
1917 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1918 		return;
1919 	}
1920 
1921 	if (nvme_tcp_setup_ctrl(ctrl, false))
1922 		goto out_fail;
1923 
1924 	return;
1925 
1926 out_fail:
1927 	++ctrl->nr_reconnects;
1928 	nvme_tcp_reconnect_or_remove(ctrl);
1929 }
1930 
1931 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
1932 {
1933 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1934 
1935 	if (list_empty(&ctrl->list))
1936 		goto free_ctrl;
1937 
1938 	mutex_lock(&nvme_tcp_ctrl_mutex);
1939 	list_del(&ctrl->list);
1940 	mutex_unlock(&nvme_tcp_ctrl_mutex);
1941 
1942 	nvmf_free_options(nctrl->opts);
1943 free_ctrl:
1944 	kfree(ctrl->queues);
1945 	kfree(ctrl);
1946 }
1947 
1948 static void nvme_tcp_set_sg_null(struct nvme_command *c)
1949 {
1950 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1951 
1952 	sg->addr = 0;
1953 	sg->length = 0;
1954 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1955 			NVME_SGL_FMT_TRANSPORT_A;
1956 }
1957 
1958 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
1959 		struct nvme_command *c, u32 data_len)
1960 {
1961 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1962 
1963 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1964 	sg->length = cpu_to_le32(data_len);
1965 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1966 }
1967 
1968 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
1969 		u32 data_len)
1970 {
1971 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1972 
1973 	sg->addr = 0;
1974 	sg->length = cpu_to_le32(data_len);
1975 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1976 			NVME_SGL_FMT_TRANSPORT_A;
1977 }
1978 
1979 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
1980 {
1981 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
1982 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1983 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
1984 	struct nvme_command *cmd = &pdu->cmd;
1985 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1986 
1987 	memset(pdu, 0, sizeof(*pdu));
1988 	pdu->hdr.type = nvme_tcp_cmd;
1989 	if (queue->hdr_digest)
1990 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
1991 	pdu->hdr.hlen = sizeof(*pdu);
1992 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
1993 
1994 	cmd->common.opcode = nvme_admin_async_event;
1995 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1996 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1997 	nvme_tcp_set_sg_null(cmd);
1998 
1999 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2000 	ctrl->async_req.offset = 0;
2001 	ctrl->async_req.curr_bio = NULL;
2002 	ctrl->async_req.data_len = 0;
2003 
2004 	nvme_tcp_queue_request(&ctrl->async_req);
2005 }
2006 
2007 static enum blk_eh_timer_return
2008 nvme_tcp_timeout(struct request *rq, bool reserved)
2009 {
2010 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2011 	struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2012 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2013 
2014 	dev_warn(ctrl->ctrl.device,
2015 		"queue %d: timeout request %#x type %d\n",
2016 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2017 
2018 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2019 		/*
2020 		 * Teardown immediately if controller times out while starting
2021 		 * or we are already started error recovery. all outstanding
2022 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
2023 		 */
2024 		flush_work(&ctrl->err_work);
2025 		nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2026 		nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2027 		return BLK_EH_DONE;
2028 	}
2029 
2030 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2031 	nvme_tcp_error_recovery(&ctrl->ctrl);
2032 
2033 	return BLK_EH_RESET_TIMER;
2034 }
2035 
2036 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2037 			struct request *rq)
2038 {
2039 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2040 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2041 	struct nvme_command *c = &pdu->cmd;
2042 
2043 	c->common.flags |= NVME_CMD_SGL_METABUF;
2044 
2045 	if (rq_data_dir(rq) == WRITE && req->data_len &&
2046 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2047 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2048 	else
2049 		nvme_tcp_set_sg_host_data(c, req->data_len);
2050 
2051 	return 0;
2052 }
2053 
2054 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2055 		struct request *rq)
2056 {
2057 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2058 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2059 	struct nvme_tcp_queue *queue = req->queue;
2060 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2061 	blk_status_t ret;
2062 
2063 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2064 	if (ret)
2065 		return ret;
2066 
2067 	req->state = NVME_TCP_SEND_CMD_PDU;
2068 	req->offset = 0;
2069 	req->data_sent = 0;
2070 	req->pdu_len = 0;
2071 	req->pdu_sent = 0;
2072 	req->data_len = blk_rq_payload_bytes(rq);
2073 	req->curr_bio = rq->bio;
2074 
2075 	if (rq_data_dir(rq) == WRITE &&
2076 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2077 		req->pdu_len = req->data_len;
2078 	else if (req->curr_bio)
2079 		nvme_tcp_init_iter(req, READ);
2080 
2081 	pdu->hdr.type = nvme_tcp_cmd;
2082 	pdu->hdr.flags = 0;
2083 	if (queue->hdr_digest)
2084 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2085 	if (queue->data_digest && req->pdu_len) {
2086 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2087 		ddgst = nvme_tcp_ddgst_len(queue);
2088 	}
2089 	pdu->hdr.hlen = sizeof(*pdu);
2090 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2091 	pdu->hdr.plen =
2092 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2093 
2094 	ret = nvme_tcp_map_data(queue, rq);
2095 	if (unlikely(ret)) {
2096 		dev_err(queue->ctrl->ctrl.device,
2097 			"Failed to map data (%d)\n", ret);
2098 		return ret;
2099 	}
2100 
2101 	return 0;
2102 }
2103 
2104 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2105 		const struct blk_mq_queue_data *bd)
2106 {
2107 	struct nvme_ns *ns = hctx->queue->queuedata;
2108 	struct nvme_tcp_queue *queue = hctx->driver_data;
2109 	struct request *rq = bd->rq;
2110 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2111 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2112 	blk_status_t ret;
2113 
2114 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2115 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2116 
2117 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2118 	if (unlikely(ret))
2119 		return ret;
2120 
2121 	blk_mq_start_request(rq);
2122 
2123 	nvme_tcp_queue_request(req);
2124 
2125 	return BLK_STS_OK;
2126 }
2127 
2128 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2129 {
2130 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2131 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2132 
2133 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2134 		/* separate read/write queues */
2135 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2136 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2137 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2138 		set->map[HCTX_TYPE_READ].nr_queues =
2139 			ctrl->io_queues[HCTX_TYPE_READ];
2140 		set->map[HCTX_TYPE_READ].queue_offset =
2141 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2142 	} else {
2143 		/* shared read/write queues */
2144 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2145 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2146 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2147 		set->map[HCTX_TYPE_READ].nr_queues =
2148 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2149 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2150 	}
2151 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2152 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2153 
2154 	dev_info(ctrl->ctrl.device,
2155 		"mapped %d/%d default/read queues.\n",
2156 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2157 		ctrl->io_queues[HCTX_TYPE_READ]);
2158 
2159 	return 0;
2160 }
2161 
2162 static struct blk_mq_ops nvme_tcp_mq_ops = {
2163 	.queue_rq	= nvme_tcp_queue_rq,
2164 	.complete	= nvme_complete_rq,
2165 	.init_request	= nvme_tcp_init_request,
2166 	.exit_request	= nvme_tcp_exit_request,
2167 	.init_hctx	= nvme_tcp_init_hctx,
2168 	.timeout	= nvme_tcp_timeout,
2169 	.map_queues	= nvme_tcp_map_queues,
2170 };
2171 
2172 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2173 	.queue_rq	= nvme_tcp_queue_rq,
2174 	.complete	= nvme_complete_rq,
2175 	.init_request	= nvme_tcp_init_request,
2176 	.exit_request	= nvme_tcp_exit_request,
2177 	.init_hctx	= nvme_tcp_init_admin_hctx,
2178 	.timeout	= nvme_tcp_timeout,
2179 };
2180 
2181 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2182 	.name			= "tcp",
2183 	.module			= THIS_MODULE,
2184 	.flags			= NVME_F_FABRICS,
2185 	.reg_read32		= nvmf_reg_read32,
2186 	.reg_read64		= nvmf_reg_read64,
2187 	.reg_write32		= nvmf_reg_write32,
2188 	.free_ctrl		= nvme_tcp_free_ctrl,
2189 	.submit_async_event	= nvme_tcp_submit_async_event,
2190 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2191 	.get_address		= nvmf_get_address,
2192 };
2193 
2194 static bool
2195 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2196 {
2197 	struct nvme_tcp_ctrl *ctrl;
2198 	bool found = false;
2199 
2200 	mutex_lock(&nvme_tcp_ctrl_mutex);
2201 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2202 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2203 		if (found)
2204 			break;
2205 	}
2206 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2207 
2208 	return found;
2209 }
2210 
2211 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2212 		struct nvmf_ctrl_options *opts)
2213 {
2214 	struct nvme_tcp_ctrl *ctrl;
2215 	int ret;
2216 
2217 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2218 	if (!ctrl)
2219 		return ERR_PTR(-ENOMEM);
2220 
2221 	INIT_LIST_HEAD(&ctrl->list);
2222 	ctrl->ctrl.opts = opts;
2223 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1;
2224 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2225 	ctrl->ctrl.kato = opts->kato;
2226 
2227 	INIT_DELAYED_WORK(&ctrl->connect_work,
2228 			nvme_tcp_reconnect_ctrl_work);
2229 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2230 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2231 
2232 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2233 		opts->trsvcid =
2234 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2235 		if (!opts->trsvcid) {
2236 			ret = -ENOMEM;
2237 			goto out_free_ctrl;
2238 		}
2239 		opts->mask |= NVMF_OPT_TRSVCID;
2240 	}
2241 
2242 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2243 			opts->traddr, opts->trsvcid, &ctrl->addr);
2244 	if (ret) {
2245 		pr_err("malformed address passed: %s:%s\n",
2246 			opts->traddr, opts->trsvcid);
2247 		goto out_free_ctrl;
2248 	}
2249 
2250 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2251 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2252 			opts->host_traddr, NULL, &ctrl->src_addr);
2253 		if (ret) {
2254 			pr_err("malformed src address passed: %s\n",
2255 			       opts->host_traddr);
2256 			goto out_free_ctrl;
2257 		}
2258 	}
2259 
2260 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2261 		ret = -EALREADY;
2262 		goto out_free_ctrl;
2263 	}
2264 
2265 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2266 				GFP_KERNEL);
2267 	if (!ctrl->queues) {
2268 		ret = -ENOMEM;
2269 		goto out_free_ctrl;
2270 	}
2271 
2272 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2273 	if (ret)
2274 		goto out_kfree_queues;
2275 
2276 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2277 		WARN_ON_ONCE(1);
2278 		ret = -EINTR;
2279 		goto out_uninit_ctrl;
2280 	}
2281 
2282 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2283 	if (ret)
2284 		goto out_uninit_ctrl;
2285 
2286 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2287 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2288 
2289 	nvme_get_ctrl(&ctrl->ctrl);
2290 
2291 	mutex_lock(&nvme_tcp_ctrl_mutex);
2292 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2293 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2294 
2295 	return &ctrl->ctrl;
2296 
2297 out_uninit_ctrl:
2298 	nvme_uninit_ctrl(&ctrl->ctrl);
2299 	nvme_put_ctrl(&ctrl->ctrl);
2300 	if (ret > 0)
2301 		ret = -EIO;
2302 	return ERR_PTR(ret);
2303 out_kfree_queues:
2304 	kfree(ctrl->queues);
2305 out_free_ctrl:
2306 	kfree(ctrl);
2307 	return ERR_PTR(ret);
2308 }
2309 
2310 static struct nvmf_transport_ops nvme_tcp_transport = {
2311 	.name		= "tcp",
2312 	.module		= THIS_MODULE,
2313 	.required_opts	= NVMF_OPT_TRADDR,
2314 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2315 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2316 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2317 			  NVMF_OPT_NR_WRITE_QUEUES,
2318 	.create_ctrl	= nvme_tcp_create_ctrl,
2319 };
2320 
2321 static int __init nvme_tcp_init_module(void)
2322 {
2323 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2324 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2325 	if (!nvme_tcp_wq)
2326 		return -ENOMEM;
2327 
2328 	nvmf_register_transport(&nvme_tcp_transport);
2329 	return 0;
2330 }
2331 
2332 static void __exit nvme_tcp_cleanup_module(void)
2333 {
2334 	struct nvme_tcp_ctrl *ctrl;
2335 
2336 	nvmf_unregister_transport(&nvme_tcp_transport);
2337 
2338 	mutex_lock(&nvme_tcp_ctrl_mutex);
2339 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2340 		nvme_delete_ctrl(&ctrl->ctrl);
2341 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2342 	flush_workqueue(nvme_delete_wq);
2343 
2344 	destroy_workqueue(nvme_tcp_wq);
2345 }
2346 
2347 module_init(nvme_tcp_init_module);
2348 module_exit(nvme_tcp_cleanup_module);
2349 
2350 MODULE_LICENSE("GPL v2");
2351