1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 17 #include "nvme.h" 18 #include "fabrics.h" 19 20 struct nvme_tcp_queue; 21 22 enum nvme_tcp_send_state { 23 NVME_TCP_SEND_CMD_PDU = 0, 24 NVME_TCP_SEND_H2C_PDU, 25 NVME_TCP_SEND_DATA, 26 NVME_TCP_SEND_DDGST, 27 }; 28 29 struct nvme_tcp_request { 30 struct nvme_request req; 31 void *pdu; 32 struct nvme_tcp_queue *queue; 33 u32 data_len; 34 u32 pdu_len; 35 u32 pdu_sent; 36 u16 ttag; 37 struct list_head entry; 38 __le32 ddgst; 39 40 struct bio *curr_bio; 41 struct iov_iter iter; 42 43 /* send state */ 44 size_t offset; 45 size_t data_sent; 46 enum nvme_tcp_send_state state; 47 }; 48 49 enum nvme_tcp_queue_flags { 50 NVME_TCP_Q_ALLOCATED = 0, 51 NVME_TCP_Q_LIVE = 1, 52 }; 53 54 enum nvme_tcp_recv_state { 55 NVME_TCP_RECV_PDU = 0, 56 NVME_TCP_RECV_DATA, 57 NVME_TCP_RECV_DDGST, 58 }; 59 60 struct nvme_tcp_ctrl; 61 struct nvme_tcp_queue { 62 struct socket *sock; 63 struct work_struct io_work; 64 int io_cpu; 65 66 spinlock_t lock; 67 struct list_head send_list; 68 69 /* recv state */ 70 void *pdu; 71 int pdu_remaining; 72 int pdu_offset; 73 size_t data_remaining; 74 size_t ddgst_remaining; 75 76 /* send state */ 77 struct nvme_tcp_request *request; 78 79 int queue_size; 80 size_t cmnd_capsule_len; 81 struct nvme_tcp_ctrl *ctrl; 82 unsigned long flags; 83 bool rd_enabled; 84 85 bool hdr_digest; 86 bool data_digest; 87 struct ahash_request *rcv_hash; 88 struct ahash_request *snd_hash; 89 __le32 exp_ddgst; 90 __le32 recv_ddgst; 91 92 struct page_frag_cache pf_cache; 93 94 void (*state_change)(struct sock *); 95 void (*data_ready)(struct sock *); 96 void (*write_space)(struct sock *); 97 }; 98 99 struct nvme_tcp_ctrl { 100 /* read only in the hot path */ 101 struct nvme_tcp_queue *queues; 102 struct blk_mq_tag_set tag_set; 103 104 /* other member variables */ 105 struct list_head list; 106 struct blk_mq_tag_set admin_tag_set; 107 struct sockaddr_storage addr; 108 struct sockaddr_storage src_addr; 109 struct nvme_ctrl ctrl; 110 111 struct work_struct err_work; 112 struct delayed_work connect_work; 113 struct nvme_tcp_request async_req; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static LIST_HEAD(nvme_tcp_ctrl_list); 118 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 119 static struct workqueue_struct *nvme_tcp_wq; 120 static struct blk_mq_ops nvme_tcp_mq_ops; 121 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 122 123 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 124 { 125 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 126 } 127 128 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 129 { 130 return queue - queue->ctrl->queues; 131 } 132 133 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 134 { 135 u32 queue_idx = nvme_tcp_queue_id(queue); 136 137 if (queue_idx == 0) 138 return queue->ctrl->admin_tag_set.tags[queue_idx]; 139 return queue->ctrl->tag_set.tags[queue_idx - 1]; 140 } 141 142 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 143 { 144 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 145 } 146 147 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 148 { 149 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 150 } 151 152 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 153 { 154 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 155 } 156 157 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 158 { 159 return req == &req->queue->ctrl->async_req; 160 } 161 162 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 163 { 164 struct request *rq; 165 unsigned int bytes; 166 167 if (unlikely(nvme_tcp_async_req(req))) 168 return false; /* async events don't have a request */ 169 170 rq = blk_mq_rq_from_pdu(req); 171 bytes = blk_rq_payload_bytes(rq); 172 173 return rq_data_dir(rq) == WRITE && bytes && 174 bytes <= nvme_tcp_inline_data_size(req->queue); 175 } 176 177 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 178 { 179 return req->iter.bvec->bv_page; 180 } 181 182 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 183 { 184 return req->iter.bvec->bv_offset + req->iter.iov_offset; 185 } 186 187 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 188 { 189 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 190 req->pdu_len - req->pdu_sent); 191 } 192 193 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 194 { 195 return req->iter.iov_offset; 196 } 197 198 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 199 { 200 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 201 req->pdu_len - req->pdu_sent : 0; 202 } 203 204 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 205 int len) 206 { 207 return nvme_tcp_pdu_data_left(req) <= len; 208 } 209 210 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 211 unsigned int dir) 212 { 213 struct request *rq = blk_mq_rq_from_pdu(req); 214 struct bio_vec *vec; 215 unsigned int size; 216 int nsegs; 217 size_t offset; 218 219 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 220 vec = &rq->special_vec; 221 nsegs = 1; 222 size = blk_rq_payload_bytes(rq); 223 offset = 0; 224 } else { 225 struct bio *bio = req->curr_bio; 226 227 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 228 nsegs = bio_segments(bio); 229 size = bio->bi_iter.bi_size; 230 offset = bio->bi_iter.bi_bvec_done; 231 } 232 233 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 234 req->iter.iov_offset = offset; 235 } 236 237 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 238 int len) 239 { 240 req->data_sent += len; 241 req->pdu_sent += len; 242 iov_iter_advance(&req->iter, len); 243 if (!iov_iter_count(&req->iter) && 244 req->data_sent < req->data_len) { 245 req->curr_bio = req->curr_bio->bi_next; 246 nvme_tcp_init_iter(req, WRITE); 247 } 248 } 249 250 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 251 { 252 struct nvme_tcp_queue *queue = req->queue; 253 254 spin_lock(&queue->lock); 255 list_add_tail(&req->entry, &queue->send_list); 256 spin_unlock(&queue->lock); 257 258 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 259 } 260 261 static inline struct nvme_tcp_request * 262 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 263 { 264 struct nvme_tcp_request *req; 265 266 spin_lock(&queue->lock); 267 req = list_first_entry_or_null(&queue->send_list, 268 struct nvme_tcp_request, entry); 269 if (req) 270 list_del(&req->entry); 271 spin_unlock(&queue->lock); 272 273 return req; 274 } 275 276 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 277 __le32 *dgst) 278 { 279 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 280 crypto_ahash_final(hash); 281 } 282 283 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 284 struct page *page, off_t off, size_t len) 285 { 286 struct scatterlist sg; 287 288 sg_init_marker(&sg, 1); 289 sg_set_page(&sg, page, len, off); 290 ahash_request_set_crypt(hash, &sg, NULL, len); 291 crypto_ahash_update(hash); 292 } 293 294 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 295 void *pdu, size_t len) 296 { 297 struct scatterlist sg; 298 299 sg_init_one(&sg, pdu, len); 300 ahash_request_set_crypt(hash, &sg, pdu + len, len); 301 crypto_ahash_digest(hash); 302 } 303 304 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 305 void *pdu, size_t pdu_len) 306 { 307 struct nvme_tcp_hdr *hdr = pdu; 308 __le32 recv_digest; 309 __le32 exp_digest; 310 311 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 312 dev_err(queue->ctrl->ctrl.device, 313 "queue %d: header digest flag is cleared\n", 314 nvme_tcp_queue_id(queue)); 315 return -EPROTO; 316 } 317 318 recv_digest = *(__le32 *)(pdu + hdr->hlen); 319 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 320 exp_digest = *(__le32 *)(pdu + hdr->hlen); 321 if (recv_digest != exp_digest) { 322 dev_err(queue->ctrl->ctrl.device, 323 "header digest error: recv %#x expected %#x\n", 324 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 325 return -EIO; 326 } 327 328 return 0; 329 } 330 331 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 332 { 333 struct nvme_tcp_hdr *hdr = pdu; 334 u8 digest_len = nvme_tcp_hdgst_len(queue); 335 u32 len; 336 337 len = le32_to_cpu(hdr->plen) - hdr->hlen - 338 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 339 340 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 341 dev_err(queue->ctrl->ctrl.device, 342 "queue %d: data digest flag is cleared\n", 343 nvme_tcp_queue_id(queue)); 344 return -EPROTO; 345 } 346 crypto_ahash_init(queue->rcv_hash); 347 348 return 0; 349 } 350 351 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 352 struct request *rq, unsigned int hctx_idx) 353 { 354 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 355 356 page_frag_free(req->pdu); 357 } 358 359 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 360 struct request *rq, unsigned int hctx_idx, 361 unsigned int numa_node) 362 { 363 struct nvme_tcp_ctrl *ctrl = set->driver_data; 364 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 365 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 366 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 367 u8 hdgst = nvme_tcp_hdgst_len(queue); 368 369 req->pdu = page_frag_alloc(&queue->pf_cache, 370 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 371 GFP_KERNEL | __GFP_ZERO); 372 if (!req->pdu) 373 return -ENOMEM; 374 375 req->queue = queue; 376 nvme_req(rq)->ctrl = &ctrl->ctrl; 377 378 return 0; 379 } 380 381 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 382 unsigned int hctx_idx) 383 { 384 struct nvme_tcp_ctrl *ctrl = data; 385 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 386 387 hctx->driver_data = queue; 388 return 0; 389 } 390 391 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 392 unsigned int hctx_idx) 393 { 394 struct nvme_tcp_ctrl *ctrl = data; 395 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 396 397 hctx->driver_data = queue; 398 return 0; 399 } 400 401 static enum nvme_tcp_recv_state 402 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 403 { 404 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 405 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 406 NVME_TCP_RECV_DATA; 407 } 408 409 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 410 { 411 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 412 nvme_tcp_hdgst_len(queue); 413 queue->pdu_offset = 0; 414 queue->data_remaining = -1; 415 queue->ddgst_remaining = 0; 416 } 417 418 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 419 { 420 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 421 return; 422 423 queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work); 424 } 425 426 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 427 struct nvme_completion *cqe) 428 { 429 struct request *rq; 430 431 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 432 if (!rq) { 433 dev_err(queue->ctrl->ctrl.device, 434 "queue %d tag 0x%x not found\n", 435 nvme_tcp_queue_id(queue), cqe->command_id); 436 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 437 return -EINVAL; 438 } 439 440 nvme_end_request(rq, cqe->status, cqe->result); 441 442 return 0; 443 } 444 445 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 446 struct nvme_tcp_data_pdu *pdu) 447 { 448 struct request *rq; 449 450 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 451 if (!rq) { 452 dev_err(queue->ctrl->ctrl.device, 453 "queue %d tag %#x not found\n", 454 nvme_tcp_queue_id(queue), pdu->command_id); 455 return -ENOENT; 456 } 457 458 if (!blk_rq_payload_bytes(rq)) { 459 dev_err(queue->ctrl->ctrl.device, 460 "queue %d tag %#x unexpected data\n", 461 nvme_tcp_queue_id(queue), rq->tag); 462 return -EIO; 463 } 464 465 queue->data_remaining = le32_to_cpu(pdu->data_length); 466 467 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 468 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 469 dev_err(queue->ctrl->ctrl.device, 470 "queue %d tag %#x SUCCESS set but not last PDU\n", 471 nvme_tcp_queue_id(queue), rq->tag); 472 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 473 return -EPROTO; 474 } 475 476 return 0; 477 } 478 479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 480 struct nvme_tcp_rsp_pdu *pdu) 481 { 482 struct nvme_completion *cqe = &pdu->cqe; 483 int ret = 0; 484 485 /* 486 * AEN requests are special as they don't time out and can 487 * survive any kind of queue freeze and often don't respond to 488 * aborts. We don't even bother to allocate a struct request 489 * for them but rather special case them here. 490 */ 491 if (unlikely(nvme_tcp_queue_id(queue) == 0 && 492 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 493 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 494 &cqe->result); 495 else 496 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 497 498 return ret; 499 } 500 501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 502 struct nvme_tcp_r2t_pdu *pdu) 503 { 504 struct nvme_tcp_data_pdu *data = req->pdu; 505 struct nvme_tcp_queue *queue = req->queue; 506 struct request *rq = blk_mq_rq_from_pdu(req); 507 u8 hdgst = nvme_tcp_hdgst_len(queue); 508 u8 ddgst = nvme_tcp_ddgst_len(queue); 509 510 req->pdu_len = le32_to_cpu(pdu->r2t_length); 511 req->pdu_sent = 0; 512 513 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 514 dev_err(queue->ctrl->ctrl.device, 515 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 516 rq->tag, req->pdu_len, req->data_len, 517 req->data_sent); 518 return -EPROTO; 519 } 520 521 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 522 dev_err(queue->ctrl->ctrl.device, 523 "req %d unexpected r2t offset %u (expected %zu)\n", 524 rq->tag, le32_to_cpu(pdu->r2t_offset), 525 req->data_sent); 526 return -EPROTO; 527 } 528 529 memset(data, 0, sizeof(*data)); 530 data->hdr.type = nvme_tcp_h2c_data; 531 data->hdr.flags = NVME_TCP_F_DATA_LAST; 532 if (queue->hdr_digest) 533 data->hdr.flags |= NVME_TCP_F_HDGST; 534 if (queue->data_digest) 535 data->hdr.flags |= NVME_TCP_F_DDGST; 536 data->hdr.hlen = sizeof(*data); 537 data->hdr.pdo = data->hdr.hlen + hdgst; 538 data->hdr.plen = 539 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 540 data->ttag = pdu->ttag; 541 data->command_id = rq->tag; 542 data->data_offset = cpu_to_le32(req->data_sent); 543 data->data_length = cpu_to_le32(req->pdu_len); 544 return 0; 545 } 546 547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 548 struct nvme_tcp_r2t_pdu *pdu) 549 { 550 struct nvme_tcp_request *req; 551 struct request *rq; 552 int ret; 553 554 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 555 if (!rq) { 556 dev_err(queue->ctrl->ctrl.device, 557 "queue %d tag %#x not found\n", 558 nvme_tcp_queue_id(queue), pdu->command_id); 559 return -ENOENT; 560 } 561 req = blk_mq_rq_to_pdu(rq); 562 563 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 564 if (unlikely(ret)) 565 return ret; 566 567 req->state = NVME_TCP_SEND_H2C_PDU; 568 req->offset = 0; 569 570 nvme_tcp_queue_request(req); 571 572 return 0; 573 } 574 575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 576 unsigned int *offset, size_t *len) 577 { 578 struct nvme_tcp_hdr *hdr; 579 char *pdu = queue->pdu; 580 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 581 int ret; 582 583 ret = skb_copy_bits(skb, *offset, 584 &pdu[queue->pdu_offset], rcv_len); 585 if (unlikely(ret)) 586 return ret; 587 588 queue->pdu_remaining -= rcv_len; 589 queue->pdu_offset += rcv_len; 590 *offset += rcv_len; 591 *len -= rcv_len; 592 if (queue->pdu_remaining) 593 return 0; 594 595 hdr = queue->pdu; 596 if (queue->hdr_digest) { 597 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 598 if (unlikely(ret)) 599 return ret; 600 } 601 602 603 if (queue->data_digest) { 604 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 605 if (unlikely(ret)) 606 return ret; 607 } 608 609 switch (hdr->type) { 610 case nvme_tcp_c2h_data: 611 ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 612 break; 613 case nvme_tcp_rsp: 614 nvme_tcp_init_recv_ctx(queue); 615 ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu); 616 break; 617 case nvme_tcp_r2t: 618 nvme_tcp_init_recv_ctx(queue); 619 ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 620 break; 621 default: 622 dev_err(queue->ctrl->ctrl.device, 623 "unsupported pdu type (%d)\n", hdr->type); 624 return -EINVAL; 625 } 626 627 return ret; 628 } 629 630 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 631 { 632 union nvme_result res = {}; 633 634 nvme_end_request(rq, cpu_to_le16(status << 1), res); 635 } 636 637 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 638 unsigned int *offset, size_t *len) 639 { 640 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 641 struct nvme_tcp_request *req; 642 struct request *rq; 643 644 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 645 if (!rq) { 646 dev_err(queue->ctrl->ctrl.device, 647 "queue %d tag %#x not found\n", 648 nvme_tcp_queue_id(queue), pdu->command_id); 649 return -ENOENT; 650 } 651 req = blk_mq_rq_to_pdu(rq); 652 653 while (true) { 654 int recv_len, ret; 655 656 recv_len = min_t(size_t, *len, queue->data_remaining); 657 if (!recv_len) 658 break; 659 660 if (!iov_iter_count(&req->iter)) { 661 req->curr_bio = req->curr_bio->bi_next; 662 663 /* 664 * If we don`t have any bios it means that controller 665 * sent more data than we requested, hence error 666 */ 667 if (!req->curr_bio) { 668 dev_err(queue->ctrl->ctrl.device, 669 "queue %d no space in request %#x", 670 nvme_tcp_queue_id(queue), rq->tag); 671 nvme_tcp_init_recv_ctx(queue); 672 return -EIO; 673 } 674 nvme_tcp_init_iter(req, READ); 675 } 676 677 /* we can read only from what is left in this bio */ 678 recv_len = min_t(size_t, recv_len, 679 iov_iter_count(&req->iter)); 680 681 if (queue->data_digest) 682 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 683 &req->iter, recv_len, queue->rcv_hash); 684 else 685 ret = skb_copy_datagram_iter(skb, *offset, 686 &req->iter, recv_len); 687 if (ret) { 688 dev_err(queue->ctrl->ctrl.device, 689 "queue %d failed to copy request %#x data", 690 nvme_tcp_queue_id(queue), rq->tag); 691 return ret; 692 } 693 694 *len -= recv_len; 695 *offset += recv_len; 696 queue->data_remaining -= recv_len; 697 } 698 699 if (!queue->data_remaining) { 700 if (queue->data_digest) { 701 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 702 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 703 } else { 704 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) 705 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 706 nvme_tcp_init_recv_ctx(queue); 707 } 708 } 709 710 return 0; 711 } 712 713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 714 struct sk_buff *skb, unsigned int *offset, size_t *len) 715 { 716 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 717 char *ddgst = (char *)&queue->recv_ddgst; 718 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 719 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 720 int ret; 721 722 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 723 if (unlikely(ret)) 724 return ret; 725 726 queue->ddgst_remaining -= recv_len; 727 *offset += recv_len; 728 *len -= recv_len; 729 if (queue->ddgst_remaining) 730 return 0; 731 732 if (queue->recv_ddgst != queue->exp_ddgst) { 733 dev_err(queue->ctrl->ctrl.device, 734 "data digest error: recv %#x expected %#x\n", 735 le32_to_cpu(queue->recv_ddgst), 736 le32_to_cpu(queue->exp_ddgst)); 737 return -EIO; 738 } 739 740 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 741 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 742 pdu->command_id); 743 744 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 745 } 746 747 nvme_tcp_init_recv_ctx(queue); 748 return 0; 749 } 750 751 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 752 unsigned int offset, size_t len) 753 { 754 struct nvme_tcp_queue *queue = desc->arg.data; 755 size_t consumed = len; 756 int result; 757 758 while (len) { 759 switch (nvme_tcp_recv_state(queue)) { 760 case NVME_TCP_RECV_PDU: 761 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 762 break; 763 case NVME_TCP_RECV_DATA: 764 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 765 break; 766 case NVME_TCP_RECV_DDGST: 767 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 768 break; 769 default: 770 result = -EFAULT; 771 } 772 if (result) { 773 dev_err(queue->ctrl->ctrl.device, 774 "receive failed: %d\n", result); 775 queue->rd_enabled = false; 776 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 777 return result; 778 } 779 } 780 781 return consumed; 782 } 783 784 static void nvme_tcp_data_ready(struct sock *sk) 785 { 786 struct nvme_tcp_queue *queue; 787 788 read_lock(&sk->sk_callback_lock); 789 queue = sk->sk_user_data; 790 if (likely(queue && queue->rd_enabled)) 791 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 792 read_unlock(&sk->sk_callback_lock); 793 } 794 795 static void nvme_tcp_write_space(struct sock *sk) 796 { 797 struct nvme_tcp_queue *queue; 798 799 read_lock_bh(&sk->sk_callback_lock); 800 queue = sk->sk_user_data; 801 if (likely(queue && sk_stream_is_writeable(sk))) { 802 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 803 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 804 } 805 read_unlock_bh(&sk->sk_callback_lock); 806 } 807 808 static void nvme_tcp_state_change(struct sock *sk) 809 { 810 struct nvme_tcp_queue *queue; 811 812 read_lock(&sk->sk_callback_lock); 813 queue = sk->sk_user_data; 814 if (!queue) 815 goto done; 816 817 switch (sk->sk_state) { 818 case TCP_CLOSE: 819 case TCP_CLOSE_WAIT: 820 case TCP_LAST_ACK: 821 case TCP_FIN_WAIT1: 822 case TCP_FIN_WAIT2: 823 /* fallthrough */ 824 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 825 break; 826 default: 827 dev_info(queue->ctrl->ctrl.device, 828 "queue %d socket state %d\n", 829 nvme_tcp_queue_id(queue), sk->sk_state); 830 } 831 832 queue->state_change(sk); 833 done: 834 read_unlock(&sk->sk_callback_lock); 835 } 836 837 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 838 { 839 queue->request = NULL; 840 } 841 842 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 843 { 844 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR); 845 } 846 847 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 848 { 849 struct nvme_tcp_queue *queue = req->queue; 850 851 while (true) { 852 struct page *page = nvme_tcp_req_cur_page(req); 853 size_t offset = nvme_tcp_req_cur_offset(req); 854 size_t len = nvme_tcp_req_cur_length(req); 855 bool last = nvme_tcp_pdu_last_send(req, len); 856 int ret, flags = MSG_DONTWAIT; 857 858 if (last && !queue->data_digest) 859 flags |= MSG_EOR; 860 else 861 flags |= MSG_MORE; 862 863 /* can't zcopy slab pages */ 864 if (unlikely(PageSlab(page))) { 865 ret = sock_no_sendpage(queue->sock, page, offset, len, 866 flags); 867 } else { 868 ret = kernel_sendpage(queue->sock, page, offset, len, 869 flags); 870 } 871 if (ret <= 0) 872 return ret; 873 874 nvme_tcp_advance_req(req, ret); 875 if (queue->data_digest) 876 nvme_tcp_ddgst_update(queue->snd_hash, page, 877 offset, ret); 878 879 /* fully successful last write*/ 880 if (last && ret == len) { 881 if (queue->data_digest) { 882 nvme_tcp_ddgst_final(queue->snd_hash, 883 &req->ddgst); 884 req->state = NVME_TCP_SEND_DDGST; 885 req->offset = 0; 886 } else { 887 nvme_tcp_done_send_req(queue); 888 } 889 return 1; 890 } 891 } 892 return -EAGAIN; 893 } 894 895 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 896 { 897 struct nvme_tcp_queue *queue = req->queue; 898 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 899 bool inline_data = nvme_tcp_has_inline_data(req); 900 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 901 u8 hdgst = nvme_tcp_hdgst_len(queue); 902 int len = sizeof(*pdu) + hdgst - req->offset; 903 int ret; 904 905 if (queue->hdr_digest && !req->offset) 906 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 907 908 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 909 offset_in_page(pdu) + req->offset, len, flags); 910 if (unlikely(ret <= 0)) 911 return ret; 912 913 len -= ret; 914 if (!len) { 915 if (inline_data) { 916 req->state = NVME_TCP_SEND_DATA; 917 if (queue->data_digest) 918 crypto_ahash_init(queue->snd_hash); 919 nvme_tcp_init_iter(req, WRITE); 920 } else { 921 nvme_tcp_done_send_req(queue); 922 } 923 return 1; 924 } 925 req->offset += ret; 926 927 return -EAGAIN; 928 } 929 930 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 931 { 932 struct nvme_tcp_queue *queue = req->queue; 933 struct nvme_tcp_data_pdu *pdu = req->pdu; 934 u8 hdgst = nvme_tcp_hdgst_len(queue); 935 int len = sizeof(*pdu) - req->offset + hdgst; 936 int ret; 937 938 if (queue->hdr_digest && !req->offset) 939 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 940 941 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 942 offset_in_page(pdu) + req->offset, len, 943 MSG_DONTWAIT | MSG_MORE); 944 if (unlikely(ret <= 0)) 945 return ret; 946 947 len -= ret; 948 if (!len) { 949 req->state = NVME_TCP_SEND_DATA; 950 if (queue->data_digest) 951 crypto_ahash_init(queue->snd_hash); 952 if (!req->data_sent) 953 nvme_tcp_init_iter(req, WRITE); 954 return 1; 955 } 956 req->offset += ret; 957 958 return -EAGAIN; 959 } 960 961 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 962 { 963 struct nvme_tcp_queue *queue = req->queue; 964 int ret; 965 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 966 struct kvec iov = { 967 .iov_base = &req->ddgst + req->offset, 968 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 969 }; 970 971 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 972 if (unlikely(ret <= 0)) 973 return ret; 974 975 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 976 nvme_tcp_done_send_req(queue); 977 return 1; 978 } 979 980 req->offset += ret; 981 return -EAGAIN; 982 } 983 984 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 985 { 986 struct nvme_tcp_request *req; 987 int ret = 1; 988 989 if (!queue->request) { 990 queue->request = nvme_tcp_fetch_request(queue); 991 if (!queue->request) 992 return 0; 993 } 994 req = queue->request; 995 996 if (req->state == NVME_TCP_SEND_CMD_PDU) { 997 ret = nvme_tcp_try_send_cmd_pdu(req); 998 if (ret <= 0) 999 goto done; 1000 if (!nvme_tcp_has_inline_data(req)) 1001 return ret; 1002 } 1003 1004 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1005 ret = nvme_tcp_try_send_data_pdu(req); 1006 if (ret <= 0) 1007 goto done; 1008 } 1009 1010 if (req->state == NVME_TCP_SEND_DATA) { 1011 ret = nvme_tcp_try_send_data(req); 1012 if (ret <= 0) 1013 goto done; 1014 } 1015 1016 if (req->state == NVME_TCP_SEND_DDGST) 1017 ret = nvme_tcp_try_send_ddgst(req); 1018 done: 1019 if (ret == -EAGAIN) 1020 ret = 0; 1021 return ret; 1022 } 1023 1024 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1025 { 1026 struct sock *sk = queue->sock->sk; 1027 read_descriptor_t rd_desc; 1028 int consumed; 1029 1030 rd_desc.arg.data = queue; 1031 rd_desc.count = 1; 1032 lock_sock(sk); 1033 consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1034 release_sock(sk); 1035 return consumed; 1036 } 1037 1038 static void nvme_tcp_io_work(struct work_struct *w) 1039 { 1040 struct nvme_tcp_queue *queue = 1041 container_of(w, struct nvme_tcp_queue, io_work); 1042 unsigned long start = jiffies + msecs_to_jiffies(1); 1043 1044 do { 1045 bool pending = false; 1046 int result; 1047 1048 result = nvme_tcp_try_send(queue); 1049 if (result > 0) { 1050 pending = true; 1051 } else if (unlikely(result < 0)) { 1052 dev_err(queue->ctrl->ctrl.device, 1053 "failed to send request %d\n", result); 1054 if (result != -EPIPE) 1055 nvme_tcp_fail_request(queue->request); 1056 nvme_tcp_done_send_req(queue); 1057 return; 1058 } 1059 1060 result = nvme_tcp_try_recv(queue); 1061 if (result > 0) 1062 pending = true; 1063 1064 if (!pending) 1065 return; 1066 1067 } while (time_after(jiffies, start)); /* quota is exhausted */ 1068 1069 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1070 } 1071 1072 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1073 { 1074 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1075 1076 ahash_request_free(queue->rcv_hash); 1077 ahash_request_free(queue->snd_hash); 1078 crypto_free_ahash(tfm); 1079 } 1080 1081 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1082 { 1083 struct crypto_ahash *tfm; 1084 1085 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1086 if (IS_ERR(tfm)) 1087 return PTR_ERR(tfm); 1088 1089 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1090 if (!queue->snd_hash) 1091 goto free_tfm; 1092 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1093 1094 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1095 if (!queue->rcv_hash) 1096 goto free_snd_hash; 1097 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1098 1099 return 0; 1100 free_snd_hash: 1101 ahash_request_free(queue->snd_hash); 1102 free_tfm: 1103 crypto_free_ahash(tfm); 1104 return -ENOMEM; 1105 } 1106 1107 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1108 { 1109 struct nvme_tcp_request *async = &ctrl->async_req; 1110 1111 page_frag_free(async->pdu); 1112 } 1113 1114 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1115 { 1116 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1117 struct nvme_tcp_request *async = &ctrl->async_req; 1118 u8 hdgst = nvme_tcp_hdgst_len(queue); 1119 1120 async->pdu = page_frag_alloc(&queue->pf_cache, 1121 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1122 GFP_KERNEL | __GFP_ZERO); 1123 if (!async->pdu) 1124 return -ENOMEM; 1125 1126 async->queue = &ctrl->queues[0]; 1127 return 0; 1128 } 1129 1130 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1131 { 1132 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1133 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1134 1135 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1136 return; 1137 1138 if (queue->hdr_digest || queue->data_digest) 1139 nvme_tcp_free_crypto(queue); 1140 1141 sock_release(queue->sock); 1142 kfree(queue->pdu); 1143 } 1144 1145 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1146 { 1147 struct nvme_tcp_icreq_pdu *icreq; 1148 struct nvme_tcp_icresp_pdu *icresp; 1149 struct msghdr msg = {}; 1150 struct kvec iov; 1151 bool ctrl_hdgst, ctrl_ddgst; 1152 int ret; 1153 1154 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1155 if (!icreq) 1156 return -ENOMEM; 1157 1158 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1159 if (!icresp) { 1160 ret = -ENOMEM; 1161 goto free_icreq; 1162 } 1163 1164 icreq->hdr.type = nvme_tcp_icreq; 1165 icreq->hdr.hlen = sizeof(*icreq); 1166 icreq->hdr.pdo = 0; 1167 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1168 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1169 icreq->maxr2t = 0; /* single inflight r2t supported */ 1170 icreq->hpda = 0; /* no alignment constraint */ 1171 if (queue->hdr_digest) 1172 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1173 if (queue->data_digest) 1174 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1175 1176 iov.iov_base = icreq; 1177 iov.iov_len = sizeof(*icreq); 1178 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1179 if (ret < 0) 1180 goto free_icresp; 1181 1182 memset(&msg, 0, sizeof(msg)); 1183 iov.iov_base = icresp; 1184 iov.iov_len = sizeof(*icresp); 1185 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1186 iov.iov_len, msg.msg_flags); 1187 if (ret < 0) 1188 goto free_icresp; 1189 1190 ret = -EINVAL; 1191 if (icresp->hdr.type != nvme_tcp_icresp) { 1192 pr_err("queue %d: bad type returned %d\n", 1193 nvme_tcp_queue_id(queue), icresp->hdr.type); 1194 goto free_icresp; 1195 } 1196 1197 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1198 pr_err("queue %d: bad pdu length returned %d\n", 1199 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1200 goto free_icresp; 1201 } 1202 1203 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1204 pr_err("queue %d: bad pfv returned %d\n", 1205 nvme_tcp_queue_id(queue), icresp->pfv); 1206 goto free_icresp; 1207 } 1208 1209 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1210 if ((queue->data_digest && !ctrl_ddgst) || 1211 (!queue->data_digest && ctrl_ddgst)) { 1212 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1213 nvme_tcp_queue_id(queue), 1214 queue->data_digest ? "enabled" : "disabled", 1215 ctrl_ddgst ? "enabled" : "disabled"); 1216 goto free_icresp; 1217 } 1218 1219 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1220 if ((queue->hdr_digest && !ctrl_hdgst) || 1221 (!queue->hdr_digest && ctrl_hdgst)) { 1222 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1223 nvme_tcp_queue_id(queue), 1224 queue->hdr_digest ? "enabled" : "disabled", 1225 ctrl_hdgst ? "enabled" : "disabled"); 1226 goto free_icresp; 1227 } 1228 1229 if (icresp->cpda != 0) { 1230 pr_err("queue %d: unsupported cpda returned %d\n", 1231 nvme_tcp_queue_id(queue), icresp->cpda); 1232 goto free_icresp; 1233 } 1234 1235 ret = 0; 1236 free_icresp: 1237 kfree(icresp); 1238 free_icreq: 1239 kfree(icreq); 1240 return ret; 1241 } 1242 1243 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1244 int qid, size_t queue_size) 1245 { 1246 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1247 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1248 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1249 int ret, opt, rcv_pdu_size, n; 1250 1251 queue->ctrl = ctrl; 1252 INIT_LIST_HEAD(&queue->send_list); 1253 spin_lock_init(&queue->lock); 1254 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1255 queue->queue_size = queue_size; 1256 1257 if (qid > 0) 1258 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1259 else 1260 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1261 NVME_TCP_ADMIN_CCSZ; 1262 1263 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1264 IPPROTO_TCP, &queue->sock); 1265 if (ret) { 1266 dev_err(ctrl->ctrl.device, 1267 "failed to create socket: %d\n", ret); 1268 return ret; 1269 } 1270 1271 /* Single syn retry */ 1272 opt = 1; 1273 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1274 (char *)&opt, sizeof(opt)); 1275 if (ret) { 1276 dev_err(ctrl->ctrl.device, 1277 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1278 goto err_sock; 1279 } 1280 1281 /* Set TCP no delay */ 1282 opt = 1; 1283 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1284 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1285 if (ret) { 1286 dev_err(ctrl->ctrl.device, 1287 "failed to set TCP_NODELAY sock opt %d\n", ret); 1288 goto err_sock; 1289 } 1290 1291 /* 1292 * Cleanup whatever is sitting in the TCP transmit queue on socket 1293 * close. This is done to prevent stale data from being sent should 1294 * the network connection be restored before TCP times out. 1295 */ 1296 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1297 (char *)&sol, sizeof(sol)); 1298 if (ret) { 1299 dev_err(ctrl->ctrl.device, 1300 "failed to set SO_LINGER sock opt %d\n", ret); 1301 goto err_sock; 1302 } 1303 1304 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1305 if (!qid) 1306 n = 0; 1307 else 1308 n = (qid - 1) % num_online_cpus(); 1309 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1310 queue->request = NULL; 1311 queue->data_remaining = 0; 1312 queue->ddgst_remaining = 0; 1313 queue->pdu_remaining = 0; 1314 queue->pdu_offset = 0; 1315 sk_set_memalloc(queue->sock->sk); 1316 1317 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1318 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1319 sizeof(ctrl->src_addr)); 1320 if (ret) { 1321 dev_err(ctrl->ctrl.device, 1322 "failed to bind queue %d socket %d\n", 1323 qid, ret); 1324 goto err_sock; 1325 } 1326 } 1327 1328 queue->hdr_digest = nctrl->opts->hdr_digest; 1329 queue->data_digest = nctrl->opts->data_digest; 1330 if (queue->hdr_digest || queue->data_digest) { 1331 ret = nvme_tcp_alloc_crypto(queue); 1332 if (ret) { 1333 dev_err(ctrl->ctrl.device, 1334 "failed to allocate queue %d crypto\n", qid); 1335 goto err_sock; 1336 } 1337 } 1338 1339 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1340 nvme_tcp_hdgst_len(queue); 1341 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1342 if (!queue->pdu) { 1343 ret = -ENOMEM; 1344 goto err_crypto; 1345 } 1346 1347 dev_dbg(ctrl->ctrl.device, "connecting queue %d\n", 1348 nvme_tcp_queue_id(queue)); 1349 1350 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1351 sizeof(ctrl->addr), 0); 1352 if (ret) { 1353 dev_err(ctrl->ctrl.device, 1354 "failed to connect socket: %d\n", ret); 1355 goto err_rcv_pdu; 1356 } 1357 1358 ret = nvme_tcp_init_connection(queue); 1359 if (ret) 1360 goto err_init_connect; 1361 1362 queue->rd_enabled = true; 1363 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1364 nvme_tcp_init_recv_ctx(queue); 1365 1366 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1367 queue->sock->sk->sk_user_data = queue; 1368 queue->state_change = queue->sock->sk->sk_state_change; 1369 queue->data_ready = queue->sock->sk->sk_data_ready; 1370 queue->write_space = queue->sock->sk->sk_write_space; 1371 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1372 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1373 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1374 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1375 1376 return 0; 1377 1378 err_init_connect: 1379 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1380 err_rcv_pdu: 1381 kfree(queue->pdu); 1382 err_crypto: 1383 if (queue->hdr_digest || queue->data_digest) 1384 nvme_tcp_free_crypto(queue); 1385 err_sock: 1386 sock_release(queue->sock); 1387 queue->sock = NULL; 1388 return ret; 1389 } 1390 1391 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1392 { 1393 struct socket *sock = queue->sock; 1394 1395 write_lock_bh(&sock->sk->sk_callback_lock); 1396 sock->sk->sk_user_data = NULL; 1397 sock->sk->sk_data_ready = queue->data_ready; 1398 sock->sk->sk_state_change = queue->state_change; 1399 sock->sk->sk_write_space = queue->write_space; 1400 write_unlock_bh(&sock->sk->sk_callback_lock); 1401 } 1402 1403 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1404 { 1405 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1406 nvme_tcp_restore_sock_calls(queue); 1407 cancel_work_sync(&queue->io_work); 1408 } 1409 1410 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1411 { 1412 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1413 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1414 1415 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1416 return; 1417 1418 __nvme_tcp_stop_queue(queue); 1419 } 1420 1421 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1422 { 1423 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1424 int ret; 1425 1426 if (idx) 1427 ret = nvmf_connect_io_queue(nctrl, idx, false); 1428 else 1429 ret = nvmf_connect_admin_queue(nctrl); 1430 1431 if (!ret) { 1432 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1433 } else { 1434 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1435 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1436 dev_err(nctrl->device, 1437 "failed to connect queue: %d ret=%d\n", idx, ret); 1438 } 1439 return ret; 1440 } 1441 1442 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1443 bool admin) 1444 { 1445 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1446 struct blk_mq_tag_set *set; 1447 int ret; 1448 1449 if (admin) { 1450 set = &ctrl->admin_tag_set; 1451 memset(set, 0, sizeof(*set)); 1452 set->ops = &nvme_tcp_admin_mq_ops; 1453 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1454 set->reserved_tags = 2; /* connect + keep-alive */ 1455 set->numa_node = NUMA_NO_NODE; 1456 set->cmd_size = sizeof(struct nvme_tcp_request); 1457 set->driver_data = ctrl; 1458 set->nr_hw_queues = 1; 1459 set->timeout = ADMIN_TIMEOUT; 1460 } else { 1461 set = &ctrl->tag_set; 1462 memset(set, 0, sizeof(*set)); 1463 set->ops = &nvme_tcp_mq_ops; 1464 set->queue_depth = nctrl->sqsize + 1; 1465 set->reserved_tags = 1; /* fabric connect */ 1466 set->numa_node = NUMA_NO_NODE; 1467 set->flags = BLK_MQ_F_SHOULD_MERGE; 1468 set->cmd_size = sizeof(struct nvme_tcp_request); 1469 set->driver_data = ctrl; 1470 set->nr_hw_queues = nctrl->queue_count - 1; 1471 set->timeout = NVME_IO_TIMEOUT; 1472 set->nr_maps = 2 /* default + read */; 1473 } 1474 1475 ret = blk_mq_alloc_tag_set(set); 1476 if (ret) 1477 return ERR_PTR(ret); 1478 1479 return set; 1480 } 1481 1482 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1483 { 1484 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1485 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1486 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1487 } 1488 1489 nvme_tcp_free_queue(ctrl, 0); 1490 } 1491 1492 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1493 { 1494 int i; 1495 1496 for (i = 1; i < ctrl->queue_count; i++) 1497 nvme_tcp_free_queue(ctrl, i); 1498 } 1499 1500 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1501 { 1502 int i; 1503 1504 for (i = 1; i < ctrl->queue_count; i++) 1505 nvme_tcp_stop_queue(ctrl, i); 1506 } 1507 1508 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1509 { 1510 int i, ret = 0; 1511 1512 for (i = 1; i < ctrl->queue_count; i++) { 1513 ret = nvme_tcp_start_queue(ctrl, i); 1514 if (ret) 1515 goto out_stop_queues; 1516 } 1517 1518 return 0; 1519 1520 out_stop_queues: 1521 for (i--; i >= 1; i--) 1522 nvme_tcp_stop_queue(ctrl, i); 1523 return ret; 1524 } 1525 1526 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1527 { 1528 int ret; 1529 1530 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1531 if (ret) 1532 return ret; 1533 1534 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1535 if (ret) 1536 goto out_free_queue; 1537 1538 return 0; 1539 1540 out_free_queue: 1541 nvme_tcp_free_queue(ctrl, 0); 1542 return ret; 1543 } 1544 1545 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1546 { 1547 int i, ret; 1548 1549 for (i = 1; i < ctrl->queue_count; i++) { 1550 ret = nvme_tcp_alloc_queue(ctrl, i, 1551 ctrl->sqsize + 1); 1552 if (ret) 1553 goto out_free_queues; 1554 } 1555 1556 return 0; 1557 1558 out_free_queues: 1559 for (i--; i >= 1; i--) 1560 nvme_tcp_free_queue(ctrl, i); 1561 1562 return ret; 1563 } 1564 1565 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1566 { 1567 unsigned int nr_io_queues; 1568 1569 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1570 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1571 1572 return nr_io_queues; 1573 } 1574 1575 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1576 unsigned int nr_io_queues) 1577 { 1578 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1579 struct nvmf_ctrl_options *opts = nctrl->opts; 1580 1581 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1582 /* 1583 * separate read/write queues 1584 * hand out dedicated default queues only after we have 1585 * sufficient read queues. 1586 */ 1587 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1588 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1589 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1590 min(opts->nr_write_queues, nr_io_queues); 1591 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1592 } else { 1593 /* 1594 * shared read/write queues 1595 * either no write queues were requested, or we don't have 1596 * sufficient queue count to have dedicated default queues. 1597 */ 1598 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1599 min(opts->nr_io_queues, nr_io_queues); 1600 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1601 } 1602 } 1603 1604 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1605 { 1606 unsigned int nr_io_queues; 1607 int ret; 1608 1609 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1610 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1611 if (ret) 1612 return ret; 1613 1614 ctrl->queue_count = nr_io_queues + 1; 1615 if (ctrl->queue_count < 2) 1616 return 0; 1617 1618 dev_info(ctrl->device, 1619 "creating %d I/O queues.\n", nr_io_queues); 1620 1621 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1622 1623 return __nvme_tcp_alloc_io_queues(ctrl); 1624 } 1625 1626 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1627 { 1628 nvme_tcp_stop_io_queues(ctrl); 1629 if (remove) { 1630 blk_cleanup_queue(ctrl->connect_q); 1631 blk_mq_free_tag_set(ctrl->tagset); 1632 } 1633 nvme_tcp_free_io_queues(ctrl); 1634 } 1635 1636 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1637 { 1638 int ret; 1639 1640 ret = nvme_tcp_alloc_io_queues(ctrl); 1641 if (ret) 1642 return ret; 1643 1644 if (new) { 1645 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1646 if (IS_ERR(ctrl->tagset)) { 1647 ret = PTR_ERR(ctrl->tagset); 1648 goto out_free_io_queues; 1649 } 1650 1651 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1652 if (IS_ERR(ctrl->connect_q)) { 1653 ret = PTR_ERR(ctrl->connect_q); 1654 goto out_free_tag_set; 1655 } 1656 } else { 1657 blk_mq_update_nr_hw_queues(ctrl->tagset, 1658 ctrl->queue_count - 1); 1659 } 1660 1661 ret = nvme_tcp_start_io_queues(ctrl); 1662 if (ret) 1663 goto out_cleanup_connect_q; 1664 1665 return 0; 1666 1667 out_cleanup_connect_q: 1668 if (new) 1669 blk_cleanup_queue(ctrl->connect_q); 1670 out_free_tag_set: 1671 if (new) 1672 blk_mq_free_tag_set(ctrl->tagset); 1673 out_free_io_queues: 1674 nvme_tcp_free_io_queues(ctrl); 1675 return ret; 1676 } 1677 1678 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1679 { 1680 nvme_tcp_stop_queue(ctrl, 0); 1681 if (remove) { 1682 blk_cleanup_queue(ctrl->admin_q); 1683 blk_mq_free_tag_set(ctrl->admin_tagset); 1684 } 1685 nvme_tcp_free_admin_queue(ctrl); 1686 } 1687 1688 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1689 { 1690 int error; 1691 1692 error = nvme_tcp_alloc_admin_queue(ctrl); 1693 if (error) 1694 return error; 1695 1696 if (new) { 1697 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1698 if (IS_ERR(ctrl->admin_tagset)) { 1699 error = PTR_ERR(ctrl->admin_tagset); 1700 goto out_free_queue; 1701 } 1702 1703 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1704 if (IS_ERR(ctrl->admin_q)) { 1705 error = PTR_ERR(ctrl->admin_q); 1706 goto out_free_tagset; 1707 } 1708 } 1709 1710 error = nvme_tcp_start_queue(ctrl, 0); 1711 if (error) 1712 goto out_cleanup_queue; 1713 1714 error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 1715 if (error) { 1716 dev_err(ctrl->device, 1717 "prop_get NVME_REG_CAP failed\n"); 1718 goto out_stop_queue; 1719 } 1720 1721 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 1722 1723 error = nvme_enable_ctrl(ctrl, ctrl->cap); 1724 if (error) 1725 goto out_stop_queue; 1726 1727 error = nvme_init_identify(ctrl); 1728 if (error) 1729 goto out_stop_queue; 1730 1731 return 0; 1732 1733 out_stop_queue: 1734 nvme_tcp_stop_queue(ctrl, 0); 1735 out_cleanup_queue: 1736 if (new) 1737 blk_cleanup_queue(ctrl->admin_q); 1738 out_free_tagset: 1739 if (new) 1740 blk_mq_free_tag_set(ctrl->admin_tagset); 1741 out_free_queue: 1742 nvme_tcp_free_admin_queue(ctrl); 1743 return error; 1744 } 1745 1746 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1747 bool remove) 1748 { 1749 blk_mq_quiesce_queue(ctrl->admin_q); 1750 nvme_tcp_stop_queue(ctrl, 0); 1751 if (ctrl->admin_tagset) 1752 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1753 nvme_cancel_request, ctrl); 1754 blk_mq_unquiesce_queue(ctrl->admin_q); 1755 nvme_tcp_destroy_admin_queue(ctrl, remove); 1756 } 1757 1758 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1759 bool remove) 1760 { 1761 if (ctrl->queue_count <= 1) 1762 return; 1763 nvme_stop_queues(ctrl); 1764 nvme_tcp_stop_io_queues(ctrl); 1765 if (ctrl->tagset) 1766 blk_mq_tagset_busy_iter(ctrl->tagset, 1767 nvme_cancel_request, ctrl); 1768 if (remove) 1769 nvme_start_queues(ctrl); 1770 nvme_tcp_destroy_io_queues(ctrl, remove); 1771 } 1772 1773 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1774 { 1775 /* If we are resetting/deleting then do nothing */ 1776 if (ctrl->state != NVME_CTRL_CONNECTING) { 1777 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1778 ctrl->state == NVME_CTRL_LIVE); 1779 return; 1780 } 1781 1782 if (nvmf_should_reconnect(ctrl)) { 1783 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1784 ctrl->opts->reconnect_delay); 1785 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1786 ctrl->opts->reconnect_delay * HZ); 1787 } else { 1788 dev_info(ctrl->device, "Removing controller...\n"); 1789 nvme_delete_ctrl(ctrl); 1790 } 1791 } 1792 1793 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1794 { 1795 struct nvmf_ctrl_options *opts = ctrl->opts; 1796 int ret = -EINVAL; 1797 1798 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1799 if (ret) 1800 return ret; 1801 1802 if (ctrl->icdoff) { 1803 dev_err(ctrl->device, "icdoff is not supported!\n"); 1804 goto destroy_admin; 1805 } 1806 1807 if (opts->queue_size > ctrl->sqsize + 1) 1808 dev_warn(ctrl->device, 1809 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1810 opts->queue_size, ctrl->sqsize + 1); 1811 1812 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1813 dev_warn(ctrl->device, 1814 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1815 ctrl->sqsize + 1, ctrl->maxcmd); 1816 ctrl->sqsize = ctrl->maxcmd - 1; 1817 } 1818 1819 if (ctrl->queue_count > 1) { 1820 ret = nvme_tcp_configure_io_queues(ctrl, new); 1821 if (ret) 1822 goto destroy_admin; 1823 } 1824 1825 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1826 /* state change failure is ok if we're in DELETING state */ 1827 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1828 ret = -EINVAL; 1829 goto destroy_io; 1830 } 1831 1832 nvme_start_ctrl(ctrl); 1833 return 0; 1834 1835 destroy_io: 1836 if (ctrl->queue_count > 1) 1837 nvme_tcp_destroy_io_queues(ctrl, new); 1838 destroy_admin: 1839 nvme_tcp_stop_queue(ctrl, 0); 1840 nvme_tcp_destroy_admin_queue(ctrl, new); 1841 return ret; 1842 } 1843 1844 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1845 { 1846 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1847 struct nvme_tcp_ctrl, connect_work); 1848 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1849 1850 ++ctrl->nr_reconnects; 1851 1852 if (nvme_tcp_setup_ctrl(ctrl, false)) 1853 goto requeue; 1854 1855 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1856 ctrl->nr_reconnects); 1857 1858 ctrl->nr_reconnects = 0; 1859 1860 return; 1861 1862 requeue: 1863 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1864 ctrl->nr_reconnects); 1865 nvme_tcp_reconnect_or_remove(ctrl); 1866 } 1867 1868 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1869 { 1870 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1871 struct nvme_tcp_ctrl, err_work); 1872 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1873 1874 nvme_stop_keep_alive(ctrl); 1875 nvme_tcp_teardown_io_queues(ctrl, false); 1876 /* unquiesce to fail fast pending requests */ 1877 nvme_start_queues(ctrl); 1878 nvme_tcp_teardown_admin_queue(ctrl, false); 1879 1880 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1881 /* state change failure is ok if we're in DELETING state */ 1882 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1883 return; 1884 } 1885 1886 nvme_tcp_reconnect_or_remove(ctrl); 1887 } 1888 1889 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1890 { 1891 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1892 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1893 1894 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1895 if (shutdown) 1896 nvme_shutdown_ctrl(ctrl); 1897 else 1898 nvme_disable_ctrl(ctrl, ctrl->cap); 1899 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 1900 } 1901 1902 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 1903 { 1904 nvme_tcp_teardown_ctrl(ctrl, true); 1905 } 1906 1907 static void nvme_reset_ctrl_work(struct work_struct *work) 1908 { 1909 struct nvme_ctrl *ctrl = 1910 container_of(work, struct nvme_ctrl, reset_work); 1911 1912 nvme_stop_ctrl(ctrl); 1913 nvme_tcp_teardown_ctrl(ctrl, false); 1914 1915 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1916 /* state change failure is ok if we're in DELETING state */ 1917 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1918 return; 1919 } 1920 1921 if (nvme_tcp_setup_ctrl(ctrl, false)) 1922 goto out_fail; 1923 1924 return; 1925 1926 out_fail: 1927 ++ctrl->nr_reconnects; 1928 nvme_tcp_reconnect_or_remove(ctrl); 1929 } 1930 1931 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 1932 { 1933 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1934 1935 if (list_empty(&ctrl->list)) 1936 goto free_ctrl; 1937 1938 mutex_lock(&nvme_tcp_ctrl_mutex); 1939 list_del(&ctrl->list); 1940 mutex_unlock(&nvme_tcp_ctrl_mutex); 1941 1942 nvmf_free_options(nctrl->opts); 1943 free_ctrl: 1944 kfree(ctrl->queues); 1945 kfree(ctrl); 1946 } 1947 1948 static void nvme_tcp_set_sg_null(struct nvme_command *c) 1949 { 1950 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1951 1952 sg->addr = 0; 1953 sg->length = 0; 1954 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1955 NVME_SGL_FMT_TRANSPORT_A; 1956 } 1957 1958 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 1959 struct nvme_command *c, u32 data_len) 1960 { 1961 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1962 1963 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1964 sg->length = cpu_to_le32(data_len); 1965 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1966 } 1967 1968 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 1969 u32 data_len) 1970 { 1971 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1972 1973 sg->addr = 0; 1974 sg->length = cpu_to_le32(data_len); 1975 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1976 NVME_SGL_FMT_TRANSPORT_A; 1977 } 1978 1979 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 1980 { 1981 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 1982 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1983 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 1984 struct nvme_command *cmd = &pdu->cmd; 1985 u8 hdgst = nvme_tcp_hdgst_len(queue); 1986 1987 memset(pdu, 0, sizeof(*pdu)); 1988 pdu->hdr.type = nvme_tcp_cmd; 1989 if (queue->hdr_digest) 1990 pdu->hdr.flags |= NVME_TCP_F_HDGST; 1991 pdu->hdr.hlen = sizeof(*pdu); 1992 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 1993 1994 cmd->common.opcode = nvme_admin_async_event; 1995 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1996 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1997 nvme_tcp_set_sg_null(cmd); 1998 1999 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2000 ctrl->async_req.offset = 0; 2001 ctrl->async_req.curr_bio = NULL; 2002 ctrl->async_req.data_len = 0; 2003 2004 nvme_tcp_queue_request(&ctrl->async_req); 2005 } 2006 2007 static enum blk_eh_timer_return 2008 nvme_tcp_timeout(struct request *rq, bool reserved) 2009 { 2010 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2011 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2012 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2013 2014 dev_warn(ctrl->ctrl.device, 2015 "queue %d: timeout request %#x type %d\n", 2016 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2017 2018 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2019 /* 2020 * Teardown immediately if controller times out while starting 2021 * or we are already started error recovery. all outstanding 2022 * requests are completed on shutdown, so we return BLK_EH_DONE. 2023 */ 2024 flush_work(&ctrl->err_work); 2025 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2026 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2027 return BLK_EH_DONE; 2028 } 2029 2030 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2031 nvme_tcp_error_recovery(&ctrl->ctrl); 2032 2033 return BLK_EH_RESET_TIMER; 2034 } 2035 2036 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2037 struct request *rq) 2038 { 2039 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2040 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2041 struct nvme_command *c = &pdu->cmd; 2042 2043 c->common.flags |= NVME_CMD_SGL_METABUF; 2044 2045 if (rq_data_dir(rq) == WRITE && req->data_len && 2046 req->data_len <= nvme_tcp_inline_data_size(queue)) 2047 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2048 else 2049 nvme_tcp_set_sg_host_data(c, req->data_len); 2050 2051 return 0; 2052 } 2053 2054 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2055 struct request *rq) 2056 { 2057 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2058 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2059 struct nvme_tcp_queue *queue = req->queue; 2060 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2061 blk_status_t ret; 2062 2063 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2064 if (ret) 2065 return ret; 2066 2067 req->state = NVME_TCP_SEND_CMD_PDU; 2068 req->offset = 0; 2069 req->data_sent = 0; 2070 req->pdu_len = 0; 2071 req->pdu_sent = 0; 2072 req->data_len = blk_rq_payload_bytes(rq); 2073 req->curr_bio = rq->bio; 2074 2075 if (rq_data_dir(rq) == WRITE && 2076 req->data_len <= nvme_tcp_inline_data_size(queue)) 2077 req->pdu_len = req->data_len; 2078 else if (req->curr_bio) 2079 nvme_tcp_init_iter(req, READ); 2080 2081 pdu->hdr.type = nvme_tcp_cmd; 2082 pdu->hdr.flags = 0; 2083 if (queue->hdr_digest) 2084 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2085 if (queue->data_digest && req->pdu_len) { 2086 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2087 ddgst = nvme_tcp_ddgst_len(queue); 2088 } 2089 pdu->hdr.hlen = sizeof(*pdu); 2090 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2091 pdu->hdr.plen = 2092 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2093 2094 ret = nvme_tcp_map_data(queue, rq); 2095 if (unlikely(ret)) { 2096 dev_err(queue->ctrl->ctrl.device, 2097 "Failed to map data (%d)\n", ret); 2098 return ret; 2099 } 2100 2101 return 0; 2102 } 2103 2104 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2105 const struct blk_mq_queue_data *bd) 2106 { 2107 struct nvme_ns *ns = hctx->queue->queuedata; 2108 struct nvme_tcp_queue *queue = hctx->driver_data; 2109 struct request *rq = bd->rq; 2110 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2111 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2112 blk_status_t ret; 2113 2114 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2115 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2116 2117 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2118 if (unlikely(ret)) 2119 return ret; 2120 2121 blk_mq_start_request(rq); 2122 2123 nvme_tcp_queue_request(req); 2124 2125 return BLK_STS_OK; 2126 } 2127 2128 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2129 { 2130 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2131 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2132 2133 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2134 /* separate read/write queues */ 2135 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2136 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2137 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2138 set->map[HCTX_TYPE_READ].nr_queues = 2139 ctrl->io_queues[HCTX_TYPE_READ]; 2140 set->map[HCTX_TYPE_READ].queue_offset = 2141 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2142 } else { 2143 /* shared read/write queues */ 2144 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2145 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2146 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2147 set->map[HCTX_TYPE_READ].nr_queues = 2148 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2149 set->map[HCTX_TYPE_READ].queue_offset = 0; 2150 } 2151 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2152 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2153 2154 dev_info(ctrl->ctrl.device, 2155 "mapped %d/%d default/read queues.\n", 2156 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2157 ctrl->io_queues[HCTX_TYPE_READ]); 2158 2159 return 0; 2160 } 2161 2162 static struct blk_mq_ops nvme_tcp_mq_ops = { 2163 .queue_rq = nvme_tcp_queue_rq, 2164 .complete = nvme_complete_rq, 2165 .init_request = nvme_tcp_init_request, 2166 .exit_request = nvme_tcp_exit_request, 2167 .init_hctx = nvme_tcp_init_hctx, 2168 .timeout = nvme_tcp_timeout, 2169 .map_queues = nvme_tcp_map_queues, 2170 }; 2171 2172 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2173 .queue_rq = nvme_tcp_queue_rq, 2174 .complete = nvme_complete_rq, 2175 .init_request = nvme_tcp_init_request, 2176 .exit_request = nvme_tcp_exit_request, 2177 .init_hctx = nvme_tcp_init_admin_hctx, 2178 .timeout = nvme_tcp_timeout, 2179 }; 2180 2181 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2182 .name = "tcp", 2183 .module = THIS_MODULE, 2184 .flags = NVME_F_FABRICS, 2185 .reg_read32 = nvmf_reg_read32, 2186 .reg_read64 = nvmf_reg_read64, 2187 .reg_write32 = nvmf_reg_write32, 2188 .free_ctrl = nvme_tcp_free_ctrl, 2189 .submit_async_event = nvme_tcp_submit_async_event, 2190 .delete_ctrl = nvme_tcp_delete_ctrl, 2191 .get_address = nvmf_get_address, 2192 }; 2193 2194 static bool 2195 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2196 { 2197 struct nvme_tcp_ctrl *ctrl; 2198 bool found = false; 2199 2200 mutex_lock(&nvme_tcp_ctrl_mutex); 2201 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2202 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2203 if (found) 2204 break; 2205 } 2206 mutex_unlock(&nvme_tcp_ctrl_mutex); 2207 2208 return found; 2209 } 2210 2211 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2212 struct nvmf_ctrl_options *opts) 2213 { 2214 struct nvme_tcp_ctrl *ctrl; 2215 int ret; 2216 2217 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2218 if (!ctrl) 2219 return ERR_PTR(-ENOMEM); 2220 2221 INIT_LIST_HEAD(&ctrl->list); 2222 ctrl->ctrl.opts = opts; 2223 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1; 2224 ctrl->ctrl.sqsize = opts->queue_size - 1; 2225 ctrl->ctrl.kato = opts->kato; 2226 2227 INIT_DELAYED_WORK(&ctrl->connect_work, 2228 nvme_tcp_reconnect_ctrl_work); 2229 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2230 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2231 2232 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2233 opts->trsvcid = 2234 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2235 if (!opts->trsvcid) { 2236 ret = -ENOMEM; 2237 goto out_free_ctrl; 2238 } 2239 opts->mask |= NVMF_OPT_TRSVCID; 2240 } 2241 2242 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2243 opts->traddr, opts->trsvcid, &ctrl->addr); 2244 if (ret) { 2245 pr_err("malformed address passed: %s:%s\n", 2246 opts->traddr, opts->trsvcid); 2247 goto out_free_ctrl; 2248 } 2249 2250 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2251 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2252 opts->host_traddr, NULL, &ctrl->src_addr); 2253 if (ret) { 2254 pr_err("malformed src address passed: %s\n", 2255 opts->host_traddr); 2256 goto out_free_ctrl; 2257 } 2258 } 2259 2260 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2261 ret = -EALREADY; 2262 goto out_free_ctrl; 2263 } 2264 2265 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2266 GFP_KERNEL); 2267 if (!ctrl->queues) { 2268 ret = -ENOMEM; 2269 goto out_free_ctrl; 2270 } 2271 2272 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2273 if (ret) 2274 goto out_kfree_queues; 2275 2276 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2277 WARN_ON_ONCE(1); 2278 ret = -EINTR; 2279 goto out_uninit_ctrl; 2280 } 2281 2282 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2283 if (ret) 2284 goto out_uninit_ctrl; 2285 2286 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2287 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2288 2289 nvme_get_ctrl(&ctrl->ctrl); 2290 2291 mutex_lock(&nvme_tcp_ctrl_mutex); 2292 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2293 mutex_unlock(&nvme_tcp_ctrl_mutex); 2294 2295 return &ctrl->ctrl; 2296 2297 out_uninit_ctrl: 2298 nvme_uninit_ctrl(&ctrl->ctrl); 2299 nvme_put_ctrl(&ctrl->ctrl); 2300 if (ret > 0) 2301 ret = -EIO; 2302 return ERR_PTR(ret); 2303 out_kfree_queues: 2304 kfree(ctrl->queues); 2305 out_free_ctrl: 2306 kfree(ctrl); 2307 return ERR_PTR(ret); 2308 } 2309 2310 static struct nvmf_transport_ops nvme_tcp_transport = { 2311 .name = "tcp", 2312 .module = THIS_MODULE, 2313 .required_opts = NVMF_OPT_TRADDR, 2314 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2315 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2316 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2317 NVMF_OPT_NR_WRITE_QUEUES, 2318 .create_ctrl = nvme_tcp_create_ctrl, 2319 }; 2320 2321 static int __init nvme_tcp_init_module(void) 2322 { 2323 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2324 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2325 if (!nvme_tcp_wq) 2326 return -ENOMEM; 2327 2328 nvmf_register_transport(&nvme_tcp_transport); 2329 return 0; 2330 } 2331 2332 static void __exit nvme_tcp_cleanup_module(void) 2333 { 2334 struct nvme_tcp_ctrl *ctrl; 2335 2336 nvmf_unregister_transport(&nvme_tcp_transport); 2337 2338 mutex_lock(&nvme_tcp_ctrl_mutex); 2339 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2340 nvme_delete_ctrl(&ctrl->ctrl); 2341 mutex_unlock(&nvme_tcp_ctrl_mutex); 2342 flush_workqueue(nvme_delete_wq); 2343 2344 destroy_workqueue(nvme_tcp_wq); 2345 } 2346 2347 module_init(nvme_tcp_init_module); 2348 module_exit(nvme_tcp_cleanup_module); 2349 2350 MODULE_LICENSE("GPL v2"); 2351