xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision aeacfcef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 #include <trace/events/sock.h>
18 
19 #include "nvme.h"
20 #include "fabrics.h"
21 
22 struct nvme_tcp_queue;
23 
24 /* Define the socket priority to use for connections were it is desirable
25  * that the NIC consider performing optimized packet processing or filtering.
26  * A non-zero value being sufficient to indicate general consideration of any
27  * possible optimization.  Making it a module param allows for alternative
28  * values that may be unique for some NIC implementations.
29  */
30 static int so_priority;
31 module_param(so_priority, int, 0644);
32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33 
34 #ifdef CONFIG_DEBUG_LOCK_ALLOC
35 /* lockdep can detect a circular dependency of the form
36  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
37  * because dependencies are tracked for both nvme-tcp and user contexts. Using
38  * a separate class prevents lockdep from conflating nvme-tcp socket use with
39  * user-space socket API use.
40  */
41 static struct lock_class_key nvme_tcp_sk_key[2];
42 static struct lock_class_key nvme_tcp_slock_key[2];
43 
44 static void nvme_tcp_reclassify_socket(struct socket *sock)
45 {
46 	struct sock *sk = sock->sk;
47 
48 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
49 		return;
50 
51 	switch (sk->sk_family) {
52 	case AF_INET:
53 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
54 					      &nvme_tcp_slock_key[0],
55 					      "sk_lock-AF_INET-NVME",
56 					      &nvme_tcp_sk_key[0]);
57 		break;
58 	case AF_INET6:
59 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
60 					      &nvme_tcp_slock_key[1],
61 					      "sk_lock-AF_INET6-NVME",
62 					      &nvme_tcp_sk_key[1]);
63 		break;
64 	default:
65 		WARN_ON_ONCE(1);
66 	}
67 }
68 #else
69 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
70 #endif
71 
72 enum nvme_tcp_send_state {
73 	NVME_TCP_SEND_CMD_PDU = 0,
74 	NVME_TCP_SEND_H2C_PDU,
75 	NVME_TCP_SEND_DATA,
76 	NVME_TCP_SEND_DDGST,
77 };
78 
79 struct nvme_tcp_request {
80 	struct nvme_request	req;
81 	void			*pdu;
82 	struct nvme_tcp_queue	*queue;
83 	u32			data_len;
84 	u32			pdu_len;
85 	u32			pdu_sent;
86 	u32			h2cdata_left;
87 	u32			h2cdata_offset;
88 	u16			ttag;
89 	__le16			status;
90 	struct list_head	entry;
91 	struct llist_node	lentry;
92 	__le32			ddgst;
93 
94 	struct bio		*curr_bio;
95 	struct iov_iter		iter;
96 
97 	/* send state */
98 	size_t			offset;
99 	size_t			data_sent;
100 	enum nvme_tcp_send_state state;
101 };
102 
103 enum nvme_tcp_queue_flags {
104 	NVME_TCP_Q_ALLOCATED	= 0,
105 	NVME_TCP_Q_LIVE		= 1,
106 	NVME_TCP_Q_POLLING	= 2,
107 };
108 
109 enum nvme_tcp_recv_state {
110 	NVME_TCP_RECV_PDU = 0,
111 	NVME_TCP_RECV_DATA,
112 	NVME_TCP_RECV_DDGST,
113 };
114 
115 struct nvme_tcp_ctrl;
116 struct nvme_tcp_queue {
117 	struct socket		*sock;
118 	struct work_struct	io_work;
119 	int			io_cpu;
120 
121 	struct mutex		queue_lock;
122 	struct mutex		send_mutex;
123 	struct llist_head	req_list;
124 	struct list_head	send_list;
125 
126 	/* recv state */
127 	void			*pdu;
128 	int			pdu_remaining;
129 	int			pdu_offset;
130 	size_t			data_remaining;
131 	size_t			ddgst_remaining;
132 	unsigned int		nr_cqe;
133 
134 	/* send state */
135 	struct nvme_tcp_request *request;
136 
137 	u32			maxh2cdata;
138 	size_t			cmnd_capsule_len;
139 	struct nvme_tcp_ctrl	*ctrl;
140 	unsigned long		flags;
141 	bool			rd_enabled;
142 
143 	bool			hdr_digest;
144 	bool			data_digest;
145 	struct ahash_request	*rcv_hash;
146 	struct ahash_request	*snd_hash;
147 	__le32			exp_ddgst;
148 	__le32			recv_ddgst;
149 
150 	struct page_frag_cache	pf_cache;
151 
152 	void (*state_change)(struct sock *);
153 	void (*data_ready)(struct sock *);
154 	void (*write_space)(struct sock *);
155 };
156 
157 struct nvme_tcp_ctrl {
158 	/* read only in the hot path */
159 	struct nvme_tcp_queue	*queues;
160 	struct blk_mq_tag_set	tag_set;
161 
162 	/* other member variables */
163 	struct list_head	list;
164 	struct blk_mq_tag_set	admin_tag_set;
165 	struct sockaddr_storage addr;
166 	struct sockaddr_storage src_addr;
167 	struct nvme_ctrl	ctrl;
168 
169 	struct work_struct	err_work;
170 	struct delayed_work	connect_work;
171 	struct nvme_tcp_request async_req;
172 	u32			io_queues[HCTX_MAX_TYPES];
173 };
174 
175 static LIST_HEAD(nvme_tcp_ctrl_list);
176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
177 static struct workqueue_struct *nvme_tcp_wq;
178 static const struct blk_mq_ops nvme_tcp_mq_ops;
179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
181 
182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
183 {
184 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
185 }
186 
187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
188 {
189 	return queue - queue->ctrl->queues;
190 }
191 
192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
193 {
194 	u32 queue_idx = nvme_tcp_queue_id(queue);
195 
196 	if (queue_idx == 0)
197 		return queue->ctrl->admin_tag_set.tags[queue_idx];
198 	return queue->ctrl->tag_set.tags[queue_idx - 1];
199 }
200 
201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
202 {
203 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
204 }
205 
206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
207 {
208 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
209 }
210 
211 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
212 {
213 	if (nvme_is_fabrics(req->req.cmd))
214 		return NVME_TCP_ADMIN_CCSZ;
215 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
216 }
217 
218 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
219 {
220 	return req == &req->queue->ctrl->async_req;
221 }
222 
223 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
224 {
225 	struct request *rq;
226 
227 	if (unlikely(nvme_tcp_async_req(req)))
228 		return false; /* async events don't have a request */
229 
230 	rq = blk_mq_rq_from_pdu(req);
231 
232 	return rq_data_dir(rq) == WRITE && req->data_len &&
233 		req->data_len <= nvme_tcp_inline_data_size(req);
234 }
235 
236 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
237 {
238 	return req->iter.bvec->bv_page;
239 }
240 
241 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
242 {
243 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
244 }
245 
246 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
247 {
248 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
249 			req->pdu_len - req->pdu_sent);
250 }
251 
252 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
253 {
254 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
255 			req->pdu_len - req->pdu_sent : 0;
256 }
257 
258 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
259 		int len)
260 {
261 	return nvme_tcp_pdu_data_left(req) <= len;
262 }
263 
264 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
265 		unsigned int dir)
266 {
267 	struct request *rq = blk_mq_rq_from_pdu(req);
268 	struct bio_vec *vec;
269 	unsigned int size;
270 	int nr_bvec;
271 	size_t offset;
272 
273 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
274 		vec = &rq->special_vec;
275 		nr_bvec = 1;
276 		size = blk_rq_payload_bytes(rq);
277 		offset = 0;
278 	} else {
279 		struct bio *bio = req->curr_bio;
280 		struct bvec_iter bi;
281 		struct bio_vec bv;
282 
283 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
284 		nr_bvec = 0;
285 		bio_for_each_bvec(bv, bio, bi) {
286 			nr_bvec++;
287 		}
288 		size = bio->bi_iter.bi_size;
289 		offset = bio->bi_iter.bi_bvec_done;
290 	}
291 
292 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
293 	req->iter.iov_offset = offset;
294 }
295 
296 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
297 		int len)
298 {
299 	req->data_sent += len;
300 	req->pdu_sent += len;
301 	iov_iter_advance(&req->iter, len);
302 	if (!iov_iter_count(&req->iter) &&
303 	    req->data_sent < req->data_len) {
304 		req->curr_bio = req->curr_bio->bi_next;
305 		nvme_tcp_init_iter(req, ITER_SOURCE);
306 	}
307 }
308 
309 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
310 {
311 	int ret;
312 
313 	/* drain the send queue as much as we can... */
314 	do {
315 		ret = nvme_tcp_try_send(queue);
316 	} while (ret > 0);
317 }
318 
319 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
320 {
321 	return !list_empty(&queue->send_list) ||
322 		!llist_empty(&queue->req_list);
323 }
324 
325 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
326 		bool sync, bool last)
327 {
328 	struct nvme_tcp_queue *queue = req->queue;
329 	bool empty;
330 
331 	empty = llist_add(&req->lentry, &queue->req_list) &&
332 		list_empty(&queue->send_list) && !queue->request;
333 
334 	/*
335 	 * if we're the first on the send_list and we can try to send
336 	 * directly, otherwise queue io_work. Also, only do that if we
337 	 * are on the same cpu, so we don't introduce contention.
338 	 */
339 	if (queue->io_cpu == raw_smp_processor_id() &&
340 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
341 		nvme_tcp_send_all(queue);
342 		mutex_unlock(&queue->send_mutex);
343 	}
344 
345 	if (last && nvme_tcp_queue_more(queue))
346 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
347 }
348 
349 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
350 {
351 	struct nvme_tcp_request *req;
352 	struct llist_node *node;
353 
354 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
355 		req = llist_entry(node, struct nvme_tcp_request, lentry);
356 		list_add(&req->entry, &queue->send_list);
357 	}
358 }
359 
360 static inline struct nvme_tcp_request *
361 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
362 {
363 	struct nvme_tcp_request *req;
364 
365 	req = list_first_entry_or_null(&queue->send_list,
366 			struct nvme_tcp_request, entry);
367 	if (!req) {
368 		nvme_tcp_process_req_list(queue);
369 		req = list_first_entry_or_null(&queue->send_list,
370 				struct nvme_tcp_request, entry);
371 		if (unlikely(!req))
372 			return NULL;
373 	}
374 
375 	list_del(&req->entry);
376 	return req;
377 }
378 
379 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
380 		__le32 *dgst)
381 {
382 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
383 	crypto_ahash_final(hash);
384 }
385 
386 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
387 		struct page *page, off_t off, size_t len)
388 {
389 	struct scatterlist sg;
390 
391 	sg_init_table(&sg, 1);
392 	sg_set_page(&sg, page, len, off);
393 	ahash_request_set_crypt(hash, &sg, NULL, len);
394 	crypto_ahash_update(hash);
395 }
396 
397 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
398 		void *pdu, size_t len)
399 {
400 	struct scatterlist sg;
401 
402 	sg_init_one(&sg, pdu, len);
403 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
404 	crypto_ahash_digest(hash);
405 }
406 
407 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
408 		void *pdu, size_t pdu_len)
409 {
410 	struct nvme_tcp_hdr *hdr = pdu;
411 	__le32 recv_digest;
412 	__le32 exp_digest;
413 
414 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
415 		dev_err(queue->ctrl->ctrl.device,
416 			"queue %d: header digest flag is cleared\n",
417 			nvme_tcp_queue_id(queue));
418 		return -EPROTO;
419 	}
420 
421 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
422 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
423 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
424 	if (recv_digest != exp_digest) {
425 		dev_err(queue->ctrl->ctrl.device,
426 			"header digest error: recv %#x expected %#x\n",
427 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
428 		return -EIO;
429 	}
430 
431 	return 0;
432 }
433 
434 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
435 {
436 	struct nvme_tcp_hdr *hdr = pdu;
437 	u8 digest_len = nvme_tcp_hdgst_len(queue);
438 	u32 len;
439 
440 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
441 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
442 
443 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
444 		dev_err(queue->ctrl->ctrl.device,
445 			"queue %d: data digest flag is cleared\n",
446 		nvme_tcp_queue_id(queue));
447 		return -EPROTO;
448 	}
449 	crypto_ahash_init(queue->rcv_hash);
450 
451 	return 0;
452 }
453 
454 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
455 		struct request *rq, unsigned int hctx_idx)
456 {
457 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
458 
459 	page_frag_free(req->pdu);
460 }
461 
462 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
463 		struct request *rq, unsigned int hctx_idx,
464 		unsigned int numa_node)
465 {
466 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
467 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
468 	struct nvme_tcp_cmd_pdu *pdu;
469 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
470 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
471 	u8 hdgst = nvme_tcp_hdgst_len(queue);
472 
473 	req->pdu = page_frag_alloc(&queue->pf_cache,
474 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
475 		GFP_KERNEL | __GFP_ZERO);
476 	if (!req->pdu)
477 		return -ENOMEM;
478 
479 	pdu = req->pdu;
480 	req->queue = queue;
481 	nvme_req(rq)->ctrl = &ctrl->ctrl;
482 	nvme_req(rq)->cmd = &pdu->cmd;
483 
484 	return 0;
485 }
486 
487 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
488 		unsigned int hctx_idx)
489 {
490 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
491 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
492 
493 	hctx->driver_data = queue;
494 	return 0;
495 }
496 
497 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
498 		unsigned int hctx_idx)
499 {
500 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
501 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
502 
503 	hctx->driver_data = queue;
504 	return 0;
505 }
506 
507 static enum nvme_tcp_recv_state
508 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
509 {
510 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
511 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
512 		NVME_TCP_RECV_DATA;
513 }
514 
515 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
516 {
517 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
518 				nvme_tcp_hdgst_len(queue);
519 	queue->pdu_offset = 0;
520 	queue->data_remaining = -1;
521 	queue->ddgst_remaining = 0;
522 }
523 
524 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
525 {
526 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
527 		return;
528 
529 	dev_warn(ctrl->device, "starting error recovery\n");
530 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
531 }
532 
533 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
534 		struct nvme_completion *cqe)
535 {
536 	struct nvme_tcp_request *req;
537 	struct request *rq;
538 
539 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
540 	if (!rq) {
541 		dev_err(queue->ctrl->ctrl.device,
542 			"got bad cqe.command_id %#x on queue %d\n",
543 			cqe->command_id, nvme_tcp_queue_id(queue));
544 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
545 		return -EINVAL;
546 	}
547 
548 	req = blk_mq_rq_to_pdu(rq);
549 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
550 		req->status = cqe->status;
551 
552 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
553 		nvme_complete_rq(rq);
554 	queue->nr_cqe++;
555 
556 	return 0;
557 }
558 
559 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
560 		struct nvme_tcp_data_pdu *pdu)
561 {
562 	struct request *rq;
563 
564 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
565 	if (!rq) {
566 		dev_err(queue->ctrl->ctrl.device,
567 			"got bad c2hdata.command_id %#x on queue %d\n",
568 			pdu->command_id, nvme_tcp_queue_id(queue));
569 		return -ENOENT;
570 	}
571 
572 	if (!blk_rq_payload_bytes(rq)) {
573 		dev_err(queue->ctrl->ctrl.device,
574 			"queue %d tag %#x unexpected data\n",
575 			nvme_tcp_queue_id(queue), rq->tag);
576 		return -EIO;
577 	}
578 
579 	queue->data_remaining = le32_to_cpu(pdu->data_length);
580 
581 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
582 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
583 		dev_err(queue->ctrl->ctrl.device,
584 			"queue %d tag %#x SUCCESS set but not last PDU\n",
585 			nvme_tcp_queue_id(queue), rq->tag);
586 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
587 		return -EPROTO;
588 	}
589 
590 	return 0;
591 }
592 
593 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
594 		struct nvme_tcp_rsp_pdu *pdu)
595 {
596 	struct nvme_completion *cqe = &pdu->cqe;
597 	int ret = 0;
598 
599 	/*
600 	 * AEN requests are special as they don't time out and can
601 	 * survive any kind of queue freeze and often don't respond to
602 	 * aborts.  We don't even bother to allocate a struct request
603 	 * for them but rather special case them here.
604 	 */
605 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
606 				     cqe->command_id)))
607 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
608 				&cqe->result);
609 	else
610 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
611 
612 	return ret;
613 }
614 
615 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
616 {
617 	struct nvme_tcp_data_pdu *data = req->pdu;
618 	struct nvme_tcp_queue *queue = req->queue;
619 	struct request *rq = blk_mq_rq_from_pdu(req);
620 	u32 h2cdata_sent = req->pdu_len;
621 	u8 hdgst = nvme_tcp_hdgst_len(queue);
622 	u8 ddgst = nvme_tcp_ddgst_len(queue);
623 
624 	req->state = NVME_TCP_SEND_H2C_PDU;
625 	req->offset = 0;
626 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
627 	req->pdu_sent = 0;
628 	req->h2cdata_left -= req->pdu_len;
629 	req->h2cdata_offset += h2cdata_sent;
630 
631 	memset(data, 0, sizeof(*data));
632 	data->hdr.type = nvme_tcp_h2c_data;
633 	if (!req->h2cdata_left)
634 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
635 	if (queue->hdr_digest)
636 		data->hdr.flags |= NVME_TCP_F_HDGST;
637 	if (queue->data_digest)
638 		data->hdr.flags |= NVME_TCP_F_DDGST;
639 	data->hdr.hlen = sizeof(*data);
640 	data->hdr.pdo = data->hdr.hlen + hdgst;
641 	data->hdr.plen =
642 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
643 	data->ttag = req->ttag;
644 	data->command_id = nvme_cid(rq);
645 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
646 	data->data_length = cpu_to_le32(req->pdu_len);
647 }
648 
649 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
650 		struct nvme_tcp_r2t_pdu *pdu)
651 {
652 	struct nvme_tcp_request *req;
653 	struct request *rq;
654 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
655 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
656 
657 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
658 	if (!rq) {
659 		dev_err(queue->ctrl->ctrl.device,
660 			"got bad r2t.command_id %#x on queue %d\n",
661 			pdu->command_id, nvme_tcp_queue_id(queue));
662 		return -ENOENT;
663 	}
664 	req = blk_mq_rq_to_pdu(rq);
665 
666 	if (unlikely(!r2t_length)) {
667 		dev_err(queue->ctrl->ctrl.device,
668 			"req %d r2t len is %u, probably a bug...\n",
669 			rq->tag, r2t_length);
670 		return -EPROTO;
671 	}
672 
673 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
674 		dev_err(queue->ctrl->ctrl.device,
675 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
676 			rq->tag, r2t_length, req->data_len, req->data_sent);
677 		return -EPROTO;
678 	}
679 
680 	if (unlikely(r2t_offset < req->data_sent)) {
681 		dev_err(queue->ctrl->ctrl.device,
682 			"req %d unexpected r2t offset %u (expected %zu)\n",
683 			rq->tag, r2t_offset, req->data_sent);
684 		return -EPROTO;
685 	}
686 
687 	req->pdu_len = 0;
688 	req->h2cdata_left = r2t_length;
689 	req->h2cdata_offset = r2t_offset;
690 	req->ttag = pdu->ttag;
691 
692 	nvme_tcp_setup_h2c_data_pdu(req);
693 	nvme_tcp_queue_request(req, false, true);
694 
695 	return 0;
696 }
697 
698 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
699 		unsigned int *offset, size_t *len)
700 {
701 	struct nvme_tcp_hdr *hdr;
702 	char *pdu = queue->pdu;
703 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
704 	int ret;
705 
706 	ret = skb_copy_bits(skb, *offset,
707 		&pdu[queue->pdu_offset], rcv_len);
708 	if (unlikely(ret))
709 		return ret;
710 
711 	queue->pdu_remaining -= rcv_len;
712 	queue->pdu_offset += rcv_len;
713 	*offset += rcv_len;
714 	*len -= rcv_len;
715 	if (queue->pdu_remaining)
716 		return 0;
717 
718 	hdr = queue->pdu;
719 	if (queue->hdr_digest) {
720 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
721 		if (unlikely(ret))
722 			return ret;
723 	}
724 
725 
726 	if (queue->data_digest) {
727 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
728 		if (unlikely(ret))
729 			return ret;
730 	}
731 
732 	switch (hdr->type) {
733 	case nvme_tcp_c2h_data:
734 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
735 	case nvme_tcp_rsp:
736 		nvme_tcp_init_recv_ctx(queue);
737 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
738 	case nvme_tcp_r2t:
739 		nvme_tcp_init_recv_ctx(queue);
740 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
741 	default:
742 		dev_err(queue->ctrl->ctrl.device,
743 			"unsupported pdu type (%d)\n", hdr->type);
744 		return -EINVAL;
745 	}
746 }
747 
748 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
749 {
750 	union nvme_result res = {};
751 
752 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
753 		nvme_complete_rq(rq);
754 }
755 
756 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
757 			      unsigned int *offset, size_t *len)
758 {
759 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
760 	struct request *rq =
761 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
762 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
763 
764 	while (true) {
765 		int recv_len, ret;
766 
767 		recv_len = min_t(size_t, *len, queue->data_remaining);
768 		if (!recv_len)
769 			break;
770 
771 		if (!iov_iter_count(&req->iter)) {
772 			req->curr_bio = req->curr_bio->bi_next;
773 
774 			/*
775 			 * If we don`t have any bios it means that controller
776 			 * sent more data than we requested, hence error
777 			 */
778 			if (!req->curr_bio) {
779 				dev_err(queue->ctrl->ctrl.device,
780 					"queue %d no space in request %#x",
781 					nvme_tcp_queue_id(queue), rq->tag);
782 				nvme_tcp_init_recv_ctx(queue);
783 				return -EIO;
784 			}
785 			nvme_tcp_init_iter(req, ITER_DEST);
786 		}
787 
788 		/* we can read only from what is left in this bio */
789 		recv_len = min_t(size_t, recv_len,
790 				iov_iter_count(&req->iter));
791 
792 		if (queue->data_digest)
793 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
794 				&req->iter, recv_len, queue->rcv_hash);
795 		else
796 			ret = skb_copy_datagram_iter(skb, *offset,
797 					&req->iter, recv_len);
798 		if (ret) {
799 			dev_err(queue->ctrl->ctrl.device,
800 				"queue %d failed to copy request %#x data",
801 				nvme_tcp_queue_id(queue), rq->tag);
802 			return ret;
803 		}
804 
805 		*len -= recv_len;
806 		*offset += recv_len;
807 		queue->data_remaining -= recv_len;
808 	}
809 
810 	if (!queue->data_remaining) {
811 		if (queue->data_digest) {
812 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
813 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
814 		} else {
815 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
816 				nvme_tcp_end_request(rq,
817 						le16_to_cpu(req->status));
818 				queue->nr_cqe++;
819 			}
820 			nvme_tcp_init_recv_ctx(queue);
821 		}
822 	}
823 
824 	return 0;
825 }
826 
827 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
828 		struct sk_buff *skb, unsigned int *offset, size_t *len)
829 {
830 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
831 	char *ddgst = (char *)&queue->recv_ddgst;
832 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
833 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
834 	int ret;
835 
836 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
837 	if (unlikely(ret))
838 		return ret;
839 
840 	queue->ddgst_remaining -= recv_len;
841 	*offset += recv_len;
842 	*len -= recv_len;
843 	if (queue->ddgst_remaining)
844 		return 0;
845 
846 	if (queue->recv_ddgst != queue->exp_ddgst) {
847 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
848 					pdu->command_id);
849 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
850 
851 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
852 
853 		dev_err(queue->ctrl->ctrl.device,
854 			"data digest error: recv %#x expected %#x\n",
855 			le32_to_cpu(queue->recv_ddgst),
856 			le32_to_cpu(queue->exp_ddgst));
857 	}
858 
859 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
860 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
861 					pdu->command_id);
862 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
863 
864 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
865 		queue->nr_cqe++;
866 	}
867 
868 	nvme_tcp_init_recv_ctx(queue);
869 	return 0;
870 }
871 
872 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
873 			     unsigned int offset, size_t len)
874 {
875 	struct nvme_tcp_queue *queue = desc->arg.data;
876 	size_t consumed = len;
877 	int result;
878 
879 	if (unlikely(!queue->rd_enabled))
880 		return -EFAULT;
881 
882 	while (len) {
883 		switch (nvme_tcp_recv_state(queue)) {
884 		case NVME_TCP_RECV_PDU:
885 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
886 			break;
887 		case NVME_TCP_RECV_DATA:
888 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
889 			break;
890 		case NVME_TCP_RECV_DDGST:
891 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
892 			break;
893 		default:
894 			result = -EFAULT;
895 		}
896 		if (result) {
897 			dev_err(queue->ctrl->ctrl.device,
898 				"receive failed:  %d\n", result);
899 			queue->rd_enabled = false;
900 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
901 			return result;
902 		}
903 	}
904 
905 	return consumed;
906 }
907 
908 static void nvme_tcp_data_ready(struct sock *sk)
909 {
910 	struct nvme_tcp_queue *queue;
911 
912 	trace_sk_data_ready(sk);
913 
914 	read_lock_bh(&sk->sk_callback_lock);
915 	queue = sk->sk_user_data;
916 	if (likely(queue && queue->rd_enabled) &&
917 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
918 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
919 	read_unlock_bh(&sk->sk_callback_lock);
920 }
921 
922 static void nvme_tcp_write_space(struct sock *sk)
923 {
924 	struct nvme_tcp_queue *queue;
925 
926 	read_lock_bh(&sk->sk_callback_lock);
927 	queue = sk->sk_user_data;
928 	if (likely(queue && sk_stream_is_writeable(sk))) {
929 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
930 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
931 	}
932 	read_unlock_bh(&sk->sk_callback_lock);
933 }
934 
935 static void nvme_tcp_state_change(struct sock *sk)
936 {
937 	struct nvme_tcp_queue *queue;
938 
939 	read_lock_bh(&sk->sk_callback_lock);
940 	queue = sk->sk_user_data;
941 	if (!queue)
942 		goto done;
943 
944 	switch (sk->sk_state) {
945 	case TCP_CLOSE:
946 	case TCP_CLOSE_WAIT:
947 	case TCP_LAST_ACK:
948 	case TCP_FIN_WAIT1:
949 	case TCP_FIN_WAIT2:
950 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
951 		break;
952 	default:
953 		dev_info(queue->ctrl->ctrl.device,
954 			"queue %d socket state %d\n",
955 			nvme_tcp_queue_id(queue), sk->sk_state);
956 	}
957 
958 	queue->state_change(sk);
959 done:
960 	read_unlock_bh(&sk->sk_callback_lock);
961 }
962 
963 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
964 {
965 	queue->request = NULL;
966 }
967 
968 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
969 {
970 	if (nvme_tcp_async_req(req)) {
971 		union nvme_result res = {};
972 
973 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
974 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
975 	} else {
976 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
977 				NVME_SC_HOST_PATH_ERROR);
978 	}
979 }
980 
981 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
982 {
983 	struct nvme_tcp_queue *queue = req->queue;
984 	int req_data_len = req->data_len;
985 	u32 h2cdata_left = req->h2cdata_left;
986 
987 	while (true) {
988 		struct page *page = nvme_tcp_req_cur_page(req);
989 		size_t offset = nvme_tcp_req_cur_offset(req);
990 		size_t len = nvme_tcp_req_cur_length(req);
991 		bool last = nvme_tcp_pdu_last_send(req, len);
992 		int req_data_sent = req->data_sent;
993 		int ret, flags = MSG_DONTWAIT;
994 
995 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
996 			flags |= MSG_EOR;
997 		else
998 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
999 
1000 		if (sendpage_ok(page)) {
1001 			ret = kernel_sendpage(queue->sock, page, offset, len,
1002 					flags);
1003 		} else {
1004 			ret = sock_no_sendpage(queue->sock, page, offset, len,
1005 					flags);
1006 		}
1007 		if (ret <= 0)
1008 			return ret;
1009 
1010 		if (queue->data_digest)
1011 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1012 					offset, ret);
1013 
1014 		/*
1015 		 * update the request iterator except for the last payload send
1016 		 * in the request where we don't want to modify it as we may
1017 		 * compete with the RX path completing the request.
1018 		 */
1019 		if (req_data_sent + ret < req_data_len)
1020 			nvme_tcp_advance_req(req, ret);
1021 
1022 		/* fully successful last send in current PDU */
1023 		if (last && ret == len) {
1024 			if (queue->data_digest) {
1025 				nvme_tcp_ddgst_final(queue->snd_hash,
1026 					&req->ddgst);
1027 				req->state = NVME_TCP_SEND_DDGST;
1028 				req->offset = 0;
1029 			} else {
1030 				if (h2cdata_left)
1031 					nvme_tcp_setup_h2c_data_pdu(req);
1032 				else
1033 					nvme_tcp_done_send_req(queue);
1034 			}
1035 			return 1;
1036 		}
1037 	}
1038 	return -EAGAIN;
1039 }
1040 
1041 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1042 {
1043 	struct nvme_tcp_queue *queue = req->queue;
1044 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1045 	bool inline_data = nvme_tcp_has_inline_data(req);
1046 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1047 	int len = sizeof(*pdu) + hdgst - req->offset;
1048 	int flags = MSG_DONTWAIT;
1049 	int ret;
1050 
1051 	if (inline_data || nvme_tcp_queue_more(queue))
1052 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1053 	else
1054 		flags |= MSG_EOR;
1055 
1056 	if (queue->hdr_digest && !req->offset)
1057 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1058 
1059 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1060 			offset_in_page(pdu) + req->offset, len,  flags);
1061 	if (unlikely(ret <= 0))
1062 		return ret;
1063 
1064 	len -= ret;
1065 	if (!len) {
1066 		if (inline_data) {
1067 			req->state = NVME_TCP_SEND_DATA;
1068 			if (queue->data_digest)
1069 				crypto_ahash_init(queue->snd_hash);
1070 		} else {
1071 			nvme_tcp_done_send_req(queue);
1072 		}
1073 		return 1;
1074 	}
1075 	req->offset += ret;
1076 
1077 	return -EAGAIN;
1078 }
1079 
1080 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1081 {
1082 	struct nvme_tcp_queue *queue = req->queue;
1083 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1084 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1085 	int len = sizeof(*pdu) - req->offset + hdgst;
1086 	int ret;
1087 
1088 	if (queue->hdr_digest && !req->offset)
1089 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1090 
1091 	if (!req->h2cdata_left)
1092 		ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1093 				offset_in_page(pdu) + req->offset, len,
1094 				MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1095 	else
1096 		ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1097 				offset_in_page(pdu) + req->offset, len,
1098 				MSG_DONTWAIT | MSG_MORE);
1099 	if (unlikely(ret <= 0))
1100 		return ret;
1101 
1102 	len -= ret;
1103 	if (!len) {
1104 		req->state = NVME_TCP_SEND_DATA;
1105 		if (queue->data_digest)
1106 			crypto_ahash_init(queue->snd_hash);
1107 		return 1;
1108 	}
1109 	req->offset += ret;
1110 
1111 	return -EAGAIN;
1112 }
1113 
1114 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1115 {
1116 	struct nvme_tcp_queue *queue = req->queue;
1117 	size_t offset = req->offset;
1118 	u32 h2cdata_left = req->h2cdata_left;
1119 	int ret;
1120 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1121 	struct kvec iov = {
1122 		.iov_base = (u8 *)&req->ddgst + req->offset,
1123 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1124 	};
1125 
1126 	if (nvme_tcp_queue_more(queue))
1127 		msg.msg_flags |= MSG_MORE;
1128 	else
1129 		msg.msg_flags |= MSG_EOR;
1130 
1131 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1132 	if (unlikely(ret <= 0))
1133 		return ret;
1134 
1135 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1136 		if (h2cdata_left)
1137 			nvme_tcp_setup_h2c_data_pdu(req);
1138 		else
1139 			nvme_tcp_done_send_req(queue);
1140 		return 1;
1141 	}
1142 
1143 	req->offset += ret;
1144 	return -EAGAIN;
1145 }
1146 
1147 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1148 {
1149 	struct nvme_tcp_request *req;
1150 	unsigned int noreclaim_flag;
1151 	int ret = 1;
1152 
1153 	if (!queue->request) {
1154 		queue->request = nvme_tcp_fetch_request(queue);
1155 		if (!queue->request)
1156 			return 0;
1157 	}
1158 	req = queue->request;
1159 
1160 	noreclaim_flag = memalloc_noreclaim_save();
1161 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1162 		ret = nvme_tcp_try_send_cmd_pdu(req);
1163 		if (ret <= 0)
1164 			goto done;
1165 		if (!nvme_tcp_has_inline_data(req))
1166 			goto out;
1167 	}
1168 
1169 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1170 		ret = nvme_tcp_try_send_data_pdu(req);
1171 		if (ret <= 0)
1172 			goto done;
1173 	}
1174 
1175 	if (req->state == NVME_TCP_SEND_DATA) {
1176 		ret = nvme_tcp_try_send_data(req);
1177 		if (ret <= 0)
1178 			goto done;
1179 	}
1180 
1181 	if (req->state == NVME_TCP_SEND_DDGST)
1182 		ret = nvme_tcp_try_send_ddgst(req);
1183 done:
1184 	if (ret == -EAGAIN) {
1185 		ret = 0;
1186 	} else if (ret < 0) {
1187 		dev_err(queue->ctrl->ctrl.device,
1188 			"failed to send request %d\n", ret);
1189 		nvme_tcp_fail_request(queue->request);
1190 		nvme_tcp_done_send_req(queue);
1191 	}
1192 out:
1193 	memalloc_noreclaim_restore(noreclaim_flag);
1194 	return ret;
1195 }
1196 
1197 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1198 {
1199 	struct socket *sock = queue->sock;
1200 	struct sock *sk = sock->sk;
1201 	read_descriptor_t rd_desc;
1202 	int consumed;
1203 
1204 	rd_desc.arg.data = queue;
1205 	rd_desc.count = 1;
1206 	lock_sock(sk);
1207 	queue->nr_cqe = 0;
1208 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1209 	release_sock(sk);
1210 	return consumed;
1211 }
1212 
1213 static void nvme_tcp_io_work(struct work_struct *w)
1214 {
1215 	struct nvme_tcp_queue *queue =
1216 		container_of(w, struct nvme_tcp_queue, io_work);
1217 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1218 
1219 	do {
1220 		bool pending = false;
1221 		int result;
1222 
1223 		if (mutex_trylock(&queue->send_mutex)) {
1224 			result = nvme_tcp_try_send(queue);
1225 			mutex_unlock(&queue->send_mutex);
1226 			if (result > 0)
1227 				pending = true;
1228 			else if (unlikely(result < 0))
1229 				break;
1230 		}
1231 
1232 		result = nvme_tcp_try_recv(queue);
1233 		if (result > 0)
1234 			pending = true;
1235 		else if (unlikely(result < 0))
1236 			return;
1237 
1238 		if (!pending || !queue->rd_enabled)
1239 			return;
1240 
1241 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1242 
1243 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1244 }
1245 
1246 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1247 {
1248 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1249 
1250 	ahash_request_free(queue->rcv_hash);
1251 	ahash_request_free(queue->snd_hash);
1252 	crypto_free_ahash(tfm);
1253 }
1254 
1255 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1256 {
1257 	struct crypto_ahash *tfm;
1258 
1259 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1260 	if (IS_ERR(tfm))
1261 		return PTR_ERR(tfm);
1262 
1263 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1264 	if (!queue->snd_hash)
1265 		goto free_tfm;
1266 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1267 
1268 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1269 	if (!queue->rcv_hash)
1270 		goto free_snd_hash;
1271 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1272 
1273 	return 0;
1274 free_snd_hash:
1275 	ahash_request_free(queue->snd_hash);
1276 free_tfm:
1277 	crypto_free_ahash(tfm);
1278 	return -ENOMEM;
1279 }
1280 
1281 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1282 {
1283 	struct nvme_tcp_request *async = &ctrl->async_req;
1284 
1285 	page_frag_free(async->pdu);
1286 }
1287 
1288 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1289 {
1290 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1291 	struct nvme_tcp_request *async = &ctrl->async_req;
1292 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1293 
1294 	async->pdu = page_frag_alloc(&queue->pf_cache,
1295 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1296 		GFP_KERNEL | __GFP_ZERO);
1297 	if (!async->pdu)
1298 		return -ENOMEM;
1299 
1300 	async->queue = &ctrl->queues[0];
1301 	return 0;
1302 }
1303 
1304 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1305 {
1306 	struct page *page;
1307 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1308 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1309 	unsigned int noreclaim_flag;
1310 
1311 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1312 		return;
1313 
1314 	if (queue->hdr_digest || queue->data_digest)
1315 		nvme_tcp_free_crypto(queue);
1316 
1317 	if (queue->pf_cache.va) {
1318 		page = virt_to_head_page(queue->pf_cache.va);
1319 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1320 		queue->pf_cache.va = NULL;
1321 	}
1322 
1323 	noreclaim_flag = memalloc_noreclaim_save();
1324 	sock_release(queue->sock);
1325 	memalloc_noreclaim_restore(noreclaim_flag);
1326 
1327 	kfree(queue->pdu);
1328 	mutex_destroy(&queue->send_mutex);
1329 	mutex_destroy(&queue->queue_lock);
1330 }
1331 
1332 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1333 {
1334 	struct nvme_tcp_icreq_pdu *icreq;
1335 	struct nvme_tcp_icresp_pdu *icresp;
1336 	struct msghdr msg = {};
1337 	struct kvec iov;
1338 	bool ctrl_hdgst, ctrl_ddgst;
1339 	u32 maxh2cdata;
1340 	int ret;
1341 
1342 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1343 	if (!icreq)
1344 		return -ENOMEM;
1345 
1346 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1347 	if (!icresp) {
1348 		ret = -ENOMEM;
1349 		goto free_icreq;
1350 	}
1351 
1352 	icreq->hdr.type = nvme_tcp_icreq;
1353 	icreq->hdr.hlen = sizeof(*icreq);
1354 	icreq->hdr.pdo = 0;
1355 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1356 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1357 	icreq->maxr2t = 0; /* single inflight r2t supported */
1358 	icreq->hpda = 0; /* no alignment constraint */
1359 	if (queue->hdr_digest)
1360 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1361 	if (queue->data_digest)
1362 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1363 
1364 	iov.iov_base = icreq;
1365 	iov.iov_len = sizeof(*icreq);
1366 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1367 	if (ret < 0)
1368 		goto free_icresp;
1369 
1370 	memset(&msg, 0, sizeof(msg));
1371 	iov.iov_base = icresp;
1372 	iov.iov_len = sizeof(*icresp);
1373 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1374 			iov.iov_len, msg.msg_flags);
1375 	if (ret < 0)
1376 		goto free_icresp;
1377 
1378 	ret = -EINVAL;
1379 	if (icresp->hdr.type != nvme_tcp_icresp) {
1380 		pr_err("queue %d: bad type returned %d\n",
1381 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1382 		goto free_icresp;
1383 	}
1384 
1385 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1386 		pr_err("queue %d: bad pdu length returned %d\n",
1387 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1388 		goto free_icresp;
1389 	}
1390 
1391 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1392 		pr_err("queue %d: bad pfv returned %d\n",
1393 			nvme_tcp_queue_id(queue), icresp->pfv);
1394 		goto free_icresp;
1395 	}
1396 
1397 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1398 	if ((queue->data_digest && !ctrl_ddgst) ||
1399 	    (!queue->data_digest && ctrl_ddgst)) {
1400 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1401 			nvme_tcp_queue_id(queue),
1402 			queue->data_digest ? "enabled" : "disabled",
1403 			ctrl_ddgst ? "enabled" : "disabled");
1404 		goto free_icresp;
1405 	}
1406 
1407 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1408 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1409 	    (!queue->hdr_digest && ctrl_hdgst)) {
1410 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1411 			nvme_tcp_queue_id(queue),
1412 			queue->hdr_digest ? "enabled" : "disabled",
1413 			ctrl_hdgst ? "enabled" : "disabled");
1414 		goto free_icresp;
1415 	}
1416 
1417 	if (icresp->cpda != 0) {
1418 		pr_err("queue %d: unsupported cpda returned %d\n",
1419 			nvme_tcp_queue_id(queue), icresp->cpda);
1420 		goto free_icresp;
1421 	}
1422 
1423 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1424 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1425 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1426 		       nvme_tcp_queue_id(queue), maxh2cdata);
1427 		goto free_icresp;
1428 	}
1429 	queue->maxh2cdata = maxh2cdata;
1430 
1431 	ret = 0;
1432 free_icresp:
1433 	kfree(icresp);
1434 free_icreq:
1435 	kfree(icreq);
1436 	return ret;
1437 }
1438 
1439 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1440 {
1441 	return nvme_tcp_queue_id(queue) == 0;
1442 }
1443 
1444 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1445 {
1446 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1447 	int qid = nvme_tcp_queue_id(queue);
1448 
1449 	return !nvme_tcp_admin_queue(queue) &&
1450 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1451 }
1452 
1453 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1454 {
1455 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1456 	int qid = nvme_tcp_queue_id(queue);
1457 
1458 	return !nvme_tcp_admin_queue(queue) &&
1459 		!nvme_tcp_default_queue(queue) &&
1460 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1461 			  ctrl->io_queues[HCTX_TYPE_READ];
1462 }
1463 
1464 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1465 {
1466 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1467 	int qid = nvme_tcp_queue_id(queue);
1468 
1469 	return !nvme_tcp_admin_queue(queue) &&
1470 		!nvme_tcp_default_queue(queue) &&
1471 		!nvme_tcp_read_queue(queue) &&
1472 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1473 			  ctrl->io_queues[HCTX_TYPE_READ] +
1474 			  ctrl->io_queues[HCTX_TYPE_POLL];
1475 }
1476 
1477 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1478 {
1479 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1480 	int qid = nvme_tcp_queue_id(queue);
1481 	int n = 0;
1482 
1483 	if (nvme_tcp_default_queue(queue))
1484 		n = qid - 1;
1485 	else if (nvme_tcp_read_queue(queue))
1486 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1487 	else if (nvme_tcp_poll_queue(queue))
1488 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1489 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1490 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1491 }
1492 
1493 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1494 {
1495 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1496 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1497 	int ret, rcv_pdu_size;
1498 
1499 	mutex_init(&queue->queue_lock);
1500 	queue->ctrl = ctrl;
1501 	init_llist_head(&queue->req_list);
1502 	INIT_LIST_HEAD(&queue->send_list);
1503 	mutex_init(&queue->send_mutex);
1504 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1505 
1506 	if (qid > 0)
1507 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1508 	else
1509 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1510 						NVME_TCP_ADMIN_CCSZ;
1511 
1512 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1513 			IPPROTO_TCP, &queue->sock);
1514 	if (ret) {
1515 		dev_err(nctrl->device,
1516 			"failed to create socket: %d\n", ret);
1517 		goto err_destroy_mutex;
1518 	}
1519 
1520 	nvme_tcp_reclassify_socket(queue->sock);
1521 
1522 	/* Single syn retry */
1523 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1524 
1525 	/* Set TCP no delay */
1526 	tcp_sock_set_nodelay(queue->sock->sk);
1527 
1528 	/*
1529 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1530 	 * close. This is done to prevent stale data from being sent should
1531 	 * the network connection be restored before TCP times out.
1532 	 */
1533 	sock_no_linger(queue->sock->sk);
1534 
1535 	if (so_priority > 0)
1536 		sock_set_priority(queue->sock->sk, so_priority);
1537 
1538 	/* Set socket type of service */
1539 	if (nctrl->opts->tos >= 0)
1540 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1541 
1542 	/* Set 10 seconds timeout for icresp recvmsg */
1543 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1544 
1545 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1546 	queue->sock->sk->sk_use_task_frag = false;
1547 	nvme_tcp_set_queue_io_cpu(queue);
1548 	queue->request = NULL;
1549 	queue->data_remaining = 0;
1550 	queue->ddgst_remaining = 0;
1551 	queue->pdu_remaining = 0;
1552 	queue->pdu_offset = 0;
1553 	sk_set_memalloc(queue->sock->sk);
1554 
1555 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1556 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1557 			sizeof(ctrl->src_addr));
1558 		if (ret) {
1559 			dev_err(nctrl->device,
1560 				"failed to bind queue %d socket %d\n",
1561 				qid, ret);
1562 			goto err_sock;
1563 		}
1564 	}
1565 
1566 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1567 		char *iface = nctrl->opts->host_iface;
1568 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1569 
1570 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1571 				      optval, strlen(iface));
1572 		if (ret) {
1573 			dev_err(nctrl->device,
1574 			  "failed to bind to interface %s queue %d err %d\n",
1575 			  iface, qid, ret);
1576 			goto err_sock;
1577 		}
1578 	}
1579 
1580 	queue->hdr_digest = nctrl->opts->hdr_digest;
1581 	queue->data_digest = nctrl->opts->data_digest;
1582 	if (queue->hdr_digest || queue->data_digest) {
1583 		ret = nvme_tcp_alloc_crypto(queue);
1584 		if (ret) {
1585 			dev_err(nctrl->device,
1586 				"failed to allocate queue %d crypto\n", qid);
1587 			goto err_sock;
1588 		}
1589 	}
1590 
1591 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1592 			nvme_tcp_hdgst_len(queue);
1593 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1594 	if (!queue->pdu) {
1595 		ret = -ENOMEM;
1596 		goto err_crypto;
1597 	}
1598 
1599 	dev_dbg(nctrl->device, "connecting queue %d\n",
1600 			nvme_tcp_queue_id(queue));
1601 
1602 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1603 		sizeof(ctrl->addr), 0);
1604 	if (ret) {
1605 		dev_err(nctrl->device,
1606 			"failed to connect socket: %d\n", ret);
1607 		goto err_rcv_pdu;
1608 	}
1609 
1610 	ret = nvme_tcp_init_connection(queue);
1611 	if (ret)
1612 		goto err_init_connect;
1613 
1614 	queue->rd_enabled = true;
1615 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1616 	nvme_tcp_init_recv_ctx(queue);
1617 
1618 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1619 	queue->sock->sk->sk_user_data = queue;
1620 	queue->state_change = queue->sock->sk->sk_state_change;
1621 	queue->data_ready = queue->sock->sk->sk_data_ready;
1622 	queue->write_space = queue->sock->sk->sk_write_space;
1623 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1624 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1625 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1626 #ifdef CONFIG_NET_RX_BUSY_POLL
1627 	queue->sock->sk->sk_ll_usec = 1;
1628 #endif
1629 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1630 
1631 	return 0;
1632 
1633 err_init_connect:
1634 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1635 err_rcv_pdu:
1636 	kfree(queue->pdu);
1637 err_crypto:
1638 	if (queue->hdr_digest || queue->data_digest)
1639 		nvme_tcp_free_crypto(queue);
1640 err_sock:
1641 	sock_release(queue->sock);
1642 	queue->sock = NULL;
1643 err_destroy_mutex:
1644 	mutex_destroy(&queue->send_mutex);
1645 	mutex_destroy(&queue->queue_lock);
1646 	return ret;
1647 }
1648 
1649 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1650 {
1651 	struct socket *sock = queue->sock;
1652 
1653 	write_lock_bh(&sock->sk->sk_callback_lock);
1654 	sock->sk->sk_user_data  = NULL;
1655 	sock->sk->sk_data_ready = queue->data_ready;
1656 	sock->sk->sk_state_change = queue->state_change;
1657 	sock->sk->sk_write_space  = queue->write_space;
1658 	write_unlock_bh(&sock->sk->sk_callback_lock);
1659 }
1660 
1661 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1662 {
1663 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1664 	nvme_tcp_restore_sock_calls(queue);
1665 	cancel_work_sync(&queue->io_work);
1666 }
1667 
1668 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1669 {
1670 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1671 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1672 
1673 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1674 		return;
1675 
1676 	mutex_lock(&queue->queue_lock);
1677 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1678 		__nvme_tcp_stop_queue(queue);
1679 	mutex_unlock(&queue->queue_lock);
1680 }
1681 
1682 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1683 {
1684 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1685 	int ret;
1686 
1687 	if (idx)
1688 		ret = nvmf_connect_io_queue(nctrl, idx);
1689 	else
1690 		ret = nvmf_connect_admin_queue(nctrl);
1691 
1692 	if (!ret) {
1693 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1694 	} else {
1695 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1696 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1697 		dev_err(nctrl->device,
1698 			"failed to connect queue: %d ret=%d\n", idx, ret);
1699 	}
1700 	return ret;
1701 }
1702 
1703 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1704 {
1705 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1706 		cancel_work_sync(&ctrl->async_event_work);
1707 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1708 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1709 	}
1710 
1711 	nvme_tcp_free_queue(ctrl, 0);
1712 }
1713 
1714 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1715 {
1716 	int i;
1717 
1718 	for (i = 1; i < ctrl->queue_count; i++)
1719 		nvme_tcp_free_queue(ctrl, i);
1720 }
1721 
1722 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1723 {
1724 	int i;
1725 
1726 	for (i = 1; i < ctrl->queue_count; i++)
1727 		nvme_tcp_stop_queue(ctrl, i);
1728 }
1729 
1730 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1731 				    int first, int last)
1732 {
1733 	int i, ret;
1734 
1735 	for (i = first; i < last; i++) {
1736 		ret = nvme_tcp_start_queue(ctrl, i);
1737 		if (ret)
1738 			goto out_stop_queues;
1739 	}
1740 
1741 	return 0;
1742 
1743 out_stop_queues:
1744 	for (i--; i >= first; i--)
1745 		nvme_tcp_stop_queue(ctrl, i);
1746 	return ret;
1747 }
1748 
1749 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1750 {
1751 	int ret;
1752 
1753 	ret = nvme_tcp_alloc_queue(ctrl, 0);
1754 	if (ret)
1755 		return ret;
1756 
1757 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1758 	if (ret)
1759 		goto out_free_queue;
1760 
1761 	return 0;
1762 
1763 out_free_queue:
1764 	nvme_tcp_free_queue(ctrl, 0);
1765 	return ret;
1766 }
1767 
1768 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1769 {
1770 	int i, ret;
1771 
1772 	for (i = 1; i < ctrl->queue_count; i++) {
1773 		ret = nvme_tcp_alloc_queue(ctrl, i);
1774 		if (ret)
1775 			goto out_free_queues;
1776 	}
1777 
1778 	return 0;
1779 
1780 out_free_queues:
1781 	for (i--; i >= 1; i--)
1782 		nvme_tcp_free_queue(ctrl, i);
1783 
1784 	return ret;
1785 }
1786 
1787 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1788 {
1789 	unsigned int nr_io_queues;
1790 
1791 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1792 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1793 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1794 
1795 	return nr_io_queues;
1796 }
1797 
1798 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1799 		unsigned int nr_io_queues)
1800 {
1801 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1802 	struct nvmf_ctrl_options *opts = nctrl->opts;
1803 
1804 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1805 		/*
1806 		 * separate read/write queues
1807 		 * hand out dedicated default queues only after we have
1808 		 * sufficient read queues.
1809 		 */
1810 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1811 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1812 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1813 			min(opts->nr_write_queues, nr_io_queues);
1814 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1815 	} else {
1816 		/*
1817 		 * shared read/write queues
1818 		 * either no write queues were requested, or we don't have
1819 		 * sufficient queue count to have dedicated default queues.
1820 		 */
1821 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1822 			min(opts->nr_io_queues, nr_io_queues);
1823 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1824 	}
1825 
1826 	if (opts->nr_poll_queues && nr_io_queues) {
1827 		/* map dedicated poll queues only if we have queues left */
1828 		ctrl->io_queues[HCTX_TYPE_POLL] =
1829 			min(opts->nr_poll_queues, nr_io_queues);
1830 	}
1831 }
1832 
1833 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1834 {
1835 	unsigned int nr_io_queues;
1836 	int ret;
1837 
1838 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1839 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1840 	if (ret)
1841 		return ret;
1842 
1843 	if (nr_io_queues == 0) {
1844 		dev_err(ctrl->device,
1845 			"unable to set any I/O queues\n");
1846 		return -ENOMEM;
1847 	}
1848 
1849 	ctrl->queue_count = nr_io_queues + 1;
1850 	dev_info(ctrl->device,
1851 		"creating %d I/O queues.\n", nr_io_queues);
1852 
1853 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1854 
1855 	return __nvme_tcp_alloc_io_queues(ctrl);
1856 }
1857 
1858 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1859 {
1860 	nvme_tcp_stop_io_queues(ctrl);
1861 	if (remove)
1862 		nvme_remove_io_tag_set(ctrl);
1863 	nvme_tcp_free_io_queues(ctrl);
1864 }
1865 
1866 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1867 {
1868 	int ret, nr_queues;
1869 
1870 	ret = nvme_tcp_alloc_io_queues(ctrl);
1871 	if (ret)
1872 		return ret;
1873 
1874 	if (new) {
1875 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1876 				&nvme_tcp_mq_ops,
1877 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
1878 				sizeof(struct nvme_tcp_request));
1879 		if (ret)
1880 			goto out_free_io_queues;
1881 	}
1882 
1883 	/*
1884 	 * Only start IO queues for which we have allocated the tagset
1885 	 * and limitted it to the available queues. On reconnects, the
1886 	 * queue number might have changed.
1887 	 */
1888 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1889 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1890 	if (ret)
1891 		goto out_cleanup_connect_q;
1892 
1893 	if (!new) {
1894 		nvme_unquiesce_io_queues(ctrl);
1895 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1896 			/*
1897 			 * If we timed out waiting for freeze we are likely to
1898 			 * be stuck.  Fail the controller initialization just
1899 			 * to be safe.
1900 			 */
1901 			ret = -ENODEV;
1902 			goto out_wait_freeze_timed_out;
1903 		}
1904 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1905 			ctrl->queue_count - 1);
1906 		nvme_unfreeze(ctrl);
1907 	}
1908 
1909 	/*
1910 	 * If the number of queues has increased (reconnect case)
1911 	 * start all new queues now.
1912 	 */
1913 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1914 				       ctrl->tagset->nr_hw_queues + 1);
1915 	if (ret)
1916 		goto out_wait_freeze_timed_out;
1917 
1918 	return 0;
1919 
1920 out_wait_freeze_timed_out:
1921 	nvme_quiesce_io_queues(ctrl);
1922 	nvme_sync_io_queues(ctrl);
1923 	nvme_tcp_stop_io_queues(ctrl);
1924 out_cleanup_connect_q:
1925 	nvme_cancel_tagset(ctrl);
1926 	if (new)
1927 		nvme_remove_io_tag_set(ctrl);
1928 out_free_io_queues:
1929 	nvme_tcp_free_io_queues(ctrl);
1930 	return ret;
1931 }
1932 
1933 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1934 {
1935 	nvme_tcp_stop_queue(ctrl, 0);
1936 	if (remove)
1937 		nvme_remove_admin_tag_set(ctrl);
1938 	nvme_tcp_free_admin_queue(ctrl);
1939 }
1940 
1941 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1942 {
1943 	int error;
1944 
1945 	error = nvme_tcp_alloc_admin_queue(ctrl);
1946 	if (error)
1947 		return error;
1948 
1949 	if (new) {
1950 		error = nvme_alloc_admin_tag_set(ctrl,
1951 				&to_tcp_ctrl(ctrl)->admin_tag_set,
1952 				&nvme_tcp_admin_mq_ops,
1953 				sizeof(struct nvme_tcp_request));
1954 		if (error)
1955 			goto out_free_queue;
1956 	}
1957 
1958 	error = nvme_tcp_start_queue(ctrl, 0);
1959 	if (error)
1960 		goto out_cleanup_tagset;
1961 
1962 	error = nvme_enable_ctrl(ctrl);
1963 	if (error)
1964 		goto out_stop_queue;
1965 
1966 	nvme_unquiesce_admin_queue(ctrl);
1967 
1968 	error = nvme_init_ctrl_finish(ctrl, false);
1969 	if (error)
1970 		goto out_quiesce_queue;
1971 
1972 	return 0;
1973 
1974 out_quiesce_queue:
1975 	nvme_quiesce_admin_queue(ctrl);
1976 	blk_sync_queue(ctrl->admin_q);
1977 out_stop_queue:
1978 	nvme_tcp_stop_queue(ctrl, 0);
1979 	nvme_cancel_admin_tagset(ctrl);
1980 out_cleanup_tagset:
1981 	if (new)
1982 		nvme_remove_admin_tag_set(ctrl);
1983 out_free_queue:
1984 	nvme_tcp_free_admin_queue(ctrl);
1985 	return error;
1986 }
1987 
1988 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1989 		bool remove)
1990 {
1991 	nvme_quiesce_admin_queue(ctrl);
1992 	blk_sync_queue(ctrl->admin_q);
1993 	nvme_tcp_stop_queue(ctrl, 0);
1994 	nvme_cancel_admin_tagset(ctrl);
1995 	if (remove)
1996 		nvme_unquiesce_admin_queue(ctrl);
1997 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1998 }
1999 
2000 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2001 		bool remove)
2002 {
2003 	if (ctrl->queue_count <= 1)
2004 		return;
2005 	nvme_quiesce_admin_queue(ctrl);
2006 	nvme_start_freeze(ctrl);
2007 	nvme_quiesce_io_queues(ctrl);
2008 	nvme_sync_io_queues(ctrl);
2009 	nvme_tcp_stop_io_queues(ctrl);
2010 	nvme_cancel_tagset(ctrl);
2011 	if (remove)
2012 		nvme_unquiesce_io_queues(ctrl);
2013 	nvme_tcp_destroy_io_queues(ctrl, remove);
2014 }
2015 
2016 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2017 {
2018 	/* If we are resetting/deleting then do nothing */
2019 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2020 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2021 			ctrl->state == NVME_CTRL_LIVE);
2022 		return;
2023 	}
2024 
2025 	if (nvmf_should_reconnect(ctrl)) {
2026 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2027 			ctrl->opts->reconnect_delay);
2028 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2029 				ctrl->opts->reconnect_delay * HZ);
2030 	} else {
2031 		dev_info(ctrl->device, "Removing controller...\n");
2032 		nvme_delete_ctrl(ctrl);
2033 	}
2034 }
2035 
2036 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2037 {
2038 	struct nvmf_ctrl_options *opts = ctrl->opts;
2039 	int ret;
2040 
2041 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2042 	if (ret)
2043 		return ret;
2044 
2045 	if (ctrl->icdoff) {
2046 		ret = -EOPNOTSUPP;
2047 		dev_err(ctrl->device, "icdoff is not supported!\n");
2048 		goto destroy_admin;
2049 	}
2050 
2051 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2052 		ret = -EOPNOTSUPP;
2053 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2054 		goto destroy_admin;
2055 	}
2056 
2057 	if (opts->queue_size > ctrl->sqsize + 1)
2058 		dev_warn(ctrl->device,
2059 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2060 			opts->queue_size, ctrl->sqsize + 1);
2061 
2062 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2063 		dev_warn(ctrl->device,
2064 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2065 			ctrl->sqsize + 1, ctrl->maxcmd);
2066 		ctrl->sqsize = ctrl->maxcmd - 1;
2067 	}
2068 
2069 	if (ctrl->queue_count > 1) {
2070 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2071 		if (ret)
2072 			goto destroy_admin;
2073 	}
2074 
2075 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2076 		/*
2077 		 * state change failure is ok if we started ctrl delete,
2078 		 * unless we're during creation of a new controller to
2079 		 * avoid races with teardown flow.
2080 		 */
2081 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2082 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2083 		WARN_ON_ONCE(new);
2084 		ret = -EINVAL;
2085 		goto destroy_io;
2086 	}
2087 
2088 	nvme_start_ctrl(ctrl);
2089 	return 0;
2090 
2091 destroy_io:
2092 	if (ctrl->queue_count > 1) {
2093 		nvme_quiesce_io_queues(ctrl);
2094 		nvme_sync_io_queues(ctrl);
2095 		nvme_tcp_stop_io_queues(ctrl);
2096 		nvme_cancel_tagset(ctrl);
2097 		nvme_tcp_destroy_io_queues(ctrl, new);
2098 	}
2099 destroy_admin:
2100 	nvme_quiesce_admin_queue(ctrl);
2101 	blk_sync_queue(ctrl->admin_q);
2102 	nvme_tcp_stop_queue(ctrl, 0);
2103 	nvme_cancel_admin_tagset(ctrl);
2104 	nvme_tcp_destroy_admin_queue(ctrl, new);
2105 	return ret;
2106 }
2107 
2108 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2109 {
2110 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2111 			struct nvme_tcp_ctrl, connect_work);
2112 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2113 
2114 	++ctrl->nr_reconnects;
2115 
2116 	if (nvme_tcp_setup_ctrl(ctrl, false))
2117 		goto requeue;
2118 
2119 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2120 			ctrl->nr_reconnects);
2121 
2122 	ctrl->nr_reconnects = 0;
2123 
2124 	return;
2125 
2126 requeue:
2127 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2128 			ctrl->nr_reconnects);
2129 	nvme_tcp_reconnect_or_remove(ctrl);
2130 }
2131 
2132 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2133 {
2134 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2135 				struct nvme_tcp_ctrl, err_work);
2136 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2137 
2138 	nvme_stop_keep_alive(ctrl);
2139 	flush_work(&ctrl->async_event_work);
2140 	nvme_tcp_teardown_io_queues(ctrl, false);
2141 	/* unquiesce to fail fast pending requests */
2142 	nvme_unquiesce_io_queues(ctrl);
2143 	nvme_tcp_teardown_admin_queue(ctrl, false);
2144 	nvme_unquiesce_admin_queue(ctrl);
2145 	nvme_auth_stop(ctrl);
2146 
2147 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2148 		/* state change failure is ok if we started ctrl delete */
2149 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2150 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2151 		return;
2152 	}
2153 
2154 	nvme_tcp_reconnect_or_remove(ctrl);
2155 }
2156 
2157 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2158 {
2159 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2160 	nvme_quiesce_admin_queue(ctrl);
2161 	nvme_disable_ctrl(ctrl, shutdown);
2162 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2163 }
2164 
2165 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2166 {
2167 	nvme_tcp_teardown_ctrl(ctrl, true);
2168 }
2169 
2170 static void nvme_reset_ctrl_work(struct work_struct *work)
2171 {
2172 	struct nvme_ctrl *ctrl =
2173 		container_of(work, struct nvme_ctrl, reset_work);
2174 
2175 	nvme_stop_ctrl(ctrl);
2176 	nvme_tcp_teardown_ctrl(ctrl, false);
2177 
2178 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2179 		/* state change failure is ok if we started ctrl delete */
2180 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2181 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2182 		return;
2183 	}
2184 
2185 	if (nvme_tcp_setup_ctrl(ctrl, false))
2186 		goto out_fail;
2187 
2188 	return;
2189 
2190 out_fail:
2191 	++ctrl->nr_reconnects;
2192 	nvme_tcp_reconnect_or_remove(ctrl);
2193 }
2194 
2195 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2196 {
2197 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2198 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2199 }
2200 
2201 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2202 {
2203 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2204 
2205 	if (list_empty(&ctrl->list))
2206 		goto free_ctrl;
2207 
2208 	mutex_lock(&nvme_tcp_ctrl_mutex);
2209 	list_del(&ctrl->list);
2210 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2211 
2212 	nvmf_free_options(nctrl->opts);
2213 free_ctrl:
2214 	kfree(ctrl->queues);
2215 	kfree(ctrl);
2216 }
2217 
2218 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2219 {
2220 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2221 
2222 	sg->addr = 0;
2223 	sg->length = 0;
2224 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2225 			NVME_SGL_FMT_TRANSPORT_A;
2226 }
2227 
2228 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2229 		struct nvme_command *c, u32 data_len)
2230 {
2231 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2232 
2233 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2234 	sg->length = cpu_to_le32(data_len);
2235 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2236 }
2237 
2238 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2239 		u32 data_len)
2240 {
2241 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2242 
2243 	sg->addr = 0;
2244 	sg->length = cpu_to_le32(data_len);
2245 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2246 			NVME_SGL_FMT_TRANSPORT_A;
2247 }
2248 
2249 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2250 {
2251 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2252 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2253 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2254 	struct nvme_command *cmd = &pdu->cmd;
2255 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2256 
2257 	memset(pdu, 0, sizeof(*pdu));
2258 	pdu->hdr.type = nvme_tcp_cmd;
2259 	if (queue->hdr_digest)
2260 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2261 	pdu->hdr.hlen = sizeof(*pdu);
2262 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2263 
2264 	cmd->common.opcode = nvme_admin_async_event;
2265 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2266 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2267 	nvme_tcp_set_sg_null(cmd);
2268 
2269 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2270 	ctrl->async_req.offset = 0;
2271 	ctrl->async_req.curr_bio = NULL;
2272 	ctrl->async_req.data_len = 0;
2273 
2274 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2275 }
2276 
2277 static void nvme_tcp_complete_timed_out(struct request *rq)
2278 {
2279 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2280 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2281 
2282 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2283 	nvmf_complete_timed_out_request(rq);
2284 }
2285 
2286 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2287 {
2288 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2289 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2290 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2291 	u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2292 	int qid = nvme_tcp_queue_id(req->queue);
2293 
2294 	dev_warn(ctrl->device,
2295 		"queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2296 		nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2297 		opc, nvme_opcode_str(qid, opc, fctype));
2298 
2299 	if (ctrl->state != NVME_CTRL_LIVE) {
2300 		/*
2301 		 * If we are resetting, connecting or deleting we should
2302 		 * complete immediately because we may block controller
2303 		 * teardown or setup sequence
2304 		 * - ctrl disable/shutdown fabrics requests
2305 		 * - connect requests
2306 		 * - initialization admin requests
2307 		 * - I/O requests that entered after unquiescing and
2308 		 *   the controller stopped responding
2309 		 *
2310 		 * All other requests should be cancelled by the error
2311 		 * recovery work, so it's fine that we fail it here.
2312 		 */
2313 		nvme_tcp_complete_timed_out(rq);
2314 		return BLK_EH_DONE;
2315 	}
2316 
2317 	/*
2318 	 * LIVE state should trigger the normal error recovery which will
2319 	 * handle completing this request.
2320 	 */
2321 	nvme_tcp_error_recovery(ctrl);
2322 	return BLK_EH_RESET_TIMER;
2323 }
2324 
2325 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2326 			struct request *rq)
2327 {
2328 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2329 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2330 	struct nvme_command *c = &pdu->cmd;
2331 
2332 	c->common.flags |= NVME_CMD_SGL_METABUF;
2333 
2334 	if (!blk_rq_nr_phys_segments(rq))
2335 		nvme_tcp_set_sg_null(c);
2336 	else if (rq_data_dir(rq) == WRITE &&
2337 	    req->data_len <= nvme_tcp_inline_data_size(req))
2338 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2339 	else
2340 		nvme_tcp_set_sg_host_data(c, req->data_len);
2341 
2342 	return 0;
2343 }
2344 
2345 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2346 		struct request *rq)
2347 {
2348 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2349 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2350 	struct nvme_tcp_queue *queue = req->queue;
2351 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2352 	blk_status_t ret;
2353 
2354 	ret = nvme_setup_cmd(ns, rq);
2355 	if (ret)
2356 		return ret;
2357 
2358 	req->state = NVME_TCP_SEND_CMD_PDU;
2359 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2360 	req->offset = 0;
2361 	req->data_sent = 0;
2362 	req->pdu_len = 0;
2363 	req->pdu_sent = 0;
2364 	req->h2cdata_left = 0;
2365 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2366 				blk_rq_payload_bytes(rq) : 0;
2367 	req->curr_bio = rq->bio;
2368 	if (req->curr_bio && req->data_len)
2369 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2370 
2371 	if (rq_data_dir(rq) == WRITE &&
2372 	    req->data_len <= nvme_tcp_inline_data_size(req))
2373 		req->pdu_len = req->data_len;
2374 
2375 	pdu->hdr.type = nvme_tcp_cmd;
2376 	pdu->hdr.flags = 0;
2377 	if (queue->hdr_digest)
2378 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2379 	if (queue->data_digest && req->pdu_len) {
2380 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2381 		ddgst = nvme_tcp_ddgst_len(queue);
2382 	}
2383 	pdu->hdr.hlen = sizeof(*pdu);
2384 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2385 	pdu->hdr.plen =
2386 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2387 
2388 	ret = nvme_tcp_map_data(queue, rq);
2389 	if (unlikely(ret)) {
2390 		nvme_cleanup_cmd(rq);
2391 		dev_err(queue->ctrl->ctrl.device,
2392 			"Failed to map data (%d)\n", ret);
2393 		return ret;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2400 {
2401 	struct nvme_tcp_queue *queue = hctx->driver_data;
2402 
2403 	if (!llist_empty(&queue->req_list))
2404 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2405 }
2406 
2407 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2408 		const struct blk_mq_queue_data *bd)
2409 {
2410 	struct nvme_ns *ns = hctx->queue->queuedata;
2411 	struct nvme_tcp_queue *queue = hctx->driver_data;
2412 	struct request *rq = bd->rq;
2413 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2414 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2415 	blk_status_t ret;
2416 
2417 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2418 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2419 
2420 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2421 	if (unlikely(ret))
2422 		return ret;
2423 
2424 	nvme_start_request(rq);
2425 
2426 	nvme_tcp_queue_request(req, true, bd->last);
2427 
2428 	return BLK_STS_OK;
2429 }
2430 
2431 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2432 {
2433 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2434 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2435 
2436 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2437 		/* separate read/write queues */
2438 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2439 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2440 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2441 		set->map[HCTX_TYPE_READ].nr_queues =
2442 			ctrl->io_queues[HCTX_TYPE_READ];
2443 		set->map[HCTX_TYPE_READ].queue_offset =
2444 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2445 	} else {
2446 		/* shared read/write queues */
2447 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2448 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2449 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2450 		set->map[HCTX_TYPE_READ].nr_queues =
2451 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2452 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2453 	}
2454 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2455 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2456 
2457 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2458 		/* map dedicated poll queues only if we have queues left */
2459 		set->map[HCTX_TYPE_POLL].nr_queues =
2460 				ctrl->io_queues[HCTX_TYPE_POLL];
2461 		set->map[HCTX_TYPE_POLL].queue_offset =
2462 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2463 			ctrl->io_queues[HCTX_TYPE_READ];
2464 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2465 	}
2466 
2467 	dev_info(ctrl->ctrl.device,
2468 		"mapped %d/%d/%d default/read/poll queues.\n",
2469 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2470 		ctrl->io_queues[HCTX_TYPE_READ],
2471 		ctrl->io_queues[HCTX_TYPE_POLL]);
2472 }
2473 
2474 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2475 {
2476 	struct nvme_tcp_queue *queue = hctx->driver_data;
2477 	struct sock *sk = queue->sock->sk;
2478 
2479 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2480 		return 0;
2481 
2482 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2483 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2484 		sk_busy_loop(sk, true);
2485 	nvme_tcp_try_recv(queue);
2486 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2487 	return queue->nr_cqe;
2488 }
2489 
2490 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2491 {
2492 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2493 	struct sockaddr_storage src_addr;
2494 	int ret, len;
2495 
2496 	len = nvmf_get_address(ctrl, buf, size);
2497 
2498 	mutex_lock(&queue->queue_lock);
2499 
2500 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2501 		goto done;
2502 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2503 	if (ret > 0) {
2504 		if (len > 0)
2505 			len--; /* strip trailing newline */
2506 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2507 				(len) ? "," : "", &src_addr);
2508 	}
2509 done:
2510 	mutex_unlock(&queue->queue_lock);
2511 
2512 	return len;
2513 }
2514 
2515 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2516 	.queue_rq	= nvme_tcp_queue_rq,
2517 	.commit_rqs	= nvme_tcp_commit_rqs,
2518 	.complete	= nvme_complete_rq,
2519 	.init_request	= nvme_tcp_init_request,
2520 	.exit_request	= nvme_tcp_exit_request,
2521 	.init_hctx	= nvme_tcp_init_hctx,
2522 	.timeout	= nvme_tcp_timeout,
2523 	.map_queues	= nvme_tcp_map_queues,
2524 	.poll		= nvme_tcp_poll,
2525 };
2526 
2527 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2528 	.queue_rq	= nvme_tcp_queue_rq,
2529 	.complete	= nvme_complete_rq,
2530 	.init_request	= nvme_tcp_init_request,
2531 	.exit_request	= nvme_tcp_exit_request,
2532 	.init_hctx	= nvme_tcp_init_admin_hctx,
2533 	.timeout	= nvme_tcp_timeout,
2534 };
2535 
2536 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2537 	.name			= "tcp",
2538 	.module			= THIS_MODULE,
2539 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2540 	.reg_read32		= nvmf_reg_read32,
2541 	.reg_read64		= nvmf_reg_read64,
2542 	.reg_write32		= nvmf_reg_write32,
2543 	.free_ctrl		= nvme_tcp_free_ctrl,
2544 	.submit_async_event	= nvme_tcp_submit_async_event,
2545 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2546 	.get_address		= nvme_tcp_get_address,
2547 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2548 };
2549 
2550 static bool
2551 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2552 {
2553 	struct nvme_tcp_ctrl *ctrl;
2554 	bool found = false;
2555 
2556 	mutex_lock(&nvme_tcp_ctrl_mutex);
2557 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2558 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2559 		if (found)
2560 			break;
2561 	}
2562 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2563 
2564 	return found;
2565 }
2566 
2567 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2568 		struct nvmf_ctrl_options *opts)
2569 {
2570 	struct nvme_tcp_ctrl *ctrl;
2571 	int ret;
2572 
2573 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2574 	if (!ctrl)
2575 		return ERR_PTR(-ENOMEM);
2576 
2577 	INIT_LIST_HEAD(&ctrl->list);
2578 	ctrl->ctrl.opts = opts;
2579 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2580 				opts->nr_poll_queues + 1;
2581 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2582 	ctrl->ctrl.kato = opts->kato;
2583 
2584 	INIT_DELAYED_WORK(&ctrl->connect_work,
2585 			nvme_tcp_reconnect_ctrl_work);
2586 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2587 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2588 
2589 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2590 		opts->trsvcid =
2591 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2592 		if (!opts->trsvcid) {
2593 			ret = -ENOMEM;
2594 			goto out_free_ctrl;
2595 		}
2596 		opts->mask |= NVMF_OPT_TRSVCID;
2597 	}
2598 
2599 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2600 			opts->traddr, opts->trsvcid, &ctrl->addr);
2601 	if (ret) {
2602 		pr_err("malformed address passed: %s:%s\n",
2603 			opts->traddr, opts->trsvcid);
2604 		goto out_free_ctrl;
2605 	}
2606 
2607 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2608 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2609 			opts->host_traddr, NULL, &ctrl->src_addr);
2610 		if (ret) {
2611 			pr_err("malformed src address passed: %s\n",
2612 			       opts->host_traddr);
2613 			goto out_free_ctrl;
2614 		}
2615 	}
2616 
2617 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2618 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2619 			pr_err("invalid interface passed: %s\n",
2620 			       opts->host_iface);
2621 			ret = -ENODEV;
2622 			goto out_free_ctrl;
2623 		}
2624 	}
2625 
2626 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2627 		ret = -EALREADY;
2628 		goto out_free_ctrl;
2629 	}
2630 
2631 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2632 				GFP_KERNEL);
2633 	if (!ctrl->queues) {
2634 		ret = -ENOMEM;
2635 		goto out_free_ctrl;
2636 	}
2637 
2638 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2639 	if (ret)
2640 		goto out_kfree_queues;
2641 
2642 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2643 		WARN_ON_ONCE(1);
2644 		ret = -EINTR;
2645 		goto out_uninit_ctrl;
2646 	}
2647 
2648 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2649 	if (ret)
2650 		goto out_uninit_ctrl;
2651 
2652 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2653 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2654 
2655 	mutex_lock(&nvme_tcp_ctrl_mutex);
2656 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2657 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2658 
2659 	return &ctrl->ctrl;
2660 
2661 out_uninit_ctrl:
2662 	nvme_uninit_ctrl(&ctrl->ctrl);
2663 	nvme_put_ctrl(&ctrl->ctrl);
2664 	if (ret > 0)
2665 		ret = -EIO;
2666 	return ERR_PTR(ret);
2667 out_kfree_queues:
2668 	kfree(ctrl->queues);
2669 out_free_ctrl:
2670 	kfree(ctrl);
2671 	return ERR_PTR(ret);
2672 }
2673 
2674 static struct nvmf_transport_ops nvme_tcp_transport = {
2675 	.name		= "tcp",
2676 	.module		= THIS_MODULE,
2677 	.required_opts	= NVMF_OPT_TRADDR,
2678 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2679 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2680 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2681 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2682 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2683 	.create_ctrl	= nvme_tcp_create_ctrl,
2684 };
2685 
2686 static int __init nvme_tcp_init_module(void)
2687 {
2688 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2689 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2690 	if (!nvme_tcp_wq)
2691 		return -ENOMEM;
2692 
2693 	nvmf_register_transport(&nvme_tcp_transport);
2694 	return 0;
2695 }
2696 
2697 static void __exit nvme_tcp_cleanup_module(void)
2698 {
2699 	struct nvme_tcp_ctrl *ctrl;
2700 
2701 	nvmf_unregister_transport(&nvme_tcp_transport);
2702 
2703 	mutex_lock(&nvme_tcp_ctrl_mutex);
2704 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2705 		nvme_delete_ctrl(&ctrl->ctrl);
2706 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2707 	flush_workqueue(nvme_delete_wq);
2708 
2709 	destroy_workqueue(nvme_tcp_wq);
2710 }
2711 
2712 module_init(nvme_tcp_init_module);
2713 module_exit(nvme_tcp_cleanup_module);
2714 
2715 MODULE_LICENSE("GPL v2");
2716