xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision acf50233)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42 
43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 	struct sock *sk = sock->sk;
46 
47 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 		return;
49 
50 	switch (sk->sk_family) {
51 	case AF_INET:
52 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 					      &nvme_tcp_slock_key[0],
54 					      "sk_lock-AF_INET-NVME",
55 					      &nvme_tcp_sk_key[0]);
56 		break;
57 	case AF_INET6:
58 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 					      &nvme_tcp_slock_key[1],
60 					      "sk_lock-AF_INET6-NVME",
61 					      &nvme_tcp_sk_key[1]);
62 		break;
63 	default:
64 		WARN_ON_ONCE(1);
65 	}
66 }
67 #else
68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70 
71 enum nvme_tcp_send_state {
72 	NVME_TCP_SEND_CMD_PDU = 0,
73 	NVME_TCP_SEND_H2C_PDU,
74 	NVME_TCP_SEND_DATA,
75 	NVME_TCP_SEND_DDGST,
76 };
77 
78 struct nvme_tcp_request {
79 	struct nvme_request	req;
80 	void			*pdu;
81 	struct nvme_tcp_queue	*queue;
82 	u32			data_len;
83 	u32			pdu_len;
84 	u32			pdu_sent;
85 	u32			h2cdata_left;
86 	u32			h2cdata_offset;
87 	u16			ttag;
88 	__le16			status;
89 	struct list_head	entry;
90 	struct llist_node	lentry;
91 	__le32			ddgst;
92 
93 	struct bio		*curr_bio;
94 	struct iov_iter		iter;
95 
96 	/* send state */
97 	size_t			offset;
98 	size_t			data_sent;
99 	enum nvme_tcp_send_state state;
100 };
101 
102 enum nvme_tcp_queue_flags {
103 	NVME_TCP_Q_ALLOCATED	= 0,
104 	NVME_TCP_Q_LIVE		= 1,
105 	NVME_TCP_Q_POLLING	= 2,
106 };
107 
108 enum nvme_tcp_recv_state {
109 	NVME_TCP_RECV_PDU = 0,
110 	NVME_TCP_RECV_DATA,
111 	NVME_TCP_RECV_DDGST,
112 };
113 
114 struct nvme_tcp_ctrl;
115 struct nvme_tcp_queue {
116 	struct socket		*sock;
117 	struct work_struct	io_work;
118 	int			io_cpu;
119 
120 	struct mutex		queue_lock;
121 	struct mutex		send_mutex;
122 	struct llist_head	req_list;
123 	struct list_head	send_list;
124 	bool			more_requests;
125 
126 	/* recv state */
127 	void			*pdu;
128 	int			pdu_remaining;
129 	int			pdu_offset;
130 	size_t			data_remaining;
131 	size_t			ddgst_remaining;
132 	unsigned int		nr_cqe;
133 
134 	/* send state */
135 	struct nvme_tcp_request *request;
136 
137 	int			queue_size;
138 	u32			maxh2cdata;
139 	size_t			cmnd_capsule_len;
140 	struct nvme_tcp_ctrl	*ctrl;
141 	unsigned long		flags;
142 	bool			rd_enabled;
143 
144 	bool			hdr_digest;
145 	bool			data_digest;
146 	struct ahash_request	*rcv_hash;
147 	struct ahash_request	*snd_hash;
148 	__le32			exp_ddgst;
149 	__le32			recv_ddgst;
150 
151 	struct page_frag_cache	pf_cache;
152 
153 	void (*state_change)(struct sock *);
154 	void (*data_ready)(struct sock *);
155 	void (*write_space)(struct sock *);
156 };
157 
158 struct nvme_tcp_ctrl {
159 	/* read only in the hot path */
160 	struct nvme_tcp_queue	*queues;
161 	struct blk_mq_tag_set	tag_set;
162 
163 	/* other member variables */
164 	struct list_head	list;
165 	struct blk_mq_tag_set	admin_tag_set;
166 	struct sockaddr_storage addr;
167 	struct sockaddr_storage src_addr;
168 	struct nvme_ctrl	ctrl;
169 
170 	struct work_struct	err_work;
171 	struct delayed_work	connect_work;
172 	struct nvme_tcp_request async_req;
173 	u32			io_queues[HCTX_MAX_TYPES];
174 };
175 
176 static LIST_HEAD(nvme_tcp_ctrl_list);
177 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
178 static struct workqueue_struct *nvme_tcp_wq;
179 static const struct blk_mq_ops nvme_tcp_mq_ops;
180 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
181 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
182 
183 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
184 {
185 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
186 }
187 
188 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
189 {
190 	return queue - queue->ctrl->queues;
191 }
192 
193 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
194 {
195 	u32 queue_idx = nvme_tcp_queue_id(queue);
196 
197 	if (queue_idx == 0)
198 		return queue->ctrl->admin_tag_set.tags[queue_idx];
199 	return queue->ctrl->tag_set.tags[queue_idx - 1];
200 }
201 
202 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
203 {
204 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
205 }
206 
207 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
208 {
209 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
210 }
211 
212 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
213 {
214 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
215 }
216 
217 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
218 {
219 	return req == &req->queue->ctrl->async_req;
220 }
221 
222 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
223 {
224 	struct request *rq;
225 
226 	if (unlikely(nvme_tcp_async_req(req)))
227 		return false; /* async events don't have a request */
228 
229 	rq = blk_mq_rq_from_pdu(req);
230 
231 	return rq_data_dir(rq) == WRITE && req->data_len &&
232 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
233 }
234 
235 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
236 {
237 	return req->iter.bvec->bv_page;
238 }
239 
240 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
241 {
242 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
243 }
244 
245 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
246 {
247 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
248 			req->pdu_len - req->pdu_sent);
249 }
250 
251 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
252 {
253 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
254 			req->pdu_len - req->pdu_sent : 0;
255 }
256 
257 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
258 		int len)
259 {
260 	return nvme_tcp_pdu_data_left(req) <= len;
261 }
262 
263 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
264 		unsigned int dir)
265 {
266 	struct request *rq = blk_mq_rq_from_pdu(req);
267 	struct bio_vec *vec;
268 	unsigned int size;
269 	int nr_bvec;
270 	size_t offset;
271 
272 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
273 		vec = &rq->special_vec;
274 		nr_bvec = 1;
275 		size = blk_rq_payload_bytes(rq);
276 		offset = 0;
277 	} else {
278 		struct bio *bio = req->curr_bio;
279 		struct bvec_iter bi;
280 		struct bio_vec bv;
281 
282 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
283 		nr_bvec = 0;
284 		bio_for_each_bvec(bv, bio, bi) {
285 			nr_bvec++;
286 		}
287 		size = bio->bi_iter.bi_size;
288 		offset = bio->bi_iter.bi_bvec_done;
289 	}
290 
291 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
292 	req->iter.iov_offset = offset;
293 }
294 
295 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
296 		int len)
297 {
298 	req->data_sent += len;
299 	req->pdu_sent += len;
300 	iov_iter_advance(&req->iter, len);
301 	if (!iov_iter_count(&req->iter) &&
302 	    req->data_sent < req->data_len) {
303 		req->curr_bio = req->curr_bio->bi_next;
304 		nvme_tcp_init_iter(req, WRITE);
305 	}
306 }
307 
308 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
309 {
310 	int ret;
311 
312 	/* drain the send queue as much as we can... */
313 	do {
314 		ret = nvme_tcp_try_send(queue);
315 	} while (ret > 0);
316 }
317 
318 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
319 {
320 	return !list_empty(&queue->send_list) ||
321 		!llist_empty(&queue->req_list) || queue->more_requests;
322 }
323 
324 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
325 		bool sync, bool last)
326 {
327 	struct nvme_tcp_queue *queue = req->queue;
328 	bool empty;
329 
330 	empty = llist_add(&req->lentry, &queue->req_list) &&
331 		list_empty(&queue->send_list) && !queue->request;
332 
333 	/*
334 	 * if we're the first on the send_list and we can try to send
335 	 * directly, otherwise queue io_work. Also, only do that if we
336 	 * are on the same cpu, so we don't introduce contention.
337 	 */
338 	if (queue->io_cpu == raw_smp_processor_id() &&
339 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
340 		queue->more_requests = !last;
341 		nvme_tcp_send_all(queue);
342 		queue->more_requests = false;
343 		mutex_unlock(&queue->send_mutex);
344 	}
345 
346 	if (last && nvme_tcp_queue_more(queue))
347 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
348 }
349 
350 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
351 {
352 	struct nvme_tcp_request *req;
353 	struct llist_node *node;
354 
355 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
356 		req = llist_entry(node, struct nvme_tcp_request, lentry);
357 		list_add(&req->entry, &queue->send_list);
358 	}
359 }
360 
361 static inline struct nvme_tcp_request *
362 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
363 {
364 	struct nvme_tcp_request *req;
365 
366 	req = list_first_entry_or_null(&queue->send_list,
367 			struct nvme_tcp_request, entry);
368 	if (!req) {
369 		nvme_tcp_process_req_list(queue);
370 		req = list_first_entry_or_null(&queue->send_list,
371 				struct nvme_tcp_request, entry);
372 		if (unlikely(!req))
373 			return NULL;
374 	}
375 
376 	list_del(&req->entry);
377 	return req;
378 }
379 
380 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
381 		__le32 *dgst)
382 {
383 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
384 	crypto_ahash_final(hash);
385 }
386 
387 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
388 		struct page *page, off_t off, size_t len)
389 {
390 	struct scatterlist sg;
391 
392 	sg_init_marker(&sg, 1);
393 	sg_set_page(&sg, page, len, off);
394 	ahash_request_set_crypt(hash, &sg, NULL, len);
395 	crypto_ahash_update(hash);
396 }
397 
398 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
399 		void *pdu, size_t len)
400 {
401 	struct scatterlist sg;
402 
403 	sg_init_one(&sg, pdu, len);
404 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
405 	crypto_ahash_digest(hash);
406 }
407 
408 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
409 		void *pdu, size_t pdu_len)
410 {
411 	struct nvme_tcp_hdr *hdr = pdu;
412 	__le32 recv_digest;
413 	__le32 exp_digest;
414 
415 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
416 		dev_err(queue->ctrl->ctrl.device,
417 			"queue %d: header digest flag is cleared\n",
418 			nvme_tcp_queue_id(queue));
419 		return -EPROTO;
420 	}
421 
422 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
423 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
424 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
425 	if (recv_digest != exp_digest) {
426 		dev_err(queue->ctrl->ctrl.device,
427 			"header digest error: recv %#x expected %#x\n",
428 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
429 		return -EIO;
430 	}
431 
432 	return 0;
433 }
434 
435 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
436 {
437 	struct nvme_tcp_hdr *hdr = pdu;
438 	u8 digest_len = nvme_tcp_hdgst_len(queue);
439 	u32 len;
440 
441 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
442 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
443 
444 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
445 		dev_err(queue->ctrl->ctrl.device,
446 			"queue %d: data digest flag is cleared\n",
447 		nvme_tcp_queue_id(queue));
448 		return -EPROTO;
449 	}
450 	crypto_ahash_init(queue->rcv_hash);
451 
452 	return 0;
453 }
454 
455 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
456 		struct request *rq, unsigned int hctx_idx)
457 {
458 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
459 
460 	page_frag_free(req->pdu);
461 }
462 
463 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
464 		struct request *rq, unsigned int hctx_idx,
465 		unsigned int numa_node)
466 {
467 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
468 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
469 	struct nvme_tcp_cmd_pdu *pdu;
470 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
471 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
472 	u8 hdgst = nvme_tcp_hdgst_len(queue);
473 
474 	req->pdu = page_frag_alloc(&queue->pf_cache,
475 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
476 		GFP_KERNEL | __GFP_ZERO);
477 	if (!req->pdu)
478 		return -ENOMEM;
479 
480 	pdu = req->pdu;
481 	req->queue = queue;
482 	nvme_req(rq)->ctrl = &ctrl->ctrl;
483 	nvme_req(rq)->cmd = &pdu->cmd;
484 
485 	return 0;
486 }
487 
488 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
489 		unsigned int hctx_idx)
490 {
491 	struct nvme_tcp_ctrl *ctrl = data;
492 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
493 
494 	hctx->driver_data = queue;
495 	return 0;
496 }
497 
498 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
499 		unsigned int hctx_idx)
500 {
501 	struct nvme_tcp_ctrl *ctrl = data;
502 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
503 
504 	hctx->driver_data = queue;
505 	return 0;
506 }
507 
508 static enum nvme_tcp_recv_state
509 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
510 {
511 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
512 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
513 		NVME_TCP_RECV_DATA;
514 }
515 
516 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
517 {
518 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
519 				nvme_tcp_hdgst_len(queue);
520 	queue->pdu_offset = 0;
521 	queue->data_remaining = -1;
522 	queue->ddgst_remaining = 0;
523 }
524 
525 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
526 {
527 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
528 		return;
529 
530 	dev_warn(ctrl->device, "starting error recovery\n");
531 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
532 }
533 
534 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
535 		struct nvme_completion *cqe)
536 {
537 	struct nvme_tcp_request *req;
538 	struct request *rq;
539 
540 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
541 	if (!rq) {
542 		dev_err(queue->ctrl->ctrl.device,
543 			"got bad cqe.command_id %#x on queue %d\n",
544 			cqe->command_id, nvme_tcp_queue_id(queue));
545 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
546 		return -EINVAL;
547 	}
548 
549 	req = blk_mq_rq_to_pdu(rq);
550 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
551 		req->status = cqe->status;
552 
553 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
554 		nvme_complete_rq(rq);
555 	queue->nr_cqe++;
556 
557 	return 0;
558 }
559 
560 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
561 		struct nvme_tcp_data_pdu *pdu)
562 {
563 	struct request *rq;
564 
565 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
566 	if (!rq) {
567 		dev_err(queue->ctrl->ctrl.device,
568 			"got bad c2hdata.command_id %#x on queue %d\n",
569 			pdu->command_id, nvme_tcp_queue_id(queue));
570 		return -ENOENT;
571 	}
572 
573 	if (!blk_rq_payload_bytes(rq)) {
574 		dev_err(queue->ctrl->ctrl.device,
575 			"queue %d tag %#x unexpected data\n",
576 			nvme_tcp_queue_id(queue), rq->tag);
577 		return -EIO;
578 	}
579 
580 	queue->data_remaining = le32_to_cpu(pdu->data_length);
581 
582 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
583 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
584 		dev_err(queue->ctrl->ctrl.device,
585 			"queue %d tag %#x SUCCESS set but not last PDU\n",
586 			nvme_tcp_queue_id(queue), rq->tag);
587 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
588 		return -EPROTO;
589 	}
590 
591 	return 0;
592 }
593 
594 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
595 		struct nvme_tcp_rsp_pdu *pdu)
596 {
597 	struct nvme_completion *cqe = &pdu->cqe;
598 	int ret = 0;
599 
600 	/*
601 	 * AEN requests are special as they don't time out and can
602 	 * survive any kind of queue freeze and often don't respond to
603 	 * aborts.  We don't even bother to allocate a struct request
604 	 * for them but rather special case them here.
605 	 */
606 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
607 				     cqe->command_id)))
608 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
609 				&cqe->result);
610 	else
611 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
612 
613 	return ret;
614 }
615 
616 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
617 {
618 	struct nvme_tcp_data_pdu *data = req->pdu;
619 	struct nvme_tcp_queue *queue = req->queue;
620 	struct request *rq = blk_mq_rq_from_pdu(req);
621 	u32 h2cdata_sent = req->pdu_len;
622 	u8 hdgst = nvme_tcp_hdgst_len(queue);
623 	u8 ddgst = nvme_tcp_ddgst_len(queue);
624 
625 	req->state = NVME_TCP_SEND_H2C_PDU;
626 	req->offset = 0;
627 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
628 	req->pdu_sent = 0;
629 	req->h2cdata_left -= req->pdu_len;
630 	req->h2cdata_offset += h2cdata_sent;
631 
632 	memset(data, 0, sizeof(*data));
633 	data->hdr.type = nvme_tcp_h2c_data;
634 	if (!req->h2cdata_left)
635 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
636 	if (queue->hdr_digest)
637 		data->hdr.flags |= NVME_TCP_F_HDGST;
638 	if (queue->data_digest)
639 		data->hdr.flags |= NVME_TCP_F_DDGST;
640 	data->hdr.hlen = sizeof(*data);
641 	data->hdr.pdo = data->hdr.hlen + hdgst;
642 	data->hdr.plen =
643 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
644 	data->ttag = req->ttag;
645 	data->command_id = nvme_cid(rq);
646 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
647 	data->data_length = cpu_to_le32(req->pdu_len);
648 }
649 
650 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
651 		struct nvme_tcp_r2t_pdu *pdu)
652 {
653 	struct nvme_tcp_request *req;
654 	struct request *rq;
655 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
656 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
657 
658 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
659 	if (!rq) {
660 		dev_err(queue->ctrl->ctrl.device,
661 			"got bad r2t.command_id %#x on queue %d\n",
662 			pdu->command_id, nvme_tcp_queue_id(queue));
663 		return -ENOENT;
664 	}
665 	req = blk_mq_rq_to_pdu(rq);
666 
667 	if (unlikely(!r2t_length)) {
668 		dev_err(queue->ctrl->ctrl.device,
669 			"req %d r2t len is %u, probably a bug...\n",
670 			rq->tag, r2t_length);
671 		return -EPROTO;
672 	}
673 
674 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
675 		dev_err(queue->ctrl->ctrl.device,
676 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
677 			rq->tag, r2t_length, req->data_len, req->data_sent);
678 		return -EPROTO;
679 	}
680 
681 	if (unlikely(r2t_offset < req->data_sent)) {
682 		dev_err(queue->ctrl->ctrl.device,
683 			"req %d unexpected r2t offset %u (expected %zu)\n",
684 			rq->tag, r2t_offset, req->data_sent);
685 		return -EPROTO;
686 	}
687 
688 	req->pdu_len = 0;
689 	req->h2cdata_left = r2t_length;
690 	req->h2cdata_offset = r2t_offset;
691 	req->ttag = pdu->ttag;
692 
693 	nvme_tcp_setup_h2c_data_pdu(req);
694 	nvme_tcp_queue_request(req, false, true);
695 
696 	return 0;
697 }
698 
699 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
700 		unsigned int *offset, size_t *len)
701 {
702 	struct nvme_tcp_hdr *hdr;
703 	char *pdu = queue->pdu;
704 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
705 	int ret;
706 
707 	ret = skb_copy_bits(skb, *offset,
708 		&pdu[queue->pdu_offset], rcv_len);
709 	if (unlikely(ret))
710 		return ret;
711 
712 	queue->pdu_remaining -= rcv_len;
713 	queue->pdu_offset += rcv_len;
714 	*offset += rcv_len;
715 	*len -= rcv_len;
716 	if (queue->pdu_remaining)
717 		return 0;
718 
719 	hdr = queue->pdu;
720 	if (queue->hdr_digest) {
721 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
722 		if (unlikely(ret))
723 			return ret;
724 	}
725 
726 
727 	if (queue->data_digest) {
728 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
729 		if (unlikely(ret))
730 			return ret;
731 	}
732 
733 	switch (hdr->type) {
734 	case nvme_tcp_c2h_data:
735 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
736 	case nvme_tcp_rsp:
737 		nvme_tcp_init_recv_ctx(queue);
738 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
739 	case nvme_tcp_r2t:
740 		nvme_tcp_init_recv_ctx(queue);
741 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
742 	default:
743 		dev_err(queue->ctrl->ctrl.device,
744 			"unsupported pdu type (%d)\n", hdr->type);
745 		return -EINVAL;
746 	}
747 }
748 
749 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
750 {
751 	union nvme_result res = {};
752 
753 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
754 		nvme_complete_rq(rq);
755 }
756 
757 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
758 			      unsigned int *offset, size_t *len)
759 {
760 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
761 	struct request *rq =
762 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
763 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
764 
765 	while (true) {
766 		int recv_len, ret;
767 
768 		recv_len = min_t(size_t, *len, queue->data_remaining);
769 		if (!recv_len)
770 			break;
771 
772 		if (!iov_iter_count(&req->iter)) {
773 			req->curr_bio = req->curr_bio->bi_next;
774 
775 			/*
776 			 * If we don`t have any bios it means that controller
777 			 * sent more data than we requested, hence error
778 			 */
779 			if (!req->curr_bio) {
780 				dev_err(queue->ctrl->ctrl.device,
781 					"queue %d no space in request %#x",
782 					nvme_tcp_queue_id(queue), rq->tag);
783 				nvme_tcp_init_recv_ctx(queue);
784 				return -EIO;
785 			}
786 			nvme_tcp_init_iter(req, READ);
787 		}
788 
789 		/* we can read only from what is left in this bio */
790 		recv_len = min_t(size_t, recv_len,
791 				iov_iter_count(&req->iter));
792 
793 		if (queue->data_digest)
794 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
795 				&req->iter, recv_len, queue->rcv_hash);
796 		else
797 			ret = skb_copy_datagram_iter(skb, *offset,
798 					&req->iter, recv_len);
799 		if (ret) {
800 			dev_err(queue->ctrl->ctrl.device,
801 				"queue %d failed to copy request %#x data",
802 				nvme_tcp_queue_id(queue), rq->tag);
803 			return ret;
804 		}
805 
806 		*len -= recv_len;
807 		*offset += recv_len;
808 		queue->data_remaining -= recv_len;
809 	}
810 
811 	if (!queue->data_remaining) {
812 		if (queue->data_digest) {
813 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
814 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
815 		} else {
816 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
817 				nvme_tcp_end_request(rq,
818 						le16_to_cpu(req->status));
819 				queue->nr_cqe++;
820 			}
821 			nvme_tcp_init_recv_ctx(queue);
822 		}
823 	}
824 
825 	return 0;
826 }
827 
828 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
829 		struct sk_buff *skb, unsigned int *offset, size_t *len)
830 {
831 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
832 	char *ddgst = (char *)&queue->recv_ddgst;
833 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
834 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
835 	int ret;
836 
837 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
838 	if (unlikely(ret))
839 		return ret;
840 
841 	queue->ddgst_remaining -= recv_len;
842 	*offset += recv_len;
843 	*len -= recv_len;
844 	if (queue->ddgst_remaining)
845 		return 0;
846 
847 	if (queue->recv_ddgst != queue->exp_ddgst) {
848 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
849 					pdu->command_id);
850 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
851 
852 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
853 
854 		dev_err(queue->ctrl->ctrl.device,
855 			"data digest error: recv %#x expected %#x\n",
856 			le32_to_cpu(queue->recv_ddgst),
857 			le32_to_cpu(queue->exp_ddgst));
858 	}
859 
860 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
861 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
862 					pdu->command_id);
863 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
864 
865 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
866 		queue->nr_cqe++;
867 	}
868 
869 	nvme_tcp_init_recv_ctx(queue);
870 	return 0;
871 }
872 
873 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
874 			     unsigned int offset, size_t len)
875 {
876 	struct nvme_tcp_queue *queue = desc->arg.data;
877 	size_t consumed = len;
878 	int result;
879 
880 	while (len) {
881 		switch (nvme_tcp_recv_state(queue)) {
882 		case NVME_TCP_RECV_PDU:
883 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
884 			break;
885 		case NVME_TCP_RECV_DATA:
886 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
887 			break;
888 		case NVME_TCP_RECV_DDGST:
889 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
890 			break;
891 		default:
892 			result = -EFAULT;
893 		}
894 		if (result) {
895 			dev_err(queue->ctrl->ctrl.device,
896 				"receive failed:  %d\n", result);
897 			queue->rd_enabled = false;
898 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
899 			return result;
900 		}
901 	}
902 
903 	return consumed;
904 }
905 
906 static void nvme_tcp_data_ready(struct sock *sk)
907 {
908 	struct nvme_tcp_queue *queue;
909 
910 	read_lock_bh(&sk->sk_callback_lock);
911 	queue = sk->sk_user_data;
912 	if (likely(queue && queue->rd_enabled) &&
913 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
914 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
915 	read_unlock_bh(&sk->sk_callback_lock);
916 }
917 
918 static void nvme_tcp_write_space(struct sock *sk)
919 {
920 	struct nvme_tcp_queue *queue;
921 
922 	read_lock_bh(&sk->sk_callback_lock);
923 	queue = sk->sk_user_data;
924 	if (likely(queue && sk_stream_is_writeable(sk))) {
925 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
926 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
927 	}
928 	read_unlock_bh(&sk->sk_callback_lock);
929 }
930 
931 static void nvme_tcp_state_change(struct sock *sk)
932 {
933 	struct nvme_tcp_queue *queue;
934 
935 	read_lock_bh(&sk->sk_callback_lock);
936 	queue = sk->sk_user_data;
937 	if (!queue)
938 		goto done;
939 
940 	switch (sk->sk_state) {
941 	case TCP_CLOSE:
942 	case TCP_CLOSE_WAIT:
943 	case TCP_LAST_ACK:
944 	case TCP_FIN_WAIT1:
945 	case TCP_FIN_WAIT2:
946 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
947 		break;
948 	default:
949 		dev_info(queue->ctrl->ctrl.device,
950 			"queue %d socket state %d\n",
951 			nvme_tcp_queue_id(queue), sk->sk_state);
952 	}
953 
954 	queue->state_change(sk);
955 done:
956 	read_unlock_bh(&sk->sk_callback_lock);
957 }
958 
959 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
960 {
961 	queue->request = NULL;
962 }
963 
964 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
965 {
966 	if (nvme_tcp_async_req(req)) {
967 		union nvme_result res = {};
968 
969 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
970 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
971 	} else {
972 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
973 				NVME_SC_HOST_PATH_ERROR);
974 	}
975 }
976 
977 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
978 {
979 	struct nvme_tcp_queue *queue = req->queue;
980 	int req_data_len = req->data_len;
981 	u32 h2cdata_left = req->h2cdata_left;
982 
983 	while (true) {
984 		struct page *page = nvme_tcp_req_cur_page(req);
985 		size_t offset = nvme_tcp_req_cur_offset(req);
986 		size_t len = nvme_tcp_req_cur_length(req);
987 		bool last = nvme_tcp_pdu_last_send(req, len);
988 		int req_data_sent = req->data_sent;
989 		int ret, flags = MSG_DONTWAIT;
990 
991 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
992 			flags |= MSG_EOR;
993 		else
994 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
995 
996 		if (sendpage_ok(page)) {
997 			ret = kernel_sendpage(queue->sock, page, offset, len,
998 					flags);
999 		} else {
1000 			ret = sock_no_sendpage(queue->sock, page, offset, len,
1001 					flags);
1002 		}
1003 		if (ret <= 0)
1004 			return ret;
1005 
1006 		if (queue->data_digest)
1007 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1008 					offset, ret);
1009 
1010 		/*
1011 		 * update the request iterator except for the last payload send
1012 		 * in the request where we don't want to modify it as we may
1013 		 * compete with the RX path completing the request.
1014 		 */
1015 		if (req_data_sent + ret < req_data_len)
1016 			nvme_tcp_advance_req(req, ret);
1017 
1018 		/* fully successful last send in current PDU */
1019 		if (last && ret == len) {
1020 			if (queue->data_digest) {
1021 				nvme_tcp_ddgst_final(queue->snd_hash,
1022 					&req->ddgst);
1023 				req->state = NVME_TCP_SEND_DDGST;
1024 				req->offset = 0;
1025 			} else {
1026 				if (h2cdata_left)
1027 					nvme_tcp_setup_h2c_data_pdu(req);
1028 				else
1029 					nvme_tcp_done_send_req(queue);
1030 			}
1031 			return 1;
1032 		}
1033 	}
1034 	return -EAGAIN;
1035 }
1036 
1037 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1038 {
1039 	struct nvme_tcp_queue *queue = req->queue;
1040 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1041 	bool inline_data = nvme_tcp_has_inline_data(req);
1042 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1043 	int len = sizeof(*pdu) + hdgst - req->offset;
1044 	int flags = MSG_DONTWAIT;
1045 	int ret;
1046 
1047 	if (inline_data || nvme_tcp_queue_more(queue))
1048 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1049 	else
1050 		flags |= MSG_EOR;
1051 
1052 	if (queue->hdr_digest && !req->offset)
1053 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1054 
1055 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1056 			offset_in_page(pdu) + req->offset, len,  flags);
1057 	if (unlikely(ret <= 0))
1058 		return ret;
1059 
1060 	len -= ret;
1061 	if (!len) {
1062 		if (inline_data) {
1063 			req->state = NVME_TCP_SEND_DATA;
1064 			if (queue->data_digest)
1065 				crypto_ahash_init(queue->snd_hash);
1066 		} else {
1067 			nvme_tcp_done_send_req(queue);
1068 		}
1069 		return 1;
1070 	}
1071 	req->offset += ret;
1072 
1073 	return -EAGAIN;
1074 }
1075 
1076 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1077 {
1078 	struct nvme_tcp_queue *queue = req->queue;
1079 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1080 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1081 	int len = sizeof(*pdu) - req->offset + hdgst;
1082 	int ret;
1083 
1084 	if (queue->hdr_digest && !req->offset)
1085 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1086 
1087 	if (!req->h2cdata_left)
1088 		ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1089 				offset_in_page(pdu) + req->offset, len,
1090 				MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1091 	else
1092 		ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1093 				offset_in_page(pdu) + req->offset, len,
1094 				MSG_DONTWAIT | MSG_MORE);
1095 	if (unlikely(ret <= 0))
1096 		return ret;
1097 
1098 	len -= ret;
1099 	if (!len) {
1100 		req->state = NVME_TCP_SEND_DATA;
1101 		if (queue->data_digest)
1102 			crypto_ahash_init(queue->snd_hash);
1103 		return 1;
1104 	}
1105 	req->offset += ret;
1106 
1107 	return -EAGAIN;
1108 }
1109 
1110 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1111 {
1112 	struct nvme_tcp_queue *queue = req->queue;
1113 	size_t offset = req->offset;
1114 	u32 h2cdata_left = req->h2cdata_left;
1115 	int ret;
1116 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1117 	struct kvec iov = {
1118 		.iov_base = (u8 *)&req->ddgst + req->offset,
1119 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1120 	};
1121 
1122 	if (nvme_tcp_queue_more(queue))
1123 		msg.msg_flags |= MSG_MORE;
1124 	else
1125 		msg.msg_flags |= MSG_EOR;
1126 
1127 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1128 	if (unlikely(ret <= 0))
1129 		return ret;
1130 
1131 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1132 		if (h2cdata_left)
1133 			nvme_tcp_setup_h2c_data_pdu(req);
1134 		else
1135 			nvme_tcp_done_send_req(queue);
1136 		return 1;
1137 	}
1138 
1139 	req->offset += ret;
1140 	return -EAGAIN;
1141 }
1142 
1143 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1144 {
1145 	struct nvme_tcp_request *req;
1146 	int ret = 1;
1147 
1148 	if (!queue->request) {
1149 		queue->request = nvme_tcp_fetch_request(queue);
1150 		if (!queue->request)
1151 			return 0;
1152 	}
1153 	req = queue->request;
1154 
1155 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1156 		ret = nvme_tcp_try_send_cmd_pdu(req);
1157 		if (ret <= 0)
1158 			goto done;
1159 		if (!nvme_tcp_has_inline_data(req))
1160 			return ret;
1161 	}
1162 
1163 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1164 		ret = nvme_tcp_try_send_data_pdu(req);
1165 		if (ret <= 0)
1166 			goto done;
1167 	}
1168 
1169 	if (req->state == NVME_TCP_SEND_DATA) {
1170 		ret = nvme_tcp_try_send_data(req);
1171 		if (ret <= 0)
1172 			goto done;
1173 	}
1174 
1175 	if (req->state == NVME_TCP_SEND_DDGST)
1176 		ret = nvme_tcp_try_send_ddgst(req);
1177 done:
1178 	if (ret == -EAGAIN) {
1179 		ret = 0;
1180 	} else if (ret < 0) {
1181 		dev_err(queue->ctrl->ctrl.device,
1182 			"failed to send request %d\n", ret);
1183 		nvme_tcp_fail_request(queue->request);
1184 		nvme_tcp_done_send_req(queue);
1185 	}
1186 	return ret;
1187 }
1188 
1189 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1190 {
1191 	struct socket *sock = queue->sock;
1192 	struct sock *sk = sock->sk;
1193 	read_descriptor_t rd_desc;
1194 	int consumed;
1195 
1196 	rd_desc.arg.data = queue;
1197 	rd_desc.count = 1;
1198 	lock_sock(sk);
1199 	queue->nr_cqe = 0;
1200 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1201 	release_sock(sk);
1202 	return consumed;
1203 }
1204 
1205 static void nvme_tcp_io_work(struct work_struct *w)
1206 {
1207 	struct nvme_tcp_queue *queue =
1208 		container_of(w, struct nvme_tcp_queue, io_work);
1209 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1210 
1211 	do {
1212 		bool pending = false;
1213 		int result;
1214 
1215 		if (mutex_trylock(&queue->send_mutex)) {
1216 			result = nvme_tcp_try_send(queue);
1217 			mutex_unlock(&queue->send_mutex);
1218 			if (result > 0)
1219 				pending = true;
1220 			else if (unlikely(result < 0))
1221 				break;
1222 		}
1223 
1224 		result = nvme_tcp_try_recv(queue);
1225 		if (result > 0)
1226 			pending = true;
1227 		else if (unlikely(result < 0))
1228 			return;
1229 
1230 		if (!pending)
1231 			return;
1232 
1233 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1234 
1235 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1236 }
1237 
1238 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1239 {
1240 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1241 
1242 	ahash_request_free(queue->rcv_hash);
1243 	ahash_request_free(queue->snd_hash);
1244 	crypto_free_ahash(tfm);
1245 }
1246 
1247 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1248 {
1249 	struct crypto_ahash *tfm;
1250 
1251 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1252 	if (IS_ERR(tfm))
1253 		return PTR_ERR(tfm);
1254 
1255 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1256 	if (!queue->snd_hash)
1257 		goto free_tfm;
1258 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1259 
1260 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1261 	if (!queue->rcv_hash)
1262 		goto free_snd_hash;
1263 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1264 
1265 	return 0;
1266 free_snd_hash:
1267 	ahash_request_free(queue->snd_hash);
1268 free_tfm:
1269 	crypto_free_ahash(tfm);
1270 	return -ENOMEM;
1271 }
1272 
1273 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1274 {
1275 	struct nvme_tcp_request *async = &ctrl->async_req;
1276 
1277 	page_frag_free(async->pdu);
1278 }
1279 
1280 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1281 {
1282 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1283 	struct nvme_tcp_request *async = &ctrl->async_req;
1284 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1285 
1286 	async->pdu = page_frag_alloc(&queue->pf_cache,
1287 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1288 		GFP_KERNEL | __GFP_ZERO);
1289 	if (!async->pdu)
1290 		return -ENOMEM;
1291 
1292 	async->queue = &ctrl->queues[0];
1293 	return 0;
1294 }
1295 
1296 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1297 {
1298 	struct page *page;
1299 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1300 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1301 
1302 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1303 		return;
1304 
1305 	if (queue->hdr_digest || queue->data_digest)
1306 		nvme_tcp_free_crypto(queue);
1307 
1308 	if (queue->pf_cache.va) {
1309 		page = virt_to_head_page(queue->pf_cache.va);
1310 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1311 		queue->pf_cache.va = NULL;
1312 	}
1313 	sock_release(queue->sock);
1314 	kfree(queue->pdu);
1315 	mutex_destroy(&queue->send_mutex);
1316 	mutex_destroy(&queue->queue_lock);
1317 }
1318 
1319 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1320 {
1321 	struct nvme_tcp_icreq_pdu *icreq;
1322 	struct nvme_tcp_icresp_pdu *icresp;
1323 	struct msghdr msg = {};
1324 	struct kvec iov;
1325 	bool ctrl_hdgst, ctrl_ddgst;
1326 	u32 maxh2cdata;
1327 	int ret;
1328 
1329 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1330 	if (!icreq)
1331 		return -ENOMEM;
1332 
1333 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1334 	if (!icresp) {
1335 		ret = -ENOMEM;
1336 		goto free_icreq;
1337 	}
1338 
1339 	icreq->hdr.type = nvme_tcp_icreq;
1340 	icreq->hdr.hlen = sizeof(*icreq);
1341 	icreq->hdr.pdo = 0;
1342 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1343 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1344 	icreq->maxr2t = 0; /* single inflight r2t supported */
1345 	icreq->hpda = 0; /* no alignment constraint */
1346 	if (queue->hdr_digest)
1347 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1348 	if (queue->data_digest)
1349 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1350 
1351 	iov.iov_base = icreq;
1352 	iov.iov_len = sizeof(*icreq);
1353 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1354 	if (ret < 0)
1355 		goto free_icresp;
1356 
1357 	memset(&msg, 0, sizeof(msg));
1358 	iov.iov_base = icresp;
1359 	iov.iov_len = sizeof(*icresp);
1360 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1361 			iov.iov_len, msg.msg_flags);
1362 	if (ret < 0)
1363 		goto free_icresp;
1364 
1365 	ret = -EINVAL;
1366 	if (icresp->hdr.type != nvme_tcp_icresp) {
1367 		pr_err("queue %d: bad type returned %d\n",
1368 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1369 		goto free_icresp;
1370 	}
1371 
1372 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1373 		pr_err("queue %d: bad pdu length returned %d\n",
1374 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1375 		goto free_icresp;
1376 	}
1377 
1378 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1379 		pr_err("queue %d: bad pfv returned %d\n",
1380 			nvme_tcp_queue_id(queue), icresp->pfv);
1381 		goto free_icresp;
1382 	}
1383 
1384 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1385 	if ((queue->data_digest && !ctrl_ddgst) ||
1386 	    (!queue->data_digest && ctrl_ddgst)) {
1387 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1388 			nvme_tcp_queue_id(queue),
1389 			queue->data_digest ? "enabled" : "disabled",
1390 			ctrl_ddgst ? "enabled" : "disabled");
1391 		goto free_icresp;
1392 	}
1393 
1394 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1395 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1396 	    (!queue->hdr_digest && ctrl_hdgst)) {
1397 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1398 			nvme_tcp_queue_id(queue),
1399 			queue->hdr_digest ? "enabled" : "disabled",
1400 			ctrl_hdgst ? "enabled" : "disabled");
1401 		goto free_icresp;
1402 	}
1403 
1404 	if (icresp->cpda != 0) {
1405 		pr_err("queue %d: unsupported cpda returned %d\n",
1406 			nvme_tcp_queue_id(queue), icresp->cpda);
1407 		goto free_icresp;
1408 	}
1409 
1410 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1411 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1412 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1413 		       nvme_tcp_queue_id(queue), maxh2cdata);
1414 		goto free_icresp;
1415 	}
1416 	queue->maxh2cdata = maxh2cdata;
1417 
1418 	ret = 0;
1419 free_icresp:
1420 	kfree(icresp);
1421 free_icreq:
1422 	kfree(icreq);
1423 	return ret;
1424 }
1425 
1426 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1427 {
1428 	return nvme_tcp_queue_id(queue) == 0;
1429 }
1430 
1431 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1432 {
1433 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1434 	int qid = nvme_tcp_queue_id(queue);
1435 
1436 	return !nvme_tcp_admin_queue(queue) &&
1437 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1438 }
1439 
1440 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1441 {
1442 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1443 	int qid = nvme_tcp_queue_id(queue);
1444 
1445 	return !nvme_tcp_admin_queue(queue) &&
1446 		!nvme_tcp_default_queue(queue) &&
1447 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1448 			  ctrl->io_queues[HCTX_TYPE_READ];
1449 }
1450 
1451 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1452 {
1453 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1454 	int qid = nvme_tcp_queue_id(queue);
1455 
1456 	return !nvme_tcp_admin_queue(queue) &&
1457 		!nvme_tcp_default_queue(queue) &&
1458 		!nvme_tcp_read_queue(queue) &&
1459 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1460 			  ctrl->io_queues[HCTX_TYPE_READ] +
1461 			  ctrl->io_queues[HCTX_TYPE_POLL];
1462 }
1463 
1464 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1465 {
1466 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1467 	int qid = nvme_tcp_queue_id(queue);
1468 	int n = 0;
1469 
1470 	if (nvme_tcp_default_queue(queue))
1471 		n = qid - 1;
1472 	else if (nvme_tcp_read_queue(queue))
1473 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1474 	else if (nvme_tcp_poll_queue(queue))
1475 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1476 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1477 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1478 }
1479 
1480 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1481 		int qid, size_t queue_size)
1482 {
1483 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1484 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1485 	int ret, rcv_pdu_size;
1486 
1487 	mutex_init(&queue->queue_lock);
1488 	queue->ctrl = ctrl;
1489 	init_llist_head(&queue->req_list);
1490 	INIT_LIST_HEAD(&queue->send_list);
1491 	mutex_init(&queue->send_mutex);
1492 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1493 	queue->queue_size = queue_size;
1494 
1495 	if (qid > 0)
1496 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1497 	else
1498 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1499 						NVME_TCP_ADMIN_CCSZ;
1500 
1501 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1502 			IPPROTO_TCP, &queue->sock);
1503 	if (ret) {
1504 		dev_err(nctrl->device,
1505 			"failed to create socket: %d\n", ret);
1506 		goto err_destroy_mutex;
1507 	}
1508 
1509 	nvme_tcp_reclassify_socket(queue->sock);
1510 
1511 	/* Single syn retry */
1512 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1513 
1514 	/* Set TCP no delay */
1515 	tcp_sock_set_nodelay(queue->sock->sk);
1516 
1517 	/*
1518 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1519 	 * close. This is done to prevent stale data from being sent should
1520 	 * the network connection be restored before TCP times out.
1521 	 */
1522 	sock_no_linger(queue->sock->sk);
1523 
1524 	if (so_priority > 0)
1525 		sock_set_priority(queue->sock->sk, so_priority);
1526 
1527 	/* Set socket type of service */
1528 	if (nctrl->opts->tos >= 0)
1529 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1530 
1531 	/* Set 10 seconds timeout for icresp recvmsg */
1532 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1533 
1534 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1535 	nvme_tcp_set_queue_io_cpu(queue);
1536 	queue->request = NULL;
1537 	queue->data_remaining = 0;
1538 	queue->ddgst_remaining = 0;
1539 	queue->pdu_remaining = 0;
1540 	queue->pdu_offset = 0;
1541 	sk_set_memalloc(queue->sock->sk);
1542 
1543 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1544 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1545 			sizeof(ctrl->src_addr));
1546 		if (ret) {
1547 			dev_err(nctrl->device,
1548 				"failed to bind queue %d socket %d\n",
1549 				qid, ret);
1550 			goto err_sock;
1551 		}
1552 	}
1553 
1554 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1555 		char *iface = nctrl->opts->host_iface;
1556 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1557 
1558 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1559 				      optval, strlen(iface));
1560 		if (ret) {
1561 			dev_err(nctrl->device,
1562 			  "failed to bind to interface %s queue %d err %d\n",
1563 			  iface, qid, ret);
1564 			goto err_sock;
1565 		}
1566 	}
1567 
1568 	queue->hdr_digest = nctrl->opts->hdr_digest;
1569 	queue->data_digest = nctrl->opts->data_digest;
1570 	if (queue->hdr_digest || queue->data_digest) {
1571 		ret = nvme_tcp_alloc_crypto(queue);
1572 		if (ret) {
1573 			dev_err(nctrl->device,
1574 				"failed to allocate queue %d crypto\n", qid);
1575 			goto err_sock;
1576 		}
1577 	}
1578 
1579 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1580 			nvme_tcp_hdgst_len(queue);
1581 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1582 	if (!queue->pdu) {
1583 		ret = -ENOMEM;
1584 		goto err_crypto;
1585 	}
1586 
1587 	dev_dbg(nctrl->device, "connecting queue %d\n",
1588 			nvme_tcp_queue_id(queue));
1589 
1590 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1591 		sizeof(ctrl->addr), 0);
1592 	if (ret) {
1593 		dev_err(nctrl->device,
1594 			"failed to connect socket: %d\n", ret);
1595 		goto err_rcv_pdu;
1596 	}
1597 
1598 	ret = nvme_tcp_init_connection(queue);
1599 	if (ret)
1600 		goto err_init_connect;
1601 
1602 	queue->rd_enabled = true;
1603 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1604 	nvme_tcp_init_recv_ctx(queue);
1605 
1606 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1607 	queue->sock->sk->sk_user_data = queue;
1608 	queue->state_change = queue->sock->sk->sk_state_change;
1609 	queue->data_ready = queue->sock->sk->sk_data_ready;
1610 	queue->write_space = queue->sock->sk->sk_write_space;
1611 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1612 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1613 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1614 #ifdef CONFIG_NET_RX_BUSY_POLL
1615 	queue->sock->sk->sk_ll_usec = 1;
1616 #endif
1617 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1618 
1619 	return 0;
1620 
1621 err_init_connect:
1622 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1623 err_rcv_pdu:
1624 	kfree(queue->pdu);
1625 err_crypto:
1626 	if (queue->hdr_digest || queue->data_digest)
1627 		nvme_tcp_free_crypto(queue);
1628 err_sock:
1629 	sock_release(queue->sock);
1630 	queue->sock = NULL;
1631 err_destroy_mutex:
1632 	mutex_destroy(&queue->send_mutex);
1633 	mutex_destroy(&queue->queue_lock);
1634 	return ret;
1635 }
1636 
1637 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1638 {
1639 	struct socket *sock = queue->sock;
1640 
1641 	write_lock_bh(&sock->sk->sk_callback_lock);
1642 	sock->sk->sk_user_data  = NULL;
1643 	sock->sk->sk_data_ready = queue->data_ready;
1644 	sock->sk->sk_state_change = queue->state_change;
1645 	sock->sk->sk_write_space  = queue->write_space;
1646 	write_unlock_bh(&sock->sk->sk_callback_lock);
1647 }
1648 
1649 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1650 {
1651 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1652 	nvme_tcp_restore_sock_calls(queue);
1653 	cancel_work_sync(&queue->io_work);
1654 }
1655 
1656 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1657 {
1658 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1659 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1660 
1661 	mutex_lock(&queue->queue_lock);
1662 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1663 		__nvme_tcp_stop_queue(queue);
1664 	mutex_unlock(&queue->queue_lock);
1665 }
1666 
1667 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1668 {
1669 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1670 	int ret;
1671 
1672 	if (idx)
1673 		ret = nvmf_connect_io_queue(nctrl, idx);
1674 	else
1675 		ret = nvmf_connect_admin_queue(nctrl);
1676 
1677 	if (!ret) {
1678 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1679 	} else {
1680 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1681 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1682 		dev_err(nctrl->device,
1683 			"failed to connect queue: %d ret=%d\n", idx, ret);
1684 	}
1685 	return ret;
1686 }
1687 
1688 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1689 		bool admin)
1690 {
1691 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1692 	struct blk_mq_tag_set *set;
1693 	int ret;
1694 
1695 	if (admin) {
1696 		set = &ctrl->admin_tag_set;
1697 		memset(set, 0, sizeof(*set));
1698 		set->ops = &nvme_tcp_admin_mq_ops;
1699 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1700 		set->reserved_tags = NVMF_RESERVED_TAGS;
1701 		set->numa_node = nctrl->numa_node;
1702 		set->flags = BLK_MQ_F_BLOCKING;
1703 		set->cmd_size = sizeof(struct nvme_tcp_request);
1704 		set->driver_data = ctrl;
1705 		set->nr_hw_queues = 1;
1706 		set->timeout = NVME_ADMIN_TIMEOUT;
1707 	} else {
1708 		set = &ctrl->tag_set;
1709 		memset(set, 0, sizeof(*set));
1710 		set->ops = &nvme_tcp_mq_ops;
1711 		set->queue_depth = nctrl->sqsize + 1;
1712 		set->reserved_tags = NVMF_RESERVED_TAGS;
1713 		set->numa_node = nctrl->numa_node;
1714 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1715 		set->cmd_size = sizeof(struct nvme_tcp_request);
1716 		set->driver_data = ctrl;
1717 		set->nr_hw_queues = nctrl->queue_count - 1;
1718 		set->timeout = NVME_IO_TIMEOUT;
1719 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1720 	}
1721 
1722 	ret = blk_mq_alloc_tag_set(set);
1723 	if (ret)
1724 		return ERR_PTR(ret);
1725 
1726 	return set;
1727 }
1728 
1729 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1730 {
1731 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1732 		cancel_work_sync(&ctrl->async_event_work);
1733 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1734 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1735 	}
1736 
1737 	nvme_tcp_free_queue(ctrl, 0);
1738 }
1739 
1740 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1741 {
1742 	int i;
1743 
1744 	for (i = 1; i < ctrl->queue_count; i++)
1745 		nvme_tcp_free_queue(ctrl, i);
1746 }
1747 
1748 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1749 {
1750 	int i;
1751 
1752 	for (i = 1; i < ctrl->queue_count; i++)
1753 		nvme_tcp_stop_queue(ctrl, i);
1754 }
1755 
1756 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1757 {
1758 	int i, ret;
1759 
1760 	for (i = 1; i < ctrl->queue_count; i++) {
1761 		ret = nvme_tcp_start_queue(ctrl, i);
1762 		if (ret)
1763 			goto out_stop_queues;
1764 	}
1765 
1766 	return 0;
1767 
1768 out_stop_queues:
1769 	for (i--; i >= 1; i--)
1770 		nvme_tcp_stop_queue(ctrl, i);
1771 	return ret;
1772 }
1773 
1774 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1775 {
1776 	int ret;
1777 
1778 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1779 	if (ret)
1780 		return ret;
1781 
1782 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1783 	if (ret)
1784 		goto out_free_queue;
1785 
1786 	return 0;
1787 
1788 out_free_queue:
1789 	nvme_tcp_free_queue(ctrl, 0);
1790 	return ret;
1791 }
1792 
1793 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1794 {
1795 	int i, ret;
1796 
1797 	for (i = 1; i < ctrl->queue_count; i++) {
1798 		ret = nvme_tcp_alloc_queue(ctrl, i, ctrl->sqsize + 1);
1799 		if (ret)
1800 			goto out_free_queues;
1801 	}
1802 
1803 	return 0;
1804 
1805 out_free_queues:
1806 	for (i--; i >= 1; i--)
1807 		nvme_tcp_free_queue(ctrl, i);
1808 
1809 	return ret;
1810 }
1811 
1812 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1813 {
1814 	unsigned int nr_io_queues;
1815 
1816 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1817 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1818 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1819 
1820 	return nr_io_queues;
1821 }
1822 
1823 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1824 		unsigned int nr_io_queues)
1825 {
1826 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1827 	struct nvmf_ctrl_options *opts = nctrl->opts;
1828 
1829 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1830 		/*
1831 		 * separate read/write queues
1832 		 * hand out dedicated default queues only after we have
1833 		 * sufficient read queues.
1834 		 */
1835 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1836 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1837 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1838 			min(opts->nr_write_queues, nr_io_queues);
1839 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1840 	} else {
1841 		/*
1842 		 * shared read/write queues
1843 		 * either no write queues were requested, or we don't have
1844 		 * sufficient queue count to have dedicated default queues.
1845 		 */
1846 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1847 			min(opts->nr_io_queues, nr_io_queues);
1848 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1849 	}
1850 
1851 	if (opts->nr_poll_queues && nr_io_queues) {
1852 		/* map dedicated poll queues only if we have queues left */
1853 		ctrl->io_queues[HCTX_TYPE_POLL] =
1854 			min(opts->nr_poll_queues, nr_io_queues);
1855 	}
1856 }
1857 
1858 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1859 {
1860 	unsigned int nr_io_queues;
1861 	int ret;
1862 
1863 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1864 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1865 	if (ret)
1866 		return ret;
1867 
1868 	if (nr_io_queues == 0) {
1869 		dev_err(ctrl->device,
1870 			"unable to set any I/O queues\n");
1871 		return -ENOMEM;
1872 	}
1873 
1874 	ctrl->queue_count = nr_io_queues + 1;
1875 	dev_info(ctrl->device,
1876 		"creating %d I/O queues.\n", nr_io_queues);
1877 
1878 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1879 
1880 	return __nvme_tcp_alloc_io_queues(ctrl);
1881 }
1882 
1883 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1884 {
1885 	nvme_tcp_stop_io_queues(ctrl);
1886 	if (remove) {
1887 		blk_cleanup_queue(ctrl->connect_q);
1888 		blk_mq_free_tag_set(ctrl->tagset);
1889 	}
1890 	nvme_tcp_free_io_queues(ctrl);
1891 }
1892 
1893 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1894 {
1895 	int ret;
1896 
1897 	ret = nvme_tcp_alloc_io_queues(ctrl);
1898 	if (ret)
1899 		return ret;
1900 
1901 	if (new) {
1902 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1903 		if (IS_ERR(ctrl->tagset)) {
1904 			ret = PTR_ERR(ctrl->tagset);
1905 			goto out_free_io_queues;
1906 		}
1907 
1908 		ret = nvme_ctrl_init_connect_q(ctrl);
1909 		if (ret)
1910 			goto out_free_tag_set;
1911 	}
1912 
1913 	ret = nvme_tcp_start_io_queues(ctrl);
1914 	if (ret)
1915 		goto out_cleanup_connect_q;
1916 
1917 	if (!new) {
1918 		nvme_start_queues(ctrl);
1919 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1920 			/*
1921 			 * If we timed out waiting for freeze we are likely to
1922 			 * be stuck.  Fail the controller initialization just
1923 			 * to be safe.
1924 			 */
1925 			ret = -ENODEV;
1926 			goto out_wait_freeze_timed_out;
1927 		}
1928 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1929 			ctrl->queue_count - 1);
1930 		nvme_unfreeze(ctrl);
1931 	}
1932 
1933 	return 0;
1934 
1935 out_wait_freeze_timed_out:
1936 	nvme_stop_queues(ctrl);
1937 	nvme_sync_io_queues(ctrl);
1938 	nvme_tcp_stop_io_queues(ctrl);
1939 out_cleanup_connect_q:
1940 	nvme_cancel_tagset(ctrl);
1941 	if (new)
1942 		blk_cleanup_queue(ctrl->connect_q);
1943 out_free_tag_set:
1944 	if (new)
1945 		blk_mq_free_tag_set(ctrl->tagset);
1946 out_free_io_queues:
1947 	nvme_tcp_free_io_queues(ctrl);
1948 	return ret;
1949 }
1950 
1951 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1952 {
1953 	nvme_tcp_stop_queue(ctrl, 0);
1954 	if (remove) {
1955 		blk_cleanup_queue(ctrl->admin_q);
1956 		blk_cleanup_queue(ctrl->fabrics_q);
1957 		blk_mq_free_tag_set(ctrl->admin_tagset);
1958 	}
1959 	nvme_tcp_free_admin_queue(ctrl);
1960 }
1961 
1962 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1963 {
1964 	int error;
1965 
1966 	error = nvme_tcp_alloc_admin_queue(ctrl);
1967 	if (error)
1968 		return error;
1969 
1970 	if (new) {
1971 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1972 		if (IS_ERR(ctrl->admin_tagset)) {
1973 			error = PTR_ERR(ctrl->admin_tagset);
1974 			goto out_free_queue;
1975 		}
1976 
1977 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1978 		if (IS_ERR(ctrl->fabrics_q)) {
1979 			error = PTR_ERR(ctrl->fabrics_q);
1980 			goto out_free_tagset;
1981 		}
1982 
1983 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1984 		if (IS_ERR(ctrl->admin_q)) {
1985 			error = PTR_ERR(ctrl->admin_q);
1986 			goto out_cleanup_fabrics_q;
1987 		}
1988 	}
1989 
1990 	error = nvme_tcp_start_queue(ctrl, 0);
1991 	if (error)
1992 		goto out_cleanup_queue;
1993 
1994 	error = nvme_enable_ctrl(ctrl);
1995 	if (error)
1996 		goto out_stop_queue;
1997 
1998 	nvme_start_admin_queue(ctrl);
1999 
2000 	error = nvme_init_ctrl_finish(ctrl);
2001 	if (error)
2002 		goto out_quiesce_queue;
2003 
2004 	return 0;
2005 
2006 out_quiesce_queue:
2007 	nvme_stop_admin_queue(ctrl);
2008 	blk_sync_queue(ctrl->admin_q);
2009 out_stop_queue:
2010 	nvme_tcp_stop_queue(ctrl, 0);
2011 	nvme_cancel_admin_tagset(ctrl);
2012 out_cleanup_queue:
2013 	if (new)
2014 		blk_cleanup_queue(ctrl->admin_q);
2015 out_cleanup_fabrics_q:
2016 	if (new)
2017 		blk_cleanup_queue(ctrl->fabrics_q);
2018 out_free_tagset:
2019 	if (new)
2020 		blk_mq_free_tag_set(ctrl->admin_tagset);
2021 out_free_queue:
2022 	nvme_tcp_free_admin_queue(ctrl);
2023 	return error;
2024 }
2025 
2026 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2027 		bool remove)
2028 {
2029 	nvme_stop_admin_queue(ctrl);
2030 	blk_sync_queue(ctrl->admin_q);
2031 	nvme_tcp_stop_queue(ctrl, 0);
2032 	nvme_cancel_admin_tagset(ctrl);
2033 	if (remove)
2034 		nvme_start_admin_queue(ctrl);
2035 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2036 }
2037 
2038 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2039 		bool remove)
2040 {
2041 	if (ctrl->queue_count <= 1)
2042 		return;
2043 	nvme_stop_admin_queue(ctrl);
2044 	nvme_start_freeze(ctrl);
2045 	nvme_stop_queues(ctrl);
2046 	nvme_sync_io_queues(ctrl);
2047 	nvme_tcp_stop_io_queues(ctrl);
2048 	nvme_cancel_tagset(ctrl);
2049 	if (remove)
2050 		nvme_start_queues(ctrl);
2051 	nvme_tcp_destroy_io_queues(ctrl, remove);
2052 }
2053 
2054 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2055 {
2056 	/* If we are resetting/deleting then do nothing */
2057 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2058 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2059 			ctrl->state == NVME_CTRL_LIVE);
2060 		return;
2061 	}
2062 
2063 	if (nvmf_should_reconnect(ctrl)) {
2064 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2065 			ctrl->opts->reconnect_delay);
2066 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2067 				ctrl->opts->reconnect_delay * HZ);
2068 	} else {
2069 		dev_info(ctrl->device, "Removing controller...\n");
2070 		nvme_delete_ctrl(ctrl);
2071 	}
2072 }
2073 
2074 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2075 {
2076 	struct nvmf_ctrl_options *opts = ctrl->opts;
2077 	int ret;
2078 
2079 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2080 	if (ret)
2081 		return ret;
2082 
2083 	if (ctrl->icdoff) {
2084 		ret = -EOPNOTSUPP;
2085 		dev_err(ctrl->device, "icdoff is not supported!\n");
2086 		goto destroy_admin;
2087 	}
2088 
2089 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2090 		ret = -EOPNOTSUPP;
2091 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2092 		goto destroy_admin;
2093 	}
2094 
2095 	if (opts->queue_size > ctrl->sqsize + 1)
2096 		dev_warn(ctrl->device,
2097 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2098 			opts->queue_size, ctrl->sqsize + 1);
2099 
2100 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2101 		dev_warn(ctrl->device,
2102 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2103 			ctrl->sqsize + 1, ctrl->maxcmd);
2104 		ctrl->sqsize = ctrl->maxcmd - 1;
2105 	}
2106 
2107 	if (ctrl->queue_count > 1) {
2108 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2109 		if (ret)
2110 			goto destroy_admin;
2111 	}
2112 
2113 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2114 		/*
2115 		 * state change failure is ok if we started ctrl delete,
2116 		 * unless we're during creation of a new controller to
2117 		 * avoid races with teardown flow.
2118 		 */
2119 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2120 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2121 		WARN_ON_ONCE(new);
2122 		ret = -EINVAL;
2123 		goto destroy_io;
2124 	}
2125 
2126 	nvme_start_ctrl(ctrl);
2127 	return 0;
2128 
2129 destroy_io:
2130 	if (ctrl->queue_count > 1) {
2131 		nvme_stop_queues(ctrl);
2132 		nvme_sync_io_queues(ctrl);
2133 		nvme_tcp_stop_io_queues(ctrl);
2134 		nvme_cancel_tagset(ctrl);
2135 		nvme_tcp_destroy_io_queues(ctrl, new);
2136 	}
2137 destroy_admin:
2138 	nvme_stop_admin_queue(ctrl);
2139 	blk_sync_queue(ctrl->admin_q);
2140 	nvme_tcp_stop_queue(ctrl, 0);
2141 	nvme_cancel_admin_tagset(ctrl);
2142 	nvme_tcp_destroy_admin_queue(ctrl, new);
2143 	return ret;
2144 }
2145 
2146 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2147 {
2148 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2149 			struct nvme_tcp_ctrl, connect_work);
2150 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2151 
2152 	++ctrl->nr_reconnects;
2153 
2154 	if (nvme_tcp_setup_ctrl(ctrl, false))
2155 		goto requeue;
2156 
2157 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2158 			ctrl->nr_reconnects);
2159 
2160 	ctrl->nr_reconnects = 0;
2161 
2162 	return;
2163 
2164 requeue:
2165 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2166 			ctrl->nr_reconnects);
2167 	nvme_tcp_reconnect_or_remove(ctrl);
2168 }
2169 
2170 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2171 {
2172 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2173 				struct nvme_tcp_ctrl, err_work);
2174 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2175 
2176 	nvme_stop_keep_alive(ctrl);
2177 	flush_work(&ctrl->async_event_work);
2178 	nvme_tcp_teardown_io_queues(ctrl, false);
2179 	/* unquiesce to fail fast pending requests */
2180 	nvme_start_queues(ctrl);
2181 	nvme_tcp_teardown_admin_queue(ctrl, false);
2182 	nvme_start_admin_queue(ctrl);
2183 
2184 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2185 		/* state change failure is ok if we started ctrl delete */
2186 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2187 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2188 		return;
2189 	}
2190 
2191 	nvme_tcp_reconnect_or_remove(ctrl);
2192 }
2193 
2194 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2195 {
2196 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2197 	nvme_stop_admin_queue(ctrl);
2198 	if (shutdown)
2199 		nvme_shutdown_ctrl(ctrl);
2200 	else
2201 		nvme_disable_ctrl(ctrl);
2202 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2203 }
2204 
2205 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2206 {
2207 	nvme_tcp_teardown_ctrl(ctrl, true);
2208 }
2209 
2210 static void nvme_reset_ctrl_work(struct work_struct *work)
2211 {
2212 	struct nvme_ctrl *ctrl =
2213 		container_of(work, struct nvme_ctrl, reset_work);
2214 
2215 	nvme_stop_ctrl(ctrl);
2216 	nvme_tcp_teardown_ctrl(ctrl, false);
2217 
2218 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2219 		/* state change failure is ok if we started ctrl delete */
2220 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2221 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2222 		return;
2223 	}
2224 
2225 	if (nvme_tcp_setup_ctrl(ctrl, false))
2226 		goto out_fail;
2227 
2228 	return;
2229 
2230 out_fail:
2231 	++ctrl->nr_reconnects;
2232 	nvme_tcp_reconnect_or_remove(ctrl);
2233 }
2234 
2235 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2236 {
2237 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2238 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2239 }
2240 
2241 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2242 {
2243 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2244 
2245 	if (list_empty(&ctrl->list))
2246 		goto free_ctrl;
2247 
2248 	mutex_lock(&nvme_tcp_ctrl_mutex);
2249 	list_del(&ctrl->list);
2250 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2251 
2252 	nvmf_free_options(nctrl->opts);
2253 free_ctrl:
2254 	kfree(ctrl->queues);
2255 	kfree(ctrl);
2256 }
2257 
2258 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2259 {
2260 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2261 
2262 	sg->addr = 0;
2263 	sg->length = 0;
2264 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2265 			NVME_SGL_FMT_TRANSPORT_A;
2266 }
2267 
2268 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2269 		struct nvme_command *c, u32 data_len)
2270 {
2271 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2272 
2273 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2274 	sg->length = cpu_to_le32(data_len);
2275 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2276 }
2277 
2278 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2279 		u32 data_len)
2280 {
2281 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2282 
2283 	sg->addr = 0;
2284 	sg->length = cpu_to_le32(data_len);
2285 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2286 			NVME_SGL_FMT_TRANSPORT_A;
2287 }
2288 
2289 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2290 {
2291 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2292 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2293 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2294 	struct nvme_command *cmd = &pdu->cmd;
2295 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2296 
2297 	memset(pdu, 0, sizeof(*pdu));
2298 	pdu->hdr.type = nvme_tcp_cmd;
2299 	if (queue->hdr_digest)
2300 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2301 	pdu->hdr.hlen = sizeof(*pdu);
2302 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2303 
2304 	cmd->common.opcode = nvme_admin_async_event;
2305 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2306 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2307 	nvme_tcp_set_sg_null(cmd);
2308 
2309 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2310 	ctrl->async_req.offset = 0;
2311 	ctrl->async_req.curr_bio = NULL;
2312 	ctrl->async_req.data_len = 0;
2313 
2314 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2315 }
2316 
2317 static void nvme_tcp_complete_timed_out(struct request *rq)
2318 {
2319 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2320 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2321 
2322 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2323 	nvmf_complete_timed_out_request(rq);
2324 }
2325 
2326 static enum blk_eh_timer_return
2327 nvme_tcp_timeout(struct request *rq, bool reserved)
2328 {
2329 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2330 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2331 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2332 
2333 	dev_warn(ctrl->device,
2334 		"queue %d: timeout request %#x type %d\n",
2335 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2336 
2337 	if (ctrl->state != NVME_CTRL_LIVE) {
2338 		/*
2339 		 * If we are resetting, connecting or deleting we should
2340 		 * complete immediately because we may block controller
2341 		 * teardown or setup sequence
2342 		 * - ctrl disable/shutdown fabrics requests
2343 		 * - connect requests
2344 		 * - initialization admin requests
2345 		 * - I/O requests that entered after unquiescing and
2346 		 *   the controller stopped responding
2347 		 *
2348 		 * All other requests should be cancelled by the error
2349 		 * recovery work, so it's fine that we fail it here.
2350 		 */
2351 		nvme_tcp_complete_timed_out(rq);
2352 		return BLK_EH_DONE;
2353 	}
2354 
2355 	/*
2356 	 * LIVE state should trigger the normal error recovery which will
2357 	 * handle completing this request.
2358 	 */
2359 	nvme_tcp_error_recovery(ctrl);
2360 	return BLK_EH_RESET_TIMER;
2361 }
2362 
2363 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2364 			struct request *rq)
2365 {
2366 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2367 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2368 	struct nvme_command *c = &pdu->cmd;
2369 
2370 	c->common.flags |= NVME_CMD_SGL_METABUF;
2371 
2372 	if (!blk_rq_nr_phys_segments(rq))
2373 		nvme_tcp_set_sg_null(c);
2374 	else if (rq_data_dir(rq) == WRITE &&
2375 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2376 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2377 	else
2378 		nvme_tcp_set_sg_host_data(c, req->data_len);
2379 
2380 	return 0;
2381 }
2382 
2383 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2384 		struct request *rq)
2385 {
2386 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2387 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2388 	struct nvme_tcp_queue *queue = req->queue;
2389 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2390 	blk_status_t ret;
2391 
2392 	ret = nvme_setup_cmd(ns, rq);
2393 	if (ret)
2394 		return ret;
2395 
2396 	req->state = NVME_TCP_SEND_CMD_PDU;
2397 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2398 	req->offset = 0;
2399 	req->data_sent = 0;
2400 	req->pdu_len = 0;
2401 	req->pdu_sent = 0;
2402 	req->h2cdata_left = 0;
2403 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2404 				blk_rq_payload_bytes(rq) : 0;
2405 	req->curr_bio = rq->bio;
2406 	if (req->curr_bio && req->data_len)
2407 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2408 
2409 	if (rq_data_dir(rq) == WRITE &&
2410 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2411 		req->pdu_len = req->data_len;
2412 
2413 	pdu->hdr.type = nvme_tcp_cmd;
2414 	pdu->hdr.flags = 0;
2415 	if (queue->hdr_digest)
2416 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2417 	if (queue->data_digest && req->pdu_len) {
2418 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2419 		ddgst = nvme_tcp_ddgst_len(queue);
2420 	}
2421 	pdu->hdr.hlen = sizeof(*pdu);
2422 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2423 	pdu->hdr.plen =
2424 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2425 
2426 	ret = nvme_tcp_map_data(queue, rq);
2427 	if (unlikely(ret)) {
2428 		nvme_cleanup_cmd(rq);
2429 		dev_err(queue->ctrl->ctrl.device,
2430 			"Failed to map data (%d)\n", ret);
2431 		return ret;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2438 {
2439 	struct nvme_tcp_queue *queue = hctx->driver_data;
2440 
2441 	if (!llist_empty(&queue->req_list))
2442 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2443 }
2444 
2445 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2446 		const struct blk_mq_queue_data *bd)
2447 {
2448 	struct nvme_ns *ns = hctx->queue->queuedata;
2449 	struct nvme_tcp_queue *queue = hctx->driver_data;
2450 	struct request *rq = bd->rq;
2451 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2452 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2453 	blk_status_t ret;
2454 
2455 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2456 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2457 
2458 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2459 	if (unlikely(ret))
2460 		return ret;
2461 
2462 	blk_mq_start_request(rq);
2463 
2464 	nvme_tcp_queue_request(req, true, bd->last);
2465 
2466 	return BLK_STS_OK;
2467 }
2468 
2469 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2470 {
2471 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2472 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2473 
2474 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2475 		/* separate read/write queues */
2476 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2477 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2478 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2479 		set->map[HCTX_TYPE_READ].nr_queues =
2480 			ctrl->io_queues[HCTX_TYPE_READ];
2481 		set->map[HCTX_TYPE_READ].queue_offset =
2482 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2483 	} else {
2484 		/* shared read/write queues */
2485 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2486 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2487 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2488 		set->map[HCTX_TYPE_READ].nr_queues =
2489 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2490 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2491 	}
2492 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2493 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2494 
2495 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2496 		/* map dedicated poll queues only if we have queues left */
2497 		set->map[HCTX_TYPE_POLL].nr_queues =
2498 				ctrl->io_queues[HCTX_TYPE_POLL];
2499 		set->map[HCTX_TYPE_POLL].queue_offset =
2500 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2501 			ctrl->io_queues[HCTX_TYPE_READ];
2502 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2503 	}
2504 
2505 	dev_info(ctrl->ctrl.device,
2506 		"mapped %d/%d/%d default/read/poll queues.\n",
2507 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2508 		ctrl->io_queues[HCTX_TYPE_READ],
2509 		ctrl->io_queues[HCTX_TYPE_POLL]);
2510 
2511 	return 0;
2512 }
2513 
2514 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2515 {
2516 	struct nvme_tcp_queue *queue = hctx->driver_data;
2517 	struct sock *sk = queue->sock->sk;
2518 
2519 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2520 		return 0;
2521 
2522 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2523 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2524 		sk_busy_loop(sk, true);
2525 	nvme_tcp_try_recv(queue);
2526 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2527 	return queue->nr_cqe;
2528 }
2529 
2530 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2531 	.queue_rq	= nvme_tcp_queue_rq,
2532 	.commit_rqs	= nvme_tcp_commit_rqs,
2533 	.complete	= nvme_complete_rq,
2534 	.init_request	= nvme_tcp_init_request,
2535 	.exit_request	= nvme_tcp_exit_request,
2536 	.init_hctx	= nvme_tcp_init_hctx,
2537 	.timeout	= nvme_tcp_timeout,
2538 	.map_queues	= nvme_tcp_map_queues,
2539 	.poll		= nvme_tcp_poll,
2540 };
2541 
2542 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2543 	.queue_rq	= nvme_tcp_queue_rq,
2544 	.complete	= nvme_complete_rq,
2545 	.init_request	= nvme_tcp_init_request,
2546 	.exit_request	= nvme_tcp_exit_request,
2547 	.init_hctx	= nvme_tcp_init_admin_hctx,
2548 	.timeout	= nvme_tcp_timeout,
2549 };
2550 
2551 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2552 	.name			= "tcp",
2553 	.module			= THIS_MODULE,
2554 	.flags			= NVME_F_FABRICS,
2555 	.reg_read32		= nvmf_reg_read32,
2556 	.reg_read64		= nvmf_reg_read64,
2557 	.reg_write32		= nvmf_reg_write32,
2558 	.free_ctrl		= nvme_tcp_free_ctrl,
2559 	.submit_async_event	= nvme_tcp_submit_async_event,
2560 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2561 	.get_address		= nvmf_get_address,
2562 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2563 };
2564 
2565 static bool
2566 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2567 {
2568 	struct nvme_tcp_ctrl *ctrl;
2569 	bool found = false;
2570 
2571 	mutex_lock(&nvme_tcp_ctrl_mutex);
2572 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2573 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2574 		if (found)
2575 			break;
2576 	}
2577 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2578 
2579 	return found;
2580 }
2581 
2582 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2583 		struct nvmf_ctrl_options *opts)
2584 {
2585 	struct nvme_tcp_ctrl *ctrl;
2586 	int ret;
2587 
2588 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2589 	if (!ctrl)
2590 		return ERR_PTR(-ENOMEM);
2591 
2592 	INIT_LIST_HEAD(&ctrl->list);
2593 	ctrl->ctrl.opts = opts;
2594 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2595 				opts->nr_poll_queues + 1;
2596 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2597 	ctrl->ctrl.kato = opts->kato;
2598 
2599 	INIT_DELAYED_WORK(&ctrl->connect_work,
2600 			nvme_tcp_reconnect_ctrl_work);
2601 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2602 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2603 
2604 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2605 		opts->trsvcid =
2606 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2607 		if (!opts->trsvcid) {
2608 			ret = -ENOMEM;
2609 			goto out_free_ctrl;
2610 		}
2611 		opts->mask |= NVMF_OPT_TRSVCID;
2612 	}
2613 
2614 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2615 			opts->traddr, opts->trsvcid, &ctrl->addr);
2616 	if (ret) {
2617 		pr_err("malformed address passed: %s:%s\n",
2618 			opts->traddr, opts->trsvcid);
2619 		goto out_free_ctrl;
2620 	}
2621 
2622 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2623 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2624 			opts->host_traddr, NULL, &ctrl->src_addr);
2625 		if (ret) {
2626 			pr_err("malformed src address passed: %s\n",
2627 			       opts->host_traddr);
2628 			goto out_free_ctrl;
2629 		}
2630 	}
2631 
2632 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2633 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2634 			pr_err("invalid interface passed: %s\n",
2635 			       opts->host_iface);
2636 			ret = -ENODEV;
2637 			goto out_free_ctrl;
2638 		}
2639 	}
2640 
2641 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2642 		ret = -EALREADY;
2643 		goto out_free_ctrl;
2644 	}
2645 
2646 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2647 				GFP_KERNEL);
2648 	if (!ctrl->queues) {
2649 		ret = -ENOMEM;
2650 		goto out_free_ctrl;
2651 	}
2652 
2653 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2654 	if (ret)
2655 		goto out_kfree_queues;
2656 
2657 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2658 		WARN_ON_ONCE(1);
2659 		ret = -EINTR;
2660 		goto out_uninit_ctrl;
2661 	}
2662 
2663 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2664 	if (ret)
2665 		goto out_uninit_ctrl;
2666 
2667 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2668 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2669 
2670 	mutex_lock(&nvme_tcp_ctrl_mutex);
2671 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2672 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2673 
2674 	return &ctrl->ctrl;
2675 
2676 out_uninit_ctrl:
2677 	nvme_uninit_ctrl(&ctrl->ctrl);
2678 	nvme_put_ctrl(&ctrl->ctrl);
2679 	if (ret > 0)
2680 		ret = -EIO;
2681 	return ERR_PTR(ret);
2682 out_kfree_queues:
2683 	kfree(ctrl->queues);
2684 out_free_ctrl:
2685 	kfree(ctrl);
2686 	return ERR_PTR(ret);
2687 }
2688 
2689 static struct nvmf_transport_ops nvme_tcp_transport = {
2690 	.name		= "tcp",
2691 	.module		= THIS_MODULE,
2692 	.required_opts	= NVMF_OPT_TRADDR,
2693 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2694 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2695 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2696 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2697 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2698 	.create_ctrl	= nvme_tcp_create_ctrl,
2699 };
2700 
2701 static int __init nvme_tcp_init_module(void)
2702 {
2703 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2704 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2705 	if (!nvme_tcp_wq)
2706 		return -ENOMEM;
2707 
2708 	nvmf_register_transport(&nvme_tcp_transport);
2709 	return 0;
2710 }
2711 
2712 static void __exit nvme_tcp_cleanup_module(void)
2713 {
2714 	struct nvme_tcp_ctrl *ctrl;
2715 
2716 	nvmf_unregister_transport(&nvme_tcp_transport);
2717 
2718 	mutex_lock(&nvme_tcp_ctrl_mutex);
2719 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2720 		nvme_delete_ctrl(&ctrl->ctrl);
2721 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2722 	flush_workqueue(nvme_delete_wq);
2723 
2724 	destroy_workqueue(nvme_tcp_wq);
2725 }
2726 
2727 module_init(nvme_tcp_init_module);
2728 module_exit(nvme_tcp_cleanup_module);
2729 
2730 MODULE_LICENSE("GPL v2");
2731