1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex send_mutex; 80 struct llist_head req_list; 81 struct list_head send_list; 82 bool more_requests; 83 84 /* recv state */ 85 void *pdu; 86 int pdu_remaining; 87 int pdu_offset; 88 size_t data_remaining; 89 size_t ddgst_remaining; 90 unsigned int nr_cqe; 91 92 /* send state */ 93 struct nvme_tcp_request *request; 94 95 int queue_size; 96 size_t cmnd_capsule_len; 97 struct nvme_tcp_ctrl *ctrl; 98 unsigned long flags; 99 bool rd_enabled; 100 101 bool hdr_digest; 102 bool data_digest; 103 struct ahash_request *rcv_hash; 104 struct ahash_request *snd_hash; 105 __le32 exp_ddgst; 106 __le32 recv_ddgst; 107 108 struct page_frag_cache pf_cache; 109 110 void (*state_change)(struct sock *); 111 void (*data_ready)(struct sock *); 112 void (*write_space)(struct sock *); 113 }; 114 115 struct nvme_tcp_ctrl { 116 /* read only in the hot path */ 117 struct nvme_tcp_queue *queues; 118 struct blk_mq_tag_set tag_set; 119 120 /* other member variables */ 121 struct list_head list; 122 struct blk_mq_tag_set admin_tag_set; 123 struct sockaddr_storage addr; 124 struct sockaddr_storage src_addr; 125 struct nvme_ctrl ctrl; 126 127 struct work_struct err_work; 128 struct delayed_work connect_work; 129 struct nvme_tcp_request async_req; 130 u32 io_queues[HCTX_MAX_TYPES]; 131 }; 132 133 static LIST_HEAD(nvme_tcp_ctrl_list); 134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 135 static struct workqueue_struct *nvme_tcp_wq; 136 static const struct blk_mq_ops nvme_tcp_mq_ops; 137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 139 140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 141 { 142 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 143 } 144 145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 146 { 147 return queue - queue->ctrl->queues; 148 } 149 150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 151 { 152 u32 queue_idx = nvme_tcp_queue_id(queue); 153 154 if (queue_idx == 0) 155 return queue->ctrl->admin_tag_set.tags[queue_idx]; 156 return queue->ctrl->tag_set.tags[queue_idx - 1]; 157 } 158 159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 160 { 161 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 162 } 163 164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 165 { 166 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 167 } 168 169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 170 { 171 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 172 } 173 174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 175 { 176 return req == &req->queue->ctrl->async_req; 177 } 178 179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 180 { 181 struct request *rq; 182 183 if (unlikely(nvme_tcp_async_req(req))) 184 return false; /* async events don't have a request */ 185 186 rq = blk_mq_rq_from_pdu(req); 187 188 return rq_data_dir(rq) == WRITE && req->data_len && 189 req->data_len <= nvme_tcp_inline_data_size(req->queue); 190 } 191 192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 193 { 194 return req->iter.bvec->bv_page; 195 } 196 197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 198 { 199 return req->iter.bvec->bv_offset + req->iter.iov_offset; 200 } 201 202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 203 { 204 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 205 req->pdu_len - req->pdu_sent); 206 } 207 208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 209 { 210 return req->iter.iov_offset; 211 } 212 213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 214 { 215 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 216 req->pdu_len - req->pdu_sent : 0; 217 } 218 219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 220 int len) 221 { 222 return nvme_tcp_pdu_data_left(req) <= len; 223 } 224 225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 226 unsigned int dir) 227 { 228 struct request *rq = blk_mq_rq_from_pdu(req); 229 struct bio_vec *vec; 230 unsigned int size; 231 int nsegs; 232 size_t offset; 233 234 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 235 vec = &rq->special_vec; 236 nsegs = 1; 237 size = blk_rq_payload_bytes(rq); 238 offset = 0; 239 } else { 240 struct bio *bio = req->curr_bio; 241 242 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 243 nsegs = bio_segments(bio); 244 size = bio->bi_iter.bi_size; 245 offset = bio->bi_iter.bi_bvec_done; 246 } 247 248 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 249 req->iter.iov_offset = offset; 250 } 251 252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 253 int len) 254 { 255 req->data_sent += len; 256 req->pdu_sent += len; 257 iov_iter_advance(&req->iter, len); 258 if (!iov_iter_count(&req->iter) && 259 req->data_sent < req->data_len) { 260 req->curr_bio = req->curr_bio->bi_next; 261 nvme_tcp_init_iter(req, WRITE); 262 } 263 } 264 265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 266 bool sync, bool last) 267 { 268 struct nvme_tcp_queue *queue = req->queue; 269 bool empty; 270 271 empty = llist_add(&req->lentry, &queue->req_list) && 272 list_empty(&queue->send_list) && !queue->request; 273 274 /* 275 * if we're the first on the send_list and we can try to send 276 * directly, otherwise queue io_work. Also, only do that if we 277 * are on the same cpu, so we don't introduce contention. 278 */ 279 if (queue->io_cpu == smp_processor_id() && 280 sync && empty && mutex_trylock(&queue->send_mutex)) { 281 queue->more_requests = !last; 282 nvme_tcp_try_send(queue); 283 queue->more_requests = false; 284 mutex_unlock(&queue->send_mutex); 285 } else if (last) { 286 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 287 } 288 } 289 290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 291 { 292 struct nvme_tcp_request *req; 293 struct llist_node *node; 294 295 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 296 req = llist_entry(node, struct nvme_tcp_request, lentry); 297 list_add(&req->entry, &queue->send_list); 298 } 299 } 300 301 static inline struct nvme_tcp_request * 302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 303 { 304 struct nvme_tcp_request *req; 305 306 req = list_first_entry_or_null(&queue->send_list, 307 struct nvme_tcp_request, entry); 308 if (!req) { 309 nvme_tcp_process_req_list(queue); 310 req = list_first_entry_or_null(&queue->send_list, 311 struct nvme_tcp_request, entry); 312 if (unlikely(!req)) 313 return NULL; 314 } 315 316 list_del(&req->entry); 317 return req; 318 } 319 320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 321 __le32 *dgst) 322 { 323 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 324 crypto_ahash_final(hash); 325 } 326 327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 328 struct page *page, off_t off, size_t len) 329 { 330 struct scatterlist sg; 331 332 sg_init_marker(&sg, 1); 333 sg_set_page(&sg, page, len, off); 334 ahash_request_set_crypt(hash, &sg, NULL, len); 335 crypto_ahash_update(hash); 336 } 337 338 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 339 void *pdu, size_t len) 340 { 341 struct scatterlist sg; 342 343 sg_init_one(&sg, pdu, len); 344 ahash_request_set_crypt(hash, &sg, pdu + len, len); 345 crypto_ahash_digest(hash); 346 } 347 348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 349 void *pdu, size_t pdu_len) 350 { 351 struct nvme_tcp_hdr *hdr = pdu; 352 __le32 recv_digest; 353 __le32 exp_digest; 354 355 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 356 dev_err(queue->ctrl->ctrl.device, 357 "queue %d: header digest flag is cleared\n", 358 nvme_tcp_queue_id(queue)); 359 return -EPROTO; 360 } 361 362 recv_digest = *(__le32 *)(pdu + hdr->hlen); 363 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 364 exp_digest = *(__le32 *)(pdu + hdr->hlen); 365 if (recv_digest != exp_digest) { 366 dev_err(queue->ctrl->ctrl.device, 367 "header digest error: recv %#x expected %#x\n", 368 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 369 return -EIO; 370 } 371 372 return 0; 373 } 374 375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 376 { 377 struct nvme_tcp_hdr *hdr = pdu; 378 u8 digest_len = nvme_tcp_hdgst_len(queue); 379 u32 len; 380 381 len = le32_to_cpu(hdr->plen) - hdr->hlen - 382 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 383 384 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 385 dev_err(queue->ctrl->ctrl.device, 386 "queue %d: data digest flag is cleared\n", 387 nvme_tcp_queue_id(queue)); 388 return -EPROTO; 389 } 390 crypto_ahash_init(queue->rcv_hash); 391 392 return 0; 393 } 394 395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 396 struct request *rq, unsigned int hctx_idx) 397 { 398 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 399 400 page_frag_free(req->pdu); 401 } 402 403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 404 struct request *rq, unsigned int hctx_idx, 405 unsigned int numa_node) 406 { 407 struct nvme_tcp_ctrl *ctrl = set->driver_data; 408 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 409 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 410 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 411 u8 hdgst = nvme_tcp_hdgst_len(queue); 412 413 req->pdu = page_frag_alloc(&queue->pf_cache, 414 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 415 GFP_KERNEL | __GFP_ZERO); 416 if (!req->pdu) 417 return -ENOMEM; 418 419 req->queue = queue; 420 nvme_req(rq)->ctrl = &ctrl->ctrl; 421 422 return 0; 423 } 424 425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 426 unsigned int hctx_idx) 427 { 428 struct nvme_tcp_ctrl *ctrl = data; 429 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 430 431 hctx->driver_data = queue; 432 return 0; 433 } 434 435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 436 unsigned int hctx_idx) 437 { 438 struct nvme_tcp_ctrl *ctrl = data; 439 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 440 441 hctx->driver_data = queue; 442 return 0; 443 } 444 445 static enum nvme_tcp_recv_state 446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 447 { 448 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 449 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 450 NVME_TCP_RECV_DATA; 451 } 452 453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 454 { 455 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 456 nvme_tcp_hdgst_len(queue); 457 queue->pdu_offset = 0; 458 queue->data_remaining = -1; 459 queue->ddgst_remaining = 0; 460 } 461 462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 463 { 464 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 465 return; 466 467 dev_warn(ctrl->device, "starting error recovery\n"); 468 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 469 } 470 471 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 472 struct nvme_completion *cqe) 473 { 474 struct request *rq; 475 476 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 477 if (!rq) { 478 dev_err(queue->ctrl->ctrl.device, 479 "queue %d tag 0x%x not found\n", 480 nvme_tcp_queue_id(queue), cqe->command_id); 481 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 482 return -EINVAL; 483 } 484 485 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 486 nvme_complete_rq(rq); 487 queue->nr_cqe++; 488 489 return 0; 490 } 491 492 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 493 struct nvme_tcp_data_pdu *pdu) 494 { 495 struct request *rq; 496 497 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 498 if (!rq) { 499 dev_err(queue->ctrl->ctrl.device, 500 "queue %d tag %#x not found\n", 501 nvme_tcp_queue_id(queue), pdu->command_id); 502 return -ENOENT; 503 } 504 505 if (!blk_rq_payload_bytes(rq)) { 506 dev_err(queue->ctrl->ctrl.device, 507 "queue %d tag %#x unexpected data\n", 508 nvme_tcp_queue_id(queue), rq->tag); 509 return -EIO; 510 } 511 512 queue->data_remaining = le32_to_cpu(pdu->data_length); 513 514 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 515 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 516 dev_err(queue->ctrl->ctrl.device, 517 "queue %d tag %#x SUCCESS set but not last PDU\n", 518 nvme_tcp_queue_id(queue), rq->tag); 519 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 520 return -EPROTO; 521 } 522 523 return 0; 524 } 525 526 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 527 struct nvme_tcp_rsp_pdu *pdu) 528 { 529 struct nvme_completion *cqe = &pdu->cqe; 530 int ret = 0; 531 532 /* 533 * AEN requests are special as they don't time out and can 534 * survive any kind of queue freeze and often don't respond to 535 * aborts. We don't even bother to allocate a struct request 536 * for them but rather special case them here. 537 */ 538 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 539 cqe->command_id))) 540 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 541 &cqe->result); 542 else 543 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 544 545 return ret; 546 } 547 548 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 549 struct nvme_tcp_r2t_pdu *pdu) 550 { 551 struct nvme_tcp_data_pdu *data = req->pdu; 552 struct nvme_tcp_queue *queue = req->queue; 553 struct request *rq = blk_mq_rq_from_pdu(req); 554 u8 hdgst = nvme_tcp_hdgst_len(queue); 555 u8 ddgst = nvme_tcp_ddgst_len(queue); 556 557 req->pdu_len = le32_to_cpu(pdu->r2t_length); 558 req->pdu_sent = 0; 559 560 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 561 dev_err(queue->ctrl->ctrl.device, 562 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 563 rq->tag, req->pdu_len, req->data_len, 564 req->data_sent); 565 return -EPROTO; 566 } 567 568 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 569 dev_err(queue->ctrl->ctrl.device, 570 "req %d unexpected r2t offset %u (expected %zu)\n", 571 rq->tag, le32_to_cpu(pdu->r2t_offset), 572 req->data_sent); 573 return -EPROTO; 574 } 575 576 memset(data, 0, sizeof(*data)); 577 data->hdr.type = nvme_tcp_h2c_data; 578 data->hdr.flags = NVME_TCP_F_DATA_LAST; 579 if (queue->hdr_digest) 580 data->hdr.flags |= NVME_TCP_F_HDGST; 581 if (queue->data_digest) 582 data->hdr.flags |= NVME_TCP_F_DDGST; 583 data->hdr.hlen = sizeof(*data); 584 data->hdr.pdo = data->hdr.hlen + hdgst; 585 data->hdr.plen = 586 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 587 data->ttag = pdu->ttag; 588 data->command_id = rq->tag; 589 data->data_offset = cpu_to_le32(req->data_sent); 590 data->data_length = cpu_to_le32(req->pdu_len); 591 return 0; 592 } 593 594 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 595 struct nvme_tcp_r2t_pdu *pdu) 596 { 597 struct nvme_tcp_request *req; 598 struct request *rq; 599 int ret; 600 601 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 602 if (!rq) { 603 dev_err(queue->ctrl->ctrl.device, 604 "queue %d tag %#x not found\n", 605 nvme_tcp_queue_id(queue), pdu->command_id); 606 return -ENOENT; 607 } 608 req = blk_mq_rq_to_pdu(rq); 609 610 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 611 if (unlikely(ret)) 612 return ret; 613 614 req->state = NVME_TCP_SEND_H2C_PDU; 615 req->offset = 0; 616 617 nvme_tcp_queue_request(req, false, true); 618 619 return 0; 620 } 621 622 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 623 unsigned int *offset, size_t *len) 624 { 625 struct nvme_tcp_hdr *hdr; 626 char *pdu = queue->pdu; 627 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 628 int ret; 629 630 ret = skb_copy_bits(skb, *offset, 631 &pdu[queue->pdu_offset], rcv_len); 632 if (unlikely(ret)) 633 return ret; 634 635 queue->pdu_remaining -= rcv_len; 636 queue->pdu_offset += rcv_len; 637 *offset += rcv_len; 638 *len -= rcv_len; 639 if (queue->pdu_remaining) 640 return 0; 641 642 hdr = queue->pdu; 643 if (queue->hdr_digest) { 644 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 645 if (unlikely(ret)) 646 return ret; 647 } 648 649 650 if (queue->data_digest) { 651 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 652 if (unlikely(ret)) 653 return ret; 654 } 655 656 switch (hdr->type) { 657 case nvme_tcp_c2h_data: 658 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 659 case nvme_tcp_rsp: 660 nvme_tcp_init_recv_ctx(queue); 661 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 662 case nvme_tcp_r2t: 663 nvme_tcp_init_recv_ctx(queue); 664 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 665 default: 666 dev_err(queue->ctrl->ctrl.device, 667 "unsupported pdu type (%d)\n", hdr->type); 668 return -EINVAL; 669 } 670 } 671 672 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 673 { 674 union nvme_result res = {}; 675 676 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 677 nvme_complete_rq(rq); 678 } 679 680 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 681 unsigned int *offset, size_t *len) 682 { 683 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 684 struct nvme_tcp_request *req; 685 struct request *rq; 686 687 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 688 if (!rq) { 689 dev_err(queue->ctrl->ctrl.device, 690 "queue %d tag %#x not found\n", 691 nvme_tcp_queue_id(queue), pdu->command_id); 692 return -ENOENT; 693 } 694 req = blk_mq_rq_to_pdu(rq); 695 696 while (true) { 697 int recv_len, ret; 698 699 recv_len = min_t(size_t, *len, queue->data_remaining); 700 if (!recv_len) 701 break; 702 703 if (!iov_iter_count(&req->iter)) { 704 req->curr_bio = req->curr_bio->bi_next; 705 706 /* 707 * If we don`t have any bios it means that controller 708 * sent more data than we requested, hence error 709 */ 710 if (!req->curr_bio) { 711 dev_err(queue->ctrl->ctrl.device, 712 "queue %d no space in request %#x", 713 nvme_tcp_queue_id(queue), rq->tag); 714 nvme_tcp_init_recv_ctx(queue); 715 return -EIO; 716 } 717 nvme_tcp_init_iter(req, READ); 718 } 719 720 /* we can read only from what is left in this bio */ 721 recv_len = min_t(size_t, recv_len, 722 iov_iter_count(&req->iter)); 723 724 if (queue->data_digest) 725 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 726 &req->iter, recv_len, queue->rcv_hash); 727 else 728 ret = skb_copy_datagram_iter(skb, *offset, 729 &req->iter, recv_len); 730 if (ret) { 731 dev_err(queue->ctrl->ctrl.device, 732 "queue %d failed to copy request %#x data", 733 nvme_tcp_queue_id(queue), rq->tag); 734 return ret; 735 } 736 737 *len -= recv_len; 738 *offset += recv_len; 739 queue->data_remaining -= recv_len; 740 } 741 742 if (!queue->data_remaining) { 743 if (queue->data_digest) { 744 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 745 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 746 } else { 747 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 748 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 749 queue->nr_cqe++; 750 } 751 nvme_tcp_init_recv_ctx(queue); 752 } 753 } 754 755 return 0; 756 } 757 758 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 759 struct sk_buff *skb, unsigned int *offset, size_t *len) 760 { 761 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 762 char *ddgst = (char *)&queue->recv_ddgst; 763 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 764 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 765 int ret; 766 767 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 768 if (unlikely(ret)) 769 return ret; 770 771 queue->ddgst_remaining -= recv_len; 772 *offset += recv_len; 773 *len -= recv_len; 774 if (queue->ddgst_remaining) 775 return 0; 776 777 if (queue->recv_ddgst != queue->exp_ddgst) { 778 dev_err(queue->ctrl->ctrl.device, 779 "data digest error: recv %#x expected %#x\n", 780 le32_to_cpu(queue->recv_ddgst), 781 le32_to_cpu(queue->exp_ddgst)); 782 return -EIO; 783 } 784 785 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 786 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 787 pdu->command_id); 788 789 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 790 queue->nr_cqe++; 791 } 792 793 nvme_tcp_init_recv_ctx(queue); 794 return 0; 795 } 796 797 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 798 unsigned int offset, size_t len) 799 { 800 struct nvme_tcp_queue *queue = desc->arg.data; 801 size_t consumed = len; 802 int result; 803 804 while (len) { 805 switch (nvme_tcp_recv_state(queue)) { 806 case NVME_TCP_RECV_PDU: 807 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 808 break; 809 case NVME_TCP_RECV_DATA: 810 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 811 break; 812 case NVME_TCP_RECV_DDGST: 813 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 814 break; 815 default: 816 result = -EFAULT; 817 } 818 if (result) { 819 dev_err(queue->ctrl->ctrl.device, 820 "receive failed: %d\n", result); 821 queue->rd_enabled = false; 822 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 823 return result; 824 } 825 } 826 827 return consumed; 828 } 829 830 static void nvme_tcp_data_ready(struct sock *sk) 831 { 832 struct nvme_tcp_queue *queue; 833 834 read_lock_bh(&sk->sk_callback_lock); 835 queue = sk->sk_user_data; 836 if (likely(queue && queue->rd_enabled) && 837 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 838 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 839 read_unlock_bh(&sk->sk_callback_lock); 840 } 841 842 static void nvme_tcp_write_space(struct sock *sk) 843 { 844 struct nvme_tcp_queue *queue; 845 846 read_lock_bh(&sk->sk_callback_lock); 847 queue = sk->sk_user_data; 848 if (likely(queue && sk_stream_is_writeable(sk))) { 849 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 850 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 851 } 852 read_unlock_bh(&sk->sk_callback_lock); 853 } 854 855 static void nvme_tcp_state_change(struct sock *sk) 856 { 857 struct nvme_tcp_queue *queue; 858 859 read_lock(&sk->sk_callback_lock); 860 queue = sk->sk_user_data; 861 if (!queue) 862 goto done; 863 864 switch (sk->sk_state) { 865 case TCP_CLOSE: 866 case TCP_CLOSE_WAIT: 867 case TCP_LAST_ACK: 868 case TCP_FIN_WAIT1: 869 case TCP_FIN_WAIT2: 870 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 871 break; 872 default: 873 dev_info(queue->ctrl->ctrl.device, 874 "queue %d socket state %d\n", 875 nvme_tcp_queue_id(queue), sk->sk_state); 876 } 877 878 queue->state_change(sk); 879 done: 880 read_unlock(&sk->sk_callback_lock); 881 } 882 883 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 884 { 885 return !list_empty(&queue->send_list) || 886 !llist_empty(&queue->req_list) || queue->more_requests; 887 } 888 889 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 890 { 891 queue->request = NULL; 892 } 893 894 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 895 { 896 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 897 } 898 899 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 900 { 901 struct nvme_tcp_queue *queue = req->queue; 902 903 while (true) { 904 struct page *page = nvme_tcp_req_cur_page(req); 905 size_t offset = nvme_tcp_req_cur_offset(req); 906 size_t len = nvme_tcp_req_cur_length(req); 907 bool last = nvme_tcp_pdu_last_send(req, len); 908 int ret, flags = MSG_DONTWAIT; 909 910 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 911 flags |= MSG_EOR; 912 else 913 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 914 915 if (sendpage_ok(page)) { 916 ret = kernel_sendpage(queue->sock, page, offset, len, 917 flags); 918 } else { 919 ret = sock_no_sendpage(queue->sock, page, offset, len, 920 flags); 921 } 922 if (ret <= 0) 923 return ret; 924 925 nvme_tcp_advance_req(req, ret); 926 if (queue->data_digest) 927 nvme_tcp_ddgst_update(queue->snd_hash, page, 928 offset, ret); 929 930 /* fully successful last write*/ 931 if (last && ret == len) { 932 if (queue->data_digest) { 933 nvme_tcp_ddgst_final(queue->snd_hash, 934 &req->ddgst); 935 req->state = NVME_TCP_SEND_DDGST; 936 req->offset = 0; 937 } else { 938 nvme_tcp_done_send_req(queue); 939 } 940 return 1; 941 } 942 } 943 return -EAGAIN; 944 } 945 946 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 947 { 948 struct nvme_tcp_queue *queue = req->queue; 949 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 950 bool inline_data = nvme_tcp_has_inline_data(req); 951 u8 hdgst = nvme_tcp_hdgst_len(queue); 952 int len = sizeof(*pdu) + hdgst - req->offset; 953 int flags = MSG_DONTWAIT; 954 int ret; 955 956 if (inline_data || nvme_tcp_queue_more(queue)) 957 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 958 else 959 flags |= MSG_EOR; 960 961 if (queue->hdr_digest && !req->offset) 962 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 963 964 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 965 offset_in_page(pdu) + req->offset, len, flags); 966 if (unlikely(ret <= 0)) 967 return ret; 968 969 len -= ret; 970 if (!len) { 971 if (inline_data) { 972 req->state = NVME_TCP_SEND_DATA; 973 if (queue->data_digest) 974 crypto_ahash_init(queue->snd_hash); 975 nvme_tcp_init_iter(req, WRITE); 976 } else { 977 nvme_tcp_done_send_req(queue); 978 } 979 return 1; 980 } 981 req->offset += ret; 982 983 return -EAGAIN; 984 } 985 986 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 987 { 988 struct nvme_tcp_queue *queue = req->queue; 989 struct nvme_tcp_data_pdu *pdu = req->pdu; 990 u8 hdgst = nvme_tcp_hdgst_len(queue); 991 int len = sizeof(*pdu) - req->offset + hdgst; 992 int ret; 993 994 if (queue->hdr_digest && !req->offset) 995 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 996 997 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 998 offset_in_page(pdu) + req->offset, len, 999 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1000 if (unlikely(ret <= 0)) 1001 return ret; 1002 1003 len -= ret; 1004 if (!len) { 1005 req->state = NVME_TCP_SEND_DATA; 1006 if (queue->data_digest) 1007 crypto_ahash_init(queue->snd_hash); 1008 if (!req->data_sent) 1009 nvme_tcp_init_iter(req, WRITE); 1010 return 1; 1011 } 1012 req->offset += ret; 1013 1014 return -EAGAIN; 1015 } 1016 1017 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1018 { 1019 struct nvme_tcp_queue *queue = req->queue; 1020 int ret; 1021 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1022 struct kvec iov = { 1023 .iov_base = &req->ddgst + req->offset, 1024 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1025 }; 1026 1027 if (nvme_tcp_queue_more(queue)) 1028 msg.msg_flags |= MSG_MORE; 1029 else 1030 msg.msg_flags |= MSG_EOR; 1031 1032 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1033 if (unlikely(ret <= 0)) 1034 return ret; 1035 1036 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1037 nvme_tcp_done_send_req(queue); 1038 return 1; 1039 } 1040 1041 req->offset += ret; 1042 return -EAGAIN; 1043 } 1044 1045 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1046 { 1047 struct nvme_tcp_request *req; 1048 int ret = 1; 1049 1050 if (!queue->request) { 1051 queue->request = nvme_tcp_fetch_request(queue); 1052 if (!queue->request) 1053 return 0; 1054 } 1055 req = queue->request; 1056 1057 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1058 ret = nvme_tcp_try_send_cmd_pdu(req); 1059 if (ret <= 0) 1060 goto done; 1061 if (!nvme_tcp_has_inline_data(req)) 1062 return ret; 1063 } 1064 1065 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1066 ret = nvme_tcp_try_send_data_pdu(req); 1067 if (ret <= 0) 1068 goto done; 1069 } 1070 1071 if (req->state == NVME_TCP_SEND_DATA) { 1072 ret = nvme_tcp_try_send_data(req); 1073 if (ret <= 0) 1074 goto done; 1075 } 1076 1077 if (req->state == NVME_TCP_SEND_DDGST) 1078 ret = nvme_tcp_try_send_ddgst(req); 1079 done: 1080 if (ret == -EAGAIN) { 1081 ret = 0; 1082 } else if (ret < 0) { 1083 dev_err(queue->ctrl->ctrl.device, 1084 "failed to send request %d\n", ret); 1085 if (ret != -EPIPE && ret != -ECONNRESET) 1086 nvme_tcp_fail_request(queue->request); 1087 nvme_tcp_done_send_req(queue); 1088 } 1089 return ret; 1090 } 1091 1092 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1093 { 1094 struct socket *sock = queue->sock; 1095 struct sock *sk = sock->sk; 1096 read_descriptor_t rd_desc; 1097 int consumed; 1098 1099 rd_desc.arg.data = queue; 1100 rd_desc.count = 1; 1101 lock_sock(sk); 1102 queue->nr_cqe = 0; 1103 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1104 release_sock(sk); 1105 return consumed; 1106 } 1107 1108 static void nvme_tcp_io_work(struct work_struct *w) 1109 { 1110 struct nvme_tcp_queue *queue = 1111 container_of(w, struct nvme_tcp_queue, io_work); 1112 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1113 1114 do { 1115 bool pending = false; 1116 int result; 1117 1118 if (mutex_trylock(&queue->send_mutex)) { 1119 result = nvme_tcp_try_send(queue); 1120 mutex_unlock(&queue->send_mutex); 1121 if (result > 0) 1122 pending = true; 1123 else if (unlikely(result < 0)) 1124 break; 1125 } 1126 1127 result = nvme_tcp_try_recv(queue); 1128 if (result > 0) 1129 pending = true; 1130 else if (unlikely(result < 0)) 1131 return; 1132 1133 if (!pending) 1134 return; 1135 1136 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1137 1138 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1139 } 1140 1141 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1142 { 1143 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1144 1145 ahash_request_free(queue->rcv_hash); 1146 ahash_request_free(queue->snd_hash); 1147 crypto_free_ahash(tfm); 1148 } 1149 1150 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1151 { 1152 struct crypto_ahash *tfm; 1153 1154 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1155 if (IS_ERR(tfm)) 1156 return PTR_ERR(tfm); 1157 1158 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1159 if (!queue->snd_hash) 1160 goto free_tfm; 1161 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1162 1163 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1164 if (!queue->rcv_hash) 1165 goto free_snd_hash; 1166 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1167 1168 return 0; 1169 free_snd_hash: 1170 ahash_request_free(queue->snd_hash); 1171 free_tfm: 1172 crypto_free_ahash(tfm); 1173 return -ENOMEM; 1174 } 1175 1176 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1177 { 1178 struct nvme_tcp_request *async = &ctrl->async_req; 1179 1180 page_frag_free(async->pdu); 1181 } 1182 1183 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1184 { 1185 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1186 struct nvme_tcp_request *async = &ctrl->async_req; 1187 u8 hdgst = nvme_tcp_hdgst_len(queue); 1188 1189 async->pdu = page_frag_alloc(&queue->pf_cache, 1190 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1191 GFP_KERNEL | __GFP_ZERO); 1192 if (!async->pdu) 1193 return -ENOMEM; 1194 1195 async->queue = &ctrl->queues[0]; 1196 return 0; 1197 } 1198 1199 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1200 { 1201 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1202 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1203 1204 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1205 return; 1206 1207 if (queue->hdr_digest || queue->data_digest) 1208 nvme_tcp_free_crypto(queue); 1209 1210 sock_release(queue->sock); 1211 kfree(queue->pdu); 1212 } 1213 1214 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1215 { 1216 struct nvme_tcp_icreq_pdu *icreq; 1217 struct nvme_tcp_icresp_pdu *icresp; 1218 struct msghdr msg = {}; 1219 struct kvec iov; 1220 bool ctrl_hdgst, ctrl_ddgst; 1221 int ret; 1222 1223 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1224 if (!icreq) 1225 return -ENOMEM; 1226 1227 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1228 if (!icresp) { 1229 ret = -ENOMEM; 1230 goto free_icreq; 1231 } 1232 1233 icreq->hdr.type = nvme_tcp_icreq; 1234 icreq->hdr.hlen = sizeof(*icreq); 1235 icreq->hdr.pdo = 0; 1236 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1237 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1238 icreq->maxr2t = 0; /* single inflight r2t supported */ 1239 icreq->hpda = 0; /* no alignment constraint */ 1240 if (queue->hdr_digest) 1241 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1242 if (queue->data_digest) 1243 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1244 1245 iov.iov_base = icreq; 1246 iov.iov_len = sizeof(*icreq); 1247 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1248 if (ret < 0) 1249 goto free_icresp; 1250 1251 memset(&msg, 0, sizeof(msg)); 1252 iov.iov_base = icresp; 1253 iov.iov_len = sizeof(*icresp); 1254 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1255 iov.iov_len, msg.msg_flags); 1256 if (ret < 0) 1257 goto free_icresp; 1258 1259 ret = -EINVAL; 1260 if (icresp->hdr.type != nvme_tcp_icresp) { 1261 pr_err("queue %d: bad type returned %d\n", 1262 nvme_tcp_queue_id(queue), icresp->hdr.type); 1263 goto free_icresp; 1264 } 1265 1266 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1267 pr_err("queue %d: bad pdu length returned %d\n", 1268 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1269 goto free_icresp; 1270 } 1271 1272 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1273 pr_err("queue %d: bad pfv returned %d\n", 1274 nvme_tcp_queue_id(queue), icresp->pfv); 1275 goto free_icresp; 1276 } 1277 1278 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1279 if ((queue->data_digest && !ctrl_ddgst) || 1280 (!queue->data_digest && ctrl_ddgst)) { 1281 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1282 nvme_tcp_queue_id(queue), 1283 queue->data_digest ? "enabled" : "disabled", 1284 ctrl_ddgst ? "enabled" : "disabled"); 1285 goto free_icresp; 1286 } 1287 1288 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1289 if ((queue->hdr_digest && !ctrl_hdgst) || 1290 (!queue->hdr_digest && ctrl_hdgst)) { 1291 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1292 nvme_tcp_queue_id(queue), 1293 queue->hdr_digest ? "enabled" : "disabled", 1294 ctrl_hdgst ? "enabled" : "disabled"); 1295 goto free_icresp; 1296 } 1297 1298 if (icresp->cpda != 0) { 1299 pr_err("queue %d: unsupported cpda returned %d\n", 1300 nvme_tcp_queue_id(queue), icresp->cpda); 1301 goto free_icresp; 1302 } 1303 1304 ret = 0; 1305 free_icresp: 1306 kfree(icresp); 1307 free_icreq: 1308 kfree(icreq); 1309 return ret; 1310 } 1311 1312 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1313 { 1314 return nvme_tcp_queue_id(queue) == 0; 1315 } 1316 1317 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1318 { 1319 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1320 int qid = nvme_tcp_queue_id(queue); 1321 1322 return !nvme_tcp_admin_queue(queue) && 1323 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1324 } 1325 1326 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1327 { 1328 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1329 int qid = nvme_tcp_queue_id(queue); 1330 1331 return !nvme_tcp_admin_queue(queue) && 1332 !nvme_tcp_default_queue(queue) && 1333 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1334 ctrl->io_queues[HCTX_TYPE_READ]; 1335 } 1336 1337 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1338 { 1339 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1340 int qid = nvme_tcp_queue_id(queue); 1341 1342 return !nvme_tcp_admin_queue(queue) && 1343 !nvme_tcp_default_queue(queue) && 1344 !nvme_tcp_read_queue(queue) && 1345 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1346 ctrl->io_queues[HCTX_TYPE_READ] + 1347 ctrl->io_queues[HCTX_TYPE_POLL]; 1348 } 1349 1350 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1351 { 1352 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1353 int qid = nvme_tcp_queue_id(queue); 1354 int n = 0; 1355 1356 if (nvme_tcp_default_queue(queue)) 1357 n = qid - 1; 1358 else if (nvme_tcp_read_queue(queue)) 1359 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1360 else if (nvme_tcp_poll_queue(queue)) 1361 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1362 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1363 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1364 } 1365 1366 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1367 int qid, size_t queue_size) 1368 { 1369 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1370 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1371 int ret, rcv_pdu_size; 1372 1373 queue->ctrl = ctrl; 1374 init_llist_head(&queue->req_list); 1375 INIT_LIST_HEAD(&queue->send_list); 1376 mutex_init(&queue->send_mutex); 1377 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1378 queue->queue_size = queue_size; 1379 1380 if (qid > 0) 1381 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1382 else 1383 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1384 NVME_TCP_ADMIN_CCSZ; 1385 1386 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1387 IPPROTO_TCP, &queue->sock); 1388 if (ret) { 1389 dev_err(nctrl->device, 1390 "failed to create socket: %d\n", ret); 1391 return ret; 1392 } 1393 1394 /* Single syn retry */ 1395 tcp_sock_set_syncnt(queue->sock->sk, 1); 1396 1397 /* Set TCP no delay */ 1398 tcp_sock_set_nodelay(queue->sock->sk); 1399 1400 /* 1401 * Cleanup whatever is sitting in the TCP transmit queue on socket 1402 * close. This is done to prevent stale data from being sent should 1403 * the network connection be restored before TCP times out. 1404 */ 1405 sock_no_linger(queue->sock->sk); 1406 1407 if (so_priority > 0) 1408 sock_set_priority(queue->sock->sk, so_priority); 1409 1410 /* Set socket type of service */ 1411 if (nctrl->opts->tos >= 0) 1412 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1413 1414 /* Set 10 seconds timeout for icresp recvmsg */ 1415 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1416 1417 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1418 nvme_tcp_set_queue_io_cpu(queue); 1419 queue->request = NULL; 1420 queue->data_remaining = 0; 1421 queue->ddgst_remaining = 0; 1422 queue->pdu_remaining = 0; 1423 queue->pdu_offset = 0; 1424 sk_set_memalloc(queue->sock->sk); 1425 1426 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1427 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1428 sizeof(ctrl->src_addr)); 1429 if (ret) { 1430 dev_err(nctrl->device, 1431 "failed to bind queue %d socket %d\n", 1432 qid, ret); 1433 goto err_sock; 1434 } 1435 } 1436 1437 queue->hdr_digest = nctrl->opts->hdr_digest; 1438 queue->data_digest = nctrl->opts->data_digest; 1439 if (queue->hdr_digest || queue->data_digest) { 1440 ret = nvme_tcp_alloc_crypto(queue); 1441 if (ret) { 1442 dev_err(nctrl->device, 1443 "failed to allocate queue %d crypto\n", qid); 1444 goto err_sock; 1445 } 1446 } 1447 1448 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1449 nvme_tcp_hdgst_len(queue); 1450 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1451 if (!queue->pdu) { 1452 ret = -ENOMEM; 1453 goto err_crypto; 1454 } 1455 1456 dev_dbg(nctrl->device, "connecting queue %d\n", 1457 nvme_tcp_queue_id(queue)); 1458 1459 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1460 sizeof(ctrl->addr), 0); 1461 if (ret) { 1462 dev_err(nctrl->device, 1463 "failed to connect socket: %d\n", ret); 1464 goto err_rcv_pdu; 1465 } 1466 1467 ret = nvme_tcp_init_connection(queue); 1468 if (ret) 1469 goto err_init_connect; 1470 1471 queue->rd_enabled = true; 1472 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1473 nvme_tcp_init_recv_ctx(queue); 1474 1475 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1476 queue->sock->sk->sk_user_data = queue; 1477 queue->state_change = queue->sock->sk->sk_state_change; 1478 queue->data_ready = queue->sock->sk->sk_data_ready; 1479 queue->write_space = queue->sock->sk->sk_write_space; 1480 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1481 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1482 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1483 #ifdef CONFIG_NET_RX_BUSY_POLL 1484 queue->sock->sk->sk_ll_usec = 1; 1485 #endif 1486 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1487 1488 return 0; 1489 1490 err_init_connect: 1491 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1492 err_rcv_pdu: 1493 kfree(queue->pdu); 1494 err_crypto: 1495 if (queue->hdr_digest || queue->data_digest) 1496 nvme_tcp_free_crypto(queue); 1497 err_sock: 1498 sock_release(queue->sock); 1499 queue->sock = NULL; 1500 return ret; 1501 } 1502 1503 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1504 { 1505 struct socket *sock = queue->sock; 1506 1507 write_lock_bh(&sock->sk->sk_callback_lock); 1508 sock->sk->sk_user_data = NULL; 1509 sock->sk->sk_data_ready = queue->data_ready; 1510 sock->sk->sk_state_change = queue->state_change; 1511 sock->sk->sk_write_space = queue->write_space; 1512 write_unlock_bh(&sock->sk->sk_callback_lock); 1513 } 1514 1515 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1516 { 1517 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1518 nvme_tcp_restore_sock_calls(queue); 1519 cancel_work_sync(&queue->io_work); 1520 } 1521 1522 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1523 { 1524 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1525 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1526 1527 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1528 return; 1529 __nvme_tcp_stop_queue(queue); 1530 } 1531 1532 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1533 { 1534 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1535 int ret; 1536 1537 if (idx) 1538 ret = nvmf_connect_io_queue(nctrl, idx, false); 1539 else 1540 ret = nvmf_connect_admin_queue(nctrl); 1541 1542 if (!ret) { 1543 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1544 } else { 1545 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1546 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1547 dev_err(nctrl->device, 1548 "failed to connect queue: %d ret=%d\n", idx, ret); 1549 } 1550 return ret; 1551 } 1552 1553 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1554 bool admin) 1555 { 1556 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1557 struct blk_mq_tag_set *set; 1558 int ret; 1559 1560 if (admin) { 1561 set = &ctrl->admin_tag_set; 1562 memset(set, 0, sizeof(*set)); 1563 set->ops = &nvme_tcp_admin_mq_ops; 1564 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1565 set->reserved_tags = 2; /* connect + keep-alive */ 1566 set->numa_node = nctrl->numa_node; 1567 set->flags = BLK_MQ_F_BLOCKING; 1568 set->cmd_size = sizeof(struct nvme_tcp_request); 1569 set->driver_data = ctrl; 1570 set->nr_hw_queues = 1; 1571 set->timeout = ADMIN_TIMEOUT; 1572 } else { 1573 set = &ctrl->tag_set; 1574 memset(set, 0, sizeof(*set)); 1575 set->ops = &nvme_tcp_mq_ops; 1576 set->queue_depth = nctrl->sqsize + 1; 1577 set->reserved_tags = 1; /* fabric connect */ 1578 set->numa_node = nctrl->numa_node; 1579 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1580 set->cmd_size = sizeof(struct nvme_tcp_request); 1581 set->driver_data = ctrl; 1582 set->nr_hw_queues = nctrl->queue_count - 1; 1583 set->timeout = NVME_IO_TIMEOUT; 1584 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1585 } 1586 1587 ret = blk_mq_alloc_tag_set(set); 1588 if (ret) 1589 return ERR_PTR(ret); 1590 1591 return set; 1592 } 1593 1594 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1595 { 1596 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1597 cancel_work_sync(&ctrl->async_event_work); 1598 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1599 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1600 } 1601 1602 nvme_tcp_free_queue(ctrl, 0); 1603 } 1604 1605 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1606 { 1607 int i; 1608 1609 for (i = 1; i < ctrl->queue_count; i++) 1610 nvme_tcp_free_queue(ctrl, i); 1611 } 1612 1613 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1614 { 1615 int i; 1616 1617 for (i = 1; i < ctrl->queue_count; i++) 1618 nvme_tcp_stop_queue(ctrl, i); 1619 } 1620 1621 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1622 { 1623 int i, ret = 0; 1624 1625 for (i = 1; i < ctrl->queue_count; i++) { 1626 ret = nvme_tcp_start_queue(ctrl, i); 1627 if (ret) 1628 goto out_stop_queues; 1629 } 1630 1631 return 0; 1632 1633 out_stop_queues: 1634 for (i--; i >= 1; i--) 1635 nvme_tcp_stop_queue(ctrl, i); 1636 return ret; 1637 } 1638 1639 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1640 { 1641 int ret; 1642 1643 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1644 if (ret) 1645 return ret; 1646 1647 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1648 if (ret) 1649 goto out_free_queue; 1650 1651 return 0; 1652 1653 out_free_queue: 1654 nvme_tcp_free_queue(ctrl, 0); 1655 return ret; 1656 } 1657 1658 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1659 { 1660 int i, ret; 1661 1662 for (i = 1; i < ctrl->queue_count; i++) { 1663 ret = nvme_tcp_alloc_queue(ctrl, i, 1664 ctrl->sqsize + 1); 1665 if (ret) 1666 goto out_free_queues; 1667 } 1668 1669 return 0; 1670 1671 out_free_queues: 1672 for (i--; i >= 1; i--) 1673 nvme_tcp_free_queue(ctrl, i); 1674 1675 return ret; 1676 } 1677 1678 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1679 { 1680 unsigned int nr_io_queues; 1681 1682 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1683 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1684 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1685 1686 return nr_io_queues; 1687 } 1688 1689 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1690 unsigned int nr_io_queues) 1691 { 1692 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1693 struct nvmf_ctrl_options *opts = nctrl->opts; 1694 1695 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1696 /* 1697 * separate read/write queues 1698 * hand out dedicated default queues only after we have 1699 * sufficient read queues. 1700 */ 1701 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1702 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1703 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1704 min(opts->nr_write_queues, nr_io_queues); 1705 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1706 } else { 1707 /* 1708 * shared read/write queues 1709 * either no write queues were requested, or we don't have 1710 * sufficient queue count to have dedicated default queues. 1711 */ 1712 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1713 min(opts->nr_io_queues, nr_io_queues); 1714 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1715 } 1716 1717 if (opts->nr_poll_queues && nr_io_queues) { 1718 /* map dedicated poll queues only if we have queues left */ 1719 ctrl->io_queues[HCTX_TYPE_POLL] = 1720 min(opts->nr_poll_queues, nr_io_queues); 1721 } 1722 } 1723 1724 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1725 { 1726 unsigned int nr_io_queues; 1727 int ret; 1728 1729 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1730 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1731 if (ret) 1732 return ret; 1733 1734 ctrl->queue_count = nr_io_queues + 1; 1735 if (ctrl->queue_count < 2) 1736 return 0; 1737 1738 dev_info(ctrl->device, 1739 "creating %d I/O queues.\n", nr_io_queues); 1740 1741 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1742 1743 return __nvme_tcp_alloc_io_queues(ctrl); 1744 } 1745 1746 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1747 { 1748 nvme_tcp_stop_io_queues(ctrl); 1749 if (remove) { 1750 blk_cleanup_queue(ctrl->connect_q); 1751 blk_mq_free_tag_set(ctrl->tagset); 1752 } 1753 nvme_tcp_free_io_queues(ctrl); 1754 } 1755 1756 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1757 { 1758 int ret; 1759 1760 ret = nvme_tcp_alloc_io_queues(ctrl); 1761 if (ret) 1762 return ret; 1763 1764 if (new) { 1765 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1766 if (IS_ERR(ctrl->tagset)) { 1767 ret = PTR_ERR(ctrl->tagset); 1768 goto out_free_io_queues; 1769 } 1770 1771 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1772 if (IS_ERR(ctrl->connect_q)) { 1773 ret = PTR_ERR(ctrl->connect_q); 1774 goto out_free_tag_set; 1775 } 1776 } 1777 1778 ret = nvme_tcp_start_io_queues(ctrl); 1779 if (ret) 1780 goto out_cleanup_connect_q; 1781 1782 if (!new) { 1783 nvme_start_queues(ctrl); 1784 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1785 /* 1786 * If we timed out waiting for freeze we are likely to 1787 * be stuck. Fail the controller initialization just 1788 * to be safe. 1789 */ 1790 ret = -ENODEV; 1791 goto out_wait_freeze_timed_out; 1792 } 1793 blk_mq_update_nr_hw_queues(ctrl->tagset, 1794 ctrl->queue_count - 1); 1795 nvme_unfreeze(ctrl); 1796 } 1797 1798 return 0; 1799 1800 out_wait_freeze_timed_out: 1801 nvme_stop_queues(ctrl); 1802 nvme_tcp_stop_io_queues(ctrl); 1803 out_cleanup_connect_q: 1804 if (new) 1805 blk_cleanup_queue(ctrl->connect_q); 1806 out_free_tag_set: 1807 if (new) 1808 blk_mq_free_tag_set(ctrl->tagset); 1809 out_free_io_queues: 1810 nvme_tcp_free_io_queues(ctrl); 1811 return ret; 1812 } 1813 1814 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1815 { 1816 nvme_tcp_stop_queue(ctrl, 0); 1817 if (remove) { 1818 blk_cleanup_queue(ctrl->admin_q); 1819 blk_cleanup_queue(ctrl->fabrics_q); 1820 blk_mq_free_tag_set(ctrl->admin_tagset); 1821 } 1822 nvme_tcp_free_admin_queue(ctrl); 1823 } 1824 1825 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1826 { 1827 int error; 1828 1829 error = nvme_tcp_alloc_admin_queue(ctrl); 1830 if (error) 1831 return error; 1832 1833 if (new) { 1834 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1835 if (IS_ERR(ctrl->admin_tagset)) { 1836 error = PTR_ERR(ctrl->admin_tagset); 1837 goto out_free_queue; 1838 } 1839 1840 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1841 if (IS_ERR(ctrl->fabrics_q)) { 1842 error = PTR_ERR(ctrl->fabrics_q); 1843 goto out_free_tagset; 1844 } 1845 1846 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1847 if (IS_ERR(ctrl->admin_q)) { 1848 error = PTR_ERR(ctrl->admin_q); 1849 goto out_cleanup_fabrics_q; 1850 } 1851 } 1852 1853 error = nvme_tcp_start_queue(ctrl, 0); 1854 if (error) 1855 goto out_cleanup_queue; 1856 1857 error = nvme_enable_ctrl(ctrl); 1858 if (error) 1859 goto out_stop_queue; 1860 1861 blk_mq_unquiesce_queue(ctrl->admin_q); 1862 1863 error = nvme_init_identify(ctrl); 1864 if (error) 1865 goto out_stop_queue; 1866 1867 return 0; 1868 1869 out_stop_queue: 1870 nvme_tcp_stop_queue(ctrl, 0); 1871 out_cleanup_queue: 1872 if (new) 1873 blk_cleanup_queue(ctrl->admin_q); 1874 out_cleanup_fabrics_q: 1875 if (new) 1876 blk_cleanup_queue(ctrl->fabrics_q); 1877 out_free_tagset: 1878 if (new) 1879 blk_mq_free_tag_set(ctrl->admin_tagset); 1880 out_free_queue: 1881 nvme_tcp_free_admin_queue(ctrl); 1882 return error; 1883 } 1884 1885 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1886 bool remove) 1887 { 1888 blk_mq_quiesce_queue(ctrl->admin_q); 1889 blk_sync_queue(ctrl->admin_q); 1890 nvme_tcp_stop_queue(ctrl, 0); 1891 if (ctrl->admin_tagset) { 1892 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1893 nvme_cancel_request, ctrl); 1894 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1895 } 1896 if (remove) 1897 blk_mq_unquiesce_queue(ctrl->admin_q); 1898 nvme_tcp_destroy_admin_queue(ctrl, remove); 1899 } 1900 1901 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1902 bool remove) 1903 { 1904 if (ctrl->queue_count <= 1) 1905 return; 1906 blk_mq_quiesce_queue(ctrl->admin_q); 1907 nvme_start_freeze(ctrl); 1908 nvme_stop_queues(ctrl); 1909 nvme_sync_io_queues(ctrl); 1910 nvme_tcp_stop_io_queues(ctrl); 1911 if (ctrl->tagset) { 1912 blk_mq_tagset_busy_iter(ctrl->tagset, 1913 nvme_cancel_request, ctrl); 1914 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1915 } 1916 if (remove) 1917 nvme_start_queues(ctrl); 1918 nvme_tcp_destroy_io_queues(ctrl, remove); 1919 } 1920 1921 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1922 { 1923 /* If we are resetting/deleting then do nothing */ 1924 if (ctrl->state != NVME_CTRL_CONNECTING) { 1925 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1926 ctrl->state == NVME_CTRL_LIVE); 1927 return; 1928 } 1929 1930 if (nvmf_should_reconnect(ctrl)) { 1931 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1932 ctrl->opts->reconnect_delay); 1933 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1934 ctrl->opts->reconnect_delay * HZ); 1935 } else { 1936 dev_info(ctrl->device, "Removing controller...\n"); 1937 nvme_delete_ctrl(ctrl); 1938 } 1939 } 1940 1941 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1942 { 1943 struct nvmf_ctrl_options *opts = ctrl->opts; 1944 int ret; 1945 1946 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1947 if (ret) 1948 return ret; 1949 1950 if (ctrl->icdoff) { 1951 dev_err(ctrl->device, "icdoff is not supported!\n"); 1952 goto destroy_admin; 1953 } 1954 1955 if (opts->queue_size > ctrl->sqsize + 1) 1956 dev_warn(ctrl->device, 1957 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1958 opts->queue_size, ctrl->sqsize + 1); 1959 1960 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1961 dev_warn(ctrl->device, 1962 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1963 ctrl->sqsize + 1, ctrl->maxcmd); 1964 ctrl->sqsize = ctrl->maxcmd - 1; 1965 } 1966 1967 if (ctrl->queue_count > 1) { 1968 ret = nvme_tcp_configure_io_queues(ctrl, new); 1969 if (ret) 1970 goto destroy_admin; 1971 } 1972 1973 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1974 /* 1975 * state change failure is ok if we started ctrl delete, 1976 * unless we're during creation of a new controller to 1977 * avoid races with teardown flow. 1978 */ 1979 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 1980 ctrl->state != NVME_CTRL_DELETING_NOIO); 1981 WARN_ON_ONCE(new); 1982 ret = -EINVAL; 1983 goto destroy_io; 1984 } 1985 1986 nvme_start_ctrl(ctrl); 1987 return 0; 1988 1989 destroy_io: 1990 if (ctrl->queue_count > 1) 1991 nvme_tcp_destroy_io_queues(ctrl, new); 1992 destroy_admin: 1993 nvme_tcp_stop_queue(ctrl, 0); 1994 nvme_tcp_destroy_admin_queue(ctrl, new); 1995 return ret; 1996 } 1997 1998 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1999 { 2000 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2001 struct nvme_tcp_ctrl, connect_work); 2002 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2003 2004 ++ctrl->nr_reconnects; 2005 2006 if (nvme_tcp_setup_ctrl(ctrl, false)) 2007 goto requeue; 2008 2009 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2010 ctrl->nr_reconnects); 2011 2012 ctrl->nr_reconnects = 0; 2013 2014 return; 2015 2016 requeue: 2017 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2018 ctrl->nr_reconnects); 2019 nvme_tcp_reconnect_or_remove(ctrl); 2020 } 2021 2022 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2023 { 2024 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2025 struct nvme_tcp_ctrl, err_work); 2026 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2027 2028 nvme_stop_keep_alive(ctrl); 2029 nvme_tcp_teardown_io_queues(ctrl, false); 2030 /* unquiesce to fail fast pending requests */ 2031 nvme_start_queues(ctrl); 2032 nvme_tcp_teardown_admin_queue(ctrl, false); 2033 blk_mq_unquiesce_queue(ctrl->admin_q); 2034 2035 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2036 /* state change failure is ok if we started ctrl delete */ 2037 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2038 ctrl->state != NVME_CTRL_DELETING_NOIO); 2039 return; 2040 } 2041 2042 nvme_tcp_reconnect_or_remove(ctrl); 2043 } 2044 2045 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2046 { 2047 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2048 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2049 2050 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2051 blk_mq_quiesce_queue(ctrl->admin_q); 2052 if (shutdown) 2053 nvme_shutdown_ctrl(ctrl); 2054 else 2055 nvme_disable_ctrl(ctrl); 2056 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2057 } 2058 2059 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2060 { 2061 nvme_tcp_teardown_ctrl(ctrl, true); 2062 } 2063 2064 static void nvme_reset_ctrl_work(struct work_struct *work) 2065 { 2066 struct nvme_ctrl *ctrl = 2067 container_of(work, struct nvme_ctrl, reset_work); 2068 2069 nvme_stop_ctrl(ctrl); 2070 nvme_tcp_teardown_ctrl(ctrl, false); 2071 2072 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2073 /* state change failure is ok if we started ctrl delete */ 2074 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2075 ctrl->state != NVME_CTRL_DELETING_NOIO); 2076 return; 2077 } 2078 2079 if (nvme_tcp_setup_ctrl(ctrl, false)) 2080 goto out_fail; 2081 2082 return; 2083 2084 out_fail: 2085 ++ctrl->nr_reconnects; 2086 nvme_tcp_reconnect_or_remove(ctrl); 2087 } 2088 2089 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2090 { 2091 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2092 2093 if (list_empty(&ctrl->list)) 2094 goto free_ctrl; 2095 2096 mutex_lock(&nvme_tcp_ctrl_mutex); 2097 list_del(&ctrl->list); 2098 mutex_unlock(&nvme_tcp_ctrl_mutex); 2099 2100 nvmf_free_options(nctrl->opts); 2101 free_ctrl: 2102 kfree(ctrl->queues); 2103 kfree(ctrl); 2104 } 2105 2106 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2107 { 2108 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2109 2110 sg->addr = 0; 2111 sg->length = 0; 2112 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2113 NVME_SGL_FMT_TRANSPORT_A; 2114 } 2115 2116 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2117 struct nvme_command *c, u32 data_len) 2118 { 2119 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2120 2121 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2122 sg->length = cpu_to_le32(data_len); 2123 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2124 } 2125 2126 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2127 u32 data_len) 2128 { 2129 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2130 2131 sg->addr = 0; 2132 sg->length = cpu_to_le32(data_len); 2133 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2134 NVME_SGL_FMT_TRANSPORT_A; 2135 } 2136 2137 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2138 { 2139 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2140 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2141 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2142 struct nvme_command *cmd = &pdu->cmd; 2143 u8 hdgst = nvme_tcp_hdgst_len(queue); 2144 2145 memset(pdu, 0, sizeof(*pdu)); 2146 pdu->hdr.type = nvme_tcp_cmd; 2147 if (queue->hdr_digest) 2148 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2149 pdu->hdr.hlen = sizeof(*pdu); 2150 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2151 2152 cmd->common.opcode = nvme_admin_async_event; 2153 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2154 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2155 nvme_tcp_set_sg_null(cmd); 2156 2157 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2158 ctrl->async_req.offset = 0; 2159 ctrl->async_req.curr_bio = NULL; 2160 ctrl->async_req.data_len = 0; 2161 2162 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2163 } 2164 2165 static void nvme_tcp_complete_timed_out(struct request *rq) 2166 { 2167 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2168 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2169 2170 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2171 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2172 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2173 blk_mq_complete_request(rq); 2174 } 2175 } 2176 2177 static enum blk_eh_timer_return 2178 nvme_tcp_timeout(struct request *rq, bool reserved) 2179 { 2180 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2181 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2182 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2183 2184 dev_warn(ctrl->device, 2185 "queue %d: timeout request %#x type %d\n", 2186 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2187 2188 if (ctrl->state != NVME_CTRL_LIVE) { 2189 /* 2190 * If we are resetting, connecting or deleting we should 2191 * complete immediately because we may block controller 2192 * teardown or setup sequence 2193 * - ctrl disable/shutdown fabrics requests 2194 * - connect requests 2195 * - initialization admin requests 2196 * - I/O requests that entered after unquiescing and 2197 * the controller stopped responding 2198 * 2199 * All other requests should be cancelled by the error 2200 * recovery work, so it's fine that we fail it here. 2201 */ 2202 nvme_tcp_complete_timed_out(rq); 2203 return BLK_EH_DONE; 2204 } 2205 2206 /* 2207 * LIVE state should trigger the normal error recovery which will 2208 * handle completing this request. 2209 */ 2210 nvme_tcp_error_recovery(ctrl); 2211 return BLK_EH_RESET_TIMER; 2212 } 2213 2214 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2215 struct request *rq) 2216 { 2217 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2218 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2219 struct nvme_command *c = &pdu->cmd; 2220 2221 c->common.flags |= NVME_CMD_SGL_METABUF; 2222 2223 if (!blk_rq_nr_phys_segments(rq)) 2224 nvme_tcp_set_sg_null(c); 2225 else if (rq_data_dir(rq) == WRITE && 2226 req->data_len <= nvme_tcp_inline_data_size(queue)) 2227 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2228 else 2229 nvme_tcp_set_sg_host_data(c, req->data_len); 2230 2231 return 0; 2232 } 2233 2234 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2235 struct request *rq) 2236 { 2237 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2238 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2239 struct nvme_tcp_queue *queue = req->queue; 2240 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2241 blk_status_t ret; 2242 2243 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2244 if (ret) 2245 return ret; 2246 2247 req->state = NVME_TCP_SEND_CMD_PDU; 2248 req->offset = 0; 2249 req->data_sent = 0; 2250 req->pdu_len = 0; 2251 req->pdu_sent = 0; 2252 req->data_len = blk_rq_nr_phys_segments(rq) ? 2253 blk_rq_payload_bytes(rq) : 0; 2254 req->curr_bio = rq->bio; 2255 2256 if (rq_data_dir(rq) == WRITE && 2257 req->data_len <= nvme_tcp_inline_data_size(queue)) 2258 req->pdu_len = req->data_len; 2259 else if (req->curr_bio) 2260 nvme_tcp_init_iter(req, READ); 2261 2262 pdu->hdr.type = nvme_tcp_cmd; 2263 pdu->hdr.flags = 0; 2264 if (queue->hdr_digest) 2265 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2266 if (queue->data_digest && req->pdu_len) { 2267 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2268 ddgst = nvme_tcp_ddgst_len(queue); 2269 } 2270 pdu->hdr.hlen = sizeof(*pdu); 2271 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2272 pdu->hdr.plen = 2273 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2274 2275 ret = nvme_tcp_map_data(queue, rq); 2276 if (unlikely(ret)) { 2277 nvme_cleanup_cmd(rq); 2278 dev_err(queue->ctrl->ctrl.device, 2279 "Failed to map data (%d)\n", ret); 2280 return ret; 2281 } 2282 2283 return 0; 2284 } 2285 2286 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2287 { 2288 struct nvme_tcp_queue *queue = hctx->driver_data; 2289 2290 if (!llist_empty(&queue->req_list)) 2291 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2292 } 2293 2294 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2295 const struct blk_mq_queue_data *bd) 2296 { 2297 struct nvme_ns *ns = hctx->queue->queuedata; 2298 struct nvme_tcp_queue *queue = hctx->driver_data; 2299 struct request *rq = bd->rq; 2300 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2301 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2302 blk_status_t ret; 2303 2304 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2305 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2306 2307 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2308 if (unlikely(ret)) 2309 return ret; 2310 2311 blk_mq_start_request(rq); 2312 2313 nvme_tcp_queue_request(req, true, bd->last); 2314 2315 return BLK_STS_OK; 2316 } 2317 2318 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2319 { 2320 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2321 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2322 2323 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2324 /* separate read/write queues */ 2325 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2326 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2327 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2328 set->map[HCTX_TYPE_READ].nr_queues = 2329 ctrl->io_queues[HCTX_TYPE_READ]; 2330 set->map[HCTX_TYPE_READ].queue_offset = 2331 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2332 } else { 2333 /* shared read/write queues */ 2334 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2335 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2336 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2337 set->map[HCTX_TYPE_READ].nr_queues = 2338 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2339 set->map[HCTX_TYPE_READ].queue_offset = 0; 2340 } 2341 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2342 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2343 2344 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2345 /* map dedicated poll queues only if we have queues left */ 2346 set->map[HCTX_TYPE_POLL].nr_queues = 2347 ctrl->io_queues[HCTX_TYPE_POLL]; 2348 set->map[HCTX_TYPE_POLL].queue_offset = 2349 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2350 ctrl->io_queues[HCTX_TYPE_READ]; 2351 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2352 } 2353 2354 dev_info(ctrl->ctrl.device, 2355 "mapped %d/%d/%d default/read/poll queues.\n", 2356 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2357 ctrl->io_queues[HCTX_TYPE_READ], 2358 ctrl->io_queues[HCTX_TYPE_POLL]); 2359 2360 return 0; 2361 } 2362 2363 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2364 { 2365 struct nvme_tcp_queue *queue = hctx->driver_data; 2366 struct sock *sk = queue->sock->sk; 2367 2368 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2369 return 0; 2370 2371 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2372 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2373 sk_busy_loop(sk, true); 2374 nvme_tcp_try_recv(queue); 2375 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2376 return queue->nr_cqe; 2377 } 2378 2379 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2380 .queue_rq = nvme_tcp_queue_rq, 2381 .commit_rqs = nvme_tcp_commit_rqs, 2382 .complete = nvme_complete_rq, 2383 .init_request = nvme_tcp_init_request, 2384 .exit_request = nvme_tcp_exit_request, 2385 .init_hctx = nvme_tcp_init_hctx, 2386 .timeout = nvme_tcp_timeout, 2387 .map_queues = nvme_tcp_map_queues, 2388 .poll = nvme_tcp_poll, 2389 }; 2390 2391 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2392 .queue_rq = nvme_tcp_queue_rq, 2393 .complete = nvme_complete_rq, 2394 .init_request = nvme_tcp_init_request, 2395 .exit_request = nvme_tcp_exit_request, 2396 .init_hctx = nvme_tcp_init_admin_hctx, 2397 .timeout = nvme_tcp_timeout, 2398 }; 2399 2400 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2401 .name = "tcp", 2402 .module = THIS_MODULE, 2403 .flags = NVME_F_FABRICS, 2404 .reg_read32 = nvmf_reg_read32, 2405 .reg_read64 = nvmf_reg_read64, 2406 .reg_write32 = nvmf_reg_write32, 2407 .free_ctrl = nvme_tcp_free_ctrl, 2408 .submit_async_event = nvme_tcp_submit_async_event, 2409 .delete_ctrl = nvme_tcp_delete_ctrl, 2410 .get_address = nvmf_get_address, 2411 }; 2412 2413 static bool 2414 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2415 { 2416 struct nvme_tcp_ctrl *ctrl; 2417 bool found = false; 2418 2419 mutex_lock(&nvme_tcp_ctrl_mutex); 2420 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2421 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2422 if (found) 2423 break; 2424 } 2425 mutex_unlock(&nvme_tcp_ctrl_mutex); 2426 2427 return found; 2428 } 2429 2430 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2431 struct nvmf_ctrl_options *opts) 2432 { 2433 struct nvme_tcp_ctrl *ctrl; 2434 int ret; 2435 2436 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2437 if (!ctrl) 2438 return ERR_PTR(-ENOMEM); 2439 2440 INIT_LIST_HEAD(&ctrl->list); 2441 ctrl->ctrl.opts = opts; 2442 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2443 opts->nr_poll_queues + 1; 2444 ctrl->ctrl.sqsize = opts->queue_size - 1; 2445 ctrl->ctrl.kato = opts->kato; 2446 2447 INIT_DELAYED_WORK(&ctrl->connect_work, 2448 nvme_tcp_reconnect_ctrl_work); 2449 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2450 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2451 2452 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2453 opts->trsvcid = 2454 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2455 if (!opts->trsvcid) { 2456 ret = -ENOMEM; 2457 goto out_free_ctrl; 2458 } 2459 opts->mask |= NVMF_OPT_TRSVCID; 2460 } 2461 2462 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2463 opts->traddr, opts->trsvcid, &ctrl->addr); 2464 if (ret) { 2465 pr_err("malformed address passed: %s:%s\n", 2466 opts->traddr, opts->trsvcid); 2467 goto out_free_ctrl; 2468 } 2469 2470 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2471 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2472 opts->host_traddr, NULL, &ctrl->src_addr); 2473 if (ret) { 2474 pr_err("malformed src address passed: %s\n", 2475 opts->host_traddr); 2476 goto out_free_ctrl; 2477 } 2478 } 2479 2480 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2481 ret = -EALREADY; 2482 goto out_free_ctrl; 2483 } 2484 2485 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2486 GFP_KERNEL); 2487 if (!ctrl->queues) { 2488 ret = -ENOMEM; 2489 goto out_free_ctrl; 2490 } 2491 2492 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2493 if (ret) 2494 goto out_kfree_queues; 2495 2496 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2497 WARN_ON_ONCE(1); 2498 ret = -EINTR; 2499 goto out_uninit_ctrl; 2500 } 2501 2502 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2503 if (ret) 2504 goto out_uninit_ctrl; 2505 2506 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2507 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2508 2509 mutex_lock(&nvme_tcp_ctrl_mutex); 2510 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2511 mutex_unlock(&nvme_tcp_ctrl_mutex); 2512 2513 return &ctrl->ctrl; 2514 2515 out_uninit_ctrl: 2516 nvme_uninit_ctrl(&ctrl->ctrl); 2517 nvme_put_ctrl(&ctrl->ctrl); 2518 if (ret > 0) 2519 ret = -EIO; 2520 return ERR_PTR(ret); 2521 out_kfree_queues: 2522 kfree(ctrl->queues); 2523 out_free_ctrl: 2524 kfree(ctrl); 2525 return ERR_PTR(ret); 2526 } 2527 2528 static struct nvmf_transport_ops nvme_tcp_transport = { 2529 .name = "tcp", 2530 .module = THIS_MODULE, 2531 .required_opts = NVMF_OPT_TRADDR, 2532 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2533 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2534 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2535 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2536 NVMF_OPT_TOS, 2537 .create_ctrl = nvme_tcp_create_ctrl, 2538 }; 2539 2540 static int __init nvme_tcp_init_module(void) 2541 { 2542 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2543 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2544 if (!nvme_tcp_wq) 2545 return -ENOMEM; 2546 2547 nvmf_register_transport(&nvme_tcp_transport); 2548 return 0; 2549 } 2550 2551 static void __exit nvme_tcp_cleanup_module(void) 2552 { 2553 struct nvme_tcp_ctrl *ctrl; 2554 2555 nvmf_unregister_transport(&nvme_tcp_transport); 2556 2557 mutex_lock(&nvme_tcp_ctrl_mutex); 2558 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2559 nvme_delete_ctrl(&ctrl->ctrl); 2560 mutex_unlock(&nvme_tcp_ctrl_mutex); 2561 flush_workqueue(nvme_delete_wq); 2562 2563 destroy_workqueue(nvme_tcp_wq); 2564 } 2565 2566 module_init(nvme_tcp_init_module); 2567 module_exit(nvme_tcp_cleanup_module); 2568 2569 MODULE_LICENSE("GPL v2"); 2570