1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex queue_lock; 80 struct mutex send_mutex; 81 struct llist_head req_list; 82 struct list_head send_list; 83 bool more_requests; 84 85 /* recv state */ 86 void *pdu; 87 int pdu_remaining; 88 int pdu_offset; 89 size_t data_remaining; 90 size_t ddgst_remaining; 91 unsigned int nr_cqe; 92 93 /* send state */ 94 struct nvme_tcp_request *request; 95 96 int queue_size; 97 size_t cmnd_capsule_len; 98 struct nvme_tcp_ctrl *ctrl; 99 unsigned long flags; 100 bool rd_enabled; 101 102 bool hdr_digest; 103 bool data_digest; 104 struct ahash_request *rcv_hash; 105 struct ahash_request *snd_hash; 106 __le32 exp_ddgst; 107 __le32 recv_ddgst; 108 109 struct page_frag_cache pf_cache; 110 111 void (*state_change)(struct sock *); 112 void (*data_ready)(struct sock *); 113 void (*write_space)(struct sock *); 114 }; 115 116 struct nvme_tcp_ctrl { 117 /* read only in the hot path */ 118 struct nvme_tcp_queue *queues; 119 struct blk_mq_tag_set tag_set; 120 121 /* other member variables */ 122 struct list_head list; 123 struct blk_mq_tag_set admin_tag_set; 124 struct sockaddr_storage addr; 125 struct sockaddr_storage src_addr; 126 struct net_device *ndev; 127 struct nvme_ctrl ctrl; 128 129 struct work_struct err_work; 130 struct delayed_work connect_work; 131 struct nvme_tcp_request async_req; 132 u32 io_queues[HCTX_MAX_TYPES]; 133 }; 134 135 static LIST_HEAD(nvme_tcp_ctrl_list); 136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 137 static struct workqueue_struct *nvme_tcp_wq; 138 static const struct blk_mq_ops nvme_tcp_mq_ops; 139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 141 142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 143 { 144 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 145 } 146 147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 148 { 149 return queue - queue->ctrl->queues; 150 } 151 152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 153 { 154 u32 queue_idx = nvme_tcp_queue_id(queue); 155 156 if (queue_idx == 0) 157 return queue->ctrl->admin_tag_set.tags[queue_idx]; 158 return queue->ctrl->tag_set.tags[queue_idx - 1]; 159 } 160 161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 162 { 163 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 164 } 165 166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 167 { 168 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 169 } 170 171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 172 { 173 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 174 } 175 176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 177 { 178 return req == &req->queue->ctrl->async_req; 179 } 180 181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 182 { 183 struct request *rq; 184 185 if (unlikely(nvme_tcp_async_req(req))) 186 return false; /* async events don't have a request */ 187 188 rq = blk_mq_rq_from_pdu(req); 189 190 return rq_data_dir(rq) == WRITE && req->data_len && 191 req->data_len <= nvme_tcp_inline_data_size(req->queue); 192 } 193 194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 195 { 196 return req->iter.bvec->bv_page; 197 } 198 199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 200 { 201 return req->iter.bvec->bv_offset + req->iter.iov_offset; 202 } 203 204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 205 { 206 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 207 req->pdu_len - req->pdu_sent); 208 } 209 210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 211 { 212 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 213 req->pdu_len - req->pdu_sent : 0; 214 } 215 216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 217 int len) 218 { 219 return nvme_tcp_pdu_data_left(req) <= len; 220 } 221 222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 223 unsigned int dir) 224 { 225 struct request *rq = blk_mq_rq_from_pdu(req); 226 struct bio_vec *vec; 227 unsigned int size; 228 int nr_bvec; 229 size_t offset; 230 231 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 232 vec = &rq->special_vec; 233 nr_bvec = 1; 234 size = blk_rq_payload_bytes(rq); 235 offset = 0; 236 } else { 237 struct bio *bio = req->curr_bio; 238 struct bvec_iter bi; 239 struct bio_vec bv; 240 241 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 242 nr_bvec = 0; 243 bio_for_each_bvec(bv, bio, bi) { 244 nr_bvec++; 245 } 246 size = bio->bi_iter.bi_size; 247 offset = bio->bi_iter.bi_bvec_done; 248 } 249 250 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 251 req->iter.iov_offset = offset; 252 } 253 254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 255 int len) 256 { 257 req->data_sent += len; 258 req->pdu_sent += len; 259 iov_iter_advance(&req->iter, len); 260 if (!iov_iter_count(&req->iter) && 261 req->data_sent < req->data_len) { 262 req->curr_bio = req->curr_bio->bi_next; 263 nvme_tcp_init_iter(req, WRITE); 264 } 265 } 266 267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 268 { 269 int ret; 270 271 /* drain the send queue as much as we can... */ 272 do { 273 ret = nvme_tcp_try_send(queue); 274 } while (ret > 0); 275 } 276 277 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 278 bool sync, bool last) 279 { 280 struct nvme_tcp_queue *queue = req->queue; 281 bool empty; 282 283 empty = llist_add(&req->lentry, &queue->req_list) && 284 list_empty(&queue->send_list) && !queue->request; 285 286 /* 287 * if we're the first on the send_list and we can try to send 288 * directly, otherwise queue io_work. Also, only do that if we 289 * are on the same cpu, so we don't introduce contention. 290 */ 291 if (queue->io_cpu == raw_smp_processor_id() && 292 sync && empty && mutex_trylock(&queue->send_mutex)) { 293 queue->more_requests = !last; 294 nvme_tcp_send_all(queue); 295 queue->more_requests = false; 296 mutex_unlock(&queue->send_mutex); 297 } else if (last) { 298 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 299 } 300 } 301 302 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 303 { 304 struct nvme_tcp_request *req; 305 struct llist_node *node; 306 307 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 308 req = llist_entry(node, struct nvme_tcp_request, lentry); 309 list_add(&req->entry, &queue->send_list); 310 } 311 } 312 313 static inline struct nvme_tcp_request * 314 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 315 { 316 struct nvme_tcp_request *req; 317 318 req = list_first_entry_or_null(&queue->send_list, 319 struct nvme_tcp_request, entry); 320 if (!req) { 321 nvme_tcp_process_req_list(queue); 322 req = list_first_entry_or_null(&queue->send_list, 323 struct nvme_tcp_request, entry); 324 if (unlikely(!req)) 325 return NULL; 326 } 327 328 list_del(&req->entry); 329 return req; 330 } 331 332 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 333 __le32 *dgst) 334 { 335 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 336 crypto_ahash_final(hash); 337 } 338 339 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 340 struct page *page, off_t off, size_t len) 341 { 342 struct scatterlist sg; 343 344 sg_init_marker(&sg, 1); 345 sg_set_page(&sg, page, len, off); 346 ahash_request_set_crypt(hash, &sg, NULL, len); 347 crypto_ahash_update(hash); 348 } 349 350 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 351 void *pdu, size_t len) 352 { 353 struct scatterlist sg; 354 355 sg_init_one(&sg, pdu, len); 356 ahash_request_set_crypt(hash, &sg, pdu + len, len); 357 crypto_ahash_digest(hash); 358 } 359 360 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 361 void *pdu, size_t pdu_len) 362 { 363 struct nvme_tcp_hdr *hdr = pdu; 364 __le32 recv_digest; 365 __le32 exp_digest; 366 367 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 368 dev_err(queue->ctrl->ctrl.device, 369 "queue %d: header digest flag is cleared\n", 370 nvme_tcp_queue_id(queue)); 371 return -EPROTO; 372 } 373 374 recv_digest = *(__le32 *)(pdu + hdr->hlen); 375 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 376 exp_digest = *(__le32 *)(pdu + hdr->hlen); 377 if (recv_digest != exp_digest) { 378 dev_err(queue->ctrl->ctrl.device, 379 "header digest error: recv %#x expected %#x\n", 380 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 381 return -EIO; 382 } 383 384 return 0; 385 } 386 387 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 388 { 389 struct nvme_tcp_hdr *hdr = pdu; 390 u8 digest_len = nvme_tcp_hdgst_len(queue); 391 u32 len; 392 393 len = le32_to_cpu(hdr->plen) - hdr->hlen - 394 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 395 396 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 397 dev_err(queue->ctrl->ctrl.device, 398 "queue %d: data digest flag is cleared\n", 399 nvme_tcp_queue_id(queue)); 400 return -EPROTO; 401 } 402 crypto_ahash_init(queue->rcv_hash); 403 404 return 0; 405 } 406 407 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 408 struct request *rq, unsigned int hctx_idx) 409 { 410 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 411 412 page_frag_free(req->pdu); 413 } 414 415 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 416 struct request *rq, unsigned int hctx_idx, 417 unsigned int numa_node) 418 { 419 struct nvme_tcp_ctrl *ctrl = set->driver_data; 420 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 421 struct nvme_tcp_cmd_pdu *pdu; 422 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 423 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 424 u8 hdgst = nvme_tcp_hdgst_len(queue); 425 426 req->pdu = page_frag_alloc(&queue->pf_cache, 427 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 428 GFP_KERNEL | __GFP_ZERO); 429 if (!req->pdu) 430 return -ENOMEM; 431 432 pdu = req->pdu; 433 req->queue = queue; 434 nvme_req(rq)->ctrl = &ctrl->ctrl; 435 nvme_req(rq)->cmd = &pdu->cmd; 436 437 return 0; 438 } 439 440 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 441 unsigned int hctx_idx) 442 { 443 struct nvme_tcp_ctrl *ctrl = data; 444 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 445 446 hctx->driver_data = queue; 447 return 0; 448 } 449 450 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 451 unsigned int hctx_idx) 452 { 453 struct nvme_tcp_ctrl *ctrl = data; 454 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 455 456 hctx->driver_data = queue; 457 return 0; 458 } 459 460 static enum nvme_tcp_recv_state 461 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 462 { 463 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 464 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 465 NVME_TCP_RECV_DATA; 466 } 467 468 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 469 { 470 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 471 nvme_tcp_hdgst_len(queue); 472 queue->pdu_offset = 0; 473 queue->data_remaining = -1; 474 queue->ddgst_remaining = 0; 475 } 476 477 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 478 { 479 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 480 return; 481 482 dev_warn(ctrl->device, "starting error recovery\n"); 483 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 484 } 485 486 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 487 struct nvme_completion *cqe) 488 { 489 struct request *rq; 490 491 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 492 if (!rq) { 493 dev_err(queue->ctrl->ctrl.device, 494 "queue %d tag 0x%x not found\n", 495 nvme_tcp_queue_id(queue), cqe->command_id); 496 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 497 return -EINVAL; 498 } 499 500 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 501 nvme_complete_rq(rq); 502 queue->nr_cqe++; 503 504 return 0; 505 } 506 507 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 508 struct nvme_tcp_data_pdu *pdu) 509 { 510 struct request *rq; 511 512 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 513 if (!rq) { 514 dev_err(queue->ctrl->ctrl.device, 515 "queue %d tag %#x not found\n", 516 nvme_tcp_queue_id(queue), pdu->command_id); 517 return -ENOENT; 518 } 519 520 if (!blk_rq_payload_bytes(rq)) { 521 dev_err(queue->ctrl->ctrl.device, 522 "queue %d tag %#x unexpected data\n", 523 nvme_tcp_queue_id(queue), rq->tag); 524 return -EIO; 525 } 526 527 queue->data_remaining = le32_to_cpu(pdu->data_length); 528 529 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 530 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 531 dev_err(queue->ctrl->ctrl.device, 532 "queue %d tag %#x SUCCESS set but not last PDU\n", 533 nvme_tcp_queue_id(queue), rq->tag); 534 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 535 return -EPROTO; 536 } 537 538 return 0; 539 } 540 541 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 542 struct nvme_tcp_rsp_pdu *pdu) 543 { 544 struct nvme_completion *cqe = &pdu->cqe; 545 int ret = 0; 546 547 /* 548 * AEN requests are special as they don't time out and can 549 * survive any kind of queue freeze and often don't respond to 550 * aborts. We don't even bother to allocate a struct request 551 * for them but rather special case them here. 552 */ 553 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 554 cqe->command_id))) 555 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 556 &cqe->result); 557 else 558 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 559 560 return ret; 561 } 562 563 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 564 struct nvme_tcp_r2t_pdu *pdu) 565 { 566 struct nvme_tcp_data_pdu *data = req->pdu; 567 struct nvme_tcp_queue *queue = req->queue; 568 struct request *rq = blk_mq_rq_from_pdu(req); 569 u8 hdgst = nvme_tcp_hdgst_len(queue); 570 u8 ddgst = nvme_tcp_ddgst_len(queue); 571 572 req->pdu_len = le32_to_cpu(pdu->r2t_length); 573 req->pdu_sent = 0; 574 575 if (unlikely(!req->pdu_len)) { 576 dev_err(queue->ctrl->ctrl.device, 577 "req %d r2t len is %u, probably a bug...\n", 578 rq->tag, req->pdu_len); 579 return -EPROTO; 580 } 581 582 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 583 dev_err(queue->ctrl->ctrl.device, 584 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 585 rq->tag, req->pdu_len, req->data_len, 586 req->data_sent); 587 return -EPROTO; 588 } 589 590 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 591 dev_err(queue->ctrl->ctrl.device, 592 "req %d unexpected r2t offset %u (expected %zu)\n", 593 rq->tag, le32_to_cpu(pdu->r2t_offset), 594 req->data_sent); 595 return -EPROTO; 596 } 597 598 memset(data, 0, sizeof(*data)); 599 data->hdr.type = nvme_tcp_h2c_data; 600 data->hdr.flags = NVME_TCP_F_DATA_LAST; 601 if (queue->hdr_digest) 602 data->hdr.flags |= NVME_TCP_F_HDGST; 603 if (queue->data_digest) 604 data->hdr.flags |= NVME_TCP_F_DDGST; 605 data->hdr.hlen = sizeof(*data); 606 data->hdr.pdo = data->hdr.hlen + hdgst; 607 data->hdr.plen = 608 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 609 data->ttag = pdu->ttag; 610 data->command_id = rq->tag; 611 data->data_offset = cpu_to_le32(req->data_sent); 612 data->data_length = cpu_to_le32(req->pdu_len); 613 return 0; 614 } 615 616 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 617 struct nvme_tcp_r2t_pdu *pdu) 618 { 619 struct nvme_tcp_request *req; 620 struct request *rq; 621 int ret; 622 623 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 624 if (!rq) { 625 dev_err(queue->ctrl->ctrl.device, 626 "queue %d tag %#x not found\n", 627 nvme_tcp_queue_id(queue), pdu->command_id); 628 return -ENOENT; 629 } 630 req = blk_mq_rq_to_pdu(rq); 631 632 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 633 if (unlikely(ret)) 634 return ret; 635 636 req->state = NVME_TCP_SEND_H2C_PDU; 637 req->offset = 0; 638 639 nvme_tcp_queue_request(req, false, true); 640 641 return 0; 642 } 643 644 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 645 unsigned int *offset, size_t *len) 646 { 647 struct nvme_tcp_hdr *hdr; 648 char *pdu = queue->pdu; 649 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 650 int ret; 651 652 ret = skb_copy_bits(skb, *offset, 653 &pdu[queue->pdu_offset], rcv_len); 654 if (unlikely(ret)) 655 return ret; 656 657 queue->pdu_remaining -= rcv_len; 658 queue->pdu_offset += rcv_len; 659 *offset += rcv_len; 660 *len -= rcv_len; 661 if (queue->pdu_remaining) 662 return 0; 663 664 hdr = queue->pdu; 665 if (queue->hdr_digest) { 666 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 667 if (unlikely(ret)) 668 return ret; 669 } 670 671 672 if (queue->data_digest) { 673 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 674 if (unlikely(ret)) 675 return ret; 676 } 677 678 switch (hdr->type) { 679 case nvme_tcp_c2h_data: 680 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 681 case nvme_tcp_rsp: 682 nvme_tcp_init_recv_ctx(queue); 683 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 684 case nvme_tcp_r2t: 685 nvme_tcp_init_recv_ctx(queue); 686 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 687 default: 688 dev_err(queue->ctrl->ctrl.device, 689 "unsupported pdu type (%d)\n", hdr->type); 690 return -EINVAL; 691 } 692 } 693 694 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 695 { 696 union nvme_result res = {}; 697 698 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 699 nvme_complete_rq(rq); 700 } 701 702 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 703 unsigned int *offset, size_t *len) 704 { 705 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 706 struct nvme_tcp_request *req; 707 struct request *rq; 708 709 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 710 if (!rq) { 711 dev_err(queue->ctrl->ctrl.device, 712 "queue %d tag %#x not found\n", 713 nvme_tcp_queue_id(queue), pdu->command_id); 714 return -ENOENT; 715 } 716 req = blk_mq_rq_to_pdu(rq); 717 718 while (true) { 719 int recv_len, ret; 720 721 recv_len = min_t(size_t, *len, queue->data_remaining); 722 if (!recv_len) 723 break; 724 725 if (!iov_iter_count(&req->iter)) { 726 req->curr_bio = req->curr_bio->bi_next; 727 728 /* 729 * If we don`t have any bios it means that controller 730 * sent more data than we requested, hence error 731 */ 732 if (!req->curr_bio) { 733 dev_err(queue->ctrl->ctrl.device, 734 "queue %d no space in request %#x", 735 nvme_tcp_queue_id(queue), rq->tag); 736 nvme_tcp_init_recv_ctx(queue); 737 return -EIO; 738 } 739 nvme_tcp_init_iter(req, READ); 740 } 741 742 /* we can read only from what is left in this bio */ 743 recv_len = min_t(size_t, recv_len, 744 iov_iter_count(&req->iter)); 745 746 if (queue->data_digest) 747 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 748 &req->iter, recv_len, queue->rcv_hash); 749 else 750 ret = skb_copy_datagram_iter(skb, *offset, 751 &req->iter, recv_len); 752 if (ret) { 753 dev_err(queue->ctrl->ctrl.device, 754 "queue %d failed to copy request %#x data", 755 nvme_tcp_queue_id(queue), rq->tag); 756 return ret; 757 } 758 759 *len -= recv_len; 760 *offset += recv_len; 761 queue->data_remaining -= recv_len; 762 } 763 764 if (!queue->data_remaining) { 765 if (queue->data_digest) { 766 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 767 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 768 } else { 769 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 770 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 771 queue->nr_cqe++; 772 } 773 nvme_tcp_init_recv_ctx(queue); 774 } 775 } 776 777 return 0; 778 } 779 780 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 781 struct sk_buff *skb, unsigned int *offset, size_t *len) 782 { 783 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 784 char *ddgst = (char *)&queue->recv_ddgst; 785 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 786 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 787 int ret; 788 789 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 790 if (unlikely(ret)) 791 return ret; 792 793 queue->ddgst_remaining -= recv_len; 794 *offset += recv_len; 795 *len -= recv_len; 796 if (queue->ddgst_remaining) 797 return 0; 798 799 if (queue->recv_ddgst != queue->exp_ddgst) { 800 dev_err(queue->ctrl->ctrl.device, 801 "data digest error: recv %#x expected %#x\n", 802 le32_to_cpu(queue->recv_ddgst), 803 le32_to_cpu(queue->exp_ddgst)); 804 return -EIO; 805 } 806 807 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 808 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 809 pdu->command_id); 810 811 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 812 queue->nr_cqe++; 813 } 814 815 nvme_tcp_init_recv_ctx(queue); 816 return 0; 817 } 818 819 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 820 unsigned int offset, size_t len) 821 { 822 struct nvme_tcp_queue *queue = desc->arg.data; 823 size_t consumed = len; 824 int result; 825 826 while (len) { 827 switch (nvme_tcp_recv_state(queue)) { 828 case NVME_TCP_RECV_PDU: 829 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 830 break; 831 case NVME_TCP_RECV_DATA: 832 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 833 break; 834 case NVME_TCP_RECV_DDGST: 835 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 836 break; 837 default: 838 result = -EFAULT; 839 } 840 if (result) { 841 dev_err(queue->ctrl->ctrl.device, 842 "receive failed: %d\n", result); 843 queue->rd_enabled = false; 844 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 845 return result; 846 } 847 } 848 849 return consumed; 850 } 851 852 static void nvme_tcp_data_ready(struct sock *sk) 853 { 854 struct nvme_tcp_queue *queue; 855 856 read_lock_bh(&sk->sk_callback_lock); 857 queue = sk->sk_user_data; 858 if (likely(queue && queue->rd_enabled) && 859 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 860 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 861 read_unlock_bh(&sk->sk_callback_lock); 862 } 863 864 static void nvme_tcp_write_space(struct sock *sk) 865 { 866 struct nvme_tcp_queue *queue; 867 868 read_lock_bh(&sk->sk_callback_lock); 869 queue = sk->sk_user_data; 870 if (likely(queue && sk_stream_is_writeable(sk))) { 871 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 872 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 873 } 874 read_unlock_bh(&sk->sk_callback_lock); 875 } 876 877 static void nvme_tcp_state_change(struct sock *sk) 878 { 879 struct nvme_tcp_queue *queue; 880 881 read_lock_bh(&sk->sk_callback_lock); 882 queue = sk->sk_user_data; 883 if (!queue) 884 goto done; 885 886 switch (sk->sk_state) { 887 case TCP_CLOSE: 888 case TCP_CLOSE_WAIT: 889 case TCP_LAST_ACK: 890 case TCP_FIN_WAIT1: 891 case TCP_FIN_WAIT2: 892 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 893 break; 894 default: 895 dev_info(queue->ctrl->ctrl.device, 896 "queue %d socket state %d\n", 897 nvme_tcp_queue_id(queue), sk->sk_state); 898 } 899 900 queue->state_change(sk); 901 done: 902 read_unlock_bh(&sk->sk_callback_lock); 903 } 904 905 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 906 { 907 return !list_empty(&queue->send_list) || 908 !llist_empty(&queue->req_list) || queue->more_requests; 909 } 910 911 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 912 { 913 queue->request = NULL; 914 } 915 916 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 917 { 918 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 919 } 920 921 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 922 { 923 struct nvme_tcp_queue *queue = req->queue; 924 925 while (true) { 926 struct page *page = nvme_tcp_req_cur_page(req); 927 size_t offset = nvme_tcp_req_cur_offset(req); 928 size_t len = nvme_tcp_req_cur_length(req); 929 bool last = nvme_tcp_pdu_last_send(req, len); 930 int ret, flags = MSG_DONTWAIT; 931 932 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 933 flags |= MSG_EOR; 934 else 935 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 936 937 if (sendpage_ok(page)) { 938 ret = kernel_sendpage(queue->sock, page, offset, len, 939 flags); 940 } else { 941 ret = sock_no_sendpage(queue->sock, page, offset, len, 942 flags); 943 } 944 if (ret <= 0) 945 return ret; 946 947 if (queue->data_digest) 948 nvme_tcp_ddgst_update(queue->snd_hash, page, 949 offset, ret); 950 951 /* fully successful last write*/ 952 if (last && ret == len) { 953 if (queue->data_digest) { 954 nvme_tcp_ddgst_final(queue->snd_hash, 955 &req->ddgst); 956 req->state = NVME_TCP_SEND_DDGST; 957 req->offset = 0; 958 } else { 959 nvme_tcp_done_send_req(queue); 960 } 961 return 1; 962 } 963 nvme_tcp_advance_req(req, ret); 964 } 965 return -EAGAIN; 966 } 967 968 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 969 { 970 struct nvme_tcp_queue *queue = req->queue; 971 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 972 bool inline_data = nvme_tcp_has_inline_data(req); 973 u8 hdgst = nvme_tcp_hdgst_len(queue); 974 int len = sizeof(*pdu) + hdgst - req->offset; 975 int flags = MSG_DONTWAIT; 976 int ret; 977 978 if (inline_data || nvme_tcp_queue_more(queue)) 979 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 980 else 981 flags |= MSG_EOR; 982 983 if (queue->hdr_digest && !req->offset) 984 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 985 986 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 987 offset_in_page(pdu) + req->offset, len, flags); 988 if (unlikely(ret <= 0)) 989 return ret; 990 991 len -= ret; 992 if (!len) { 993 if (inline_data) { 994 req->state = NVME_TCP_SEND_DATA; 995 if (queue->data_digest) 996 crypto_ahash_init(queue->snd_hash); 997 } else { 998 nvme_tcp_done_send_req(queue); 999 } 1000 return 1; 1001 } 1002 req->offset += ret; 1003 1004 return -EAGAIN; 1005 } 1006 1007 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1008 { 1009 struct nvme_tcp_queue *queue = req->queue; 1010 struct nvme_tcp_data_pdu *pdu = req->pdu; 1011 u8 hdgst = nvme_tcp_hdgst_len(queue); 1012 int len = sizeof(*pdu) - req->offset + hdgst; 1013 int ret; 1014 1015 if (queue->hdr_digest && !req->offset) 1016 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1017 1018 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1019 offset_in_page(pdu) + req->offset, len, 1020 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1021 if (unlikely(ret <= 0)) 1022 return ret; 1023 1024 len -= ret; 1025 if (!len) { 1026 req->state = NVME_TCP_SEND_DATA; 1027 if (queue->data_digest) 1028 crypto_ahash_init(queue->snd_hash); 1029 return 1; 1030 } 1031 req->offset += ret; 1032 1033 return -EAGAIN; 1034 } 1035 1036 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1037 { 1038 struct nvme_tcp_queue *queue = req->queue; 1039 int ret; 1040 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1041 struct kvec iov = { 1042 .iov_base = &req->ddgst + req->offset, 1043 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1044 }; 1045 1046 if (nvme_tcp_queue_more(queue)) 1047 msg.msg_flags |= MSG_MORE; 1048 else 1049 msg.msg_flags |= MSG_EOR; 1050 1051 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1052 if (unlikely(ret <= 0)) 1053 return ret; 1054 1055 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1056 nvme_tcp_done_send_req(queue); 1057 return 1; 1058 } 1059 1060 req->offset += ret; 1061 return -EAGAIN; 1062 } 1063 1064 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1065 { 1066 struct nvme_tcp_request *req; 1067 int ret = 1; 1068 1069 if (!queue->request) { 1070 queue->request = nvme_tcp_fetch_request(queue); 1071 if (!queue->request) 1072 return 0; 1073 } 1074 req = queue->request; 1075 1076 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1077 ret = nvme_tcp_try_send_cmd_pdu(req); 1078 if (ret <= 0) 1079 goto done; 1080 if (!nvme_tcp_has_inline_data(req)) 1081 return ret; 1082 } 1083 1084 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1085 ret = nvme_tcp_try_send_data_pdu(req); 1086 if (ret <= 0) 1087 goto done; 1088 } 1089 1090 if (req->state == NVME_TCP_SEND_DATA) { 1091 ret = nvme_tcp_try_send_data(req); 1092 if (ret <= 0) 1093 goto done; 1094 } 1095 1096 if (req->state == NVME_TCP_SEND_DDGST) 1097 ret = nvme_tcp_try_send_ddgst(req); 1098 done: 1099 if (ret == -EAGAIN) { 1100 ret = 0; 1101 } else if (ret < 0) { 1102 dev_err(queue->ctrl->ctrl.device, 1103 "failed to send request %d\n", ret); 1104 if (ret != -EPIPE && ret != -ECONNRESET) 1105 nvme_tcp_fail_request(queue->request); 1106 nvme_tcp_done_send_req(queue); 1107 } 1108 return ret; 1109 } 1110 1111 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1112 { 1113 struct socket *sock = queue->sock; 1114 struct sock *sk = sock->sk; 1115 read_descriptor_t rd_desc; 1116 int consumed; 1117 1118 rd_desc.arg.data = queue; 1119 rd_desc.count = 1; 1120 lock_sock(sk); 1121 queue->nr_cqe = 0; 1122 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1123 release_sock(sk); 1124 return consumed; 1125 } 1126 1127 static void nvme_tcp_io_work(struct work_struct *w) 1128 { 1129 struct nvme_tcp_queue *queue = 1130 container_of(w, struct nvme_tcp_queue, io_work); 1131 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1132 1133 do { 1134 bool pending = false; 1135 int result; 1136 1137 if (mutex_trylock(&queue->send_mutex)) { 1138 result = nvme_tcp_try_send(queue); 1139 mutex_unlock(&queue->send_mutex); 1140 if (result > 0) 1141 pending = true; 1142 else if (unlikely(result < 0)) 1143 break; 1144 } else 1145 pending = !llist_empty(&queue->req_list); 1146 1147 result = nvme_tcp_try_recv(queue); 1148 if (result > 0) 1149 pending = true; 1150 else if (unlikely(result < 0)) 1151 return; 1152 1153 if (!pending) 1154 return; 1155 1156 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1157 1158 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1159 } 1160 1161 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1162 { 1163 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1164 1165 ahash_request_free(queue->rcv_hash); 1166 ahash_request_free(queue->snd_hash); 1167 crypto_free_ahash(tfm); 1168 } 1169 1170 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1171 { 1172 struct crypto_ahash *tfm; 1173 1174 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1175 if (IS_ERR(tfm)) 1176 return PTR_ERR(tfm); 1177 1178 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1179 if (!queue->snd_hash) 1180 goto free_tfm; 1181 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1182 1183 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1184 if (!queue->rcv_hash) 1185 goto free_snd_hash; 1186 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1187 1188 return 0; 1189 free_snd_hash: 1190 ahash_request_free(queue->snd_hash); 1191 free_tfm: 1192 crypto_free_ahash(tfm); 1193 return -ENOMEM; 1194 } 1195 1196 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1197 { 1198 struct nvme_tcp_request *async = &ctrl->async_req; 1199 1200 page_frag_free(async->pdu); 1201 } 1202 1203 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1204 { 1205 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1206 struct nvme_tcp_request *async = &ctrl->async_req; 1207 u8 hdgst = nvme_tcp_hdgst_len(queue); 1208 1209 async->pdu = page_frag_alloc(&queue->pf_cache, 1210 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1211 GFP_KERNEL | __GFP_ZERO); 1212 if (!async->pdu) 1213 return -ENOMEM; 1214 1215 async->queue = &ctrl->queues[0]; 1216 return 0; 1217 } 1218 1219 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1220 { 1221 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1222 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1223 1224 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1225 return; 1226 1227 if (queue->hdr_digest || queue->data_digest) 1228 nvme_tcp_free_crypto(queue); 1229 1230 sock_release(queue->sock); 1231 kfree(queue->pdu); 1232 mutex_destroy(&queue->queue_lock); 1233 } 1234 1235 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1236 { 1237 struct nvme_tcp_icreq_pdu *icreq; 1238 struct nvme_tcp_icresp_pdu *icresp; 1239 struct msghdr msg = {}; 1240 struct kvec iov; 1241 bool ctrl_hdgst, ctrl_ddgst; 1242 int ret; 1243 1244 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1245 if (!icreq) 1246 return -ENOMEM; 1247 1248 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1249 if (!icresp) { 1250 ret = -ENOMEM; 1251 goto free_icreq; 1252 } 1253 1254 icreq->hdr.type = nvme_tcp_icreq; 1255 icreq->hdr.hlen = sizeof(*icreq); 1256 icreq->hdr.pdo = 0; 1257 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1258 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1259 icreq->maxr2t = 0; /* single inflight r2t supported */ 1260 icreq->hpda = 0; /* no alignment constraint */ 1261 if (queue->hdr_digest) 1262 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1263 if (queue->data_digest) 1264 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1265 1266 iov.iov_base = icreq; 1267 iov.iov_len = sizeof(*icreq); 1268 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1269 if (ret < 0) 1270 goto free_icresp; 1271 1272 memset(&msg, 0, sizeof(msg)); 1273 iov.iov_base = icresp; 1274 iov.iov_len = sizeof(*icresp); 1275 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1276 iov.iov_len, msg.msg_flags); 1277 if (ret < 0) 1278 goto free_icresp; 1279 1280 ret = -EINVAL; 1281 if (icresp->hdr.type != nvme_tcp_icresp) { 1282 pr_err("queue %d: bad type returned %d\n", 1283 nvme_tcp_queue_id(queue), icresp->hdr.type); 1284 goto free_icresp; 1285 } 1286 1287 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1288 pr_err("queue %d: bad pdu length returned %d\n", 1289 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1290 goto free_icresp; 1291 } 1292 1293 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1294 pr_err("queue %d: bad pfv returned %d\n", 1295 nvme_tcp_queue_id(queue), icresp->pfv); 1296 goto free_icresp; 1297 } 1298 1299 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1300 if ((queue->data_digest && !ctrl_ddgst) || 1301 (!queue->data_digest && ctrl_ddgst)) { 1302 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1303 nvme_tcp_queue_id(queue), 1304 queue->data_digest ? "enabled" : "disabled", 1305 ctrl_ddgst ? "enabled" : "disabled"); 1306 goto free_icresp; 1307 } 1308 1309 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1310 if ((queue->hdr_digest && !ctrl_hdgst) || 1311 (!queue->hdr_digest && ctrl_hdgst)) { 1312 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1313 nvme_tcp_queue_id(queue), 1314 queue->hdr_digest ? "enabled" : "disabled", 1315 ctrl_hdgst ? "enabled" : "disabled"); 1316 goto free_icresp; 1317 } 1318 1319 if (icresp->cpda != 0) { 1320 pr_err("queue %d: unsupported cpda returned %d\n", 1321 nvme_tcp_queue_id(queue), icresp->cpda); 1322 goto free_icresp; 1323 } 1324 1325 ret = 0; 1326 free_icresp: 1327 kfree(icresp); 1328 free_icreq: 1329 kfree(icreq); 1330 return ret; 1331 } 1332 1333 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1334 { 1335 return nvme_tcp_queue_id(queue) == 0; 1336 } 1337 1338 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1339 { 1340 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1341 int qid = nvme_tcp_queue_id(queue); 1342 1343 return !nvme_tcp_admin_queue(queue) && 1344 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1345 } 1346 1347 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1348 { 1349 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1350 int qid = nvme_tcp_queue_id(queue); 1351 1352 return !nvme_tcp_admin_queue(queue) && 1353 !nvme_tcp_default_queue(queue) && 1354 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1355 ctrl->io_queues[HCTX_TYPE_READ]; 1356 } 1357 1358 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1359 { 1360 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1361 int qid = nvme_tcp_queue_id(queue); 1362 1363 return !nvme_tcp_admin_queue(queue) && 1364 !nvme_tcp_default_queue(queue) && 1365 !nvme_tcp_read_queue(queue) && 1366 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1367 ctrl->io_queues[HCTX_TYPE_READ] + 1368 ctrl->io_queues[HCTX_TYPE_POLL]; 1369 } 1370 1371 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1372 { 1373 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1374 int qid = nvme_tcp_queue_id(queue); 1375 int n = 0; 1376 1377 if (nvme_tcp_default_queue(queue)) 1378 n = qid - 1; 1379 else if (nvme_tcp_read_queue(queue)) 1380 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1381 else if (nvme_tcp_poll_queue(queue)) 1382 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1383 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1384 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1385 } 1386 1387 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1388 int qid, size_t queue_size) 1389 { 1390 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1391 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1392 int ret, rcv_pdu_size; 1393 1394 mutex_init(&queue->queue_lock); 1395 queue->ctrl = ctrl; 1396 init_llist_head(&queue->req_list); 1397 INIT_LIST_HEAD(&queue->send_list); 1398 mutex_init(&queue->send_mutex); 1399 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1400 queue->queue_size = queue_size; 1401 1402 if (qid > 0) 1403 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1404 else 1405 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1406 NVME_TCP_ADMIN_CCSZ; 1407 1408 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1409 IPPROTO_TCP, &queue->sock); 1410 if (ret) { 1411 dev_err(nctrl->device, 1412 "failed to create socket: %d\n", ret); 1413 goto err_destroy_mutex; 1414 } 1415 1416 /* Single syn retry */ 1417 tcp_sock_set_syncnt(queue->sock->sk, 1); 1418 1419 /* Set TCP no delay */ 1420 tcp_sock_set_nodelay(queue->sock->sk); 1421 1422 /* 1423 * Cleanup whatever is sitting in the TCP transmit queue on socket 1424 * close. This is done to prevent stale data from being sent should 1425 * the network connection be restored before TCP times out. 1426 */ 1427 sock_no_linger(queue->sock->sk); 1428 1429 if (so_priority > 0) 1430 sock_set_priority(queue->sock->sk, so_priority); 1431 1432 /* Set socket type of service */ 1433 if (nctrl->opts->tos >= 0) 1434 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1435 1436 /* Set 10 seconds timeout for icresp recvmsg */ 1437 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1438 1439 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1440 nvme_tcp_set_queue_io_cpu(queue); 1441 queue->request = NULL; 1442 queue->data_remaining = 0; 1443 queue->ddgst_remaining = 0; 1444 queue->pdu_remaining = 0; 1445 queue->pdu_offset = 0; 1446 sk_set_memalloc(queue->sock->sk); 1447 1448 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1449 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1450 sizeof(ctrl->src_addr)); 1451 if (ret) { 1452 dev_err(nctrl->device, 1453 "failed to bind queue %d socket %d\n", 1454 qid, ret); 1455 goto err_sock; 1456 } 1457 } 1458 1459 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1460 char *iface = nctrl->opts->host_iface; 1461 sockptr_t optval = KERNEL_SOCKPTR(iface); 1462 1463 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1464 optval, strlen(iface)); 1465 if (ret) { 1466 dev_err(nctrl->device, 1467 "failed to bind to interface %s queue %d err %d\n", 1468 iface, qid, ret); 1469 goto err_sock; 1470 } 1471 } 1472 1473 queue->hdr_digest = nctrl->opts->hdr_digest; 1474 queue->data_digest = nctrl->opts->data_digest; 1475 if (queue->hdr_digest || queue->data_digest) { 1476 ret = nvme_tcp_alloc_crypto(queue); 1477 if (ret) { 1478 dev_err(nctrl->device, 1479 "failed to allocate queue %d crypto\n", qid); 1480 goto err_sock; 1481 } 1482 } 1483 1484 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1485 nvme_tcp_hdgst_len(queue); 1486 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1487 if (!queue->pdu) { 1488 ret = -ENOMEM; 1489 goto err_crypto; 1490 } 1491 1492 dev_dbg(nctrl->device, "connecting queue %d\n", 1493 nvme_tcp_queue_id(queue)); 1494 1495 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1496 sizeof(ctrl->addr), 0); 1497 if (ret) { 1498 dev_err(nctrl->device, 1499 "failed to connect socket: %d\n", ret); 1500 goto err_rcv_pdu; 1501 } 1502 1503 ret = nvme_tcp_init_connection(queue); 1504 if (ret) 1505 goto err_init_connect; 1506 1507 queue->rd_enabled = true; 1508 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1509 nvme_tcp_init_recv_ctx(queue); 1510 1511 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1512 queue->sock->sk->sk_user_data = queue; 1513 queue->state_change = queue->sock->sk->sk_state_change; 1514 queue->data_ready = queue->sock->sk->sk_data_ready; 1515 queue->write_space = queue->sock->sk->sk_write_space; 1516 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1517 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1518 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1519 #ifdef CONFIG_NET_RX_BUSY_POLL 1520 queue->sock->sk->sk_ll_usec = 1; 1521 #endif 1522 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1523 1524 return 0; 1525 1526 err_init_connect: 1527 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1528 err_rcv_pdu: 1529 kfree(queue->pdu); 1530 err_crypto: 1531 if (queue->hdr_digest || queue->data_digest) 1532 nvme_tcp_free_crypto(queue); 1533 err_sock: 1534 sock_release(queue->sock); 1535 queue->sock = NULL; 1536 err_destroy_mutex: 1537 mutex_destroy(&queue->queue_lock); 1538 return ret; 1539 } 1540 1541 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1542 { 1543 struct socket *sock = queue->sock; 1544 1545 write_lock_bh(&sock->sk->sk_callback_lock); 1546 sock->sk->sk_user_data = NULL; 1547 sock->sk->sk_data_ready = queue->data_ready; 1548 sock->sk->sk_state_change = queue->state_change; 1549 sock->sk->sk_write_space = queue->write_space; 1550 write_unlock_bh(&sock->sk->sk_callback_lock); 1551 } 1552 1553 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1554 { 1555 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1556 nvme_tcp_restore_sock_calls(queue); 1557 cancel_work_sync(&queue->io_work); 1558 } 1559 1560 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1561 { 1562 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1563 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1564 1565 mutex_lock(&queue->queue_lock); 1566 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1567 __nvme_tcp_stop_queue(queue); 1568 mutex_unlock(&queue->queue_lock); 1569 } 1570 1571 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1572 { 1573 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1574 int ret; 1575 1576 if (idx) 1577 ret = nvmf_connect_io_queue(nctrl, idx, false); 1578 else 1579 ret = nvmf_connect_admin_queue(nctrl); 1580 1581 if (!ret) { 1582 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1583 } else { 1584 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1585 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1586 dev_err(nctrl->device, 1587 "failed to connect queue: %d ret=%d\n", idx, ret); 1588 } 1589 return ret; 1590 } 1591 1592 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1593 bool admin) 1594 { 1595 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1596 struct blk_mq_tag_set *set; 1597 int ret; 1598 1599 if (admin) { 1600 set = &ctrl->admin_tag_set; 1601 memset(set, 0, sizeof(*set)); 1602 set->ops = &nvme_tcp_admin_mq_ops; 1603 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1604 set->reserved_tags = NVMF_RESERVED_TAGS; 1605 set->numa_node = nctrl->numa_node; 1606 set->flags = BLK_MQ_F_BLOCKING; 1607 set->cmd_size = sizeof(struct nvme_tcp_request); 1608 set->driver_data = ctrl; 1609 set->nr_hw_queues = 1; 1610 set->timeout = NVME_ADMIN_TIMEOUT; 1611 } else { 1612 set = &ctrl->tag_set; 1613 memset(set, 0, sizeof(*set)); 1614 set->ops = &nvme_tcp_mq_ops; 1615 set->queue_depth = nctrl->sqsize + 1; 1616 set->reserved_tags = NVMF_RESERVED_TAGS; 1617 set->numa_node = nctrl->numa_node; 1618 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1619 set->cmd_size = sizeof(struct nvme_tcp_request); 1620 set->driver_data = ctrl; 1621 set->nr_hw_queues = nctrl->queue_count - 1; 1622 set->timeout = NVME_IO_TIMEOUT; 1623 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1624 } 1625 1626 ret = blk_mq_alloc_tag_set(set); 1627 if (ret) 1628 return ERR_PTR(ret); 1629 1630 return set; 1631 } 1632 1633 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1634 { 1635 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1636 cancel_work_sync(&ctrl->async_event_work); 1637 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1638 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1639 } 1640 1641 nvme_tcp_free_queue(ctrl, 0); 1642 } 1643 1644 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1645 { 1646 int i; 1647 1648 for (i = 1; i < ctrl->queue_count; i++) 1649 nvme_tcp_free_queue(ctrl, i); 1650 } 1651 1652 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1653 { 1654 int i; 1655 1656 for (i = 1; i < ctrl->queue_count; i++) 1657 nvme_tcp_stop_queue(ctrl, i); 1658 } 1659 1660 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1661 { 1662 int i, ret = 0; 1663 1664 for (i = 1; i < ctrl->queue_count; i++) { 1665 ret = nvme_tcp_start_queue(ctrl, i); 1666 if (ret) 1667 goto out_stop_queues; 1668 } 1669 1670 return 0; 1671 1672 out_stop_queues: 1673 for (i--; i >= 1; i--) 1674 nvme_tcp_stop_queue(ctrl, i); 1675 return ret; 1676 } 1677 1678 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1679 { 1680 int ret; 1681 1682 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1683 if (ret) 1684 return ret; 1685 1686 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1687 if (ret) 1688 goto out_free_queue; 1689 1690 return 0; 1691 1692 out_free_queue: 1693 nvme_tcp_free_queue(ctrl, 0); 1694 return ret; 1695 } 1696 1697 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1698 { 1699 int i, ret; 1700 1701 for (i = 1; i < ctrl->queue_count; i++) { 1702 ret = nvme_tcp_alloc_queue(ctrl, i, 1703 ctrl->sqsize + 1); 1704 if (ret) 1705 goto out_free_queues; 1706 } 1707 1708 return 0; 1709 1710 out_free_queues: 1711 for (i--; i >= 1; i--) 1712 nvme_tcp_free_queue(ctrl, i); 1713 1714 return ret; 1715 } 1716 1717 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1718 { 1719 unsigned int nr_io_queues; 1720 1721 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1722 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1723 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1724 1725 return nr_io_queues; 1726 } 1727 1728 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1729 unsigned int nr_io_queues) 1730 { 1731 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1732 struct nvmf_ctrl_options *opts = nctrl->opts; 1733 1734 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1735 /* 1736 * separate read/write queues 1737 * hand out dedicated default queues only after we have 1738 * sufficient read queues. 1739 */ 1740 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1741 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1742 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1743 min(opts->nr_write_queues, nr_io_queues); 1744 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1745 } else { 1746 /* 1747 * shared read/write queues 1748 * either no write queues were requested, or we don't have 1749 * sufficient queue count to have dedicated default queues. 1750 */ 1751 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1752 min(opts->nr_io_queues, nr_io_queues); 1753 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1754 } 1755 1756 if (opts->nr_poll_queues && nr_io_queues) { 1757 /* map dedicated poll queues only if we have queues left */ 1758 ctrl->io_queues[HCTX_TYPE_POLL] = 1759 min(opts->nr_poll_queues, nr_io_queues); 1760 } 1761 } 1762 1763 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1764 { 1765 unsigned int nr_io_queues; 1766 int ret; 1767 1768 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1769 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1770 if (ret) 1771 return ret; 1772 1773 ctrl->queue_count = nr_io_queues + 1; 1774 if (ctrl->queue_count < 2) { 1775 dev_err(ctrl->device, 1776 "unable to set any I/O queues\n"); 1777 return -ENOMEM; 1778 } 1779 1780 dev_info(ctrl->device, 1781 "creating %d I/O queues.\n", nr_io_queues); 1782 1783 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1784 1785 return __nvme_tcp_alloc_io_queues(ctrl); 1786 } 1787 1788 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1789 { 1790 nvme_tcp_stop_io_queues(ctrl); 1791 if (remove) { 1792 blk_cleanup_queue(ctrl->connect_q); 1793 blk_mq_free_tag_set(ctrl->tagset); 1794 } 1795 nvme_tcp_free_io_queues(ctrl); 1796 } 1797 1798 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1799 { 1800 int ret; 1801 1802 ret = nvme_tcp_alloc_io_queues(ctrl); 1803 if (ret) 1804 return ret; 1805 1806 if (new) { 1807 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1808 if (IS_ERR(ctrl->tagset)) { 1809 ret = PTR_ERR(ctrl->tagset); 1810 goto out_free_io_queues; 1811 } 1812 1813 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1814 if (IS_ERR(ctrl->connect_q)) { 1815 ret = PTR_ERR(ctrl->connect_q); 1816 goto out_free_tag_set; 1817 } 1818 } 1819 1820 ret = nvme_tcp_start_io_queues(ctrl); 1821 if (ret) 1822 goto out_cleanup_connect_q; 1823 1824 if (!new) { 1825 nvme_start_queues(ctrl); 1826 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1827 /* 1828 * If we timed out waiting for freeze we are likely to 1829 * be stuck. Fail the controller initialization just 1830 * to be safe. 1831 */ 1832 ret = -ENODEV; 1833 goto out_wait_freeze_timed_out; 1834 } 1835 blk_mq_update_nr_hw_queues(ctrl->tagset, 1836 ctrl->queue_count - 1); 1837 nvme_unfreeze(ctrl); 1838 } 1839 1840 return 0; 1841 1842 out_wait_freeze_timed_out: 1843 nvme_stop_queues(ctrl); 1844 nvme_sync_io_queues(ctrl); 1845 nvme_tcp_stop_io_queues(ctrl); 1846 out_cleanup_connect_q: 1847 nvme_cancel_tagset(ctrl); 1848 if (new) 1849 blk_cleanup_queue(ctrl->connect_q); 1850 out_free_tag_set: 1851 if (new) 1852 blk_mq_free_tag_set(ctrl->tagset); 1853 out_free_io_queues: 1854 nvme_tcp_free_io_queues(ctrl); 1855 return ret; 1856 } 1857 1858 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1859 { 1860 nvme_tcp_stop_queue(ctrl, 0); 1861 if (remove) { 1862 blk_cleanup_queue(ctrl->admin_q); 1863 blk_cleanup_queue(ctrl->fabrics_q); 1864 blk_mq_free_tag_set(ctrl->admin_tagset); 1865 } 1866 nvme_tcp_free_admin_queue(ctrl); 1867 } 1868 1869 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1870 { 1871 int error; 1872 1873 error = nvme_tcp_alloc_admin_queue(ctrl); 1874 if (error) 1875 return error; 1876 1877 if (new) { 1878 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1879 if (IS_ERR(ctrl->admin_tagset)) { 1880 error = PTR_ERR(ctrl->admin_tagset); 1881 goto out_free_queue; 1882 } 1883 1884 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1885 if (IS_ERR(ctrl->fabrics_q)) { 1886 error = PTR_ERR(ctrl->fabrics_q); 1887 goto out_free_tagset; 1888 } 1889 1890 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1891 if (IS_ERR(ctrl->admin_q)) { 1892 error = PTR_ERR(ctrl->admin_q); 1893 goto out_cleanup_fabrics_q; 1894 } 1895 } 1896 1897 error = nvme_tcp_start_queue(ctrl, 0); 1898 if (error) 1899 goto out_cleanup_queue; 1900 1901 error = nvme_enable_ctrl(ctrl); 1902 if (error) 1903 goto out_stop_queue; 1904 1905 blk_mq_unquiesce_queue(ctrl->admin_q); 1906 1907 error = nvme_init_ctrl_finish(ctrl); 1908 if (error) 1909 goto out_quiesce_queue; 1910 1911 return 0; 1912 1913 out_quiesce_queue: 1914 blk_mq_quiesce_queue(ctrl->admin_q); 1915 blk_sync_queue(ctrl->admin_q); 1916 out_stop_queue: 1917 nvme_tcp_stop_queue(ctrl, 0); 1918 nvme_cancel_admin_tagset(ctrl); 1919 out_cleanup_queue: 1920 if (new) 1921 blk_cleanup_queue(ctrl->admin_q); 1922 out_cleanup_fabrics_q: 1923 if (new) 1924 blk_cleanup_queue(ctrl->fabrics_q); 1925 out_free_tagset: 1926 if (new) 1927 blk_mq_free_tag_set(ctrl->admin_tagset); 1928 out_free_queue: 1929 nvme_tcp_free_admin_queue(ctrl); 1930 return error; 1931 } 1932 1933 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1934 bool remove) 1935 { 1936 blk_mq_quiesce_queue(ctrl->admin_q); 1937 blk_sync_queue(ctrl->admin_q); 1938 nvme_tcp_stop_queue(ctrl, 0); 1939 nvme_cancel_admin_tagset(ctrl); 1940 if (remove) 1941 blk_mq_unquiesce_queue(ctrl->admin_q); 1942 nvme_tcp_destroy_admin_queue(ctrl, remove); 1943 } 1944 1945 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1946 bool remove) 1947 { 1948 if (ctrl->queue_count <= 1) 1949 return; 1950 blk_mq_quiesce_queue(ctrl->admin_q); 1951 nvme_start_freeze(ctrl); 1952 nvme_stop_queues(ctrl); 1953 nvme_sync_io_queues(ctrl); 1954 nvme_tcp_stop_io_queues(ctrl); 1955 nvme_cancel_tagset(ctrl); 1956 if (remove) 1957 nvme_start_queues(ctrl); 1958 nvme_tcp_destroy_io_queues(ctrl, remove); 1959 } 1960 1961 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1962 { 1963 /* If we are resetting/deleting then do nothing */ 1964 if (ctrl->state != NVME_CTRL_CONNECTING) { 1965 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1966 ctrl->state == NVME_CTRL_LIVE); 1967 return; 1968 } 1969 1970 if (nvmf_should_reconnect(ctrl)) { 1971 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1972 ctrl->opts->reconnect_delay); 1973 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1974 ctrl->opts->reconnect_delay * HZ); 1975 } else { 1976 dev_info(ctrl->device, "Removing controller...\n"); 1977 nvme_delete_ctrl(ctrl); 1978 } 1979 } 1980 1981 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1982 { 1983 struct nvmf_ctrl_options *opts = ctrl->opts; 1984 int ret; 1985 1986 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1987 if (ret) 1988 return ret; 1989 1990 if (ctrl->icdoff) { 1991 ret = -EOPNOTSUPP; 1992 dev_err(ctrl->device, "icdoff is not supported!\n"); 1993 goto destroy_admin; 1994 } 1995 1996 if (!nvme_ctrl_sgl_supported(ctrl)) { 1997 ret = -EOPNOTSUPP; 1998 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 1999 goto destroy_admin; 2000 } 2001 2002 if (opts->queue_size > ctrl->sqsize + 1) 2003 dev_warn(ctrl->device, 2004 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2005 opts->queue_size, ctrl->sqsize + 1); 2006 2007 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2008 dev_warn(ctrl->device, 2009 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2010 ctrl->sqsize + 1, ctrl->maxcmd); 2011 ctrl->sqsize = ctrl->maxcmd - 1; 2012 } 2013 2014 if (ctrl->queue_count > 1) { 2015 ret = nvme_tcp_configure_io_queues(ctrl, new); 2016 if (ret) 2017 goto destroy_admin; 2018 } 2019 2020 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2021 /* 2022 * state change failure is ok if we started ctrl delete, 2023 * unless we're during creation of a new controller to 2024 * avoid races with teardown flow. 2025 */ 2026 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2027 ctrl->state != NVME_CTRL_DELETING_NOIO); 2028 WARN_ON_ONCE(new); 2029 ret = -EINVAL; 2030 goto destroy_io; 2031 } 2032 2033 nvme_start_ctrl(ctrl); 2034 return 0; 2035 2036 destroy_io: 2037 if (ctrl->queue_count > 1) { 2038 nvme_stop_queues(ctrl); 2039 nvme_sync_io_queues(ctrl); 2040 nvme_tcp_stop_io_queues(ctrl); 2041 nvme_cancel_tagset(ctrl); 2042 nvme_tcp_destroy_io_queues(ctrl, new); 2043 } 2044 destroy_admin: 2045 blk_mq_quiesce_queue(ctrl->admin_q); 2046 blk_sync_queue(ctrl->admin_q); 2047 nvme_tcp_stop_queue(ctrl, 0); 2048 nvme_cancel_admin_tagset(ctrl); 2049 nvme_tcp_destroy_admin_queue(ctrl, new); 2050 return ret; 2051 } 2052 2053 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2054 { 2055 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2056 struct nvme_tcp_ctrl, connect_work); 2057 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2058 2059 ++ctrl->nr_reconnects; 2060 2061 if (nvme_tcp_setup_ctrl(ctrl, false)) 2062 goto requeue; 2063 2064 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2065 ctrl->nr_reconnects); 2066 2067 ctrl->nr_reconnects = 0; 2068 2069 return; 2070 2071 requeue: 2072 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2073 ctrl->nr_reconnects); 2074 nvme_tcp_reconnect_or_remove(ctrl); 2075 } 2076 2077 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2078 { 2079 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2080 struct nvme_tcp_ctrl, err_work); 2081 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2082 2083 nvme_stop_keep_alive(ctrl); 2084 nvme_tcp_teardown_io_queues(ctrl, false); 2085 /* unquiesce to fail fast pending requests */ 2086 nvme_start_queues(ctrl); 2087 nvme_tcp_teardown_admin_queue(ctrl, false); 2088 blk_mq_unquiesce_queue(ctrl->admin_q); 2089 2090 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2091 /* state change failure is ok if we started ctrl delete */ 2092 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2093 ctrl->state != NVME_CTRL_DELETING_NOIO); 2094 return; 2095 } 2096 2097 nvme_tcp_reconnect_or_remove(ctrl); 2098 } 2099 2100 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2101 { 2102 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2103 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2104 2105 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2106 blk_mq_quiesce_queue(ctrl->admin_q); 2107 if (shutdown) 2108 nvme_shutdown_ctrl(ctrl); 2109 else 2110 nvme_disable_ctrl(ctrl); 2111 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2112 } 2113 2114 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2115 { 2116 nvme_tcp_teardown_ctrl(ctrl, true); 2117 } 2118 2119 static void nvme_reset_ctrl_work(struct work_struct *work) 2120 { 2121 struct nvme_ctrl *ctrl = 2122 container_of(work, struct nvme_ctrl, reset_work); 2123 2124 nvme_stop_ctrl(ctrl); 2125 nvme_tcp_teardown_ctrl(ctrl, false); 2126 2127 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2128 /* state change failure is ok if we started ctrl delete */ 2129 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2130 ctrl->state != NVME_CTRL_DELETING_NOIO); 2131 return; 2132 } 2133 2134 if (nvme_tcp_setup_ctrl(ctrl, false)) 2135 goto out_fail; 2136 2137 return; 2138 2139 out_fail: 2140 ++ctrl->nr_reconnects; 2141 nvme_tcp_reconnect_or_remove(ctrl); 2142 } 2143 2144 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2145 { 2146 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2147 2148 if (list_empty(&ctrl->list)) 2149 goto free_ctrl; 2150 2151 mutex_lock(&nvme_tcp_ctrl_mutex); 2152 list_del(&ctrl->list); 2153 mutex_unlock(&nvme_tcp_ctrl_mutex); 2154 2155 nvmf_free_options(nctrl->opts); 2156 free_ctrl: 2157 kfree(ctrl->queues); 2158 kfree(ctrl); 2159 } 2160 2161 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2162 { 2163 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2164 2165 sg->addr = 0; 2166 sg->length = 0; 2167 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2168 NVME_SGL_FMT_TRANSPORT_A; 2169 } 2170 2171 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2172 struct nvme_command *c, u32 data_len) 2173 { 2174 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2175 2176 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2177 sg->length = cpu_to_le32(data_len); 2178 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2179 } 2180 2181 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2182 u32 data_len) 2183 { 2184 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2185 2186 sg->addr = 0; 2187 sg->length = cpu_to_le32(data_len); 2188 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2189 NVME_SGL_FMT_TRANSPORT_A; 2190 } 2191 2192 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2193 { 2194 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2195 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2196 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2197 struct nvme_command *cmd = &pdu->cmd; 2198 u8 hdgst = nvme_tcp_hdgst_len(queue); 2199 2200 memset(pdu, 0, sizeof(*pdu)); 2201 pdu->hdr.type = nvme_tcp_cmd; 2202 if (queue->hdr_digest) 2203 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2204 pdu->hdr.hlen = sizeof(*pdu); 2205 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2206 2207 cmd->common.opcode = nvme_admin_async_event; 2208 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2209 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2210 nvme_tcp_set_sg_null(cmd); 2211 2212 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2213 ctrl->async_req.offset = 0; 2214 ctrl->async_req.curr_bio = NULL; 2215 ctrl->async_req.data_len = 0; 2216 2217 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2218 } 2219 2220 static void nvme_tcp_complete_timed_out(struct request *rq) 2221 { 2222 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2223 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2224 2225 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2226 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2227 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2228 blk_mq_complete_request(rq); 2229 } 2230 } 2231 2232 static enum blk_eh_timer_return 2233 nvme_tcp_timeout(struct request *rq, bool reserved) 2234 { 2235 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2236 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2237 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2238 2239 dev_warn(ctrl->device, 2240 "queue %d: timeout request %#x type %d\n", 2241 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2242 2243 if (ctrl->state != NVME_CTRL_LIVE) { 2244 /* 2245 * If we are resetting, connecting or deleting we should 2246 * complete immediately because we may block controller 2247 * teardown or setup sequence 2248 * - ctrl disable/shutdown fabrics requests 2249 * - connect requests 2250 * - initialization admin requests 2251 * - I/O requests that entered after unquiescing and 2252 * the controller stopped responding 2253 * 2254 * All other requests should be cancelled by the error 2255 * recovery work, so it's fine that we fail it here. 2256 */ 2257 nvme_tcp_complete_timed_out(rq); 2258 return BLK_EH_DONE; 2259 } 2260 2261 /* 2262 * LIVE state should trigger the normal error recovery which will 2263 * handle completing this request. 2264 */ 2265 nvme_tcp_error_recovery(ctrl); 2266 return BLK_EH_RESET_TIMER; 2267 } 2268 2269 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2270 struct request *rq) 2271 { 2272 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2273 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2274 struct nvme_command *c = &pdu->cmd; 2275 2276 c->common.flags |= NVME_CMD_SGL_METABUF; 2277 2278 if (!blk_rq_nr_phys_segments(rq)) 2279 nvme_tcp_set_sg_null(c); 2280 else if (rq_data_dir(rq) == WRITE && 2281 req->data_len <= nvme_tcp_inline_data_size(queue)) 2282 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2283 else 2284 nvme_tcp_set_sg_host_data(c, req->data_len); 2285 2286 return 0; 2287 } 2288 2289 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2290 struct request *rq) 2291 { 2292 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2293 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2294 struct nvme_tcp_queue *queue = req->queue; 2295 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2296 blk_status_t ret; 2297 2298 ret = nvme_setup_cmd(ns, rq); 2299 if (ret) 2300 return ret; 2301 2302 req->state = NVME_TCP_SEND_CMD_PDU; 2303 req->offset = 0; 2304 req->data_sent = 0; 2305 req->pdu_len = 0; 2306 req->pdu_sent = 0; 2307 req->data_len = blk_rq_nr_phys_segments(rq) ? 2308 blk_rq_payload_bytes(rq) : 0; 2309 req->curr_bio = rq->bio; 2310 if (req->curr_bio && req->data_len) 2311 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2312 2313 if (rq_data_dir(rq) == WRITE && 2314 req->data_len <= nvme_tcp_inline_data_size(queue)) 2315 req->pdu_len = req->data_len; 2316 2317 pdu->hdr.type = nvme_tcp_cmd; 2318 pdu->hdr.flags = 0; 2319 if (queue->hdr_digest) 2320 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2321 if (queue->data_digest && req->pdu_len) { 2322 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2323 ddgst = nvme_tcp_ddgst_len(queue); 2324 } 2325 pdu->hdr.hlen = sizeof(*pdu); 2326 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2327 pdu->hdr.plen = 2328 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2329 2330 ret = nvme_tcp_map_data(queue, rq); 2331 if (unlikely(ret)) { 2332 nvme_cleanup_cmd(rq); 2333 dev_err(queue->ctrl->ctrl.device, 2334 "Failed to map data (%d)\n", ret); 2335 return ret; 2336 } 2337 2338 return 0; 2339 } 2340 2341 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2342 { 2343 struct nvme_tcp_queue *queue = hctx->driver_data; 2344 2345 if (!llist_empty(&queue->req_list)) 2346 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2347 } 2348 2349 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2350 const struct blk_mq_queue_data *bd) 2351 { 2352 struct nvme_ns *ns = hctx->queue->queuedata; 2353 struct nvme_tcp_queue *queue = hctx->driver_data; 2354 struct request *rq = bd->rq; 2355 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2356 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2357 blk_status_t ret; 2358 2359 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2360 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2361 2362 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2363 if (unlikely(ret)) 2364 return ret; 2365 2366 blk_mq_start_request(rq); 2367 2368 nvme_tcp_queue_request(req, true, bd->last); 2369 2370 return BLK_STS_OK; 2371 } 2372 2373 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2374 { 2375 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2376 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2377 2378 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2379 /* separate read/write queues */ 2380 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2381 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2382 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2383 set->map[HCTX_TYPE_READ].nr_queues = 2384 ctrl->io_queues[HCTX_TYPE_READ]; 2385 set->map[HCTX_TYPE_READ].queue_offset = 2386 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2387 } else { 2388 /* shared read/write queues */ 2389 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2390 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2391 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2392 set->map[HCTX_TYPE_READ].nr_queues = 2393 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2394 set->map[HCTX_TYPE_READ].queue_offset = 0; 2395 } 2396 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2397 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2398 2399 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2400 /* map dedicated poll queues only if we have queues left */ 2401 set->map[HCTX_TYPE_POLL].nr_queues = 2402 ctrl->io_queues[HCTX_TYPE_POLL]; 2403 set->map[HCTX_TYPE_POLL].queue_offset = 2404 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2405 ctrl->io_queues[HCTX_TYPE_READ]; 2406 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2407 } 2408 2409 dev_info(ctrl->ctrl.device, 2410 "mapped %d/%d/%d default/read/poll queues.\n", 2411 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2412 ctrl->io_queues[HCTX_TYPE_READ], 2413 ctrl->io_queues[HCTX_TYPE_POLL]); 2414 2415 return 0; 2416 } 2417 2418 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2419 { 2420 struct nvme_tcp_queue *queue = hctx->driver_data; 2421 struct sock *sk = queue->sock->sk; 2422 2423 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2424 return 0; 2425 2426 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2427 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2428 sk_busy_loop(sk, true); 2429 nvme_tcp_try_recv(queue); 2430 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2431 return queue->nr_cqe; 2432 } 2433 2434 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2435 .queue_rq = nvme_tcp_queue_rq, 2436 .commit_rqs = nvme_tcp_commit_rqs, 2437 .complete = nvme_complete_rq, 2438 .init_request = nvme_tcp_init_request, 2439 .exit_request = nvme_tcp_exit_request, 2440 .init_hctx = nvme_tcp_init_hctx, 2441 .timeout = nvme_tcp_timeout, 2442 .map_queues = nvme_tcp_map_queues, 2443 .poll = nvme_tcp_poll, 2444 }; 2445 2446 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2447 .queue_rq = nvme_tcp_queue_rq, 2448 .complete = nvme_complete_rq, 2449 .init_request = nvme_tcp_init_request, 2450 .exit_request = nvme_tcp_exit_request, 2451 .init_hctx = nvme_tcp_init_admin_hctx, 2452 .timeout = nvme_tcp_timeout, 2453 }; 2454 2455 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2456 .name = "tcp", 2457 .module = THIS_MODULE, 2458 .flags = NVME_F_FABRICS, 2459 .reg_read32 = nvmf_reg_read32, 2460 .reg_read64 = nvmf_reg_read64, 2461 .reg_write32 = nvmf_reg_write32, 2462 .free_ctrl = nvme_tcp_free_ctrl, 2463 .submit_async_event = nvme_tcp_submit_async_event, 2464 .delete_ctrl = nvme_tcp_delete_ctrl, 2465 .get_address = nvmf_get_address, 2466 }; 2467 2468 static bool 2469 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2470 { 2471 struct nvme_tcp_ctrl *ctrl; 2472 bool found = false; 2473 2474 mutex_lock(&nvme_tcp_ctrl_mutex); 2475 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2476 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2477 if (found) 2478 break; 2479 } 2480 mutex_unlock(&nvme_tcp_ctrl_mutex); 2481 2482 return found; 2483 } 2484 2485 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2486 struct nvmf_ctrl_options *opts) 2487 { 2488 struct nvme_tcp_ctrl *ctrl; 2489 int ret; 2490 2491 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2492 if (!ctrl) 2493 return ERR_PTR(-ENOMEM); 2494 2495 INIT_LIST_HEAD(&ctrl->list); 2496 ctrl->ctrl.opts = opts; 2497 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2498 opts->nr_poll_queues + 1; 2499 ctrl->ctrl.sqsize = opts->queue_size - 1; 2500 ctrl->ctrl.kato = opts->kato; 2501 2502 INIT_DELAYED_WORK(&ctrl->connect_work, 2503 nvme_tcp_reconnect_ctrl_work); 2504 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2505 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2506 2507 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2508 opts->trsvcid = 2509 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2510 if (!opts->trsvcid) { 2511 ret = -ENOMEM; 2512 goto out_free_ctrl; 2513 } 2514 opts->mask |= NVMF_OPT_TRSVCID; 2515 } 2516 2517 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2518 opts->traddr, opts->trsvcid, &ctrl->addr); 2519 if (ret) { 2520 pr_err("malformed address passed: %s:%s\n", 2521 opts->traddr, opts->trsvcid); 2522 goto out_free_ctrl; 2523 } 2524 2525 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2526 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2527 opts->host_traddr, NULL, &ctrl->src_addr); 2528 if (ret) { 2529 pr_err("malformed src address passed: %s\n", 2530 opts->host_traddr); 2531 goto out_free_ctrl; 2532 } 2533 } 2534 2535 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2536 ctrl->ndev = dev_get_by_name(&init_net, opts->host_iface); 2537 if (!ctrl->ndev) { 2538 pr_err("invalid interface passed: %s\n", 2539 opts->host_iface); 2540 ret = -ENODEV; 2541 goto out_free_ctrl; 2542 } 2543 } 2544 2545 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2546 ret = -EALREADY; 2547 goto out_free_ctrl; 2548 } 2549 2550 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2551 GFP_KERNEL); 2552 if (!ctrl->queues) { 2553 ret = -ENOMEM; 2554 goto out_free_ctrl; 2555 } 2556 2557 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2558 if (ret) 2559 goto out_kfree_queues; 2560 2561 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2562 WARN_ON_ONCE(1); 2563 ret = -EINTR; 2564 goto out_uninit_ctrl; 2565 } 2566 2567 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2568 if (ret) 2569 goto out_uninit_ctrl; 2570 2571 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2572 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2573 2574 mutex_lock(&nvme_tcp_ctrl_mutex); 2575 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2576 mutex_unlock(&nvme_tcp_ctrl_mutex); 2577 2578 return &ctrl->ctrl; 2579 2580 out_uninit_ctrl: 2581 nvme_uninit_ctrl(&ctrl->ctrl); 2582 nvme_put_ctrl(&ctrl->ctrl); 2583 if (ret > 0) 2584 ret = -EIO; 2585 return ERR_PTR(ret); 2586 out_kfree_queues: 2587 kfree(ctrl->queues); 2588 out_free_ctrl: 2589 kfree(ctrl); 2590 return ERR_PTR(ret); 2591 } 2592 2593 static struct nvmf_transport_ops nvme_tcp_transport = { 2594 .name = "tcp", 2595 .module = THIS_MODULE, 2596 .required_opts = NVMF_OPT_TRADDR, 2597 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2598 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2599 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2600 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2601 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2602 .create_ctrl = nvme_tcp_create_ctrl, 2603 }; 2604 2605 static int __init nvme_tcp_init_module(void) 2606 { 2607 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2608 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2609 if (!nvme_tcp_wq) 2610 return -ENOMEM; 2611 2612 nvmf_register_transport(&nvme_tcp_transport); 2613 return 0; 2614 } 2615 2616 static void __exit nvme_tcp_cleanup_module(void) 2617 { 2618 struct nvme_tcp_ctrl *ctrl; 2619 2620 nvmf_unregister_transport(&nvme_tcp_transport); 2621 2622 mutex_lock(&nvme_tcp_ctrl_mutex); 2623 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2624 nvme_delete_ctrl(&ctrl->ctrl); 2625 mutex_unlock(&nvme_tcp_ctrl_mutex); 2626 flush_workqueue(nvme_delete_wq); 2627 2628 destroy_workqueue(nvme_tcp_wq); 2629 } 2630 2631 module_init(nvme_tcp_init_module); 2632 module_exit(nvme_tcp_cleanup_module); 2633 2634 MODULE_LICENSE("GPL v2"); 2635