1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 __le16 status; 49 struct list_head entry; 50 struct llist_node lentry; 51 __le32 ddgst; 52 53 struct bio *curr_bio; 54 struct iov_iter iter; 55 56 /* send state */ 57 size_t offset; 58 size_t data_sent; 59 enum nvme_tcp_send_state state; 60 }; 61 62 enum nvme_tcp_queue_flags { 63 NVME_TCP_Q_ALLOCATED = 0, 64 NVME_TCP_Q_LIVE = 1, 65 NVME_TCP_Q_POLLING = 2, 66 }; 67 68 enum nvme_tcp_recv_state { 69 NVME_TCP_RECV_PDU = 0, 70 NVME_TCP_RECV_DATA, 71 NVME_TCP_RECV_DDGST, 72 }; 73 74 struct nvme_tcp_ctrl; 75 struct nvme_tcp_queue { 76 struct socket *sock; 77 struct work_struct io_work; 78 int io_cpu; 79 80 struct mutex queue_lock; 81 struct mutex send_mutex; 82 struct llist_head req_list; 83 struct list_head send_list; 84 bool more_requests; 85 86 /* recv state */ 87 void *pdu; 88 int pdu_remaining; 89 int pdu_offset; 90 size_t data_remaining; 91 size_t ddgst_remaining; 92 unsigned int nr_cqe; 93 94 /* send state */ 95 struct nvme_tcp_request *request; 96 97 int queue_size; 98 size_t cmnd_capsule_len; 99 struct nvme_tcp_ctrl *ctrl; 100 unsigned long flags; 101 bool rd_enabled; 102 103 bool hdr_digest; 104 bool data_digest; 105 struct ahash_request *rcv_hash; 106 struct ahash_request *snd_hash; 107 __le32 exp_ddgst; 108 __le32 recv_ddgst; 109 110 struct page_frag_cache pf_cache; 111 112 void (*state_change)(struct sock *); 113 void (*data_ready)(struct sock *); 114 void (*write_space)(struct sock *); 115 }; 116 117 struct nvme_tcp_ctrl { 118 /* read only in the hot path */ 119 struct nvme_tcp_queue *queues; 120 struct blk_mq_tag_set tag_set; 121 122 /* other member variables */ 123 struct list_head list; 124 struct blk_mq_tag_set admin_tag_set; 125 struct sockaddr_storage addr; 126 struct sockaddr_storage src_addr; 127 struct nvme_ctrl ctrl; 128 129 struct work_struct err_work; 130 struct delayed_work connect_work; 131 struct nvme_tcp_request async_req; 132 u32 io_queues[HCTX_MAX_TYPES]; 133 }; 134 135 static LIST_HEAD(nvme_tcp_ctrl_list); 136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 137 static struct workqueue_struct *nvme_tcp_wq; 138 static const struct blk_mq_ops nvme_tcp_mq_ops; 139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 141 142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 143 { 144 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 145 } 146 147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 148 { 149 return queue - queue->ctrl->queues; 150 } 151 152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 153 { 154 u32 queue_idx = nvme_tcp_queue_id(queue); 155 156 if (queue_idx == 0) 157 return queue->ctrl->admin_tag_set.tags[queue_idx]; 158 return queue->ctrl->tag_set.tags[queue_idx - 1]; 159 } 160 161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 162 { 163 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 164 } 165 166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 167 { 168 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 169 } 170 171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 172 { 173 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 174 } 175 176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 177 { 178 return req == &req->queue->ctrl->async_req; 179 } 180 181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 182 { 183 struct request *rq; 184 185 if (unlikely(nvme_tcp_async_req(req))) 186 return false; /* async events don't have a request */ 187 188 rq = blk_mq_rq_from_pdu(req); 189 190 return rq_data_dir(rq) == WRITE && req->data_len && 191 req->data_len <= nvme_tcp_inline_data_size(req->queue); 192 } 193 194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 195 { 196 return req->iter.bvec->bv_page; 197 } 198 199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 200 { 201 return req->iter.bvec->bv_offset + req->iter.iov_offset; 202 } 203 204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 205 { 206 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 207 req->pdu_len - req->pdu_sent); 208 } 209 210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 211 { 212 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 213 req->pdu_len - req->pdu_sent : 0; 214 } 215 216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 217 int len) 218 { 219 return nvme_tcp_pdu_data_left(req) <= len; 220 } 221 222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 223 unsigned int dir) 224 { 225 struct request *rq = blk_mq_rq_from_pdu(req); 226 struct bio_vec *vec; 227 unsigned int size; 228 int nr_bvec; 229 size_t offset; 230 231 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 232 vec = &rq->special_vec; 233 nr_bvec = 1; 234 size = blk_rq_payload_bytes(rq); 235 offset = 0; 236 } else { 237 struct bio *bio = req->curr_bio; 238 struct bvec_iter bi; 239 struct bio_vec bv; 240 241 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 242 nr_bvec = 0; 243 bio_for_each_bvec(bv, bio, bi) { 244 nr_bvec++; 245 } 246 size = bio->bi_iter.bi_size; 247 offset = bio->bi_iter.bi_bvec_done; 248 } 249 250 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 251 req->iter.iov_offset = offset; 252 } 253 254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 255 int len) 256 { 257 req->data_sent += len; 258 req->pdu_sent += len; 259 iov_iter_advance(&req->iter, len); 260 if (!iov_iter_count(&req->iter) && 261 req->data_sent < req->data_len) { 262 req->curr_bio = req->curr_bio->bi_next; 263 nvme_tcp_init_iter(req, WRITE); 264 } 265 } 266 267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 268 { 269 int ret; 270 271 /* drain the send queue as much as we can... */ 272 do { 273 ret = nvme_tcp_try_send(queue); 274 } while (ret > 0); 275 } 276 277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 278 { 279 return !list_empty(&queue->send_list) || 280 !llist_empty(&queue->req_list) || queue->more_requests; 281 } 282 283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 284 bool sync, bool last) 285 { 286 struct nvme_tcp_queue *queue = req->queue; 287 bool empty; 288 289 empty = llist_add(&req->lentry, &queue->req_list) && 290 list_empty(&queue->send_list) && !queue->request; 291 292 /* 293 * if we're the first on the send_list and we can try to send 294 * directly, otherwise queue io_work. Also, only do that if we 295 * are on the same cpu, so we don't introduce contention. 296 */ 297 if (queue->io_cpu == raw_smp_processor_id() && 298 sync && empty && mutex_trylock(&queue->send_mutex)) { 299 queue->more_requests = !last; 300 nvme_tcp_send_all(queue); 301 queue->more_requests = false; 302 mutex_unlock(&queue->send_mutex); 303 } 304 305 if (last && nvme_tcp_queue_more(queue)) 306 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 307 } 308 309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 310 { 311 struct nvme_tcp_request *req; 312 struct llist_node *node; 313 314 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 315 req = llist_entry(node, struct nvme_tcp_request, lentry); 316 list_add(&req->entry, &queue->send_list); 317 } 318 } 319 320 static inline struct nvme_tcp_request * 321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 322 { 323 struct nvme_tcp_request *req; 324 325 req = list_first_entry_or_null(&queue->send_list, 326 struct nvme_tcp_request, entry); 327 if (!req) { 328 nvme_tcp_process_req_list(queue); 329 req = list_first_entry_or_null(&queue->send_list, 330 struct nvme_tcp_request, entry); 331 if (unlikely(!req)) 332 return NULL; 333 } 334 335 list_del(&req->entry); 336 return req; 337 } 338 339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 340 __le32 *dgst) 341 { 342 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 343 crypto_ahash_final(hash); 344 } 345 346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 347 struct page *page, off_t off, size_t len) 348 { 349 struct scatterlist sg; 350 351 sg_init_marker(&sg, 1); 352 sg_set_page(&sg, page, len, off); 353 ahash_request_set_crypt(hash, &sg, NULL, len); 354 crypto_ahash_update(hash); 355 } 356 357 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 358 void *pdu, size_t len) 359 { 360 struct scatterlist sg; 361 362 sg_init_one(&sg, pdu, len); 363 ahash_request_set_crypt(hash, &sg, pdu + len, len); 364 crypto_ahash_digest(hash); 365 } 366 367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 368 void *pdu, size_t pdu_len) 369 { 370 struct nvme_tcp_hdr *hdr = pdu; 371 __le32 recv_digest; 372 __le32 exp_digest; 373 374 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 375 dev_err(queue->ctrl->ctrl.device, 376 "queue %d: header digest flag is cleared\n", 377 nvme_tcp_queue_id(queue)); 378 return -EPROTO; 379 } 380 381 recv_digest = *(__le32 *)(pdu + hdr->hlen); 382 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 383 exp_digest = *(__le32 *)(pdu + hdr->hlen); 384 if (recv_digest != exp_digest) { 385 dev_err(queue->ctrl->ctrl.device, 386 "header digest error: recv %#x expected %#x\n", 387 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 388 return -EIO; 389 } 390 391 return 0; 392 } 393 394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 395 { 396 struct nvme_tcp_hdr *hdr = pdu; 397 u8 digest_len = nvme_tcp_hdgst_len(queue); 398 u32 len; 399 400 len = le32_to_cpu(hdr->plen) - hdr->hlen - 401 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 402 403 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 404 dev_err(queue->ctrl->ctrl.device, 405 "queue %d: data digest flag is cleared\n", 406 nvme_tcp_queue_id(queue)); 407 return -EPROTO; 408 } 409 crypto_ahash_init(queue->rcv_hash); 410 411 return 0; 412 } 413 414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 415 struct request *rq, unsigned int hctx_idx) 416 { 417 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 418 419 page_frag_free(req->pdu); 420 } 421 422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 423 struct request *rq, unsigned int hctx_idx, 424 unsigned int numa_node) 425 { 426 struct nvme_tcp_ctrl *ctrl = set->driver_data; 427 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 428 struct nvme_tcp_cmd_pdu *pdu; 429 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 430 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 431 u8 hdgst = nvme_tcp_hdgst_len(queue); 432 433 req->pdu = page_frag_alloc(&queue->pf_cache, 434 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 435 GFP_KERNEL | __GFP_ZERO); 436 if (!req->pdu) 437 return -ENOMEM; 438 439 pdu = req->pdu; 440 req->queue = queue; 441 nvme_req(rq)->ctrl = &ctrl->ctrl; 442 nvme_req(rq)->cmd = &pdu->cmd; 443 444 return 0; 445 } 446 447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 448 unsigned int hctx_idx) 449 { 450 struct nvme_tcp_ctrl *ctrl = data; 451 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 452 453 hctx->driver_data = queue; 454 return 0; 455 } 456 457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 458 unsigned int hctx_idx) 459 { 460 struct nvme_tcp_ctrl *ctrl = data; 461 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 462 463 hctx->driver_data = queue; 464 return 0; 465 } 466 467 static enum nvme_tcp_recv_state 468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 469 { 470 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 471 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 472 NVME_TCP_RECV_DATA; 473 } 474 475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 476 { 477 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 478 nvme_tcp_hdgst_len(queue); 479 queue->pdu_offset = 0; 480 queue->data_remaining = -1; 481 queue->ddgst_remaining = 0; 482 } 483 484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 485 { 486 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 487 return; 488 489 dev_warn(ctrl->device, "starting error recovery\n"); 490 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 491 } 492 493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 494 struct nvme_completion *cqe) 495 { 496 struct nvme_tcp_request *req; 497 struct request *rq; 498 499 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 500 if (!rq) { 501 dev_err(queue->ctrl->ctrl.device, 502 "got bad cqe.command_id %#x on queue %d\n", 503 cqe->command_id, nvme_tcp_queue_id(queue)); 504 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 505 return -EINVAL; 506 } 507 508 req = blk_mq_rq_to_pdu(rq); 509 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 510 req->status = cqe->status; 511 512 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 513 nvme_complete_rq(rq); 514 queue->nr_cqe++; 515 516 return 0; 517 } 518 519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 520 struct nvme_tcp_data_pdu *pdu) 521 { 522 struct request *rq; 523 524 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 525 if (!rq) { 526 dev_err(queue->ctrl->ctrl.device, 527 "got bad c2hdata.command_id %#x on queue %d\n", 528 pdu->command_id, nvme_tcp_queue_id(queue)); 529 return -ENOENT; 530 } 531 532 if (!blk_rq_payload_bytes(rq)) { 533 dev_err(queue->ctrl->ctrl.device, 534 "queue %d tag %#x unexpected data\n", 535 nvme_tcp_queue_id(queue), rq->tag); 536 return -EIO; 537 } 538 539 queue->data_remaining = le32_to_cpu(pdu->data_length); 540 541 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 542 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 543 dev_err(queue->ctrl->ctrl.device, 544 "queue %d tag %#x SUCCESS set but not last PDU\n", 545 nvme_tcp_queue_id(queue), rq->tag); 546 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 547 return -EPROTO; 548 } 549 550 return 0; 551 } 552 553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 554 struct nvme_tcp_rsp_pdu *pdu) 555 { 556 struct nvme_completion *cqe = &pdu->cqe; 557 int ret = 0; 558 559 /* 560 * AEN requests are special as they don't time out and can 561 * survive any kind of queue freeze and often don't respond to 562 * aborts. We don't even bother to allocate a struct request 563 * for them but rather special case them here. 564 */ 565 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 566 cqe->command_id))) 567 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 568 &cqe->result); 569 else 570 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 571 572 return ret; 573 } 574 575 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 576 struct nvme_tcp_r2t_pdu *pdu) 577 { 578 struct nvme_tcp_data_pdu *data = req->pdu; 579 struct nvme_tcp_queue *queue = req->queue; 580 struct request *rq = blk_mq_rq_from_pdu(req); 581 u8 hdgst = nvme_tcp_hdgst_len(queue); 582 u8 ddgst = nvme_tcp_ddgst_len(queue); 583 584 req->state = NVME_TCP_SEND_H2C_PDU; 585 req->offset = 0; 586 req->pdu_len = le32_to_cpu(pdu->r2t_length); 587 req->pdu_sent = 0; 588 589 memset(data, 0, sizeof(*data)); 590 data->hdr.type = nvme_tcp_h2c_data; 591 data->hdr.flags = NVME_TCP_F_DATA_LAST; 592 if (queue->hdr_digest) 593 data->hdr.flags |= NVME_TCP_F_HDGST; 594 if (queue->data_digest) 595 data->hdr.flags |= NVME_TCP_F_DDGST; 596 data->hdr.hlen = sizeof(*data); 597 data->hdr.pdo = data->hdr.hlen + hdgst; 598 data->hdr.plen = 599 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 600 data->ttag = pdu->ttag; 601 data->command_id = nvme_cid(rq); 602 data->data_offset = pdu->r2t_offset; 603 data->data_length = cpu_to_le32(req->pdu_len); 604 } 605 606 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 607 struct nvme_tcp_r2t_pdu *pdu) 608 { 609 struct nvme_tcp_request *req; 610 struct request *rq; 611 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 612 613 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 614 if (!rq) { 615 dev_err(queue->ctrl->ctrl.device, 616 "got bad r2t.command_id %#x on queue %d\n", 617 pdu->command_id, nvme_tcp_queue_id(queue)); 618 return -ENOENT; 619 } 620 req = blk_mq_rq_to_pdu(rq); 621 622 if (unlikely(!r2t_length)) { 623 dev_err(queue->ctrl->ctrl.device, 624 "req %d r2t len is %u, probably a bug...\n", 625 rq->tag, r2t_length); 626 return -EPROTO; 627 } 628 629 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 630 dev_err(queue->ctrl->ctrl.device, 631 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 632 rq->tag, r2t_length, req->data_len, req->data_sent); 633 return -EPROTO; 634 } 635 636 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 637 dev_err(queue->ctrl->ctrl.device, 638 "req %d unexpected r2t offset %u (expected %zu)\n", 639 rq->tag, le32_to_cpu(pdu->r2t_offset), req->data_sent); 640 return -EPROTO; 641 } 642 643 nvme_tcp_setup_h2c_data_pdu(req, pdu); 644 nvme_tcp_queue_request(req, false, true); 645 646 return 0; 647 } 648 649 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 650 unsigned int *offset, size_t *len) 651 { 652 struct nvme_tcp_hdr *hdr; 653 char *pdu = queue->pdu; 654 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 655 int ret; 656 657 ret = skb_copy_bits(skb, *offset, 658 &pdu[queue->pdu_offset], rcv_len); 659 if (unlikely(ret)) 660 return ret; 661 662 queue->pdu_remaining -= rcv_len; 663 queue->pdu_offset += rcv_len; 664 *offset += rcv_len; 665 *len -= rcv_len; 666 if (queue->pdu_remaining) 667 return 0; 668 669 hdr = queue->pdu; 670 if (queue->hdr_digest) { 671 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 672 if (unlikely(ret)) 673 return ret; 674 } 675 676 677 if (queue->data_digest) { 678 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 679 if (unlikely(ret)) 680 return ret; 681 } 682 683 switch (hdr->type) { 684 case nvme_tcp_c2h_data: 685 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 686 case nvme_tcp_rsp: 687 nvme_tcp_init_recv_ctx(queue); 688 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 689 case nvme_tcp_r2t: 690 nvme_tcp_init_recv_ctx(queue); 691 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 692 default: 693 dev_err(queue->ctrl->ctrl.device, 694 "unsupported pdu type (%d)\n", hdr->type); 695 return -EINVAL; 696 } 697 } 698 699 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 700 { 701 union nvme_result res = {}; 702 703 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 704 nvme_complete_rq(rq); 705 } 706 707 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 708 unsigned int *offset, size_t *len) 709 { 710 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 711 struct request *rq = 712 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 713 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 714 715 while (true) { 716 int recv_len, ret; 717 718 recv_len = min_t(size_t, *len, queue->data_remaining); 719 if (!recv_len) 720 break; 721 722 if (!iov_iter_count(&req->iter)) { 723 req->curr_bio = req->curr_bio->bi_next; 724 725 /* 726 * If we don`t have any bios it means that controller 727 * sent more data than we requested, hence error 728 */ 729 if (!req->curr_bio) { 730 dev_err(queue->ctrl->ctrl.device, 731 "queue %d no space in request %#x", 732 nvme_tcp_queue_id(queue), rq->tag); 733 nvme_tcp_init_recv_ctx(queue); 734 return -EIO; 735 } 736 nvme_tcp_init_iter(req, READ); 737 } 738 739 /* we can read only from what is left in this bio */ 740 recv_len = min_t(size_t, recv_len, 741 iov_iter_count(&req->iter)); 742 743 if (queue->data_digest) 744 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 745 &req->iter, recv_len, queue->rcv_hash); 746 else 747 ret = skb_copy_datagram_iter(skb, *offset, 748 &req->iter, recv_len); 749 if (ret) { 750 dev_err(queue->ctrl->ctrl.device, 751 "queue %d failed to copy request %#x data", 752 nvme_tcp_queue_id(queue), rq->tag); 753 return ret; 754 } 755 756 *len -= recv_len; 757 *offset += recv_len; 758 queue->data_remaining -= recv_len; 759 } 760 761 if (!queue->data_remaining) { 762 if (queue->data_digest) { 763 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 764 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 765 } else { 766 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 767 nvme_tcp_end_request(rq, 768 le16_to_cpu(req->status)); 769 queue->nr_cqe++; 770 } 771 nvme_tcp_init_recv_ctx(queue); 772 } 773 } 774 775 return 0; 776 } 777 778 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 779 struct sk_buff *skb, unsigned int *offset, size_t *len) 780 { 781 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 782 char *ddgst = (char *)&queue->recv_ddgst; 783 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 784 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 785 int ret; 786 787 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 788 if (unlikely(ret)) 789 return ret; 790 791 queue->ddgst_remaining -= recv_len; 792 *offset += recv_len; 793 *len -= recv_len; 794 if (queue->ddgst_remaining) 795 return 0; 796 797 if (queue->recv_ddgst != queue->exp_ddgst) { 798 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 799 pdu->command_id); 800 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 801 802 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 803 804 dev_err(queue->ctrl->ctrl.device, 805 "data digest error: recv %#x expected %#x\n", 806 le32_to_cpu(queue->recv_ddgst), 807 le32_to_cpu(queue->exp_ddgst)); 808 } 809 810 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 811 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 812 pdu->command_id); 813 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 814 815 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 816 queue->nr_cqe++; 817 } 818 819 nvme_tcp_init_recv_ctx(queue); 820 return 0; 821 } 822 823 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 824 unsigned int offset, size_t len) 825 { 826 struct nvme_tcp_queue *queue = desc->arg.data; 827 size_t consumed = len; 828 int result; 829 830 while (len) { 831 switch (nvme_tcp_recv_state(queue)) { 832 case NVME_TCP_RECV_PDU: 833 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 834 break; 835 case NVME_TCP_RECV_DATA: 836 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 837 break; 838 case NVME_TCP_RECV_DDGST: 839 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 840 break; 841 default: 842 result = -EFAULT; 843 } 844 if (result) { 845 dev_err(queue->ctrl->ctrl.device, 846 "receive failed: %d\n", result); 847 queue->rd_enabled = false; 848 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 849 return result; 850 } 851 } 852 853 return consumed; 854 } 855 856 static void nvme_tcp_data_ready(struct sock *sk) 857 { 858 struct nvme_tcp_queue *queue; 859 860 read_lock_bh(&sk->sk_callback_lock); 861 queue = sk->sk_user_data; 862 if (likely(queue && queue->rd_enabled) && 863 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 864 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 865 read_unlock_bh(&sk->sk_callback_lock); 866 } 867 868 static void nvme_tcp_write_space(struct sock *sk) 869 { 870 struct nvme_tcp_queue *queue; 871 872 read_lock_bh(&sk->sk_callback_lock); 873 queue = sk->sk_user_data; 874 if (likely(queue && sk_stream_is_writeable(sk))) { 875 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 876 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 877 } 878 read_unlock_bh(&sk->sk_callback_lock); 879 } 880 881 static void nvme_tcp_state_change(struct sock *sk) 882 { 883 struct nvme_tcp_queue *queue; 884 885 read_lock_bh(&sk->sk_callback_lock); 886 queue = sk->sk_user_data; 887 if (!queue) 888 goto done; 889 890 switch (sk->sk_state) { 891 case TCP_CLOSE: 892 case TCP_CLOSE_WAIT: 893 case TCP_LAST_ACK: 894 case TCP_FIN_WAIT1: 895 case TCP_FIN_WAIT2: 896 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 897 break; 898 default: 899 dev_info(queue->ctrl->ctrl.device, 900 "queue %d socket state %d\n", 901 nvme_tcp_queue_id(queue), sk->sk_state); 902 } 903 904 queue->state_change(sk); 905 done: 906 read_unlock_bh(&sk->sk_callback_lock); 907 } 908 909 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 910 { 911 queue->request = NULL; 912 } 913 914 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 915 { 916 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 917 } 918 919 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 920 { 921 struct nvme_tcp_queue *queue = req->queue; 922 int req_data_len = req->data_len; 923 924 while (true) { 925 struct page *page = nvme_tcp_req_cur_page(req); 926 size_t offset = nvme_tcp_req_cur_offset(req); 927 size_t len = nvme_tcp_req_cur_length(req); 928 bool last = nvme_tcp_pdu_last_send(req, len); 929 int req_data_sent = req->data_sent; 930 int ret, flags = MSG_DONTWAIT; 931 932 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 933 flags |= MSG_EOR; 934 else 935 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 936 937 if (sendpage_ok(page)) { 938 ret = kernel_sendpage(queue->sock, page, offset, len, 939 flags); 940 } else { 941 ret = sock_no_sendpage(queue->sock, page, offset, len, 942 flags); 943 } 944 if (ret <= 0) 945 return ret; 946 947 if (queue->data_digest) 948 nvme_tcp_ddgst_update(queue->snd_hash, page, 949 offset, ret); 950 951 /* 952 * update the request iterator except for the last payload send 953 * in the request where we don't want to modify it as we may 954 * compete with the RX path completing the request. 955 */ 956 if (req_data_sent + ret < req_data_len) 957 nvme_tcp_advance_req(req, ret); 958 959 /* fully successful last send in current PDU */ 960 if (last && ret == len) { 961 if (queue->data_digest) { 962 nvme_tcp_ddgst_final(queue->snd_hash, 963 &req->ddgst); 964 req->state = NVME_TCP_SEND_DDGST; 965 req->offset = 0; 966 } else { 967 nvme_tcp_done_send_req(queue); 968 } 969 return 1; 970 } 971 } 972 return -EAGAIN; 973 } 974 975 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 976 { 977 struct nvme_tcp_queue *queue = req->queue; 978 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 979 bool inline_data = nvme_tcp_has_inline_data(req); 980 u8 hdgst = nvme_tcp_hdgst_len(queue); 981 int len = sizeof(*pdu) + hdgst - req->offset; 982 int flags = MSG_DONTWAIT; 983 int ret; 984 985 if (inline_data || nvme_tcp_queue_more(queue)) 986 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 987 else 988 flags |= MSG_EOR; 989 990 if (queue->hdr_digest && !req->offset) 991 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 992 993 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 994 offset_in_page(pdu) + req->offset, len, flags); 995 if (unlikely(ret <= 0)) 996 return ret; 997 998 len -= ret; 999 if (!len) { 1000 if (inline_data) { 1001 req->state = NVME_TCP_SEND_DATA; 1002 if (queue->data_digest) 1003 crypto_ahash_init(queue->snd_hash); 1004 } else { 1005 nvme_tcp_done_send_req(queue); 1006 } 1007 return 1; 1008 } 1009 req->offset += ret; 1010 1011 return -EAGAIN; 1012 } 1013 1014 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1015 { 1016 struct nvme_tcp_queue *queue = req->queue; 1017 struct nvme_tcp_data_pdu *pdu = req->pdu; 1018 u8 hdgst = nvme_tcp_hdgst_len(queue); 1019 int len = sizeof(*pdu) - req->offset + hdgst; 1020 int ret; 1021 1022 if (queue->hdr_digest && !req->offset) 1023 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1024 1025 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1026 offset_in_page(pdu) + req->offset, len, 1027 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1028 if (unlikely(ret <= 0)) 1029 return ret; 1030 1031 len -= ret; 1032 if (!len) { 1033 req->state = NVME_TCP_SEND_DATA; 1034 if (queue->data_digest) 1035 crypto_ahash_init(queue->snd_hash); 1036 return 1; 1037 } 1038 req->offset += ret; 1039 1040 return -EAGAIN; 1041 } 1042 1043 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1044 { 1045 struct nvme_tcp_queue *queue = req->queue; 1046 size_t offset = req->offset; 1047 int ret; 1048 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1049 struct kvec iov = { 1050 .iov_base = (u8 *)&req->ddgst + req->offset, 1051 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1052 }; 1053 1054 if (nvme_tcp_queue_more(queue)) 1055 msg.msg_flags |= MSG_MORE; 1056 else 1057 msg.msg_flags |= MSG_EOR; 1058 1059 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1060 if (unlikely(ret <= 0)) 1061 return ret; 1062 1063 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1064 nvme_tcp_done_send_req(queue); 1065 return 1; 1066 } 1067 1068 req->offset += ret; 1069 return -EAGAIN; 1070 } 1071 1072 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1073 { 1074 struct nvme_tcp_request *req; 1075 int ret = 1; 1076 1077 if (!queue->request) { 1078 queue->request = nvme_tcp_fetch_request(queue); 1079 if (!queue->request) 1080 return 0; 1081 } 1082 req = queue->request; 1083 1084 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1085 ret = nvme_tcp_try_send_cmd_pdu(req); 1086 if (ret <= 0) 1087 goto done; 1088 if (!nvme_tcp_has_inline_data(req)) 1089 return ret; 1090 } 1091 1092 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1093 ret = nvme_tcp_try_send_data_pdu(req); 1094 if (ret <= 0) 1095 goto done; 1096 } 1097 1098 if (req->state == NVME_TCP_SEND_DATA) { 1099 ret = nvme_tcp_try_send_data(req); 1100 if (ret <= 0) 1101 goto done; 1102 } 1103 1104 if (req->state == NVME_TCP_SEND_DDGST) 1105 ret = nvme_tcp_try_send_ddgst(req); 1106 done: 1107 if (ret == -EAGAIN) { 1108 ret = 0; 1109 } else if (ret < 0) { 1110 dev_err(queue->ctrl->ctrl.device, 1111 "failed to send request %d\n", ret); 1112 if (ret != -EPIPE && ret != -ECONNRESET) 1113 nvme_tcp_fail_request(queue->request); 1114 nvme_tcp_done_send_req(queue); 1115 } 1116 return ret; 1117 } 1118 1119 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1120 { 1121 struct socket *sock = queue->sock; 1122 struct sock *sk = sock->sk; 1123 read_descriptor_t rd_desc; 1124 int consumed; 1125 1126 rd_desc.arg.data = queue; 1127 rd_desc.count = 1; 1128 lock_sock(sk); 1129 queue->nr_cqe = 0; 1130 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1131 release_sock(sk); 1132 return consumed; 1133 } 1134 1135 static void nvme_tcp_io_work(struct work_struct *w) 1136 { 1137 struct nvme_tcp_queue *queue = 1138 container_of(w, struct nvme_tcp_queue, io_work); 1139 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1140 1141 do { 1142 bool pending = false; 1143 int result; 1144 1145 if (mutex_trylock(&queue->send_mutex)) { 1146 result = nvme_tcp_try_send(queue); 1147 mutex_unlock(&queue->send_mutex); 1148 if (result > 0) 1149 pending = true; 1150 else if (unlikely(result < 0)) 1151 break; 1152 } 1153 1154 result = nvme_tcp_try_recv(queue); 1155 if (result > 0) 1156 pending = true; 1157 else if (unlikely(result < 0)) 1158 return; 1159 1160 if (!pending) 1161 return; 1162 1163 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1164 1165 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1166 } 1167 1168 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1169 { 1170 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1171 1172 ahash_request_free(queue->rcv_hash); 1173 ahash_request_free(queue->snd_hash); 1174 crypto_free_ahash(tfm); 1175 } 1176 1177 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1178 { 1179 struct crypto_ahash *tfm; 1180 1181 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1182 if (IS_ERR(tfm)) 1183 return PTR_ERR(tfm); 1184 1185 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1186 if (!queue->snd_hash) 1187 goto free_tfm; 1188 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1189 1190 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1191 if (!queue->rcv_hash) 1192 goto free_snd_hash; 1193 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1194 1195 return 0; 1196 free_snd_hash: 1197 ahash_request_free(queue->snd_hash); 1198 free_tfm: 1199 crypto_free_ahash(tfm); 1200 return -ENOMEM; 1201 } 1202 1203 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1204 { 1205 struct nvme_tcp_request *async = &ctrl->async_req; 1206 1207 page_frag_free(async->pdu); 1208 } 1209 1210 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1211 { 1212 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1213 struct nvme_tcp_request *async = &ctrl->async_req; 1214 u8 hdgst = nvme_tcp_hdgst_len(queue); 1215 1216 async->pdu = page_frag_alloc(&queue->pf_cache, 1217 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1218 GFP_KERNEL | __GFP_ZERO); 1219 if (!async->pdu) 1220 return -ENOMEM; 1221 1222 async->queue = &ctrl->queues[0]; 1223 return 0; 1224 } 1225 1226 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1227 { 1228 struct page *page; 1229 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1230 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1231 1232 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1233 return; 1234 1235 if (queue->hdr_digest || queue->data_digest) 1236 nvme_tcp_free_crypto(queue); 1237 1238 if (queue->pf_cache.va) { 1239 page = virt_to_head_page(queue->pf_cache.va); 1240 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1241 queue->pf_cache.va = NULL; 1242 } 1243 sock_release(queue->sock); 1244 kfree(queue->pdu); 1245 mutex_destroy(&queue->send_mutex); 1246 mutex_destroy(&queue->queue_lock); 1247 } 1248 1249 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1250 { 1251 struct nvme_tcp_icreq_pdu *icreq; 1252 struct nvme_tcp_icresp_pdu *icresp; 1253 struct msghdr msg = {}; 1254 struct kvec iov; 1255 bool ctrl_hdgst, ctrl_ddgst; 1256 int ret; 1257 1258 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1259 if (!icreq) 1260 return -ENOMEM; 1261 1262 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1263 if (!icresp) { 1264 ret = -ENOMEM; 1265 goto free_icreq; 1266 } 1267 1268 icreq->hdr.type = nvme_tcp_icreq; 1269 icreq->hdr.hlen = sizeof(*icreq); 1270 icreq->hdr.pdo = 0; 1271 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1272 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1273 icreq->maxr2t = 0; /* single inflight r2t supported */ 1274 icreq->hpda = 0; /* no alignment constraint */ 1275 if (queue->hdr_digest) 1276 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1277 if (queue->data_digest) 1278 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1279 1280 iov.iov_base = icreq; 1281 iov.iov_len = sizeof(*icreq); 1282 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1283 if (ret < 0) 1284 goto free_icresp; 1285 1286 memset(&msg, 0, sizeof(msg)); 1287 iov.iov_base = icresp; 1288 iov.iov_len = sizeof(*icresp); 1289 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1290 iov.iov_len, msg.msg_flags); 1291 if (ret < 0) 1292 goto free_icresp; 1293 1294 ret = -EINVAL; 1295 if (icresp->hdr.type != nvme_tcp_icresp) { 1296 pr_err("queue %d: bad type returned %d\n", 1297 nvme_tcp_queue_id(queue), icresp->hdr.type); 1298 goto free_icresp; 1299 } 1300 1301 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1302 pr_err("queue %d: bad pdu length returned %d\n", 1303 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1304 goto free_icresp; 1305 } 1306 1307 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1308 pr_err("queue %d: bad pfv returned %d\n", 1309 nvme_tcp_queue_id(queue), icresp->pfv); 1310 goto free_icresp; 1311 } 1312 1313 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1314 if ((queue->data_digest && !ctrl_ddgst) || 1315 (!queue->data_digest && ctrl_ddgst)) { 1316 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1317 nvme_tcp_queue_id(queue), 1318 queue->data_digest ? "enabled" : "disabled", 1319 ctrl_ddgst ? "enabled" : "disabled"); 1320 goto free_icresp; 1321 } 1322 1323 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1324 if ((queue->hdr_digest && !ctrl_hdgst) || 1325 (!queue->hdr_digest && ctrl_hdgst)) { 1326 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1327 nvme_tcp_queue_id(queue), 1328 queue->hdr_digest ? "enabled" : "disabled", 1329 ctrl_hdgst ? "enabled" : "disabled"); 1330 goto free_icresp; 1331 } 1332 1333 if (icresp->cpda != 0) { 1334 pr_err("queue %d: unsupported cpda returned %d\n", 1335 nvme_tcp_queue_id(queue), icresp->cpda); 1336 goto free_icresp; 1337 } 1338 1339 ret = 0; 1340 free_icresp: 1341 kfree(icresp); 1342 free_icreq: 1343 kfree(icreq); 1344 return ret; 1345 } 1346 1347 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1348 { 1349 return nvme_tcp_queue_id(queue) == 0; 1350 } 1351 1352 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1353 { 1354 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1355 int qid = nvme_tcp_queue_id(queue); 1356 1357 return !nvme_tcp_admin_queue(queue) && 1358 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1359 } 1360 1361 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1362 { 1363 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1364 int qid = nvme_tcp_queue_id(queue); 1365 1366 return !nvme_tcp_admin_queue(queue) && 1367 !nvme_tcp_default_queue(queue) && 1368 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1369 ctrl->io_queues[HCTX_TYPE_READ]; 1370 } 1371 1372 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1373 { 1374 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1375 int qid = nvme_tcp_queue_id(queue); 1376 1377 return !nvme_tcp_admin_queue(queue) && 1378 !nvme_tcp_default_queue(queue) && 1379 !nvme_tcp_read_queue(queue) && 1380 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1381 ctrl->io_queues[HCTX_TYPE_READ] + 1382 ctrl->io_queues[HCTX_TYPE_POLL]; 1383 } 1384 1385 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1386 { 1387 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1388 int qid = nvme_tcp_queue_id(queue); 1389 int n = 0; 1390 1391 if (nvme_tcp_default_queue(queue)) 1392 n = qid - 1; 1393 else if (nvme_tcp_read_queue(queue)) 1394 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1395 else if (nvme_tcp_poll_queue(queue)) 1396 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1397 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1398 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1399 } 1400 1401 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1402 int qid, size_t queue_size) 1403 { 1404 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1405 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1406 int ret, rcv_pdu_size; 1407 1408 mutex_init(&queue->queue_lock); 1409 queue->ctrl = ctrl; 1410 init_llist_head(&queue->req_list); 1411 INIT_LIST_HEAD(&queue->send_list); 1412 mutex_init(&queue->send_mutex); 1413 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1414 queue->queue_size = queue_size; 1415 1416 if (qid > 0) 1417 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1418 else 1419 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1420 NVME_TCP_ADMIN_CCSZ; 1421 1422 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1423 IPPROTO_TCP, &queue->sock); 1424 if (ret) { 1425 dev_err(nctrl->device, 1426 "failed to create socket: %d\n", ret); 1427 goto err_destroy_mutex; 1428 } 1429 1430 /* Single syn retry */ 1431 tcp_sock_set_syncnt(queue->sock->sk, 1); 1432 1433 /* Set TCP no delay */ 1434 tcp_sock_set_nodelay(queue->sock->sk); 1435 1436 /* 1437 * Cleanup whatever is sitting in the TCP transmit queue on socket 1438 * close. This is done to prevent stale data from being sent should 1439 * the network connection be restored before TCP times out. 1440 */ 1441 sock_no_linger(queue->sock->sk); 1442 1443 if (so_priority > 0) 1444 sock_set_priority(queue->sock->sk, so_priority); 1445 1446 /* Set socket type of service */ 1447 if (nctrl->opts->tos >= 0) 1448 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1449 1450 /* Set 10 seconds timeout for icresp recvmsg */ 1451 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1452 1453 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1454 nvme_tcp_set_queue_io_cpu(queue); 1455 queue->request = NULL; 1456 queue->data_remaining = 0; 1457 queue->ddgst_remaining = 0; 1458 queue->pdu_remaining = 0; 1459 queue->pdu_offset = 0; 1460 sk_set_memalloc(queue->sock->sk); 1461 1462 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1463 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1464 sizeof(ctrl->src_addr)); 1465 if (ret) { 1466 dev_err(nctrl->device, 1467 "failed to bind queue %d socket %d\n", 1468 qid, ret); 1469 goto err_sock; 1470 } 1471 } 1472 1473 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1474 char *iface = nctrl->opts->host_iface; 1475 sockptr_t optval = KERNEL_SOCKPTR(iface); 1476 1477 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1478 optval, strlen(iface)); 1479 if (ret) { 1480 dev_err(nctrl->device, 1481 "failed to bind to interface %s queue %d err %d\n", 1482 iface, qid, ret); 1483 goto err_sock; 1484 } 1485 } 1486 1487 queue->hdr_digest = nctrl->opts->hdr_digest; 1488 queue->data_digest = nctrl->opts->data_digest; 1489 if (queue->hdr_digest || queue->data_digest) { 1490 ret = nvme_tcp_alloc_crypto(queue); 1491 if (ret) { 1492 dev_err(nctrl->device, 1493 "failed to allocate queue %d crypto\n", qid); 1494 goto err_sock; 1495 } 1496 } 1497 1498 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1499 nvme_tcp_hdgst_len(queue); 1500 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1501 if (!queue->pdu) { 1502 ret = -ENOMEM; 1503 goto err_crypto; 1504 } 1505 1506 dev_dbg(nctrl->device, "connecting queue %d\n", 1507 nvme_tcp_queue_id(queue)); 1508 1509 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1510 sizeof(ctrl->addr), 0); 1511 if (ret) { 1512 dev_err(nctrl->device, 1513 "failed to connect socket: %d\n", ret); 1514 goto err_rcv_pdu; 1515 } 1516 1517 ret = nvme_tcp_init_connection(queue); 1518 if (ret) 1519 goto err_init_connect; 1520 1521 queue->rd_enabled = true; 1522 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1523 nvme_tcp_init_recv_ctx(queue); 1524 1525 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1526 queue->sock->sk->sk_user_data = queue; 1527 queue->state_change = queue->sock->sk->sk_state_change; 1528 queue->data_ready = queue->sock->sk->sk_data_ready; 1529 queue->write_space = queue->sock->sk->sk_write_space; 1530 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1531 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1532 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1533 #ifdef CONFIG_NET_RX_BUSY_POLL 1534 queue->sock->sk->sk_ll_usec = 1; 1535 #endif 1536 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1537 1538 return 0; 1539 1540 err_init_connect: 1541 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1542 err_rcv_pdu: 1543 kfree(queue->pdu); 1544 err_crypto: 1545 if (queue->hdr_digest || queue->data_digest) 1546 nvme_tcp_free_crypto(queue); 1547 err_sock: 1548 sock_release(queue->sock); 1549 queue->sock = NULL; 1550 err_destroy_mutex: 1551 mutex_destroy(&queue->send_mutex); 1552 mutex_destroy(&queue->queue_lock); 1553 return ret; 1554 } 1555 1556 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1557 { 1558 struct socket *sock = queue->sock; 1559 1560 write_lock_bh(&sock->sk->sk_callback_lock); 1561 sock->sk->sk_user_data = NULL; 1562 sock->sk->sk_data_ready = queue->data_ready; 1563 sock->sk->sk_state_change = queue->state_change; 1564 sock->sk->sk_write_space = queue->write_space; 1565 write_unlock_bh(&sock->sk->sk_callback_lock); 1566 } 1567 1568 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1569 { 1570 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1571 nvme_tcp_restore_sock_calls(queue); 1572 cancel_work_sync(&queue->io_work); 1573 } 1574 1575 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1576 { 1577 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1578 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1579 1580 mutex_lock(&queue->queue_lock); 1581 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1582 __nvme_tcp_stop_queue(queue); 1583 mutex_unlock(&queue->queue_lock); 1584 } 1585 1586 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1587 { 1588 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1589 int ret; 1590 1591 if (idx) 1592 ret = nvmf_connect_io_queue(nctrl, idx); 1593 else 1594 ret = nvmf_connect_admin_queue(nctrl); 1595 1596 if (!ret) { 1597 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1598 } else { 1599 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1600 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1601 dev_err(nctrl->device, 1602 "failed to connect queue: %d ret=%d\n", idx, ret); 1603 } 1604 return ret; 1605 } 1606 1607 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1608 bool admin) 1609 { 1610 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1611 struct blk_mq_tag_set *set; 1612 int ret; 1613 1614 if (admin) { 1615 set = &ctrl->admin_tag_set; 1616 memset(set, 0, sizeof(*set)); 1617 set->ops = &nvme_tcp_admin_mq_ops; 1618 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1619 set->reserved_tags = NVMF_RESERVED_TAGS; 1620 set->numa_node = nctrl->numa_node; 1621 set->flags = BLK_MQ_F_BLOCKING; 1622 set->cmd_size = sizeof(struct nvme_tcp_request); 1623 set->driver_data = ctrl; 1624 set->nr_hw_queues = 1; 1625 set->timeout = NVME_ADMIN_TIMEOUT; 1626 } else { 1627 set = &ctrl->tag_set; 1628 memset(set, 0, sizeof(*set)); 1629 set->ops = &nvme_tcp_mq_ops; 1630 set->queue_depth = nctrl->sqsize + 1; 1631 set->reserved_tags = NVMF_RESERVED_TAGS; 1632 set->numa_node = nctrl->numa_node; 1633 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1634 set->cmd_size = sizeof(struct nvme_tcp_request); 1635 set->driver_data = ctrl; 1636 set->nr_hw_queues = nctrl->queue_count - 1; 1637 set->timeout = NVME_IO_TIMEOUT; 1638 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1639 } 1640 1641 ret = blk_mq_alloc_tag_set(set); 1642 if (ret) 1643 return ERR_PTR(ret); 1644 1645 return set; 1646 } 1647 1648 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1649 { 1650 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1651 cancel_work_sync(&ctrl->async_event_work); 1652 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1653 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1654 } 1655 1656 nvme_tcp_free_queue(ctrl, 0); 1657 } 1658 1659 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1660 { 1661 int i; 1662 1663 for (i = 1; i < ctrl->queue_count; i++) 1664 nvme_tcp_free_queue(ctrl, i); 1665 } 1666 1667 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1668 { 1669 int i; 1670 1671 for (i = 1; i < ctrl->queue_count; i++) 1672 nvme_tcp_stop_queue(ctrl, i); 1673 } 1674 1675 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1676 { 1677 int i, ret = 0; 1678 1679 for (i = 1; i < ctrl->queue_count; i++) { 1680 ret = nvme_tcp_start_queue(ctrl, i); 1681 if (ret) 1682 goto out_stop_queues; 1683 } 1684 1685 return 0; 1686 1687 out_stop_queues: 1688 for (i--; i >= 1; i--) 1689 nvme_tcp_stop_queue(ctrl, i); 1690 return ret; 1691 } 1692 1693 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1694 { 1695 int ret; 1696 1697 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1698 if (ret) 1699 return ret; 1700 1701 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1702 if (ret) 1703 goto out_free_queue; 1704 1705 return 0; 1706 1707 out_free_queue: 1708 nvme_tcp_free_queue(ctrl, 0); 1709 return ret; 1710 } 1711 1712 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1713 { 1714 int i, ret; 1715 1716 for (i = 1; i < ctrl->queue_count; i++) { 1717 ret = nvme_tcp_alloc_queue(ctrl, i, 1718 ctrl->sqsize + 1); 1719 if (ret) 1720 goto out_free_queues; 1721 } 1722 1723 return 0; 1724 1725 out_free_queues: 1726 for (i--; i >= 1; i--) 1727 nvme_tcp_free_queue(ctrl, i); 1728 1729 return ret; 1730 } 1731 1732 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1733 { 1734 unsigned int nr_io_queues; 1735 1736 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1737 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1738 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1739 1740 return nr_io_queues; 1741 } 1742 1743 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1744 unsigned int nr_io_queues) 1745 { 1746 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1747 struct nvmf_ctrl_options *opts = nctrl->opts; 1748 1749 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1750 /* 1751 * separate read/write queues 1752 * hand out dedicated default queues only after we have 1753 * sufficient read queues. 1754 */ 1755 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1756 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1757 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1758 min(opts->nr_write_queues, nr_io_queues); 1759 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1760 } else { 1761 /* 1762 * shared read/write queues 1763 * either no write queues were requested, or we don't have 1764 * sufficient queue count to have dedicated default queues. 1765 */ 1766 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1767 min(opts->nr_io_queues, nr_io_queues); 1768 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1769 } 1770 1771 if (opts->nr_poll_queues && nr_io_queues) { 1772 /* map dedicated poll queues only if we have queues left */ 1773 ctrl->io_queues[HCTX_TYPE_POLL] = 1774 min(opts->nr_poll_queues, nr_io_queues); 1775 } 1776 } 1777 1778 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1779 { 1780 unsigned int nr_io_queues; 1781 int ret; 1782 1783 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1784 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1785 if (ret) 1786 return ret; 1787 1788 if (nr_io_queues == 0) { 1789 dev_err(ctrl->device, 1790 "unable to set any I/O queues\n"); 1791 return -ENOMEM; 1792 } 1793 1794 ctrl->queue_count = nr_io_queues + 1; 1795 dev_info(ctrl->device, 1796 "creating %d I/O queues.\n", nr_io_queues); 1797 1798 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1799 1800 return __nvme_tcp_alloc_io_queues(ctrl); 1801 } 1802 1803 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1804 { 1805 nvme_tcp_stop_io_queues(ctrl); 1806 if (remove) { 1807 blk_cleanup_queue(ctrl->connect_q); 1808 blk_mq_free_tag_set(ctrl->tagset); 1809 } 1810 nvme_tcp_free_io_queues(ctrl); 1811 } 1812 1813 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1814 { 1815 int ret; 1816 1817 ret = nvme_tcp_alloc_io_queues(ctrl); 1818 if (ret) 1819 return ret; 1820 1821 if (new) { 1822 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1823 if (IS_ERR(ctrl->tagset)) { 1824 ret = PTR_ERR(ctrl->tagset); 1825 goto out_free_io_queues; 1826 } 1827 1828 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1829 if (IS_ERR(ctrl->connect_q)) { 1830 ret = PTR_ERR(ctrl->connect_q); 1831 goto out_free_tag_set; 1832 } 1833 } 1834 1835 ret = nvme_tcp_start_io_queues(ctrl); 1836 if (ret) 1837 goto out_cleanup_connect_q; 1838 1839 if (!new) { 1840 nvme_start_queues(ctrl); 1841 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1842 /* 1843 * If we timed out waiting for freeze we are likely to 1844 * be stuck. Fail the controller initialization just 1845 * to be safe. 1846 */ 1847 ret = -ENODEV; 1848 goto out_wait_freeze_timed_out; 1849 } 1850 blk_mq_update_nr_hw_queues(ctrl->tagset, 1851 ctrl->queue_count - 1); 1852 nvme_unfreeze(ctrl); 1853 } 1854 1855 return 0; 1856 1857 out_wait_freeze_timed_out: 1858 nvme_stop_queues(ctrl); 1859 nvme_sync_io_queues(ctrl); 1860 nvme_tcp_stop_io_queues(ctrl); 1861 out_cleanup_connect_q: 1862 nvme_cancel_tagset(ctrl); 1863 if (new) 1864 blk_cleanup_queue(ctrl->connect_q); 1865 out_free_tag_set: 1866 if (new) 1867 blk_mq_free_tag_set(ctrl->tagset); 1868 out_free_io_queues: 1869 nvme_tcp_free_io_queues(ctrl); 1870 return ret; 1871 } 1872 1873 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1874 { 1875 nvme_tcp_stop_queue(ctrl, 0); 1876 if (remove) { 1877 blk_cleanup_queue(ctrl->admin_q); 1878 blk_cleanup_queue(ctrl->fabrics_q); 1879 blk_mq_free_tag_set(ctrl->admin_tagset); 1880 } 1881 nvme_tcp_free_admin_queue(ctrl); 1882 } 1883 1884 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1885 { 1886 int error; 1887 1888 error = nvme_tcp_alloc_admin_queue(ctrl); 1889 if (error) 1890 return error; 1891 1892 if (new) { 1893 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1894 if (IS_ERR(ctrl->admin_tagset)) { 1895 error = PTR_ERR(ctrl->admin_tagset); 1896 goto out_free_queue; 1897 } 1898 1899 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1900 if (IS_ERR(ctrl->fabrics_q)) { 1901 error = PTR_ERR(ctrl->fabrics_q); 1902 goto out_free_tagset; 1903 } 1904 1905 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1906 if (IS_ERR(ctrl->admin_q)) { 1907 error = PTR_ERR(ctrl->admin_q); 1908 goto out_cleanup_fabrics_q; 1909 } 1910 } 1911 1912 error = nvme_tcp_start_queue(ctrl, 0); 1913 if (error) 1914 goto out_cleanup_queue; 1915 1916 error = nvme_enable_ctrl(ctrl); 1917 if (error) 1918 goto out_stop_queue; 1919 1920 nvme_start_admin_queue(ctrl); 1921 1922 error = nvme_init_ctrl_finish(ctrl); 1923 if (error) 1924 goto out_quiesce_queue; 1925 1926 return 0; 1927 1928 out_quiesce_queue: 1929 nvme_stop_admin_queue(ctrl); 1930 blk_sync_queue(ctrl->admin_q); 1931 out_stop_queue: 1932 nvme_tcp_stop_queue(ctrl, 0); 1933 nvme_cancel_admin_tagset(ctrl); 1934 out_cleanup_queue: 1935 if (new) 1936 blk_cleanup_queue(ctrl->admin_q); 1937 out_cleanup_fabrics_q: 1938 if (new) 1939 blk_cleanup_queue(ctrl->fabrics_q); 1940 out_free_tagset: 1941 if (new) 1942 blk_mq_free_tag_set(ctrl->admin_tagset); 1943 out_free_queue: 1944 nvme_tcp_free_admin_queue(ctrl); 1945 return error; 1946 } 1947 1948 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1949 bool remove) 1950 { 1951 nvme_stop_admin_queue(ctrl); 1952 blk_sync_queue(ctrl->admin_q); 1953 nvme_tcp_stop_queue(ctrl, 0); 1954 nvme_cancel_admin_tagset(ctrl); 1955 if (remove) 1956 nvme_start_admin_queue(ctrl); 1957 nvme_tcp_destroy_admin_queue(ctrl, remove); 1958 } 1959 1960 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1961 bool remove) 1962 { 1963 if (ctrl->queue_count <= 1) 1964 return; 1965 nvme_stop_admin_queue(ctrl); 1966 nvme_start_freeze(ctrl); 1967 nvme_stop_queues(ctrl); 1968 nvme_sync_io_queues(ctrl); 1969 nvme_tcp_stop_io_queues(ctrl); 1970 nvme_cancel_tagset(ctrl); 1971 if (remove) 1972 nvme_start_queues(ctrl); 1973 nvme_tcp_destroy_io_queues(ctrl, remove); 1974 } 1975 1976 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1977 { 1978 /* If we are resetting/deleting then do nothing */ 1979 if (ctrl->state != NVME_CTRL_CONNECTING) { 1980 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1981 ctrl->state == NVME_CTRL_LIVE); 1982 return; 1983 } 1984 1985 if (nvmf_should_reconnect(ctrl)) { 1986 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1987 ctrl->opts->reconnect_delay); 1988 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1989 ctrl->opts->reconnect_delay * HZ); 1990 } else { 1991 dev_info(ctrl->device, "Removing controller...\n"); 1992 nvme_delete_ctrl(ctrl); 1993 } 1994 } 1995 1996 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1997 { 1998 struct nvmf_ctrl_options *opts = ctrl->opts; 1999 int ret; 2000 2001 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2002 if (ret) 2003 return ret; 2004 2005 if (ctrl->icdoff) { 2006 ret = -EOPNOTSUPP; 2007 dev_err(ctrl->device, "icdoff is not supported!\n"); 2008 goto destroy_admin; 2009 } 2010 2011 if (!nvme_ctrl_sgl_supported(ctrl)) { 2012 ret = -EOPNOTSUPP; 2013 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2014 goto destroy_admin; 2015 } 2016 2017 if (opts->queue_size > ctrl->sqsize + 1) 2018 dev_warn(ctrl->device, 2019 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2020 opts->queue_size, ctrl->sqsize + 1); 2021 2022 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2023 dev_warn(ctrl->device, 2024 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2025 ctrl->sqsize + 1, ctrl->maxcmd); 2026 ctrl->sqsize = ctrl->maxcmd - 1; 2027 } 2028 2029 if (ctrl->queue_count > 1) { 2030 ret = nvme_tcp_configure_io_queues(ctrl, new); 2031 if (ret) 2032 goto destroy_admin; 2033 } 2034 2035 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2036 /* 2037 * state change failure is ok if we started ctrl delete, 2038 * unless we're during creation of a new controller to 2039 * avoid races with teardown flow. 2040 */ 2041 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2042 ctrl->state != NVME_CTRL_DELETING_NOIO); 2043 WARN_ON_ONCE(new); 2044 ret = -EINVAL; 2045 goto destroy_io; 2046 } 2047 2048 nvme_start_ctrl(ctrl); 2049 return 0; 2050 2051 destroy_io: 2052 if (ctrl->queue_count > 1) { 2053 nvme_stop_queues(ctrl); 2054 nvme_sync_io_queues(ctrl); 2055 nvme_tcp_stop_io_queues(ctrl); 2056 nvme_cancel_tagset(ctrl); 2057 nvme_tcp_destroy_io_queues(ctrl, new); 2058 } 2059 destroy_admin: 2060 nvme_stop_admin_queue(ctrl); 2061 blk_sync_queue(ctrl->admin_q); 2062 nvme_tcp_stop_queue(ctrl, 0); 2063 nvme_cancel_admin_tagset(ctrl); 2064 nvme_tcp_destroy_admin_queue(ctrl, new); 2065 return ret; 2066 } 2067 2068 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2069 { 2070 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2071 struct nvme_tcp_ctrl, connect_work); 2072 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2073 2074 ++ctrl->nr_reconnects; 2075 2076 if (nvme_tcp_setup_ctrl(ctrl, false)) 2077 goto requeue; 2078 2079 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2080 ctrl->nr_reconnects); 2081 2082 ctrl->nr_reconnects = 0; 2083 2084 return; 2085 2086 requeue: 2087 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2088 ctrl->nr_reconnects); 2089 nvme_tcp_reconnect_or_remove(ctrl); 2090 } 2091 2092 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2093 { 2094 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2095 struct nvme_tcp_ctrl, err_work); 2096 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2097 2098 nvme_stop_keep_alive(ctrl); 2099 nvme_tcp_teardown_io_queues(ctrl, false); 2100 /* unquiesce to fail fast pending requests */ 2101 nvme_start_queues(ctrl); 2102 nvme_tcp_teardown_admin_queue(ctrl, false); 2103 nvme_start_admin_queue(ctrl); 2104 2105 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2106 /* state change failure is ok if we started ctrl delete */ 2107 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2108 ctrl->state != NVME_CTRL_DELETING_NOIO); 2109 return; 2110 } 2111 2112 nvme_tcp_reconnect_or_remove(ctrl); 2113 } 2114 2115 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2116 { 2117 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2118 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2119 2120 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2121 nvme_stop_admin_queue(ctrl); 2122 if (shutdown) 2123 nvme_shutdown_ctrl(ctrl); 2124 else 2125 nvme_disable_ctrl(ctrl); 2126 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2127 } 2128 2129 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2130 { 2131 nvme_tcp_teardown_ctrl(ctrl, true); 2132 } 2133 2134 static void nvme_reset_ctrl_work(struct work_struct *work) 2135 { 2136 struct nvme_ctrl *ctrl = 2137 container_of(work, struct nvme_ctrl, reset_work); 2138 2139 nvme_stop_ctrl(ctrl); 2140 nvme_tcp_teardown_ctrl(ctrl, false); 2141 2142 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2143 /* state change failure is ok if we started ctrl delete */ 2144 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2145 ctrl->state != NVME_CTRL_DELETING_NOIO); 2146 return; 2147 } 2148 2149 if (nvme_tcp_setup_ctrl(ctrl, false)) 2150 goto out_fail; 2151 2152 return; 2153 2154 out_fail: 2155 ++ctrl->nr_reconnects; 2156 nvme_tcp_reconnect_or_remove(ctrl); 2157 } 2158 2159 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2160 { 2161 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2162 2163 if (list_empty(&ctrl->list)) 2164 goto free_ctrl; 2165 2166 mutex_lock(&nvme_tcp_ctrl_mutex); 2167 list_del(&ctrl->list); 2168 mutex_unlock(&nvme_tcp_ctrl_mutex); 2169 2170 nvmf_free_options(nctrl->opts); 2171 free_ctrl: 2172 kfree(ctrl->queues); 2173 kfree(ctrl); 2174 } 2175 2176 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2177 { 2178 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2179 2180 sg->addr = 0; 2181 sg->length = 0; 2182 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2183 NVME_SGL_FMT_TRANSPORT_A; 2184 } 2185 2186 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2187 struct nvme_command *c, u32 data_len) 2188 { 2189 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2190 2191 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2192 sg->length = cpu_to_le32(data_len); 2193 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2194 } 2195 2196 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2197 u32 data_len) 2198 { 2199 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2200 2201 sg->addr = 0; 2202 sg->length = cpu_to_le32(data_len); 2203 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2204 NVME_SGL_FMT_TRANSPORT_A; 2205 } 2206 2207 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2208 { 2209 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2210 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2211 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2212 struct nvme_command *cmd = &pdu->cmd; 2213 u8 hdgst = nvme_tcp_hdgst_len(queue); 2214 2215 memset(pdu, 0, sizeof(*pdu)); 2216 pdu->hdr.type = nvme_tcp_cmd; 2217 if (queue->hdr_digest) 2218 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2219 pdu->hdr.hlen = sizeof(*pdu); 2220 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2221 2222 cmd->common.opcode = nvme_admin_async_event; 2223 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2224 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2225 nvme_tcp_set_sg_null(cmd); 2226 2227 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2228 ctrl->async_req.offset = 0; 2229 ctrl->async_req.curr_bio = NULL; 2230 ctrl->async_req.data_len = 0; 2231 2232 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2233 } 2234 2235 static void nvme_tcp_complete_timed_out(struct request *rq) 2236 { 2237 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2238 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2239 2240 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2241 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2242 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2243 blk_mq_complete_request(rq); 2244 } 2245 } 2246 2247 static enum blk_eh_timer_return 2248 nvme_tcp_timeout(struct request *rq, bool reserved) 2249 { 2250 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2251 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2252 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2253 2254 dev_warn(ctrl->device, 2255 "queue %d: timeout request %#x type %d\n", 2256 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2257 2258 if (ctrl->state != NVME_CTRL_LIVE) { 2259 /* 2260 * If we are resetting, connecting or deleting we should 2261 * complete immediately because we may block controller 2262 * teardown or setup sequence 2263 * - ctrl disable/shutdown fabrics requests 2264 * - connect requests 2265 * - initialization admin requests 2266 * - I/O requests that entered after unquiescing and 2267 * the controller stopped responding 2268 * 2269 * All other requests should be cancelled by the error 2270 * recovery work, so it's fine that we fail it here. 2271 */ 2272 nvme_tcp_complete_timed_out(rq); 2273 return BLK_EH_DONE; 2274 } 2275 2276 /* 2277 * LIVE state should trigger the normal error recovery which will 2278 * handle completing this request. 2279 */ 2280 nvme_tcp_error_recovery(ctrl); 2281 return BLK_EH_RESET_TIMER; 2282 } 2283 2284 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2285 struct request *rq) 2286 { 2287 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2288 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2289 struct nvme_command *c = &pdu->cmd; 2290 2291 c->common.flags |= NVME_CMD_SGL_METABUF; 2292 2293 if (!blk_rq_nr_phys_segments(rq)) 2294 nvme_tcp_set_sg_null(c); 2295 else if (rq_data_dir(rq) == WRITE && 2296 req->data_len <= nvme_tcp_inline_data_size(queue)) 2297 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2298 else 2299 nvme_tcp_set_sg_host_data(c, req->data_len); 2300 2301 return 0; 2302 } 2303 2304 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2305 struct request *rq) 2306 { 2307 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2308 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2309 struct nvme_tcp_queue *queue = req->queue; 2310 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2311 blk_status_t ret; 2312 2313 ret = nvme_setup_cmd(ns, rq); 2314 if (ret) 2315 return ret; 2316 2317 req->state = NVME_TCP_SEND_CMD_PDU; 2318 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2319 req->offset = 0; 2320 req->data_sent = 0; 2321 req->pdu_len = 0; 2322 req->pdu_sent = 0; 2323 req->data_len = blk_rq_nr_phys_segments(rq) ? 2324 blk_rq_payload_bytes(rq) : 0; 2325 req->curr_bio = rq->bio; 2326 if (req->curr_bio && req->data_len) 2327 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2328 2329 if (rq_data_dir(rq) == WRITE && 2330 req->data_len <= nvme_tcp_inline_data_size(queue)) 2331 req->pdu_len = req->data_len; 2332 2333 pdu->hdr.type = nvme_tcp_cmd; 2334 pdu->hdr.flags = 0; 2335 if (queue->hdr_digest) 2336 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2337 if (queue->data_digest && req->pdu_len) { 2338 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2339 ddgst = nvme_tcp_ddgst_len(queue); 2340 } 2341 pdu->hdr.hlen = sizeof(*pdu); 2342 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2343 pdu->hdr.plen = 2344 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2345 2346 ret = nvme_tcp_map_data(queue, rq); 2347 if (unlikely(ret)) { 2348 nvme_cleanup_cmd(rq); 2349 dev_err(queue->ctrl->ctrl.device, 2350 "Failed to map data (%d)\n", ret); 2351 return ret; 2352 } 2353 2354 return 0; 2355 } 2356 2357 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2358 { 2359 struct nvme_tcp_queue *queue = hctx->driver_data; 2360 2361 if (!llist_empty(&queue->req_list)) 2362 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2363 } 2364 2365 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2366 const struct blk_mq_queue_data *bd) 2367 { 2368 struct nvme_ns *ns = hctx->queue->queuedata; 2369 struct nvme_tcp_queue *queue = hctx->driver_data; 2370 struct request *rq = bd->rq; 2371 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2372 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2373 blk_status_t ret; 2374 2375 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2376 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2377 2378 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2379 if (unlikely(ret)) 2380 return ret; 2381 2382 blk_mq_start_request(rq); 2383 2384 nvme_tcp_queue_request(req, true, bd->last); 2385 2386 return BLK_STS_OK; 2387 } 2388 2389 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2390 { 2391 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2392 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2393 2394 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2395 /* separate read/write queues */ 2396 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2397 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2398 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2399 set->map[HCTX_TYPE_READ].nr_queues = 2400 ctrl->io_queues[HCTX_TYPE_READ]; 2401 set->map[HCTX_TYPE_READ].queue_offset = 2402 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2403 } else { 2404 /* shared read/write queues */ 2405 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2406 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2407 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2408 set->map[HCTX_TYPE_READ].nr_queues = 2409 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2410 set->map[HCTX_TYPE_READ].queue_offset = 0; 2411 } 2412 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2413 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2414 2415 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2416 /* map dedicated poll queues only if we have queues left */ 2417 set->map[HCTX_TYPE_POLL].nr_queues = 2418 ctrl->io_queues[HCTX_TYPE_POLL]; 2419 set->map[HCTX_TYPE_POLL].queue_offset = 2420 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2421 ctrl->io_queues[HCTX_TYPE_READ]; 2422 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2423 } 2424 2425 dev_info(ctrl->ctrl.device, 2426 "mapped %d/%d/%d default/read/poll queues.\n", 2427 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2428 ctrl->io_queues[HCTX_TYPE_READ], 2429 ctrl->io_queues[HCTX_TYPE_POLL]); 2430 2431 return 0; 2432 } 2433 2434 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2435 { 2436 struct nvme_tcp_queue *queue = hctx->driver_data; 2437 struct sock *sk = queue->sock->sk; 2438 2439 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2440 return 0; 2441 2442 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2443 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2444 sk_busy_loop(sk, true); 2445 nvme_tcp_try_recv(queue); 2446 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2447 return queue->nr_cqe; 2448 } 2449 2450 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2451 .queue_rq = nvme_tcp_queue_rq, 2452 .commit_rqs = nvme_tcp_commit_rqs, 2453 .complete = nvme_complete_rq, 2454 .init_request = nvme_tcp_init_request, 2455 .exit_request = nvme_tcp_exit_request, 2456 .init_hctx = nvme_tcp_init_hctx, 2457 .timeout = nvme_tcp_timeout, 2458 .map_queues = nvme_tcp_map_queues, 2459 .poll = nvme_tcp_poll, 2460 }; 2461 2462 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2463 .queue_rq = nvme_tcp_queue_rq, 2464 .complete = nvme_complete_rq, 2465 .init_request = nvme_tcp_init_request, 2466 .exit_request = nvme_tcp_exit_request, 2467 .init_hctx = nvme_tcp_init_admin_hctx, 2468 .timeout = nvme_tcp_timeout, 2469 }; 2470 2471 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2472 .name = "tcp", 2473 .module = THIS_MODULE, 2474 .flags = NVME_F_FABRICS, 2475 .reg_read32 = nvmf_reg_read32, 2476 .reg_read64 = nvmf_reg_read64, 2477 .reg_write32 = nvmf_reg_write32, 2478 .free_ctrl = nvme_tcp_free_ctrl, 2479 .submit_async_event = nvme_tcp_submit_async_event, 2480 .delete_ctrl = nvme_tcp_delete_ctrl, 2481 .get_address = nvmf_get_address, 2482 }; 2483 2484 static bool 2485 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2486 { 2487 struct nvme_tcp_ctrl *ctrl; 2488 bool found = false; 2489 2490 mutex_lock(&nvme_tcp_ctrl_mutex); 2491 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2492 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2493 if (found) 2494 break; 2495 } 2496 mutex_unlock(&nvme_tcp_ctrl_mutex); 2497 2498 return found; 2499 } 2500 2501 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2502 struct nvmf_ctrl_options *opts) 2503 { 2504 struct nvme_tcp_ctrl *ctrl; 2505 int ret; 2506 2507 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2508 if (!ctrl) 2509 return ERR_PTR(-ENOMEM); 2510 2511 INIT_LIST_HEAD(&ctrl->list); 2512 ctrl->ctrl.opts = opts; 2513 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2514 opts->nr_poll_queues + 1; 2515 ctrl->ctrl.sqsize = opts->queue_size - 1; 2516 ctrl->ctrl.kato = opts->kato; 2517 2518 INIT_DELAYED_WORK(&ctrl->connect_work, 2519 nvme_tcp_reconnect_ctrl_work); 2520 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2521 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2522 2523 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2524 opts->trsvcid = 2525 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2526 if (!opts->trsvcid) { 2527 ret = -ENOMEM; 2528 goto out_free_ctrl; 2529 } 2530 opts->mask |= NVMF_OPT_TRSVCID; 2531 } 2532 2533 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2534 opts->traddr, opts->trsvcid, &ctrl->addr); 2535 if (ret) { 2536 pr_err("malformed address passed: %s:%s\n", 2537 opts->traddr, opts->trsvcid); 2538 goto out_free_ctrl; 2539 } 2540 2541 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2542 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2543 opts->host_traddr, NULL, &ctrl->src_addr); 2544 if (ret) { 2545 pr_err("malformed src address passed: %s\n", 2546 opts->host_traddr); 2547 goto out_free_ctrl; 2548 } 2549 } 2550 2551 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2552 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2553 pr_err("invalid interface passed: %s\n", 2554 opts->host_iface); 2555 ret = -ENODEV; 2556 goto out_free_ctrl; 2557 } 2558 } 2559 2560 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2561 ret = -EALREADY; 2562 goto out_free_ctrl; 2563 } 2564 2565 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2566 GFP_KERNEL); 2567 if (!ctrl->queues) { 2568 ret = -ENOMEM; 2569 goto out_free_ctrl; 2570 } 2571 2572 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2573 if (ret) 2574 goto out_kfree_queues; 2575 2576 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2577 WARN_ON_ONCE(1); 2578 ret = -EINTR; 2579 goto out_uninit_ctrl; 2580 } 2581 2582 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2583 if (ret) 2584 goto out_uninit_ctrl; 2585 2586 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2587 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2588 2589 mutex_lock(&nvme_tcp_ctrl_mutex); 2590 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2591 mutex_unlock(&nvme_tcp_ctrl_mutex); 2592 2593 return &ctrl->ctrl; 2594 2595 out_uninit_ctrl: 2596 nvme_uninit_ctrl(&ctrl->ctrl); 2597 nvme_put_ctrl(&ctrl->ctrl); 2598 if (ret > 0) 2599 ret = -EIO; 2600 return ERR_PTR(ret); 2601 out_kfree_queues: 2602 kfree(ctrl->queues); 2603 out_free_ctrl: 2604 kfree(ctrl); 2605 return ERR_PTR(ret); 2606 } 2607 2608 static struct nvmf_transport_ops nvme_tcp_transport = { 2609 .name = "tcp", 2610 .module = THIS_MODULE, 2611 .required_opts = NVMF_OPT_TRADDR, 2612 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2613 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2614 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2615 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2616 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2617 .create_ctrl = nvme_tcp_create_ctrl, 2618 }; 2619 2620 static int __init nvme_tcp_init_module(void) 2621 { 2622 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2623 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2624 if (!nvme_tcp_wq) 2625 return -ENOMEM; 2626 2627 nvmf_register_transport(&nvme_tcp_transport); 2628 return 0; 2629 } 2630 2631 static void __exit nvme_tcp_cleanup_module(void) 2632 { 2633 struct nvme_tcp_ctrl *ctrl; 2634 2635 nvmf_unregister_transport(&nvme_tcp_transport); 2636 2637 mutex_lock(&nvme_tcp_ctrl_mutex); 2638 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2639 nvme_delete_ctrl(&ctrl->ctrl); 2640 mutex_unlock(&nvme_tcp_ctrl_mutex); 2641 flush_workqueue(nvme_delete_wq); 2642 2643 destroy_workqueue(nvme_tcp_wq); 2644 } 2645 2646 module_init(nvme_tcp_init_module); 2647 module_exit(nvme_tcp_cleanup_module); 2648 2649 MODULE_LICENSE("GPL v2"); 2650