xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		queue_lock;
80 	struct mutex		send_mutex;
81 	struct llist_head	req_list;
82 	struct list_head	send_list;
83 	bool			more_requests;
84 
85 	/* recv state */
86 	void			*pdu;
87 	int			pdu_remaining;
88 	int			pdu_offset;
89 	size_t			data_remaining;
90 	size_t			ddgst_remaining;
91 	unsigned int		nr_cqe;
92 
93 	/* send state */
94 	struct nvme_tcp_request *request;
95 
96 	int			queue_size;
97 	size_t			cmnd_capsule_len;
98 	struct nvme_tcp_ctrl	*ctrl;
99 	unsigned long		flags;
100 	bool			rd_enabled;
101 
102 	bool			hdr_digest;
103 	bool			data_digest;
104 	struct ahash_request	*rcv_hash;
105 	struct ahash_request	*snd_hash;
106 	__le32			exp_ddgst;
107 	__le32			recv_ddgst;
108 
109 	struct page_frag_cache	pf_cache;
110 
111 	void (*state_change)(struct sock *);
112 	void (*data_ready)(struct sock *);
113 	void (*write_space)(struct sock *);
114 };
115 
116 struct nvme_tcp_ctrl {
117 	/* read only in the hot path */
118 	struct nvme_tcp_queue	*queues;
119 	struct blk_mq_tag_set	tag_set;
120 
121 	/* other member variables */
122 	struct list_head	list;
123 	struct blk_mq_tag_set	admin_tag_set;
124 	struct sockaddr_storage addr;
125 	struct sockaddr_storage src_addr;
126 	struct net_device	*ndev;
127 	struct nvme_ctrl	ctrl;
128 
129 	struct work_struct	err_work;
130 	struct delayed_work	connect_work;
131 	struct nvme_tcp_request async_req;
132 	u32			io_queues[HCTX_MAX_TYPES];
133 };
134 
135 static LIST_HEAD(nvme_tcp_ctrl_list);
136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
137 static struct workqueue_struct *nvme_tcp_wq;
138 static const struct blk_mq_ops nvme_tcp_mq_ops;
139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141 
142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 {
144 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 }
146 
147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 {
149 	return queue - queue->ctrl->queues;
150 }
151 
152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 {
154 	u32 queue_idx = nvme_tcp_queue_id(queue);
155 
156 	if (queue_idx == 0)
157 		return queue->ctrl->admin_tag_set.tags[queue_idx];
158 	return queue->ctrl->tag_set.tags[queue_idx - 1];
159 }
160 
161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 {
163 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 }
165 
166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 {
168 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 }
170 
171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 {
178 	return req == &req->queue->ctrl->async_req;
179 }
180 
181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
182 {
183 	struct request *rq;
184 
185 	if (unlikely(nvme_tcp_async_req(req)))
186 		return false; /* async events don't have a request */
187 
188 	rq = blk_mq_rq_from_pdu(req);
189 
190 	return rq_data_dir(rq) == WRITE && req->data_len &&
191 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 }
193 
194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 {
196 	return req->iter.bvec->bv_page;
197 }
198 
199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 {
201 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 }
203 
204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 {
206 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
207 			req->pdu_len - req->pdu_sent);
208 }
209 
210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213 			req->pdu_len - req->pdu_sent : 0;
214 }
215 
216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217 		int len)
218 {
219 	return nvme_tcp_pdu_data_left(req) <= len;
220 }
221 
222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223 		unsigned int dir)
224 {
225 	struct request *rq = blk_mq_rq_from_pdu(req);
226 	struct bio_vec *vec;
227 	unsigned int size;
228 	int nr_bvec;
229 	size_t offset;
230 
231 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232 		vec = &rq->special_vec;
233 		nr_bvec = 1;
234 		size = blk_rq_payload_bytes(rq);
235 		offset = 0;
236 	} else {
237 		struct bio *bio = req->curr_bio;
238 		struct bvec_iter bi;
239 		struct bio_vec bv;
240 
241 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242 		nr_bvec = 0;
243 		bio_for_each_bvec(bv, bio, bi) {
244 			nr_bvec++;
245 		}
246 		size = bio->bi_iter.bi_size;
247 		offset = bio->bi_iter.bi_bvec_done;
248 	}
249 
250 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
251 	req->iter.iov_offset = offset;
252 }
253 
254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255 		int len)
256 {
257 	req->data_sent += len;
258 	req->pdu_sent += len;
259 	iov_iter_advance(&req->iter, len);
260 	if (!iov_iter_count(&req->iter) &&
261 	    req->data_sent < req->data_len) {
262 		req->curr_bio = req->curr_bio->bi_next;
263 		nvme_tcp_init_iter(req, WRITE);
264 	}
265 }
266 
267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
268 {
269 	int ret;
270 
271 	/* drain the send queue as much as we can... */
272 	do {
273 		ret = nvme_tcp_try_send(queue);
274 	} while (ret > 0);
275 }
276 
277 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
278 		bool sync, bool last)
279 {
280 	struct nvme_tcp_queue *queue = req->queue;
281 	bool empty;
282 
283 	empty = llist_add(&req->lentry, &queue->req_list) &&
284 		list_empty(&queue->send_list) && !queue->request;
285 
286 	/*
287 	 * if we're the first on the send_list and we can try to send
288 	 * directly, otherwise queue io_work. Also, only do that if we
289 	 * are on the same cpu, so we don't introduce contention.
290 	 */
291 	if (queue->io_cpu == raw_smp_processor_id() &&
292 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
293 		queue->more_requests = !last;
294 		nvme_tcp_send_all(queue);
295 		queue->more_requests = false;
296 		mutex_unlock(&queue->send_mutex);
297 	} else if (last) {
298 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
299 	}
300 }
301 
302 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
303 {
304 	struct nvme_tcp_request *req;
305 	struct llist_node *node;
306 
307 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
308 		req = llist_entry(node, struct nvme_tcp_request, lentry);
309 		list_add(&req->entry, &queue->send_list);
310 	}
311 }
312 
313 static inline struct nvme_tcp_request *
314 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
315 {
316 	struct nvme_tcp_request *req;
317 
318 	req = list_first_entry_or_null(&queue->send_list,
319 			struct nvme_tcp_request, entry);
320 	if (!req) {
321 		nvme_tcp_process_req_list(queue);
322 		req = list_first_entry_or_null(&queue->send_list,
323 				struct nvme_tcp_request, entry);
324 		if (unlikely(!req))
325 			return NULL;
326 	}
327 
328 	list_del(&req->entry);
329 	return req;
330 }
331 
332 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
333 		__le32 *dgst)
334 {
335 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
336 	crypto_ahash_final(hash);
337 }
338 
339 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
340 		struct page *page, off_t off, size_t len)
341 {
342 	struct scatterlist sg;
343 
344 	sg_init_marker(&sg, 1);
345 	sg_set_page(&sg, page, len, off);
346 	ahash_request_set_crypt(hash, &sg, NULL, len);
347 	crypto_ahash_update(hash);
348 }
349 
350 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
351 		void *pdu, size_t len)
352 {
353 	struct scatterlist sg;
354 
355 	sg_init_one(&sg, pdu, len);
356 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
357 	crypto_ahash_digest(hash);
358 }
359 
360 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
361 		void *pdu, size_t pdu_len)
362 {
363 	struct nvme_tcp_hdr *hdr = pdu;
364 	__le32 recv_digest;
365 	__le32 exp_digest;
366 
367 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
368 		dev_err(queue->ctrl->ctrl.device,
369 			"queue %d: header digest flag is cleared\n",
370 			nvme_tcp_queue_id(queue));
371 		return -EPROTO;
372 	}
373 
374 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
375 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
376 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
377 	if (recv_digest != exp_digest) {
378 		dev_err(queue->ctrl->ctrl.device,
379 			"header digest error: recv %#x expected %#x\n",
380 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
381 		return -EIO;
382 	}
383 
384 	return 0;
385 }
386 
387 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
388 {
389 	struct nvme_tcp_hdr *hdr = pdu;
390 	u8 digest_len = nvme_tcp_hdgst_len(queue);
391 	u32 len;
392 
393 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
394 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
395 
396 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
397 		dev_err(queue->ctrl->ctrl.device,
398 			"queue %d: data digest flag is cleared\n",
399 		nvme_tcp_queue_id(queue));
400 		return -EPROTO;
401 	}
402 	crypto_ahash_init(queue->rcv_hash);
403 
404 	return 0;
405 }
406 
407 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
408 		struct request *rq, unsigned int hctx_idx)
409 {
410 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
411 
412 	page_frag_free(req->pdu);
413 }
414 
415 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
416 		struct request *rq, unsigned int hctx_idx,
417 		unsigned int numa_node)
418 {
419 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
420 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
421 	struct nvme_tcp_cmd_pdu *pdu;
422 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
423 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
424 	u8 hdgst = nvme_tcp_hdgst_len(queue);
425 
426 	req->pdu = page_frag_alloc(&queue->pf_cache,
427 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
428 		GFP_KERNEL | __GFP_ZERO);
429 	if (!req->pdu)
430 		return -ENOMEM;
431 
432 	pdu = req->pdu;
433 	req->queue = queue;
434 	nvme_req(rq)->ctrl = &ctrl->ctrl;
435 	nvme_req(rq)->cmd = &pdu->cmd;
436 
437 	return 0;
438 }
439 
440 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
441 		unsigned int hctx_idx)
442 {
443 	struct nvme_tcp_ctrl *ctrl = data;
444 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
445 
446 	hctx->driver_data = queue;
447 	return 0;
448 }
449 
450 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
451 		unsigned int hctx_idx)
452 {
453 	struct nvme_tcp_ctrl *ctrl = data;
454 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
455 
456 	hctx->driver_data = queue;
457 	return 0;
458 }
459 
460 static enum nvme_tcp_recv_state
461 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
462 {
463 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
464 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
465 		NVME_TCP_RECV_DATA;
466 }
467 
468 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
469 {
470 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
471 				nvme_tcp_hdgst_len(queue);
472 	queue->pdu_offset = 0;
473 	queue->data_remaining = -1;
474 	queue->ddgst_remaining = 0;
475 }
476 
477 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
478 {
479 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
480 		return;
481 
482 	dev_warn(ctrl->device, "starting error recovery\n");
483 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
484 }
485 
486 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
487 		struct nvme_completion *cqe)
488 {
489 	struct request *rq;
490 
491 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
492 	if (!rq) {
493 		dev_err(queue->ctrl->ctrl.device,
494 			"queue %d tag 0x%x not found\n",
495 			nvme_tcp_queue_id(queue), cqe->command_id);
496 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
497 		return -EINVAL;
498 	}
499 
500 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
501 		nvme_complete_rq(rq);
502 	queue->nr_cqe++;
503 
504 	return 0;
505 }
506 
507 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
508 		struct nvme_tcp_data_pdu *pdu)
509 {
510 	struct request *rq;
511 
512 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
513 	if (!rq) {
514 		dev_err(queue->ctrl->ctrl.device,
515 			"queue %d tag %#x not found\n",
516 			nvme_tcp_queue_id(queue), pdu->command_id);
517 		return -ENOENT;
518 	}
519 
520 	if (!blk_rq_payload_bytes(rq)) {
521 		dev_err(queue->ctrl->ctrl.device,
522 			"queue %d tag %#x unexpected data\n",
523 			nvme_tcp_queue_id(queue), rq->tag);
524 		return -EIO;
525 	}
526 
527 	queue->data_remaining = le32_to_cpu(pdu->data_length);
528 
529 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
530 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
531 		dev_err(queue->ctrl->ctrl.device,
532 			"queue %d tag %#x SUCCESS set but not last PDU\n",
533 			nvme_tcp_queue_id(queue), rq->tag);
534 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
535 		return -EPROTO;
536 	}
537 
538 	return 0;
539 }
540 
541 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
542 		struct nvme_tcp_rsp_pdu *pdu)
543 {
544 	struct nvme_completion *cqe = &pdu->cqe;
545 	int ret = 0;
546 
547 	/*
548 	 * AEN requests are special as they don't time out and can
549 	 * survive any kind of queue freeze and often don't respond to
550 	 * aborts.  We don't even bother to allocate a struct request
551 	 * for them but rather special case them here.
552 	 */
553 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
554 				     cqe->command_id)))
555 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
556 				&cqe->result);
557 	else
558 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
559 
560 	return ret;
561 }
562 
563 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
564 		struct nvme_tcp_r2t_pdu *pdu)
565 {
566 	struct nvme_tcp_data_pdu *data = req->pdu;
567 	struct nvme_tcp_queue *queue = req->queue;
568 	struct request *rq = blk_mq_rq_from_pdu(req);
569 	u8 hdgst = nvme_tcp_hdgst_len(queue);
570 	u8 ddgst = nvme_tcp_ddgst_len(queue);
571 
572 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
573 	req->pdu_sent = 0;
574 
575 	if (unlikely(!req->pdu_len)) {
576 		dev_err(queue->ctrl->ctrl.device,
577 			"req %d r2t len is %u, probably a bug...\n",
578 			rq->tag, req->pdu_len);
579 		return -EPROTO;
580 	}
581 
582 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
583 		dev_err(queue->ctrl->ctrl.device,
584 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
585 			rq->tag, req->pdu_len, req->data_len,
586 			req->data_sent);
587 		return -EPROTO;
588 	}
589 
590 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
591 		dev_err(queue->ctrl->ctrl.device,
592 			"req %d unexpected r2t offset %u (expected %zu)\n",
593 			rq->tag, le32_to_cpu(pdu->r2t_offset),
594 			req->data_sent);
595 		return -EPROTO;
596 	}
597 
598 	memset(data, 0, sizeof(*data));
599 	data->hdr.type = nvme_tcp_h2c_data;
600 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
601 	if (queue->hdr_digest)
602 		data->hdr.flags |= NVME_TCP_F_HDGST;
603 	if (queue->data_digest)
604 		data->hdr.flags |= NVME_TCP_F_DDGST;
605 	data->hdr.hlen = sizeof(*data);
606 	data->hdr.pdo = data->hdr.hlen + hdgst;
607 	data->hdr.plen =
608 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
609 	data->ttag = pdu->ttag;
610 	data->command_id = rq->tag;
611 	data->data_offset = cpu_to_le32(req->data_sent);
612 	data->data_length = cpu_to_le32(req->pdu_len);
613 	return 0;
614 }
615 
616 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
617 		struct nvme_tcp_r2t_pdu *pdu)
618 {
619 	struct nvme_tcp_request *req;
620 	struct request *rq;
621 	int ret;
622 
623 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
624 	if (!rq) {
625 		dev_err(queue->ctrl->ctrl.device,
626 			"queue %d tag %#x not found\n",
627 			nvme_tcp_queue_id(queue), pdu->command_id);
628 		return -ENOENT;
629 	}
630 	req = blk_mq_rq_to_pdu(rq);
631 
632 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
633 	if (unlikely(ret))
634 		return ret;
635 
636 	req->state = NVME_TCP_SEND_H2C_PDU;
637 	req->offset = 0;
638 
639 	nvme_tcp_queue_request(req, false, true);
640 
641 	return 0;
642 }
643 
644 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
645 		unsigned int *offset, size_t *len)
646 {
647 	struct nvme_tcp_hdr *hdr;
648 	char *pdu = queue->pdu;
649 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
650 	int ret;
651 
652 	ret = skb_copy_bits(skb, *offset,
653 		&pdu[queue->pdu_offset], rcv_len);
654 	if (unlikely(ret))
655 		return ret;
656 
657 	queue->pdu_remaining -= rcv_len;
658 	queue->pdu_offset += rcv_len;
659 	*offset += rcv_len;
660 	*len -= rcv_len;
661 	if (queue->pdu_remaining)
662 		return 0;
663 
664 	hdr = queue->pdu;
665 	if (queue->hdr_digest) {
666 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
667 		if (unlikely(ret))
668 			return ret;
669 	}
670 
671 
672 	if (queue->data_digest) {
673 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
674 		if (unlikely(ret))
675 			return ret;
676 	}
677 
678 	switch (hdr->type) {
679 	case nvme_tcp_c2h_data:
680 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
681 	case nvme_tcp_rsp:
682 		nvme_tcp_init_recv_ctx(queue);
683 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
684 	case nvme_tcp_r2t:
685 		nvme_tcp_init_recv_ctx(queue);
686 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
687 	default:
688 		dev_err(queue->ctrl->ctrl.device,
689 			"unsupported pdu type (%d)\n", hdr->type);
690 		return -EINVAL;
691 	}
692 }
693 
694 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
695 {
696 	union nvme_result res = {};
697 
698 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
699 		nvme_complete_rq(rq);
700 }
701 
702 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
703 			      unsigned int *offset, size_t *len)
704 {
705 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
706 	struct nvme_tcp_request *req;
707 	struct request *rq;
708 
709 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
710 	if (!rq) {
711 		dev_err(queue->ctrl->ctrl.device,
712 			"queue %d tag %#x not found\n",
713 			nvme_tcp_queue_id(queue), pdu->command_id);
714 		return -ENOENT;
715 	}
716 	req = blk_mq_rq_to_pdu(rq);
717 
718 	while (true) {
719 		int recv_len, ret;
720 
721 		recv_len = min_t(size_t, *len, queue->data_remaining);
722 		if (!recv_len)
723 			break;
724 
725 		if (!iov_iter_count(&req->iter)) {
726 			req->curr_bio = req->curr_bio->bi_next;
727 
728 			/*
729 			 * If we don`t have any bios it means that controller
730 			 * sent more data than we requested, hence error
731 			 */
732 			if (!req->curr_bio) {
733 				dev_err(queue->ctrl->ctrl.device,
734 					"queue %d no space in request %#x",
735 					nvme_tcp_queue_id(queue), rq->tag);
736 				nvme_tcp_init_recv_ctx(queue);
737 				return -EIO;
738 			}
739 			nvme_tcp_init_iter(req, READ);
740 		}
741 
742 		/* we can read only from what is left in this bio */
743 		recv_len = min_t(size_t, recv_len,
744 				iov_iter_count(&req->iter));
745 
746 		if (queue->data_digest)
747 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
748 				&req->iter, recv_len, queue->rcv_hash);
749 		else
750 			ret = skb_copy_datagram_iter(skb, *offset,
751 					&req->iter, recv_len);
752 		if (ret) {
753 			dev_err(queue->ctrl->ctrl.device,
754 				"queue %d failed to copy request %#x data",
755 				nvme_tcp_queue_id(queue), rq->tag);
756 			return ret;
757 		}
758 
759 		*len -= recv_len;
760 		*offset += recv_len;
761 		queue->data_remaining -= recv_len;
762 	}
763 
764 	if (!queue->data_remaining) {
765 		if (queue->data_digest) {
766 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
767 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
768 		} else {
769 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
770 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
771 				queue->nr_cqe++;
772 			}
773 			nvme_tcp_init_recv_ctx(queue);
774 		}
775 	}
776 
777 	return 0;
778 }
779 
780 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
781 		struct sk_buff *skb, unsigned int *offset, size_t *len)
782 {
783 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
784 	char *ddgst = (char *)&queue->recv_ddgst;
785 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
786 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
787 	int ret;
788 
789 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
790 	if (unlikely(ret))
791 		return ret;
792 
793 	queue->ddgst_remaining -= recv_len;
794 	*offset += recv_len;
795 	*len -= recv_len;
796 	if (queue->ddgst_remaining)
797 		return 0;
798 
799 	if (queue->recv_ddgst != queue->exp_ddgst) {
800 		dev_err(queue->ctrl->ctrl.device,
801 			"data digest error: recv %#x expected %#x\n",
802 			le32_to_cpu(queue->recv_ddgst),
803 			le32_to_cpu(queue->exp_ddgst));
804 		return -EIO;
805 	}
806 
807 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
808 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
809 						pdu->command_id);
810 
811 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
812 		queue->nr_cqe++;
813 	}
814 
815 	nvme_tcp_init_recv_ctx(queue);
816 	return 0;
817 }
818 
819 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
820 			     unsigned int offset, size_t len)
821 {
822 	struct nvme_tcp_queue *queue = desc->arg.data;
823 	size_t consumed = len;
824 	int result;
825 
826 	while (len) {
827 		switch (nvme_tcp_recv_state(queue)) {
828 		case NVME_TCP_RECV_PDU:
829 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
830 			break;
831 		case NVME_TCP_RECV_DATA:
832 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
833 			break;
834 		case NVME_TCP_RECV_DDGST:
835 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
836 			break;
837 		default:
838 			result = -EFAULT;
839 		}
840 		if (result) {
841 			dev_err(queue->ctrl->ctrl.device,
842 				"receive failed:  %d\n", result);
843 			queue->rd_enabled = false;
844 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
845 			return result;
846 		}
847 	}
848 
849 	return consumed;
850 }
851 
852 static void nvme_tcp_data_ready(struct sock *sk)
853 {
854 	struct nvme_tcp_queue *queue;
855 
856 	read_lock_bh(&sk->sk_callback_lock);
857 	queue = sk->sk_user_data;
858 	if (likely(queue && queue->rd_enabled) &&
859 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
860 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
861 	read_unlock_bh(&sk->sk_callback_lock);
862 }
863 
864 static void nvme_tcp_write_space(struct sock *sk)
865 {
866 	struct nvme_tcp_queue *queue;
867 
868 	read_lock_bh(&sk->sk_callback_lock);
869 	queue = sk->sk_user_data;
870 	if (likely(queue && sk_stream_is_writeable(sk))) {
871 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
872 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
873 	}
874 	read_unlock_bh(&sk->sk_callback_lock);
875 }
876 
877 static void nvme_tcp_state_change(struct sock *sk)
878 {
879 	struct nvme_tcp_queue *queue;
880 
881 	read_lock_bh(&sk->sk_callback_lock);
882 	queue = sk->sk_user_data;
883 	if (!queue)
884 		goto done;
885 
886 	switch (sk->sk_state) {
887 	case TCP_CLOSE:
888 	case TCP_CLOSE_WAIT:
889 	case TCP_LAST_ACK:
890 	case TCP_FIN_WAIT1:
891 	case TCP_FIN_WAIT2:
892 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
893 		break;
894 	default:
895 		dev_info(queue->ctrl->ctrl.device,
896 			"queue %d socket state %d\n",
897 			nvme_tcp_queue_id(queue), sk->sk_state);
898 	}
899 
900 	queue->state_change(sk);
901 done:
902 	read_unlock_bh(&sk->sk_callback_lock);
903 }
904 
905 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
906 {
907 	return !list_empty(&queue->send_list) ||
908 		!llist_empty(&queue->req_list) || queue->more_requests;
909 }
910 
911 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
912 {
913 	queue->request = NULL;
914 }
915 
916 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
917 {
918 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
919 }
920 
921 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
922 {
923 	struct nvme_tcp_queue *queue = req->queue;
924 
925 	while (true) {
926 		struct page *page = nvme_tcp_req_cur_page(req);
927 		size_t offset = nvme_tcp_req_cur_offset(req);
928 		size_t len = nvme_tcp_req_cur_length(req);
929 		bool last = nvme_tcp_pdu_last_send(req, len);
930 		int ret, flags = MSG_DONTWAIT;
931 
932 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
933 			flags |= MSG_EOR;
934 		else
935 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
936 
937 		if (sendpage_ok(page)) {
938 			ret = kernel_sendpage(queue->sock, page, offset, len,
939 					flags);
940 		} else {
941 			ret = sock_no_sendpage(queue->sock, page, offset, len,
942 					flags);
943 		}
944 		if (ret <= 0)
945 			return ret;
946 
947 		if (queue->data_digest)
948 			nvme_tcp_ddgst_update(queue->snd_hash, page,
949 					offset, ret);
950 
951 		/* fully successful last write*/
952 		if (last && ret == len) {
953 			if (queue->data_digest) {
954 				nvme_tcp_ddgst_final(queue->snd_hash,
955 					&req->ddgst);
956 				req->state = NVME_TCP_SEND_DDGST;
957 				req->offset = 0;
958 			} else {
959 				nvme_tcp_done_send_req(queue);
960 			}
961 			return 1;
962 		}
963 		nvme_tcp_advance_req(req, ret);
964 	}
965 	return -EAGAIN;
966 }
967 
968 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
969 {
970 	struct nvme_tcp_queue *queue = req->queue;
971 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
972 	bool inline_data = nvme_tcp_has_inline_data(req);
973 	u8 hdgst = nvme_tcp_hdgst_len(queue);
974 	int len = sizeof(*pdu) + hdgst - req->offset;
975 	int flags = MSG_DONTWAIT;
976 	int ret;
977 
978 	if (inline_data || nvme_tcp_queue_more(queue))
979 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
980 	else
981 		flags |= MSG_EOR;
982 
983 	if (queue->hdr_digest && !req->offset)
984 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
985 
986 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
987 			offset_in_page(pdu) + req->offset, len,  flags);
988 	if (unlikely(ret <= 0))
989 		return ret;
990 
991 	len -= ret;
992 	if (!len) {
993 		if (inline_data) {
994 			req->state = NVME_TCP_SEND_DATA;
995 			if (queue->data_digest)
996 				crypto_ahash_init(queue->snd_hash);
997 		} else {
998 			nvme_tcp_done_send_req(queue);
999 		}
1000 		return 1;
1001 	}
1002 	req->offset += ret;
1003 
1004 	return -EAGAIN;
1005 }
1006 
1007 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1008 {
1009 	struct nvme_tcp_queue *queue = req->queue;
1010 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1011 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1012 	int len = sizeof(*pdu) - req->offset + hdgst;
1013 	int ret;
1014 
1015 	if (queue->hdr_digest && !req->offset)
1016 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1017 
1018 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1019 			offset_in_page(pdu) + req->offset, len,
1020 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1021 	if (unlikely(ret <= 0))
1022 		return ret;
1023 
1024 	len -= ret;
1025 	if (!len) {
1026 		req->state = NVME_TCP_SEND_DATA;
1027 		if (queue->data_digest)
1028 			crypto_ahash_init(queue->snd_hash);
1029 		return 1;
1030 	}
1031 	req->offset += ret;
1032 
1033 	return -EAGAIN;
1034 }
1035 
1036 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1037 {
1038 	struct nvme_tcp_queue *queue = req->queue;
1039 	int ret;
1040 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1041 	struct kvec iov = {
1042 		.iov_base = &req->ddgst + req->offset,
1043 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1044 	};
1045 
1046 	if (nvme_tcp_queue_more(queue))
1047 		msg.msg_flags |= MSG_MORE;
1048 	else
1049 		msg.msg_flags |= MSG_EOR;
1050 
1051 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1052 	if (unlikely(ret <= 0))
1053 		return ret;
1054 
1055 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1056 		nvme_tcp_done_send_req(queue);
1057 		return 1;
1058 	}
1059 
1060 	req->offset += ret;
1061 	return -EAGAIN;
1062 }
1063 
1064 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1065 {
1066 	struct nvme_tcp_request *req;
1067 	int ret = 1;
1068 
1069 	if (!queue->request) {
1070 		queue->request = nvme_tcp_fetch_request(queue);
1071 		if (!queue->request)
1072 			return 0;
1073 	}
1074 	req = queue->request;
1075 
1076 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1077 		ret = nvme_tcp_try_send_cmd_pdu(req);
1078 		if (ret <= 0)
1079 			goto done;
1080 		if (!nvme_tcp_has_inline_data(req))
1081 			return ret;
1082 	}
1083 
1084 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1085 		ret = nvme_tcp_try_send_data_pdu(req);
1086 		if (ret <= 0)
1087 			goto done;
1088 	}
1089 
1090 	if (req->state == NVME_TCP_SEND_DATA) {
1091 		ret = nvme_tcp_try_send_data(req);
1092 		if (ret <= 0)
1093 			goto done;
1094 	}
1095 
1096 	if (req->state == NVME_TCP_SEND_DDGST)
1097 		ret = nvme_tcp_try_send_ddgst(req);
1098 done:
1099 	if (ret == -EAGAIN) {
1100 		ret = 0;
1101 	} else if (ret < 0) {
1102 		dev_err(queue->ctrl->ctrl.device,
1103 			"failed to send request %d\n", ret);
1104 		if (ret != -EPIPE && ret != -ECONNRESET)
1105 			nvme_tcp_fail_request(queue->request);
1106 		nvme_tcp_done_send_req(queue);
1107 	}
1108 	return ret;
1109 }
1110 
1111 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1112 {
1113 	struct socket *sock = queue->sock;
1114 	struct sock *sk = sock->sk;
1115 	read_descriptor_t rd_desc;
1116 	int consumed;
1117 
1118 	rd_desc.arg.data = queue;
1119 	rd_desc.count = 1;
1120 	lock_sock(sk);
1121 	queue->nr_cqe = 0;
1122 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1123 	release_sock(sk);
1124 	return consumed;
1125 }
1126 
1127 static void nvme_tcp_io_work(struct work_struct *w)
1128 {
1129 	struct nvme_tcp_queue *queue =
1130 		container_of(w, struct nvme_tcp_queue, io_work);
1131 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1132 
1133 	do {
1134 		bool pending = false;
1135 		int result;
1136 
1137 		if (mutex_trylock(&queue->send_mutex)) {
1138 			result = nvme_tcp_try_send(queue);
1139 			mutex_unlock(&queue->send_mutex);
1140 			if (result > 0)
1141 				pending = true;
1142 			else if (unlikely(result < 0))
1143 				break;
1144 		} else
1145 			pending = !llist_empty(&queue->req_list);
1146 
1147 		result = nvme_tcp_try_recv(queue);
1148 		if (result > 0)
1149 			pending = true;
1150 		else if (unlikely(result < 0))
1151 			return;
1152 
1153 		if (!pending)
1154 			return;
1155 
1156 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1157 
1158 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1159 }
1160 
1161 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1162 {
1163 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1164 
1165 	ahash_request_free(queue->rcv_hash);
1166 	ahash_request_free(queue->snd_hash);
1167 	crypto_free_ahash(tfm);
1168 }
1169 
1170 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1171 {
1172 	struct crypto_ahash *tfm;
1173 
1174 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1175 	if (IS_ERR(tfm))
1176 		return PTR_ERR(tfm);
1177 
1178 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1179 	if (!queue->snd_hash)
1180 		goto free_tfm;
1181 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1182 
1183 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1184 	if (!queue->rcv_hash)
1185 		goto free_snd_hash;
1186 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1187 
1188 	return 0;
1189 free_snd_hash:
1190 	ahash_request_free(queue->snd_hash);
1191 free_tfm:
1192 	crypto_free_ahash(tfm);
1193 	return -ENOMEM;
1194 }
1195 
1196 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1197 {
1198 	struct nvme_tcp_request *async = &ctrl->async_req;
1199 
1200 	page_frag_free(async->pdu);
1201 }
1202 
1203 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1204 {
1205 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1206 	struct nvme_tcp_request *async = &ctrl->async_req;
1207 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1208 
1209 	async->pdu = page_frag_alloc(&queue->pf_cache,
1210 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1211 		GFP_KERNEL | __GFP_ZERO);
1212 	if (!async->pdu)
1213 		return -ENOMEM;
1214 
1215 	async->queue = &ctrl->queues[0];
1216 	return 0;
1217 }
1218 
1219 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1220 {
1221 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1222 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1223 
1224 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1225 		return;
1226 
1227 	if (queue->hdr_digest || queue->data_digest)
1228 		nvme_tcp_free_crypto(queue);
1229 
1230 	sock_release(queue->sock);
1231 	kfree(queue->pdu);
1232 	mutex_destroy(&queue->queue_lock);
1233 }
1234 
1235 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1236 {
1237 	struct nvme_tcp_icreq_pdu *icreq;
1238 	struct nvme_tcp_icresp_pdu *icresp;
1239 	struct msghdr msg = {};
1240 	struct kvec iov;
1241 	bool ctrl_hdgst, ctrl_ddgst;
1242 	int ret;
1243 
1244 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1245 	if (!icreq)
1246 		return -ENOMEM;
1247 
1248 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1249 	if (!icresp) {
1250 		ret = -ENOMEM;
1251 		goto free_icreq;
1252 	}
1253 
1254 	icreq->hdr.type = nvme_tcp_icreq;
1255 	icreq->hdr.hlen = sizeof(*icreq);
1256 	icreq->hdr.pdo = 0;
1257 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1258 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1259 	icreq->maxr2t = 0; /* single inflight r2t supported */
1260 	icreq->hpda = 0; /* no alignment constraint */
1261 	if (queue->hdr_digest)
1262 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1263 	if (queue->data_digest)
1264 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1265 
1266 	iov.iov_base = icreq;
1267 	iov.iov_len = sizeof(*icreq);
1268 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1269 	if (ret < 0)
1270 		goto free_icresp;
1271 
1272 	memset(&msg, 0, sizeof(msg));
1273 	iov.iov_base = icresp;
1274 	iov.iov_len = sizeof(*icresp);
1275 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1276 			iov.iov_len, msg.msg_flags);
1277 	if (ret < 0)
1278 		goto free_icresp;
1279 
1280 	ret = -EINVAL;
1281 	if (icresp->hdr.type != nvme_tcp_icresp) {
1282 		pr_err("queue %d: bad type returned %d\n",
1283 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1284 		goto free_icresp;
1285 	}
1286 
1287 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1288 		pr_err("queue %d: bad pdu length returned %d\n",
1289 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1290 		goto free_icresp;
1291 	}
1292 
1293 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1294 		pr_err("queue %d: bad pfv returned %d\n",
1295 			nvme_tcp_queue_id(queue), icresp->pfv);
1296 		goto free_icresp;
1297 	}
1298 
1299 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1300 	if ((queue->data_digest && !ctrl_ddgst) ||
1301 	    (!queue->data_digest && ctrl_ddgst)) {
1302 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1303 			nvme_tcp_queue_id(queue),
1304 			queue->data_digest ? "enabled" : "disabled",
1305 			ctrl_ddgst ? "enabled" : "disabled");
1306 		goto free_icresp;
1307 	}
1308 
1309 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1310 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1311 	    (!queue->hdr_digest && ctrl_hdgst)) {
1312 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1313 			nvme_tcp_queue_id(queue),
1314 			queue->hdr_digest ? "enabled" : "disabled",
1315 			ctrl_hdgst ? "enabled" : "disabled");
1316 		goto free_icresp;
1317 	}
1318 
1319 	if (icresp->cpda != 0) {
1320 		pr_err("queue %d: unsupported cpda returned %d\n",
1321 			nvme_tcp_queue_id(queue), icresp->cpda);
1322 		goto free_icresp;
1323 	}
1324 
1325 	ret = 0;
1326 free_icresp:
1327 	kfree(icresp);
1328 free_icreq:
1329 	kfree(icreq);
1330 	return ret;
1331 }
1332 
1333 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1334 {
1335 	return nvme_tcp_queue_id(queue) == 0;
1336 }
1337 
1338 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1339 {
1340 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1341 	int qid = nvme_tcp_queue_id(queue);
1342 
1343 	return !nvme_tcp_admin_queue(queue) &&
1344 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1345 }
1346 
1347 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1348 {
1349 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1350 	int qid = nvme_tcp_queue_id(queue);
1351 
1352 	return !nvme_tcp_admin_queue(queue) &&
1353 		!nvme_tcp_default_queue(queue) &&
1354 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1355 			  ctrl->io_queues[HCTX_TYPE_READ];
1356 }
1357 
1358 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1359 {
1360 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1361 	int qid = nvme_tcp_queue_id(queue);
1362 
1363 	return !nvme_tcp_admin_queue(queue) &&
1364 		!nvme_tcp_default_queue(queue) &&
1365 		!nvme_tcp_read_queue(queue) &&
1366 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1367 			  ctrl->io_queues[HCTX_TYPE_READ] +
1368 			  ctrl->io_queues[HCTX_TYPE_POLL];
1369 }
1370 
1371 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1372 {
1373 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1374 	int qid = nvme_tcp_queue_id(queue);
1375 	int n = 0;
1376 
1377 	if (nvme_tcp_default_queue(queue))
1378 		n = qid - 1;
1379 	else if (nvme_tcp_read_queue(queue))
1380 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1381 	else if (nvme_tcp_poll_queue(queue))
1382 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1383 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1384 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1385 }
1386 
1387 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1388 		int qid, size_t queue_size)
1389 {
1390 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1391 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1392 	int ret, rcv_pdu_size;
1393 
1394 	mutex_init(&queue->queue_lock);
1395 	queue->ctrl = ctrl;
1396 	init_llist_head(&queue->req_list);
1397 	INIT_LIST_HEAD(&queue->send_list);
1398 	mutex_init(&queue->send_mutex);
1399 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1400 	queue->queue_size = queue_size;
1401 
1402 	if (qid > 0)
1403 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1404 	else
1405 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1406 						NVME_TCP_ADMIN_CCSZ;
1407 
1408 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1409 			IPPROTO_TCP, &queue->sock);
1410 	if (ret) {
1411 		dev_err(nctrl->device,
1412 			"failed to create socket: %d\n", ret);
1413 		goto err_destroy_mutex;
1414 	}
1415 
1416 	/* Single syn retry */
1417 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1418 
1419 	/* Set TCP no delay */
1420 	tcp_sock_set_nodelay(queue->sock->sk);
1421 
1422 	/*
1423 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1424 	 * close. This is done to prevent stale data from being sent should
1425 	 * the network connection be restored before TCP times out.
1426 	 */
1427 	sock_no_linger(queue->sock->sk);
1428 
1429 	if (so_priority > 0)
1430 		sock_set_priority(queue->sock->sk, so_priority);
1431 
1432 	/* Set socket type of service */
1433 	if (nctrl->opts->tos >= 0)
1434 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1435 
1436 	/* Set 10 seconds timeout for icresp recvmsg */
1437 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1438 
1439 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1440 	nvme_tcp_set_queue_io_cpu(queue);
1441 	queue->request = NULL;
1442 	queue->data_remaining = 0;
1443 	queue->ddgst_remaining = 0;
1444 	queue->pdu_remaining = 0;
1445 	queue->pdu_offset = 0;
1446 	sk_set_memalloc(queue->sock->sk);
1447 
1448 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1449 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1450 			sizeof(ctrl->src_addr));
1451 		if (ret) {
1452 			dev_err(nctrl->device,
1453 				"failed to bind queue %d socket %d\n",
1454 				qid, ret);
1455 			goto err_sock;
1456 		}
1457 	}
1458 
1459 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1460 		char *iface = nctrl->opts->host_iface;
1461 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1462 
1463 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1464 				      optval, strlen(iface));
1465 		if (ret) {
1466 			dev_err(nctrl->device,
1467 			  "failed to bind to interface %s queue %d err %d\n",
1468 			  iface, qid, ret);
1469 			goto err_sock;
1470 		}
1471 	}
1472 
1473 	queue->hdr_digest = nctrl->opts->hdr_digest;
1474 	queue->data_digest = nctrl->opts->data_digest;
1475 	if (queue->hdr_digest || queue->data_digest) {
1476 		ret = nvme_tcp_alloc_crypto(queue);
1477 		if (ret) {
1478 			dev_err(nctrl->device,
1479 				"failed to allocate queue %d crypto\n", qid);
1480 			goto err_sock;
1481 		}
1482 	}
1483 
1484 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1485 			nvme_tcp_hdgst_len(queue);
1486 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1487 	if (!queue->pdu) {
1488 		ret = -ENOMEM;
1489 		goto err_crypto;
1490 	}
1491 
1492 	dev_dbg(nctrl->device, "connecting queue %d\n",
1493 			nvme_tcp_queue_id(queue));
1494 
1495 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1496 		sizeof(ctrl->addr), 0);
1497 	if (ret) {
1498 		dev_err(nctrl->device,
1499 			"failed to connect socket: %d\n", ret);
1500 		goto err_rcv_pdu;
1501 	}
1502 
1503 	ret = nvme_tcp_init_connection(queue);
1504 	if (ret)
1505 		goto err_init_connect;
1506 
1507 	queue->rd_enabled = true;
1508 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1509 	nvme_tcp_init_recv_ctx(queue);
1510 
1511 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1512 	queue->sock->sk->sk_user_data = queue;
1513 	queue->state_change = queue->sock->sk->sk_state_change;
1514 	queue->data_ready = queue->sock->sk->sk_data_ready;
1515 	queue->write_space = queue->sock->sk->sk_write_space;
1516 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1517 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1518 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1519 #ifdef CONFIG_NET_RX_BUSY_POLL
1520 	queue->sock->sk->sk_ll_usec = 1;
1521 #endif
1522 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1523 
1524 	return 0;
1525 
1526 err_init_connect:
1527 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1528 err_rcv_pdu:
1529 	kfree(queue->pdu);
1530 err_crypto:
1531 	if (queue->hdr_digest || queue->data_digest)
1532 		nvme_tcp_free_crypto(queue);
1533 err_sock:
1534 	sock_release(queue->sock);
1535 	queue->sock = NULL;
1536 err_destroy_mutex:
1537 	mutex_destroy(&queue->queue_lock);
1538 	return ret;
1539 }
1540 
1541 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1542 {
1543 	struct socket *sock = queue->sock;
1544 
1545 	write_lock_bh(&sock->sk->sk_callback_lock);
1546 	sock->sk->sk_user_data  = NULL;
1547 	sock->sk->sk_data_ready = queue->data_ready;
1548 	sock->sk->sk_state_change = queue->state_change;
1549 	sock->sk->sk_write_space  = queue->write_space;
1550 	write_unlock_bh(&sock->sk->sk_callback_lock);
1551 }
1552 
1553 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1554 {
1555 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1556 	nvme_tcp_restore_sock_calls(queue);
1557 	cancel_work_sync(&queue->io_work);
1558 }
1559 
1560 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1561 {
1562 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1563 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1564 
1565 	mutex_lock(&queue->queue_lock);
1566 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1567 		__nvme_tcp_stop_queue(queue);
1568 	mutex_unlock(&queue->queue_lock);
1569 }
1570 
1571 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1572 {
1573 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1574 	int ret;
1575 
1576 	if (idx)
1577 		ret = nvmf_connect_io_queue(nctrl, idx);
1578 	else
1579 		ret = nvmf_connect_admin_queue(nctrl);
1580 
1581 	if (!ret) {
1582 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1583 	} else {
1584 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1585 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1586 		dev_err(nctrl->device,
1587 			"failed to connect queue: %d ret=%d\n", idx, ret);
1588 	}
1589 	return ret;
1590 }
1591 
1592 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1593 		bool admin)
1594 {
1595 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1596 	struct blk_mq_tag_set *set;
1597 	int ret;
1598 
1599 	if (admin) {
1600 		set = &ctrl->admin_tag_set;
1601 		memset(set, 0, sizeof(*set));
1602 		set->ops = &nvme_tcp_admin_mq_ops;
1603 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1604 		set->reserved_tags = NVMF_RESERVED_TAGS;
1605 		set->numa_node = nctrl->numa_node;
1606 		set->flags = BLK_MQ_F_BLOCKING;
1607 		set->cmd_size = sizeof(struct nvme_tcp_request);
1608 		set->driver_data = ctrl;
1609 		set->nr_hw_queues = 1;
1610 		set->timeout = NVME_ADMIN_TIMEOUT;
1611 	} else {
1612 		set = &ctrl->tag_set;
1613 		memset(set, 0, sizeof(*set));
1614 		set->ops = &nvme_tcp_mq_ops;
1615 		set->queue_depth = nctrl->sqsize + 1;
1616 		set->reserved_tags = NVMF_RESERVED_TAGS;
1617 		set->numa_node = nctrl->numa_node;
1618 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1619 		set->cmd_size = sizeof(struct nvme_tcp_request);
1620 		set->driver_data = ctrl;
1621 		set->nr_hw_queues = nctrl->queue_count - 1;
1622 		set->timeout = NVME_IO_TIMEOUT;
1623 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1624 	}
1625 
1626 	ret = blk_mq_alloc_tag_set(set);
1627 	if (ret)
1628 		return ERR_PTR(ret);
1629 
1630 	return set;
1631 }
1632 
1633 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1634 {
1635 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1636 		cancel_work_sync(&ctrl->async_event_work);
1637 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1638 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1639 	}
1640 
1641 	nvme_tcp_free_queue(ctrl, 0);
1642 }
1643 
1644 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1645 {
1646 	int i;
1647 
1648 	for (i = 1; i < ctrl->queue_count; i++)
1649 		nvme_tcp_free_queue(ctrl, i);
1650 }
1651 
1652 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1653 {
1654 	int i;
1655 
1656 	for (i = 1; i < ctrl->queue_count; i++)
1657 		nvme_tcp_stop_queue(ctrl, i);
1658 }
1659 
1660 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1661 {
1662 	int i, ret = 0;
1663 
1664 	for (i = 1; i < ctrl->queue_count; i++) {
1665 		ret = nvme_tcp_start_queue(ctrl, i);
1666 		if (ret)
1667 			goto out_stop_queues;
1668 	}
1669 
1670 	return 0;
1671 
1672 out_stop_queues:
1673 	for (i--; i >= 1; i--)
1674 		nvme_tcp_stop_queue(ctrl, i);
1675 	return ret;
1676 }
1677 
1678 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1679 {
1680 	int ret;
1681 
1682 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1683 	if (ret)
1684 		return ret;
1685 
1686 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1687 	if (ret)
1688 		goto out_free_queue;
1689 
1690 	return 0;
1691 
1692 out_free_queue:
1693 	nvme_tcp_free_queue(ctrl, 0);
1694 	return ret;
1695 }
1696 
1697 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1698 {
1699 	int i, ret;
1700 
1701 	for (i = 1; i < ctrl->queue_count; i++) {
1702 		ret = nvme_tcp_alloc_queue(ctrl, i,
1703 				ctrl->sqsize + 1);
1704 		if (ret)
1705 			goto out_free_queues;
1706 	}
1707 
1708 	return 0;
1709 
1710 out_free_queues:
1711 	for (i--; i >= 1; i--)
1712 		nvme_tcp_free_queue(ctrl, i);
1713 
1714 	return ret;
1715 }
1716 
1717 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1718 {
1719 	unsigned int nr_io_queues;
1720 
1721 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1722 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1723 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1724 
1725 	return nr_io_queues;
1726 }
1727 
1728 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1729 		unsigned int nr_io_queues)
1730 {
1731 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1732 	struct nvmf_ctrl_options *opts = nctrl->opts;
1733 
1734 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1735 		/*
1736 		 * separate read/write queues
1737 		 * hand out dedicated default queues only after we have
1738 		 * sufficient read queues.
1739 		 */
1740 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1741 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1742 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1743 			min(opts->nr_write_queues, nr_io_queues);
1744 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1745 	} else {
1746 		/*
1747 		 * shared read/write queues
1748 		 * either no write queues were requested, or we don't have
1749 		 * sufficient queue count to have dedicated default queues.
1750 		 */
1751 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1752 			min(opts->nr_io_queues, nr_io_queues);
1753 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1754 	}
1755 
1756 	if (opts->nr_poll_queues && nr_io_queues) {
1757 		/* map dedicated poll queues only if we have queues left */
1758 		ctrl->io_queues[HCTX_TYPE_POLL] =
1759 			min(opts->nr_poll_queues, nr_io_queues);
1760 	}
1761 }
1762 
1763 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1764 {
1765 	unsigned int nr_io_queues;
1766 	int ret;
1767 
1768 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1769 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1770 	if (ret)
1771 		return ret;
1772 
1773 	ctrl->queue_count = nr_io_queues + 1;
1774 	if (ctrl->queue_count < 2) {
1775 		dev_err(ctrl->device,
1776 			"unable to set any I/O queues\n");
1777 		return -ENOMEM;
1778 	}
1779 
1780 	dev_info(ctrl->device,
1781 		"creating %d I/O queues.\n", nr_io_queues);
1782 
1783 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1784 
1785 	return __nvme_tcp_alloc_io_queues(ctrl);
1786 }
1787 
1788 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1789 {
1790 	nvme_tcp_stop_io_queues(ctrl);
1791 	if (remove) {
1792 		blk_cleanup_queue(ctrl->connect_q);
1793 		blk_mq_free_tag_set(ctrl->tagset);
1794 	}
1795 	nvme_tcp_free_io_queues(ctrl);
1796 }
1797 
1798 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1799 {
1800 	int ret;
1801 
1802 	ret = nvme_tcp_alloc_io_queues(ctrl);
1803 	if (ret)
1804 		return ret;
1805 
1806 	if (new) {
1807 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1808 		if (IS_ERR(ctrl->tagset)) {
1809 			ret = PTR_ERR(ctrl->tagset);
1810 			goto out_free_io_queues;
1811 		}
1812 
1813 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1814 		if (IS_ERR(ctrl->connect_q)) {
1815 			ret = PTR_ERR(ctrl->connect_q);
1816 			goto out_free_tag_set;
1817 		}
1818 	}
1819 
1820 	ret = nvme_tcp_start_io_queues(ctrl);
1821 	if (ret)
1822 		goto out_cleanup_connect_q;
1823 
1824 	if (!new) {
1825 		nvme_start_queues(ctrl);
1826 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1827 			/*
1828 			 * If we timed out waiting for freeze we are likely to
1829 			 * be stuck.  Fail the controller initialization just
1830 			 * to be safe.
1831 			 */
1832 			ret = -ENODEV;
1833 			goto out_wait_freeze_timed_out;
1834 		}
1835 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1836 			ctrl->queue_count - 1);
1837 		nvme_unfreeze(ctrl);
1838 	}
1839 
1840 	return 0;
1841 
1842 out_wait_freeze_timed_out:
1843 	nvme_stop_queues(ctrl);
1844 	nvme_sync_io_queues(ctrl);
1845 	nvme_tcp_stop_io_queues(ctrl);
1846 out_cleanup_connect_q:
1847 	nvme_cancel_tagset(ctrl);
1848 	if (new)
1849 		blk_cleanup_queue(ctrl->connect_q);
1850 out_free_tag_set:
1851 	if (new)
1852 		blk_mq_free_tag_set(ctrl->tagset);
1853 out_free_io_queues:
1854 	nvme_tcp_free_io_queues(ctrl);
1855 	return ret;
1856 }
1857 
1858 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1859 {
1860 	nvme_tcp_stop_queue(ctrl, 0);
1861 	if (remove) {
1862 		blk_cleanup_queue(ctrl->admin_q);
1863 		blk_cleanup_queue(ctrl->fabrics_q);
1864 		blk_mq_free_tag_set(ctrl->admin_tagset);
1865 	}
1866 	nvme_tcp_free_admin_queue(ctrl);
1867 }
1868 
1869 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1870 {
1871 	int error;
1872 
1873 	error = nvme_tcp_alloc_admin_queue(ctrl);
1874 	if (error)
1875 		return error;
1876 
1877 	if (new) {
1878 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1879 		if (IS_ERR(ctrl->admin_tagset)) {
1880 			error = PTR_ERR(ctrl->admin_tagset);
1881 			goto out_free_queue;
1882 		}
1883 
1884 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1885 		if (IS_ERR(ctrl->fabrics_q)) {
1886 			error = PTR_ERR(ctrl->fabrics_q);
1887 			goto out_free_tagset;
1888 		}
1889 
1890 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1891 		if (IS_ERR(ctrl->admin_q)) {
1892 			error = PTR_ERR(ctrl->admin_q);
1893 			goto out_cleanup_fabrics_q;
1894 		}
1895 	}
1896 
1897 	error = nvme_tcp_start_queue(ctrl, 0);
1898 	if (error)
1899 		goto out_cleanup_queue;
1900 
1901 	error = nvme_enable_ctrl(ctrl);
1902 	if (error)
1903 		goto out_stop_queue;
1904 
1905 	blk_mq_unquiesce_queue(ctrl->admin_q);
1906 
1907 	error = nvme_init_ctrl_finish(ctrl);
1908 	if (error)
1909 		goto out_quiesce_queue;
1910 
1911 	return 0;
1912 
1913 out_quiesce_queue:
1914 	blk_mq_quiesce_queue(ctrl->admin_q);
1915 	blk_sync_queue(ctrl->admin_q);
1916 out_stop_queue:
1917 	nvme_tcp_stop_queue(ctrl, 0);
1918 	nvme_cancel_admin_tagset(ctrl);
1919 out_cleanup_queue:
1920 	if (new)
1921 		blk_cleanup_queue(ctrl->admin_q);
1922 out_cleanup_fabrics_q:
1923 	if (new)
1924 		blk_cleanup_queue(ctrl->fabrics_q);
1925 out_free_tagset:
1926 	if (new)
1927 		blk_mq_free_tag_set(ctrl->admin_tagset);
1928 out_free_queue:
1929 	nvme_tcp_free_admin_queue(ctrl);
1930 	return error;
1931 }
1932 
1933 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1934 		bool remove)
1935 {
1936 	blk_mq_quiesce_queue(ctrl->admin_q);
1937 	blk_sync_queue(ctrl->admin_q);
1938 	nvme_tcp_stop_queue(ctrl, 0);
1939 	nvme_cancel_admin_tagset(ctrl);
1940 	if (remove)
1941 		blk_mq_unquiesce_queue(ctrl->admin_q);
1942 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1943 }
1944 
1945 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1946 		bool remove)
1947 {
1948 	if (ctrl->queue_count <= 1)
1949 		return;
1950 	blk_mq_quiesce_queue(ctrl->admin_q);
1951 	nvme_start_freeze(ctrl);
1952 	nvme_stop_queues(ctrl);
1953 	nvme_sync_io_queues(ctrl);
1954 	nvme_tcp_stop_io_queues(ctrl);
1955 	nvme_cancel_tagset(ctrl);
1956 	if (remove)
1957 		nvme_start_queues(ctrl);
1958 	nvme_tcp_destroy_io_queues(ctrl, remove);
1959 }
1960 
1961 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1962 {
1963 	/* If we are resetting/deleting then do nothing */
1964 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1965 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1966 			ctrl->state == NVME_CTRL_LIVE);
1967 		return;
1968 	}
1969 
1970 	if (nvmf_should_reconnect(ctrl)) {
1971 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1972 			ctrl->opts->reconnect_delay);
1973 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1974 				ctrl->opts->reconnect_delay * HZ);
1975 	} else {
1976 		dev_info(ctrl->device, "Removing controller...\n");
1977 		nvme_delete_ctrl(ctrl);
1978 	}
1979 }
1980 
1981 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1982 {
1983 	struct nvmf_ctrl_options *opts = ctrl->opts;
1984 	int ret;
1985 
1986 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1987 	if (ret)
1988 		return ret;
1989 
1990 	if (ctrl->icdoff) {
1991 		ret = -EOPNOTSUPP;
1992 		dev_err(ctrl->device, "icdoff is not supported!\n");
1993 		goto destroy_admin;
1994 	}
1995 
1996 	if (!nvme_ctrl_sgl_supported(ctrl)) {
1997 		ret = -EOPNOTSUPP;
1998 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
1999 		goto destroy_admin;
2000 	}
2001 
2002 	if (opts->queue_size > ctrl->sqsize + 1)
2003 		dev_warn(ctrl->device,
2004 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2005 			opts->queue_size, ctrl->sqsize + 1);
2006 
2007 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2008 		dev_warn(ctrl->device,
2009 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2010 			ctrl->sqsize + 1, ctrl->maxcmd);
2011 		ctrl->sqsize = ctrl->maxcmd - 1;
2012 	}
2013 
2014 	if (ctrl->queue_count > 1) {
2015 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2016 		if (ret)
2017 			goto destroy_admin;
2018 	}
2019 
2020 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2021 		/*
2022 		 * state change failure is ok if we started ctrl delete,
2023 		 * unless we're during creation of a new controller to
2024 		 * avoid races with teardown flow.
2025 		 */
2026 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2027 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2028 		WARN_ON_ONCE(new);
2029 		ret = -EINVAL;
2030 		goto destroy_io;
2031 	}
2032 
2033 	nvme_start_ctrl(ctrl);
2034 	return 0;
2035 
2036 destroy_io:
2037 	if (ctrl->queue_count > 1) {
2038 		nvme_stop_queues(ctrl);
2039 		nvme_sync_io_queues(ctrl);
2040 		nvme_tcp_stop_io_queues(ctrl);
2041 		nvme_cancel_tagset(ctrl);
2042 		nvme_tcp_destroy_io_queues(ctrl, new);
2043 	}
2044 destroy_admin:
2045 	blk_mq_quiesce_queue(ctrl->admin_q);
2046 	blk_sync_queue(ctrl->admin_q);
2047 	nvme_tcp_stop_queue(ctrl, 0);
2048 	nvme_cancel_admin_tagset(ctrl);
2049 	nvme_tcp_destroy_admin_queue(ctrl, new);
2050 	return ret;
2051 }
2052 
2053 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2054 {
2055 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2056 			struct nvme_tcp_ctrl, connect_work);
2057 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2058 
2059 	++ctrl->nr_reconnects;
2060 
2061 	if (nvme_tcp_setup_ctrl(ctrl, false))
2062 		goto requeue;
2063 
2064 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2065 			ctrl->nr_reconnects);
2066 
2067 	ctrl->nr_reconnects = 0;
2068 
2069 	return;
2070 
2071 requeue:
2072 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2073 			ctrl->nr_reconnects);
2074 	nvme_tcp_reconnect_or_remove(ctrl);
2075 }
2076 
2077 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2078 {
2079 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2080 				struct nvme_tcp_ctrl, err_work);
2081 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2082 
2083 	nvme_stop_keep_alive(ctrl);
2084 	nvme_tcp_teardown_io_queues(ctrl, false);
2085 	/* unquiesce to fail fast pending requests */
2086 	nvme_start_queues(ctrl);
2087 	nvme_tcp_teardown_admin_queue(ctrl, false);
2088 	blk_mq_unquiesce_queue(ctrl->admin_q);
2089 
2090 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2091 		/* state change failure is ok if we started ctrl delete */
2092 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2093 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2094 		return;
2095 	}
2096 
2097 	nvme_tcp_reconnect_or_remove(ctrl);
2098 }
2099 
2100 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2101 {
2102 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2103 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2104 
2105 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2106 	blk_mq_quiesce_queue(ctrl->admin_q);
2107 	if (shutdown)
2108 		nvme_shutdown_ctrl(ctrl);
2109 	else
2110 		nvme_disable_ctrl(ctrl);
2111 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2112 }
2113 
2114 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2115 {
2116 	nvme_tcp_teardown_ctrl(ctrl, true);
2117 }
2118 
2119 static void nvme_reset_ctrl_work(struct work_struct *work)
2120 {
2121 	struct nvme_ctrl *ctrl =
2122 		container_of(work, struct nvme_ctrl, reset_work);
2123 
2124 	nvme_stop_ctrl(ctrl);
2125 	nvme_tcp_teardown_ctrl(ctrl, false);
2126 
2127 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2128 		/* state change failure is ok if we started ctrl delete */
2129 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2130 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2131 		return;
2132 	}
2133 
2134 	if (nvme_tcp_setup_ctrl(ctrl, false))
2135 		goto out_fail;
2136 
2137 	return;
2138 
2139 out_fail:
2140 	++ctrl->nr_reconnects;
2141 	nvme_tcp_reconnect_or_remove(ctrl);
2142 }
2143 
2144 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2145 {
2146 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2147 
2148 	if (list_empty(&ctrl->list))
2149 		goto free_ctrl;
2150 
2151 	mutex_lock(&nvme_tcp_ctrl_mutex);
2152 	list_del(&ctrl->list);
2153 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2154 
2155 	nvmf_free_options(nctrl->opts);
2156 free_ctrl:
2157 	kfree(ctrl->queues);
2158 	kfree(ctrl);
2159 }
2160 
2161 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2162 {
2163 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2164 
2165 	sg->addr = 0;
2166 	sg->length = 0;
2167 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2168 			NVME_SGL_FMT_TRANSPORT_A;
2169 }
2170 
2171 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2172 		struct nvme_command *c, u32 data_len)
2173 {
2174 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2175 
2176 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2177 	sg->length = cpu_to_le32(data_len);
2178 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2179 }
2180 
2181 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2182 		u32 data_len)
2183 {
2184 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2185 
2186 	sg->addr = 0;
2187 	sg->length = cpu_to_le32(data_len);
2188 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2189 			NVME_SGL_FMT_TRANSPORT_A;
2190 }
2191 
2192 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2193 {
2194 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2195 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2196 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2197 	struct nvme_command *cmd = &pdu->cmd;
2198 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2199 
2200 	memset(pdu, 0, sizeof(*pdu));
2201 	pdu->hdr.type = nvme_tcp_cmd;
2202 	if (queue->hdr_digest)
2203 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2204 	pdu->hdr.hlen = sizeof(*pdu);
2205 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2206 
2207 	cmd->common.opcode = nvme_admin_async_event;
2208 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2209 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2210 	nvme_tcp_set_sg_null(cmd);
2211 
2212 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2213 	ctrl->async_req.offset = 0;
2214 	ctrl->async_req.curr_bio = NULL;
2215 	ctrl->async_req.data_len = 0;
2216 
2217 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2218 }
2219 
2220 static void nvme_tcp_complete_timed_out(struct request *rq)
2221 {
2222 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2223 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2224 
2225 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2226 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2227 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2228 		blk_mq_complete_request(rq);
2229 	}
2230 }
2231 
2232 static enum blk_eh_timer_return
2233 nvme_tcp_timeout(struct request *rq, bool reserved)
2234 {
2235 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2236 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2237 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2238 
2239 	dev_warn(ctrl->device,
2240 		"queue %d: timeout request %#x type %d\n",
2241 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2242 
2243 	if (ctrl->state != NVME_CTRL_LIVE) {
2244 		/*
2245 		 * If we are resetting, connecting or deleting we should
2246 		 * complete immediately because we may block controller
2247 		 * teardown or setup sequence
2248 		 * - ctrl disable/shutdown fabrics requests
2249 		 * - connect requests
2250 		 * - initialization admin requests
2251 		 * - I/O requests that entered after unquiescing and
2252 		 *   the controller stopped responding
2253 		 *
2254 		 * All other requests should be cancelled by the error
2255 		 * recovery work, so it's fine that we fail it here.
2256 		 */
2257 		nvme_tcp_complete_timed_out(rq);
2258 		return BLK_EH_DONE;
2259 	}
2260 
2261 	/*
2262 	 * LIVE state should trigger the normal error recovery which will
2263 	 * handle completing this request.
2264 	 */
2265 	nvme_tcp_error_recovery(ctrl);
2266 	return BLK_EH_RESET_TIMER;
2267 }
2268 
2269 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2270 			struct request *rq)
2271 {
2272 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2273 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2274 	struct nvme_command *c = &pdu->cmd;
2275 
2276 	c->common.flags |= NVME_CMD_SGL_METABUF;
2277 
2278 	if (!blk_rq_nr_phys_segments(rq))
2279 		nvme_tcp_set_sg_null(c);
2280 	else if (rq_data_dir(rq) == WRITE &&
2281 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2282 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2283 	else
2284 		nvme_tcp_set_sg_host_data(c, req->data_len);
2285 
2286 	return 0;
2287 }
2288 
2289 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2290 		struct request *rq)
2291 {
2292 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2293 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2294 	struct nvme_tcp_queue *queue = req->queue;
2295 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2296 	blk_status_t ret;
2297 
2298 	ret = nvme_setup_cmd(ns, rq);
2299 	if (ret)
2300 		return ret;
2301 
2302 	req->state = NVME_TCP_SEND_CMD_PDU;
2303 	req->offset = 0;
2304 	req->data_sent = 0;
2305 	req->pdu_len = 0;
2306 	req->pdu_sent = 0;
2307 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2308 				blk_rq_payload_bytes(rq) : 0;
2309 	req->curr_bio = rq->bio;
2310 	if (req->curr_bio && req->data_len)
2311 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2312 
2313 	if (rq_data_dir(rq) == WRITE &&
2314 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2315 		req->pdu_len = req->data_len;
2316 
2317 	pdu->hdr.type = nvme_tcp_cmd;
2318 	pdu->hdr.flags = 0;
2319 	if (queue->hdr_digest)
2320 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2321 	if (queue->data_digest && req->pdu_len) {
2322 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2323 		ddgst = nvme_tcp_ddgst_len(queue);
2324 	}
2325 	pdu->hdr.hlen = sizeof(*pdu);
2326 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2327 	pdu->hdr.plen =
2328 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2329 
2330 	ret = nvme_tcp_map_data(queue, rq);
2331 	if (unlikely(ret)) {
2332 		nvme_cleanup_cmd(rq);
2333 		dev_err(queue->ctrl->ctrl.device,
2334 			"Failed to map data (%d)\n", ret);
2335 		return ret;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2342 {
2343 	struct nvme_tcp_queue *queue = hctx->driver_data;
2344 
2345 	if (!llist_empty(&queue->req_list))
2346 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2347 }
2348 
2349 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2350 		const struct blk_mq_queue_data *bd)
2351 {
2352 	struct nvme_ns *ns = hctx->queue->queuedata;
2353 	struct nvme_tcp_queue *queue = hctx->driver_data;
2354 	struct request *rq = bd->rq;
2355 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2356 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2357 	blk_status_t ret;
2358 
2359 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2360 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2361 
2362 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2363 	if (unlikely(ret))
2364 		return ret;
2365 
2366 	blk_mq_start_request(rq);
2367 
2368 	nvme_tcp_queue_request(req, true, bd->last);
2369 
2370 	return BLK_STS_OK;
2371 }
2372 
2373 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2374 {
2375 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2376 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2377 
2378 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2379 		/* separate read/write queues */
2380 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2381 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2382 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2383 		set->map[HCTX_TYPE_READ].nr_queues =
2384 			ctrl->io_queues[HCTX_TYPE_READ];
2385 		set->map[HCTX_TYPE_READ].queue_offset =
2386 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2387 	} else {
2388 		/* shared read/write queues */
2389 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2390 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2391 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2392 		set->map[HCTX_TYPE_READ].nr_queues =
2393 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2394 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2395 	}
2396 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2397 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2398 
2399 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2400 		/* map dedicated poll queues only if we have queues left */
2401 		set->map[HCTX_TYPE_POLL].nr_queues =
2402 				ctrl->io_queues[HCTX_TYPE_POLL];
2403 		set->map[HCTX_TYPE_POLL].queue_offset =
2404 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2405 			ctrl->io_queues[HCTX_TYPE_READ];
2406 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2407 	}
2408 
2409 	dev_info(ctrl->ctrl.device,
2410 		"mapped %d/%d/%d default/read/poll queues.\n",
2411 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2412 		ctrl->io_queues[HCTX_TYPE_READ],
2413 		ctrl->io_queues[HCTX_TYPE_POLL]);
2414 
2415 	return 0;
2416 }
2417 
2418 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2419 {
2420 	struct nvme_tcp_queue *queue = hctx->driver_data;
2421 	struct sock *sk = queue->sock->sk;
2422 
2423 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2424 		return 0;
2425 
2426 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2427 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2428 		sk_busy_loop(sk, true);
2429 	nvme_tcp_try_recv(queue);
2430 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2431 	return queue->nr_cqe;
2432 }
2433 
2434 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2435 	.queue_rq	= nvme_tcp_queue_rq,
2436 	.commit_rqs	= nvme_tcp_commit_rqs,
2437 	.complete	= nvme_complete_rq,
2438 	.init_request	= nvme_tcp_init_request,
2439 	.exit_request	= nvme_tcp_exit_request,
2440 	.init_hctx	= nvme_tcp_init_hctx,
2441 	.timeout	= nvme_tcp_timeout,
2442 	.map_queues	= nvme_tcp_map_queues,
2443 	.poll		= nvme_tcp_poll,
2444 };
2445 
2446 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2447 	.queue_rq	= nvme_tcp_queue_rq,
2448 	.complete	= nvme_complete_rq,
2449 	.init_request	= nvme_tcp_init_request,
2450 	.exit_request	= nvme_tcp_exit_request,
2451 	.init_hctx	= nvme_tcp_init_admin_hctx,
2452 	.timeout	= nvme_tcp_timeout,
2453 };
2454 
2455 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2456 	.name			= "tcp",
2457 	.module			= THIS_MODULE,
2458 	.flags			= NVME_F_FABRICS,
2459 	.reg_read32		= nvmf_reg_read32,
2460 	.reg_read64		= nvmf_reg_read64,
2461 	.reg_write32		= nvmf_reg_write32,
2462 	.free_ctrl		= nvme_tcp_free_ctrl,
2463 	.submit_async_event	= nvme_tcp_submit_async_event,
2464 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2465 	.get_address		= nvmf_get_address,
2466 };
2467 
2468 static bool
2469 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2470 {
2471 	struct nvme_tcp_ctrl *ctrl;
2472 	bool found = false;
2473 
2474 	mutex_lock(&nvme_tcp_ctrl_mutex);
2475 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2476 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2477 		if (found)
2478 			break;
2479 	}
2480 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2481 
2482 	return found;
2483 }
2484 
2485 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2486 		struct nvmf_ctrl_options *opts)
2487 {
2488 	struct nvme_tcp_ctrl *ctrl;
2489 	int ret;
2490 
2491 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2492 	if (!ctrl)
2493 		return ERR_PTR(-ENOMEM);
2494 
2495 	INIT_LIST_HEAD(&ctrl->list);
2496 	ctrl->ctrl.opts = opts;
2497 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2498 				opts->nr_poll_queues + 1;
2499 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2500 	ctrl->ctrl.kato = opts->kato;
2501 
2502 	INIT_DELAYED_WORK(&ctrl->connect_work,
2503 			nvme_tcp_reconnect_ctrl_work);
2504 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2505 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2506 
2507 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2508 		opts->trsvcid =
2509 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2510 		if (!opts->trsvcid) {
2511 			ret = -ENOMEM;
2512 			goto out_free_ctrl;
2513 		}
2514 		opts->mask |= NVMF_OPT_TRSVCID;
2515 	}
2516 
2517 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2518 			opts->traddr, opts->trsvcid, &ctrl->addr);
2519 	if (ret) {
2520 		pr_err("malformed address passed: %s:%s\n",
2521 			opts->traddr, opts->trsvcid);
2522 		goto out_free_ctrl;
2523 	}
2524 
2525 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2526 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2527 			opts->host_traddr, NULL, &ctrl->src_addr);
2528 		if (ret) {
2529 			pr_err("malformed src address passed: %s\n",
2530 			       opts->host_traddr);
2531 			goto out_free_ctrl;
2532 		}
2533 	}
2534 
2535 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2536 		ctrl->ndev = dev_get_by_name(&init_net, opts->host_iface);
2537 		if (!ctrl->ndev) {
2538 			pr_err("invalid interface passed: %s\n",
2539 			       opts->host_iface);
2540 			ret = -ENODEV;
2541 			goto out_free_ctrl;
2542 		}
2543 	}
2544 
2545 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2546 		ret = -EALREADY;
2547 		goto out_free_ctrl;
2548 	}
2549 
2550 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2551 				GFP_KERNEL);
2552 	if (!ctrl->queues) {
2553 		ret = -ENOMEM;
2554 		goto out_free_ctrl;
2555 	}
2556 
2557 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2558 	if (ret)
2559 		goto out_kfree_queues;
2560 
2561 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2562 		WARN_ON_ONCE(1);
2563 		ret = -EINTR;
2564 		goto out_uninit_ctrl;
2565 	}
2566 
2567 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2568 	if (ret)
2569 		goto out_uninit_ctrl;
2570 
2571 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2572 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2573 
2574 	mutex_lock(&nvme_tcp_ctrl_mutex);
2575 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2576 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2577 
2578 	return &ctrl->ctrl;
2579 
2580 out_uninit_ctrl:
2581 	nvme_uninit_ctrl(&ctrl->ctrl);
2582 	nvme_put_ctrl(&ctrl->ctrl);
2583 	if (ret > 0)
2584 		ret = -EIO;
2585 	return ERR_PTR(ret);
2586 out_kfree_queues:
2587 	kfree(ctrl->queues);
2588 out_free_ctrl:
2589 	kfree(ctrl);
2590 	return ERR_PTR(ret);
2591 }
2592 
2593 static struct nvmf_transport_ops nvme_tcp_transport = {
2594 	.name		= "tcp",
2595 	.module		= THIS_MODULE,
2596 	.required_opts	= NVMF_OPT_TRADDR,
2597 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2598 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2599 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2600 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2601 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2602 	.create_ctrl	= nvme_tcp_create_ctrl,
2603 };
2604 
2605 static int __init nvme_tcp_init_module(void)
2606 {
2607 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2608 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2609 	if (!nvme_tcp_wq)
2610 		return -ENOMEM;
2611 
2612 	nvmf_register_transport(&nvme_tcp_transport);
2613 	return 0;
2614 }
2615 
2616 static void __exit nvme_tcp_cleanup_module(void)
2617 {
2618 	struct nvme_tcp_ctrl *ctrl;
2619 
2620 	nvmf_unregister_transport(&nvme_tcp_transport);
2621 
2622 	mutex_lock(&nvme_tcp_ctrl_mutex);
2623 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2624 		nvme_delete_ctrl(&ctrl->ctrl);
2625 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2626 	flush_workqueue(nvme_delete_wq);
2627 
2628 	destroy_workqueue(nvme_tcp_wq);
2629 }
2630 
2631 module_init(nvme_tcp_init_module);
2632 module_exit(nvme_tcp_cleanup_module);
2633 
2634 MODULE_LICENSE("GPL v2");
2635