1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 17 #include "nvme.h" 18 #include "fabrics.h" 19 20 struct nvme_tcp_queue; 21 22 enum nvme_tcp_send_state { 23 NVME_TCP_SEND_CMD_PDU = 0, 24 NVME_TCP_SEND_H2C_PDU, 25 NVME_TCP_SEND_DATA, 26 NVME_TCP_SEND_DDGST, 27 }; 28 29 struct nvme_tcp_request { 30 struct nvme_request req; 31 void *pdu; 32 struct nvme_tcp_queue *queue; 33 u32 data_len; 34 u32 pdu_len; 35 u32 pdu_sent; 36 u16 ttag; 37 struct list_head entry; 38 __le32 ddgst; 39 40 struct bio *curr_bio; 41 struct iov_iter iter; 42 43 /* send state */ 44 size_t offset; 45 size_t data_sent; 46 enum nvme_tcp_send_state state; 47 }; 48 49 enum nvme_tcp_queue_flags { 50 NVME_TCP_Q_ALLOCATED = 0, 51 NVME_TCP_Q_LIVE = 1, 52 }; 53 54 enum nvme_tcp_recv_state { 55 NVME_TCP_RECV_PDU = 0, 56 NVME_TCP_RECV_DATA, 57 NVME_TCP_RECV_DDGST, 58 }; 59 60 struct nvme_tcp_ctrl; 61 struct nvme_tcp_queue { 62 struct socket *sock; 63 struct work_struct io_work; 64 int io_cpu; 65 66 spinlock_t lock; 67 struct list_head send_list; 68 69 /* recv state */ 70 void *pdu; 71 int pdu_remaining; 72 int pdu_offset; 73 size_t data_remaining; 74 size_t ddgst_remaining; 75 76 /* send state */ 77 struct nvme_tcp_request *request; 78 79 int queue_size; 80 size_t cmnd_capsule_len; 81 struct nvme_tcp_ctrl *ctrl; 82 unsigned long flags; 83 bool rd_enabled; 84 85 bool hdr_digest; 86 bool data_digest; 87 struct ahash_request *rcv_hash; 88 struct ahash_request *snd_hash; 89 __le32 exp_ddgst; 90 __le32 recv_ddgst; 91 92 struct page_frag_cache pf_cache; 93 94 void (*state_change)(struct sock *); 95 void (*data_ready)(struct sock *); 96 void (*write_space)(struct sock *); 97 }; 98 99 struct nvme_tcp_ctrl { 100 /* read only in the hot path */ 101 struct nvme_tcp_queue *queues; 102 struct blk_mq_tag_set tag_set; 103 104 /* other member variables */ 105 struct list_head list; 106 struct blk_mq_tag_set admin_tag_set; 107 struct sockaddr_storage addr; 108 struct sockaddr_storage src_addr; 109 struct nvme_ctrl ctrl; 110 111 struct work_struct err_work; 112 struct delayed_work connect_work; 113 struct nvme_tcp_request async_req; 114 }; 115 116 static LIST_HEAD(nvme_tcp_ctrl_list); 117 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 118 static struct workqueue_struct *nvme_tcp_wq; 119 static struct blk_mq_ops nvme_tcp_mq_ops; 120 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 121 122 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 123 { 124 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 125 } 126 127 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 128 { 129 return queue - queue->ctrl->queues; 130 } 131 132 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 133 { 134 u32 queue_idx = nvme_tcp_queue_id(queue); 135 136 if (queue_idx == 0) 137 return queue->ctrl->admin_tag_set.tags[queue_idx]; 138 return queue->ctrl->tag_set.tags[queue_idx - 1]; 139 } 140 141 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 142 { 143 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 144 } 145 146 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 147 { 148 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 149 } 150 151 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 152 { 153 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 154 } 155 156 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 157 { 158 return req == &req->queue->ctrl->async_req; 159 } 160 161 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 162 { 163 struct request *rq; 164 unsigned int bytes; 165 166 if (unlikely(nvme_tcp_async_req(req))) 167 return false; /* async events don't have a request */ 168 169 rq = blk_mq_rq_from_pdu(req); 170 bytes = blk_rq_payload_bytes(rq); 171 172 return rq_data_dir(rq) == WRITE && bytes && 173 bytes <= nvme_tcp_inline_data_size(req->queue); 174 } 175 176 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 177 { 178 return req->iter.bvec->bv_page; 179 } 180 181 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 182 { 183 return req->iter.bvec->bv_offset + req->iter.iov_offset; 184 } 185 186 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 187 { 188 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 189 req->pdu_len - req->pdu_sent); 190 } 191 192 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 193 { 194 return req->iter.iov_offset; 195 } 196 197 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 198 { 199 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 200 req->pdu_len - req->pdu_sent : 0; 201 } 202 203 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 204 int len) 205 { 206 return nvme_tcp_pdu_data_left(req) <= len; 207 } 208 209 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 210 unsigned int dir) 211 { 212 struct request *rq = blk_mq_rq_from_pdu(req); 213 struct bio_vec *vec; 214 unsigned int size; 215 int nsegs; 216 size_t offset; 217 218 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 219 vec = &rq->special_vec; 220 nsegs = 1; 221 size = blk_rq_payload_bytes(rq); 222 offset = 0; 223 } else { 224 struct bio *bio = req->curr_bio; 225 226 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 227 nsegs = bio_segments(bio); 228 size = bio->bi_iter.bi_size; 229 offset = bio->bi_iter.bi_bvec_done; 230 } 231 232 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 233 req->iter.iov_offset = offset; 234 } 235 236 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 237 int len) 238 { 239 req->data_sent += len; 240 req->pdu_sent += len; 241 iov_iter_advance(&req->iter, len); 242 if (!iov_iter_count(&req->iter) && 243 req->data_sent < req->data_len) { 244 req->curr_bio = req->curr_bio->bi_next; 245 nvme_tcp_init_iter(req, WRITE); 246 } 247 } 248 249 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 250 { 251 struct nvme_tcp_queue *queue = req->queue; 252 253 spin_lock(&queue->lock); 254 list_add_tail(&req->entry, &queue->send_list); 255 spin_unlock(&queue->lock); 256 257 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 258 } 259 260 static inline struct nvme_tcp_request * 261 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 262 { 263 struct nvme_tcp_request *req; 264 265 spin_lock(&queue->lock); 266 req = list_first_entry_or_null(&queue->send_list, 267 struct nvme_tcp_request, entry); 268 if (req) 269 list_del(&req->entry); 270 spin_unlock(&queue->lock); 271 272 return req; 273 } 274 275 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 276 __le32 *dgst) 277 { 278 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 279 crypto_ahash_final(hash); 280 } 281 282 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 283 struct page *page, off_t off, size_t len) 284 { 285 struct scatterlist sg; 286 287 sg_init_marker(&sg, 1); 288 sg_set_page(&sg, page, len, off); 289 ahash_request_set_crypt(hash, &sg, NULL, len); 290 crypto_ahash_update(hash); 291 } 292 293 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 294 void *pdu, size_t len) 295 { 296 struct scatterlist sg; 297 298 sg_init_one(&sg, pdu, len); 299 ahash_request_set_crypt(hash, &sg, pdu + len, len); 300 crypto_ahash_digest(hash); 301 } 302 303 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 304 void *pdu, size_t pdu_len) 305 { 306 struct nvme_tcp_hdr *hdr = pdu; 307 __le32 recv_digest; 308 __le32 exp_digest; 309 310 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 311 dev_err(queue->ctrl->ctrl.device, 312 "queue %d: header digest flag is cleared\n", 313 nvme_tcp_queue_id(queue)); 314 return -EPROTO; 315 } 316 317 recv_digest = *(__le32 *)(pdu + hdr->hlen); 318 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 319 exp_digest = *(__le32 *)(pdu + hdr->hlen); 320 if (recv_digest != exp_digest) { 321 dev_err(queue->ctrl->ctrl.device, 322 "header digest error: recv %#x expected %#x\n", 323 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 324 return -EIO; 325 } 326 327 return 0; 328 } 329 330 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 331 { 332 struct nvme_tcp_hdr *hdr = pdu; 333 u8 digest_len = nvme_tcp_hdgst_len(queue); 334 u32 len; 335 336 len = le32_to_cpu(hdr->plen) - hdr->hlen - 337 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 338 339 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 340 dev_err(queue->ctrl->ctrl.device, 341 "queue %d: data digest flag is cleared\n", 342 nvme_tcp_queue_id(queue)); 343 return -EPROTO; 344 } 345 crypto_ahash_init(queue->rcv_hash); 346 347 return 0; 348 } 349 350 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 351 struct request *rq, unsigned int hctx_idx) 352 { 353 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 354 355 page_frag_free(req->pdu); 356 } 357 358 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 359 struct request *rq, unsigned int hctx_idx, 360 unsigned int numa_node) 361 { 362 struct nvme_tcp_ctrl *ctrl = set->driver_data; 363 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 364 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 365 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 366 u8 hdgst = nvme_tcp_hdgst_len(queue); 367 368 req->pdu = page_frag_alloc(&queue->pf_cache, 369 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 370 GFP_KERNEL | __GFP_ZERO); 371 if (!req->pdu) 372 return -ENOMEM; 373 374 req->queue = queue; 375 nvme_req(rq)->ctrl = &ctrl->ctrl; 376 377 return 0; 378 } 379 380 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 381 unsigned int hctx_idx) 382 { 383 struct nvme_tcp_ctrl *ctrl = data; 384 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 385 386 hctx->driver_data = queue; 387 return 0; 388 } 389 390 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 391 unsigned int hctx_idx) 392 { 393 struct nvme_tcp_ctrl *ctrl = data; 394 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 395 396 hctx->driver_data = queue; 397 return 0; 398 } 399 400 static enum nvme_tcp_recv_state 401 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 402 { 403 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 404 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 405 NVME_TCP_RECV_DATA; 406 } 407 408 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 409 { 410 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 411 nvme_tcp_hdgst_len(queue); 412 queue->pdu_offset = 0; 413 queue->data_remaining = -1; 414 queue->ddgst_remaining = 0; 415 } 416 417 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 418 { 419 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 420 return; 421 422 queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work); 423 } 424 425 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 426 struct nvme_completion *cqe) 427 { 428 struct request *rq; 429 430 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 431 if (!rq) { 432 dev_err(queue->ctrl->ctrl.device, 433 "queue %d tag 0x%x not found\n", 434 nvme_tcp_queue_id(queue), cqe->command_id); 435 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 436 return -EINVAL; 437 } 438 439 nvme_end_request(rq, cqe->status, cqe->result); 440 441 return 0; 442 } 443 444 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 445 struct nvme_tcp_data_pdu *pdu) 446 { 447 struct request *rq; 448 449 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 450 if (!rq) { 451 dev_err(queue->ctrl->ctrl.device, 452 "queue %d tag %#x not found\n", 453 nvme_tcp_queue_id(queue), pdu->command_id); 454 return -ENOENT; 455 } 456 457 if (!blk_rq_payload_bytes(rq)) { 458 dev_err(queue->ctrl->ctrl.device, 459 "queue %d tag %#x unexpected data\n", 460 nvme_tcp_queue_id(queue), rq->tag); 461 return -EIO; 462 } 463 464 queue->data_remaining = le32_to_cpu(pdu->data_length); 465 466 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 467 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 468 dev_err(queue->ctrl->ctrl.device, 469 "queue %d tag %#x SUCCESS set but not last PDU\n", 470 nvme_tcp_queue_id(queue), rq->tag); 471 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 472 return -EPROTO; 473 } 474 475 return 0; 476 477 } 478 479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 480 struct nvme_tcp_rsp_pdu *pdu) 481 { 482 struct nvme_completion *cqe = &pdu->cqe; 483 int ret = 0; 484 485 /* 486 * AEN requests are special as they don't time out and can 487 * survive any kind of queue freeze and often don't respond to 488 * aborts. We don't even bother to allocate a struct request 489 * for them but rather special case them here. 490 */ 491 if (unlikely(nvme_tcp_queue_id(queue) == 0 && 492 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 493 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 494 &cqe->result); 495 else 496 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 497 498 return ret; 499 } 500 501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 502 struct nvme_tcp_r2t_pdu *pdu) 503 { 504 struct nvme_tcp_data_pdu *data = req->pdu; 505 struct nvme_tcp_queue *queue = req->queue; 506 struct request *rq = blk_mq_rq_from_pdu(req); 507 u8 hdgst = nvme_tcp_hdgst_len(queue); 508 u8 ddgst = nvme_tcp_ddgst_len(queue); 509 510 req->pdu_len = le32_to_cpu(pdu->r2t_length); 511 req->pdu_sent = 0; 512 513 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 514 dev_err(queue->ctrl->ctrl.device, 515 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 516 rq->tag, req->pdu_len, req->data_len, 517 req->data_sent); 518 return -EPROTO; 519 } 520 521 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 522 dev_err(queue->ctrl->ctrl.device, 523 "req %d unexpected r2t offset %u (expected %zu)\n", 524 rq->tag, le32_to_cpu(pdu->r2t_offset), 525 req->data_sent); 526 return -EPROTO; 527 } 528 529 memset(data, 0, sizeof(*data)); 530 data->hdr.type = nvme_tcp_h2c_data; 531 data->hdr.flags = NVME_TCP_F_DATA_LAST; 532 if (queue->hdr_digest) 533 data->hdr.flags |= NVME_TCP_F_HDGST; 534 if (queue->data_digest) 535 data->hdr.flags |= NVME_TCP_F_DDGST; 536 data->hdr.hlen = sizeof(*data); 537 data->hdr.pdo = data->hdr.hlen + hdgst; 538 data->hdr.plen = 539 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 540 data->ttag = pdu->ttag; 541 data->command_id = rq->tag; 542 data->data_offset = cpu_to_le32(req->data_sent); 543 data->data_length = cpu_to_le32(req->pdu_len); 544 return 0; 545 } 546 547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 548 struct nvme_tcp_r2t_pdu *pdu) 549 { 550 struct nvme_tcp_request *req; 551 struct request *rq; 552 int ret; 553 554 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 555 if (!rq) { 556 dev_err(queue->ctrl->ctrl.device, 557 "queue %d tag %#x not found\n", 558 nvme_tcp_queue_id(queue), pdu->command_id); 559 return -ENOENT; 560 } 561 req = blk_mq_rq_to_pdu(rq); 562 563 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 564 if (unlikely(ret)) 565 return ret; 566 567 req->state = NVME_TCP_SEND_H2C_PDU; 568 req->offset = 0; 569 570 nvme_tcp_queue_request(req); 571 572 return 0; 573 } 574 575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 576 unsigned int *offset, size_t *len) 577 { 578 struct nvme_tcp_hdr *hdr; 579 char *pdu = queue->pdu; 580 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 581 int ret; 582 583 ret = skb_copy_bits(skb, *offset, 584 &pdu[queue->pdu_offset], rcv_len); 585 if (unlikely(ret)) 586 return ret; 587 588 queue->pdu_remaining -= rcv_len; 589 queue->pdu_offset += rcv_len; 590 *offset += rcv_len; 591 *len -= rcv_len; 592 if (queue->pdu_remaining) 593 return 0; 594 595 hdr = queue->pdu; 596 if (queue->hdr_digest) { 597 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 598 if (unlikely(ret)) 599 return ret; 600 } 601 602 603 if (queue->data_digest) { 604 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 605 if (unlikely(ret)) 606 return ret; 607 } 608 609 switch (hdr->type) { 610 case nvme_tcp_c2h_data: 611 ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 612 break; 613 case nvme_tcp_rsp: 614 nvme_tcp_init_recv_ctx(queue); 615 ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu); 616 break; 617 case nvme_tcp_r2t: 618 nvme_tcp_init_recv_ctx(queue); 619 ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 620 break; 621 default: 622 dev_err(queue->ctrl->ctrl.device, 623 "unsupported pdu type (%d)\n", hdr->type); 624 return -EINVAL; 625 } 626 627 return ret; 628 } 629 630 static inline void nvme_tcp_end_request(struct request *rq, __le16 status) 631 { 632 union nvme_result res = {}; 633 634 nvme_end_request(rq, cpu_to_le16(status << 1), res); 635 } 636 637 638 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 639 unsigned int *offset, size_t *len) 640 { 641 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 642 struct nvme_tcp_request *req; 643 struct request *rq; 644 645 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 646 if (!rq) { 647 dev_err(queue->ctrl->ctrl.device, 648 "queue %d tag %#x not found\n", 649 nvme_tcp_queue_id(queue), pdu->command_id); 650 return -ENOENT; 651 } 652 req = blk_mq_rq_to_pdu(rq); 653 654 while (true) { 655 int recv_len, ret; 656 657 recv_len = min_t(size_t, *len, queue->data_remaining); 658 if (!recv_len) 659 break; 660 661 if (!iov_iter_count(&req->iter)) { 662 req->curr_bio = req->curr_bio->bi_next; 663 664 /* 665 * If we don`t have any bios it means that controller 666 * sent more data than we requested, hence error 667 */ 668 if (!req->curr_bio) { 669 dev_err(queue->ctrl->ctrl.device, 670 "queue %d no space in request %#x", 671 nvme_tcp_queue_id(queue), rq->tag); 672 nvme_tcp_init_recv_ctx(queue); 673 return -EIO; 674 } 675 nvme_tcp_init_iter(req, READ); 676 } 677 678 /* we can read only from what is left in this bio */ 679 recv_len = min_t(size_t, recv_len, 680 iov_iter_count(&req->iter)); 681 682 if (queue->data_digest) 683 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 684 &req->iter, recv_len, queue->rcv_hash); 685 else 686 ret = skb_copy_datagram_iter(skb, *offset, 687 &req->iter, recv_len); 688 if (ret) { 689 dev_err(queue->ctrl->ctrl.device, 690 "queue %d failed to copy request %#x data", 691 nvme_tcp_queue_id(queue), rq->tag); 692 return ret; 693 } 694 695 *len -= recv_len; 696 *offset += recv_len; 697 queue->data_remaining -= recv_len; 698 } 699 700 if (!queue->data_remaining) { 701 if (queue->data_digest) { 702 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 703 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 704 } else { 705 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) 706 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 707 nvme_tcp_init_recv_ctx(queue); 708 } 709 } 710 711 return 0; 712 } 713 714 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 715 struct sk_buff *skb, unsigned int *offset, size_t *len) 716 { 717 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 718 char *ddgst = (char *)&queue->recv_ddgst; 719 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 720 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 721 int ret; 722 723 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 724 if (unlikely(ret)) 725 return ret; 726 727 queue->ddgst_remaining -= recv_len; 728 *offset += recv_len; 729 *len -= recv_len; 730 if (queue->ddgst_remaining) 731 return 0; 732 733 if (queue->recv_ddgst != queue->exp_ddgst) { 734 dev_err(queue->ctrl->ctrl.device, 735 "data digest error: recv %#x expected %#x\n", 736 le32_to_cpu(queue->recv_ddgst), 737 le32_to_cpu(queue->exp_ddgst)); 738 return -EIO; 739 } 740 741 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 742 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 743 pdu->command_id); 744 745 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 746 } 747 748 nvme_tcp_init_recv_ctx(queue); 749 return 0; 750 } 751 752 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 753 unsigned int offset, size_t len) 754 { 755 struct nvme_tcp_queue *queue = desc->arg.data; 756 size_t consumed = len; 757 int result; 758 759 while (len) { 760 switch (nvme_tcp_recv_state(queue)) { 761 case NVME_TCP_RECV_PDU: 762 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 763 break; 764 case NVME_TCP_RECV_DATA: 765 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 766 break; 767 case NVME_TCP_RECV_DDGST: 768 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 769 break; 770 default: 771 result = -EFAULT; 772 } 773 if (result) { 774 dev_err(queue->ctrl->ctrl.device, 775 "receive failed: %d\n", result); 776 queue->rd_enabled = false; 777 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 778 return result; 779 } 780 } 781 782 return consumed; 783 } 784 785 static void nvme_tcp_data_ready(struct sock *sk) 786 { 787 struct nvme_tcp_queue *queue; 788 789 read_lock(&sk->sk_callback_lock); 790 queue = sk->sk_user_data; 791 if (likely(queue && queue->rd_enabled)) 792 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 793 read_unlock(&sk->sk_callback_lock); 794 } 795 796 static void nvme_tcp_write_space(struct sock *sk) 797 { 798 struct nvme_tcp_queue *queue; 799 800 read_lock_bh(&sk->sk_callback_lock); 801 queue = sk->sk_user_data; 802 if (likely(queue && sk_stream_is_writeable(sk))) { 803 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 804 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 805 } 806 read_unlock_bh(&sk->sk_callback_lock); 807 } 808 809 static void nvme_tcp_state_change(struct sock *sk) 810 { 811 struct nvme_tcp_queue *queue; 812 813 read_lock(&sk->sk_callback_lock); 814 queue = sk->sk_user_data; 815 if (!queue) 816 goto done; 817 818 switch (sk->sk_state) { 819 case TCP_CLOSE: 820 case TCP_CLOSE_WAIT: 821 case TCP_LAST_ACK: 822 case TCP_FIN_WAIT1: 823 case TCP_FIN_WAIT2: 824 /* fallthrough */ 825 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 826 break; 827 default: 828 dev_info(queue->ctrl->ctrl.device, 829 "queue %d socket state %d\n", 830 nvme_tcp_queue_id(queue), sk->sk_state); 831 } 832 833 queue->state_change(sk); 834 done: 835 read_unlock(&sk->sk_callback_lock); 836 } 837 838 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 839 { 840 queue->request = NULL; 841 } 842 843 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 844 { 845 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR); 846 } 847 848 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 849 { 850 struct nvme_tcp_queue *queue = req->queue; 851 852 while (true) { 853 struct page *page = nvme_tcp_req_cur_page(req); 854 size_t offset = nvme_tcp_req_cur_offset(req); 855 size_t len = nvme_tcp_req_cur_length(req); 856 bool last = nvme_tcp_pdu_last_send(req, len); 857 int ret, flags = MSG_DONTWAIT; 858 859 if (last && !queue->data_digest) 860 flags |= MSG_EOR; 861 else 862 flags |= MSG_MORE; 863 864 ret = kernel_sendpage(queue->sock, page, offset, len, flags); 865 if (ret <= 0) 866 return ret; 867 868 nvme_tcp_advance_req(req, ret); 869 if (queue->data_digest) 870 nvme_tcp_ddgst_update(queue->snd_hash, page, 871 offset, ret); 872 873 /* fully successful last write*/ 874 if (last && ret == len) { 875 if (queue->data_digest) { 876 nvme_tcp_ddgst_final(queue->snd_hash, 877 &req->ddgst); 878 req->state = NVME_TCP_SEND_DDGST; 879 req->offset = 0; 880 } else { 881 nvme_tcp_done_send_req(queue); 882 } 883 return 1; 884 } 885 } 886 return -EAGAIN; 887 } 888 889 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 890 { 891 struct nvme_tcp_queue *queue = req->queue; 892 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 893 bool inline_data = nvme_tcp_has_inline_data(req); 894 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 895 u8 hdgst = nvme_tcp_hdgst_len(queue); 896 int len = sizeof(*pdu) + hdgst - req->offset; 897 int ret; 898 899 if (queue->hdr_digest && !req->offset) 900 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 901 902 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 903 offset_in_page(pdu) + req->offset, len, flags); 904 if (unlikely(ret <= 0)) 905 return ret; 906 907 len -= ret; 908 if (!len) { 909 if (inline_data) { 910 req->state = NVME_TCP_SEND_DATA; 911 if (queue->data_digest) 912 crypto_ahash_init(queue->snd_hash); 913 nvme_tcp_init_iter(req, WRITE); 914 } else { 915 nvme_tcp_done_send_req(queue); 916 } 917 return 1; 918 } 919 req->offset += ret; 920 921 return -EAGAIN; 922 } 923 924 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 925 { 926 struct nvme_tcp_queue *queue = req->queue; 927 struct nvme_tcp_data_pdu *pdu = req->pdu; 928 u8 hdgst = nvme_tcp_hdgst_len(queue); 929 int len = sizeof(*pdu) - req->offset + hdgst; 930 int ret; 931 932 if (queue->hdr_digest && !req->offset) 933 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 934 935 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 936 offset_in_page(pdu) + req->offset, len, 937 MSG_DONTWAIT | MSG_MORE); 938 if (unlikely(ret <= 0)) 939 return ret; 940 941 len -= ret; 942 if (!len) { 943 req->state = NVME_TCP_SEND_DATA; 944 if (queue->data_digest) 945 crypto_ahash_init(queue->snd_hash); 946 if (!req->data_sent) 947 nvme_tcp_init_iter(req, WRITE); 948 return 1; 949 } 950 req->offset += ret; 951 952 return -EAGAIN; 953 } 954 955 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 956 { 957 struct nvme_tcp_queue *queue = req->queue; 958 int ret; 959 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 960 struct kvec iov = { 961 .iov_base = &req->ddgst + req->offset, 962 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 963 }; 964 965 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 966 if (unlikely(ret <= 0)) 967 return ret; 968 969 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 970 nvme_tcp_done_send_req(queue); 971 return 1; 972 } 973 974 req->offset += ret; 975 return -EAGAIN; 976 } 977 978 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 979 { 980 struct nvme_tcp_request *req; 981 int ret = 1; 982 983 if (!queue->request) { 984 queue->request = nvme_tcp_fetch_request(queue); 985 if (!queue->request) 986 return 0; 987 } 988 req = queue->request; 989 990 if (req->state == NVME_TCP_SEND_CMD_PDU) { 991 ret = nvme_tcp_try_send_cmd_pdu(req); 992 if (ret <= 0) 993 goto done; 994 if (!nvme_tcp_has_inline_data(req)) 995 return ret; 996 } 997 998 if (req->state == NVME_TCP_SEND_H2C_PDU) { 999 ret = nvme_tcp_try_send_data_pdu(req); 1000 if (ret <= 0) 1001 goto done; 1002 } 1003 1004 if (req->state == NVME_TCP_SEND_DATA) { 1005 ret = nvme_tcp_try_send_data(req); 1006 if (ret <= 0) 1007 goto done; 1008 } 1009 1010 if (req->state == NVME_TCP_SEND_DDGST) 1011 ret = nvme_tcp_try_send_ddgst(req); 1012 done: 1013 if (ret == -EAGAIN) 1014 ret = 0; 1015 return ret; 1016 } 1017 1018 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1019 { 1020 struct sock *sk = queue->sock->sk; 1021 read_descriptor_t rd_desc; 1022 int consumed; 1023 1024 rd_desc.arg.data = queue; 1025 rd_desc.count = 1; 1026 lock_sock(sk); 1027 consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1028 release_sock(sk); 1029 return consumed; 1030 } 1031 1032 static void nvme_tcp_io_work(struct work_struct *w) 1033 { 1034 struct nvme_tcp_queue *queue = 1035 container_of(w, struct nvme_tcp_queue, io_work); 1036 unsigned long start = jiffies + msecs_to_jiffies(1); 1037 1038 do { 1039 bool pending = false; 1040 int result; 1041 1042 result = nvme_tcp_try_send(queue); 1043 if (result > 0) { 1044 pending = true; 1045 } else if (unlikely(result < 0)) { 1046 dev_err(queue->ctrl->ctrl.device, 1047 "failed to send request %d\n", result); 1048 if (result != -EPIPE) 1049 nvme_tcp_fail_request(queue->request); 1050 nvme_tcp_done_send_req(queue); 1051 return; 1052 } 1053 1054 result = nvme_tcp_try_recv(queue); 1055 if (result > 0) 1056 pending = true; 1057 1058 if (!pending) 1059 return; 1060 1061 } while (time_after(jiffies, start)); /* quota is exhausted */ 1062 1063 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1064 } 1065 1066 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1067 { 1068 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1069 1070 ahash_request_free(queue->rcv_hash); 1071 ahash_request_free(queue->snd_hash); 1072 crypto_free_ahash(tfm); 1073 } 1074 1075 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1076 { 1077 struct crypto_ahash *tfm; 1078 1079 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1080 if (IS_ERR(tfm)) 1081 return PTR_ERR(tfm); 1082 1083 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1084 if (!queue->snd_hash) 1085 goto free_tfm; 1086 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1087 1088 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1089 if (!queue->rcv_hash) 1090 goto free_snd_hash; 1091 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1092 1093 return 0; 1094 free_snd_hash: 1095 ahash_request_free(queue->snd_hash); 1096 free_tfm: 1097 crypto_free_ahash(tfm); 1098 return -ENOMEM; 1099 } 1100 1101 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1102 { 1103 struct nvme_tcp_request *async = &ctrl->async_req; 1104 1105 page_frag_free(async->pdu); 1106 } 1107 1108 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1109 { 1110 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1111 struct nvme_tcp_request *async = &ctrl->async_req; 1112 u8 hdgst = nvme_tcp_hdgst_len(queue); 1113 1114 async->pdu = page_frag_alloc(&queue->pf_cache, 1115 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1116 GFP_KERNEL | __GFP_ZERO); 1117 if (!async->pdu) 1118 return -ENOMEM; 1119 1120 async->queue = &ctrl->queues[0]; 1121 return 0; 1122 } 1123 1124 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1125 { 1126 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1127 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1128 1129 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1130 return; 1131 1132 if (queue->hdr_digest || queue->data_digest) 1133 nvme_tcp_free_crypto(queue); 1134 1135 sock_release(queue->sock); 1136 kfree(queue->pdu); 1137 } 1138 1139 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1140 { 1141 struct nvme_tcp_icreq_pdu *icreq; 1142 struct nvme_tcp_icresp_pdu *icresp; 1143 struct msghdr msg = {}; 1144 struct kvec iov; 1145 bool ctrl_hdgst, ctrl_ddgst; 1146 int ret; 1147 1148 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1149 if (!icreq) 1150 return -ENOMEM; 1151 1152 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1153 if (!icresp) { 1154 ret = -ENOMEM; 1155 goto free_icreq; 1156 } 1157 1158 icreq->hdr.type = nvme_tcp_icreq; 1159 icreq->hdr.hlen = sizeof(*icreq); 1160 icreq->hdr.pdo = 0; 1161 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1162 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1163 icreq->maxr2t = 0; /* single inflight r2t supported */ 1164 icreq->hpda = 0; /* no alignment constraint */ 1165 if (queue->hdr_digest) 1166 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1167 if (queue->data_digest) 1168 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1169 1170 iov.iov_base = icreq; 1171 iov.iov_len = sizeof(*icreq); 1172 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1173 if (ret < 0) 1174 goto free_icresp; 1175 1176 memset(&msg, 0, sizeof(msg)); 1177 iov.iov_base = icresp; 1178 iov.iov_len = sizeof(*icresp); 1179 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1180 iov.iov_len, msg.msg_flags); 1181 if (ret < 0) 1182 goto free_icresp; 1183 1184 ret = -EINVAL; 1185 if (icresp->hdr.type != nvme_tcp_icresp) { 1186 pr_err("queue %d: bad type returned %d\n", 1187 nvme_tcp_queue_id(queue), icresp->hdr.type); 1188 goto free_icresp; 1189 } 1190 1191 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1192 pr_err("queue %d: bad pdu length returned %d\n", 1193 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1194 goto free_icresp; 1195 } 1196 1197 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1198 pr_err("queue %d: bad pfv returned %d\n", 1199 nvme_tcp_queue_id(queue), icresp->pfv); 1200 goto free_icresp; 1201 } 1202 1203 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1204 if ((queue->data_digest && !ctrl_ddgst) || 1205 (!queue->data_digest && ctrl_ddgst)) { 1206 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1207 nvme_tcp_queue_id(queue), 1208 queue->data_digest ? "enabled" : "disabled", 1209 ctrl_ddgst ? "enabled" : "disabled"); 1210 goto free_icresp; 1211 } 1212 1213 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1214 if ((queue->hdr_digest && !ctrl_hdgst) || 1215 (!queue->hdr_digest && ctrl_hdgst)) { 1216 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1217 nvme_tcp_queue_id(queue), 1218 queue->hdr_digest ? "enabled" : "disabled", 1219 ctrl_hdgst ? "enabled" : "disabled"); 1220 goto free_icresp; 1221 } 1222 1223 if (icresp->cpda != 0) { 1224 pr_err("queue %d: unsupported cpda returned %d\n", 1225 nvme_tcp_queue_id(queue), icresp->cpda); 1226 goto free_icresp; 1227 } 1228 1229 ret = 0; 1230 free_icresp: 1231 kfree(icresp); 1232 free_icreq: 1233 kfree(icreq); 1234 return ret; 1235 } 1236 1237 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1238 int qid, size_t queue_size) 1239 { 1240 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1241 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1242 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1243 int ret, opt, rcv_pdu_size, n; 1244 1245 queue->ctrl = ctrl; 1246 INIT_LIST_HEAD(&queue->send_list); 1247 spin_lock_init(&queue->lock); 1248 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1249 queue->queue_size = queue_size; 1250 1251 if (qid > 0) 1252 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1253 else 1254 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1255 NVME_TCP_ADMIN_CCSZ; 1256 1257 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1258 IPPROTO_TCP, &queue->sock); 1259 if (ret) { 1260 dev_err(ctrl->ctrl.device, 1261 "failed to create socket: %d\n", ret); 1262 return ret; 1263 } 1264 1265 /* Single syn retry */ 1266 opt = 1; 1267 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1268 (char *)&opt, sizeof(opt)); 1269 if (ret) { 1270 dev_err(ctrl->ctrl.device, 1271 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1272 goto err_sock; 1273 } 1274 1275 /* Set TCP no delay */ 1276 opt = 1; 1277 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1278 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1279 if (ret) { 1280 dev_err(ctrl->ctrl.device, 1281 "failed to set TCP_NODELAY sock opt %d\n", ret); 1282 goto err_sock; 1283 } 1284 1285 /* 1286 * Cleanup whatever is sitting in the TCP transmit queue on socket 1287 * close. This is done to prevent stale data from being sent should 1288 * the network connection be restored before TCP times out. 1289 */ 1290 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1291 (char *)&sol, sizeof(sol)); 1292 if (ret) { 1293 dev_err(ctrl->ctrl.device, 1294 "failed to set SO_LINGER sock opt %d\n", ret); 1295 goto err_sock; 1296 } 1297 1298 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1299 if (!qid) 1300 n = 0; 1301 else 1302 n = (qid - 1) % num_online_cpus(); 1303 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1304 queue->request = NULL; 1305 queue->data_remaining = 0; 1306 queue->ddgst_remaining = 0; 1307 queue->pdu_remaining = 0; 1308 queue->pdu_offset = 0; 1309 sk_set_memalloc(queue->sock->sk); 1310 1311 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1312 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1313 sizeof(ctrl->src_addr)); 1314 if (ret) { 1315 dev_err(ctrl->ctrl.device, 1316 "failed to bind queue %d socket %d\n", 1317 qid, ret); 1318 goto err_sock; 1319 } 1320 } 1321 1322 queue->hdr_digest = nctrl->opts->hdr_digest; 1323 queue->data_digest = nctrl->opts->data_digest; 1324 if (queue->hdr_digest || queue->data_digest) { 1325 ret = nvme_tcp_alloc_crypto(queue); 1326 if (ret) { 1327 dev_err(ctrl->ctrl.device, 1328 "failed to allocate queue %d crypto\n", qid); 1329 goto err_sock; 1330 } 1331 } 1332 1333 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1334 nvme_tcp_hdgst_len(queue); 1335 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1336 if (!queue->pdu) { 1337 ret = -ENOMEM; 1338 goto err_crypto; 1339 } 1340 1341 dev_dbg(ctrl->ctrl.device, "connecting queue %d\n", 1342 nvme_tcp_queue_id(queue)); 1343 1344 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1345 sizeof(ctrl->addr), 0); 1346 if (ret) { 1347 dev_err(ctrl->ctrl.device, 1348 "failed to connect socket: %d\n", ret); 1349 goto err_rcv_pdu; 1350 } 1351 1352 ret = nvme_tcp_init_connection(queue); 1353 if (ret) 1354 goto err_init_connect; 1355 1356 queue->rd_enabled = true; 1357 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1358 nvme_tcp_init_recv_ctx(queue); 1359 1360 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1361 queue->sock->sk->sk_user_data = queue; 1362 queue->state_change = queue->sock->sk->sk_state_change; 1363 queue->data_ready = queue->sock->sk->sk_data_ready; 1364 queue->write_space = queue->sock->sk->sk_write_space; 1365 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1366 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1367 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1368 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1369 1370 return 0; 1371 1372 err_init_connect: 1373 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1374 err_rcv_pdu: 1375 kfree(queue->pdu); 1376 err_crypto: 1377 if (queue->hdr_digest || queue->data_digest) 1378 nvme_tcp_free_crypto(queue); 1379 err_sock: 1380 sock_release(queue->sock); 1381 queue->sock = NULL; 1382 return ret; 1383 } 1384 1385 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1386 { 1387 struct socket *sock = queue->sock; 1388 1389 write_lock_bh(&sock->sk->sk_callback_lock); 1390 sock->sk->sk_user_data = NULL; 1391 sock->sk->sk_data_ready = queue->data_ready; 1392 sock->sk->sk_state_change = queue->state_change; 1393 sock->sk->sk_write_space = queue->write_space; 1394 write_unlock_bh(&sock->sk->sk_callback_lock); 1395 } 1396 1397 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1398 { 1399 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1400 nvme_tcp_restore_sock_calls(queue); 1401 cancel_work_sync(&queue->io_work); 1402 } 1403 1404 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1405 { 1406 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1407 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1408 1409 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1410 return; 1411 1412 __nvme_tcp_stop_queue(queue); 1413 } 1414 1415 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1416 { 1417 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1418 int ret; 1419 1420 if (idx) 1421 ret = nvmf_connect_io_queue(nctrl, idx, false); 1422 else 1423 ret = nvmf_connect_admin_queue(nctrl); 1424 1425 if (!ret) { 1426 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1427 } else { 1428 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1429 dev_err(nctrl->device, 1430 "failed to connect queue: %d ret=%d\n", idx, ret); 1431 } 1432 return ret; 1433 } 1434 1435 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1436 bool admin) 1437 { 1438 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1439 struct blk_mq_tag_set *set; 1440 int ret; 1441 1442 if (admin) { 1443 set = &ctrl->admin_tag_set; 1444 memset(set, 0, sizeof(*set)); 1445 set->ops = &nvme_tcp_admin_mq_ops; 1446 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1447 set->reserved_tags = 2; /* connect + keep-alive */ 1448 set->numa_node = NUMA_NO_NODE; 1449 set->cmd_size = sizeof(struct nvme_tcp_request); 1450 set->driver_data = ctrl; 1451 set->nr_hw_queues = 1; 1452 set->timeout = ADMIN_TIMEOUT; 1453 } else { 1454 set = &ctrl->tag_set; 1455 memset(set, 0, sizeof(*set)); 1456 set->ops = &nvme_tcp_mq_ops; 1457 set->queue_depth = nctrl->sqsize + 1; 1458 set->reserved_tags = 1; /* fabric connect */ 1459 set->numa_node = NUMA_NO_NODE; 1460 set->flags = BLK_MQ_F_SHOULD_MERGE; 1461 set->cmd_size = sizeof(struct nvme_tcp_request); 1462 set->driver_data = ctrl; 1463 set->nr_hw_queues = nctrl->queue_count - 1; 1464 set->timeout = NVME_IO_TIMEOUT; 1465 set->nr_maps = 2 /* default + read */; 1466 } 1467 1468 ret = blk_mq_alloc_tag_set(set); 1469 if (ret) 1470 return ERR_PTR(ret); 1471 1472 return set; 1473 } 1474 1475 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1476 { 1477 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1478 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1479 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1480 } 1481 1482 nvme_tcp_free_queue(ctrl, 0); 1483 } 1484 1485 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1486 { 1487 int i; 1488 1489 for (i = 1; i < ctrl->queue_count; i++) 1490 nvme_tcp_free_queue(ctrl, i); 1491 } 1492 1493 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1494 { 1495 int i; 1496 1497 for (i = 1; i < ctrl->queue_count; i++) 1498 nvme_tcp_stop_queue(ctrl, i); 1499 } 1500 1501 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1502 { 1503 int i, ret = 0; 1504 1505 for (i = 1; i < ctrl->queue_count; i++) { 1506 ret = nvme_tcp_start_queue(ctrl, i); 1507 if (ret) 1508 goto out_stop_queues; 1509 } 1510 1511 return 0; 1512 1513 out_stop_queues: 1514 for (i--; i >= 1; i--) 1515 nvme_tcp_stop_queue(ctrl, i); 1516 return ret; 1517 } 1518 1519 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1520 { 1521 int ret; 1522 1523 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1524 if (ret) 1525 return ret; 1526 1527 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1528 if (ret) 1529 goto out_free_queue; 1530 1531 return 0; 1532 1533 out_free_queue: 1534 nvme_tcp_free_queue(ctrl, 0); 1535 return ret; 1536 } 1537 1538 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1539 { 1540 int i, ret; 1541 1542 for (i = 1; i < ctrl->queue_count; i++) { 1543 ret = nvme_tcp_alloc_queue(ctrl, i, 1544 ctrl->sqsize + 1); 1545 if (ret) 1546 goto out_free_queues; 1547 } 1548 1549 return 0; 1550 1551 out_free_queues: 1552 for (i--; i >= 1; i--) 1553 nvme_tcp_free_queue(ctrl, i); 1554 1555 return ret; 1556 } 1557 1558 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1559 { 1560 unsigned int nr_io_queues; 1561 1562 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1563 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1564 1565 return nr_io_queues; 1566 } 1567 1568 static int nvme_alloc_io_queues(struct nvme_ctrl *ctrl) 1569 { 1570 unsigned int nr_io_queues; 1571 int ret; 1572 1573 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1574 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1575 if (ret) 1576 return ret; 1577 1578 ctrl->queue_count = nr_io_queues + 1; 1579 if (ctrl->queue_count < 2) 1580 return 0; 1581 1582 dev_info(ctrl->device, 1583 "creating %d I/O queues.\n", nr_io_queues); 1584 1585 return nvme_tcp_alloc_io_queues(ctrl); 1586 } 1587 1588 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1589 { 1590 nvme_tcp_stop_io_queues(ctrl); 1591 if (remove) { 1592 blk_cleanup_queue(ctrl->connect_q); 1593 blk_mq_free_tag_set(ctrl->tagset); 1594 } 1595 nvme_tcp_free_io_queues(ctrl); 1596 } 1597 1598 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1599 { 1600 int ret; 1601 1602 ret = nvme_alloc_io_queues(ctrl); 1603 if (ret) 1604 return ret; 1605 1606 if (new) { 1607 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1608 if (IS_ERR(ctrl->tagset)) { 1609 ret = PTR_ERR(ctrl->tagset); 1610 goto out_free_io_queues; 1611 } 1612 1613 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1614 if (IS_ERR(ctrl->connect_q)) { 1615 ret = PTR_ERR(ctrl->connect_q); 1616 goto out_free_tag_set; 1617 } 1618 } else { 1619 blk_mq_update_nr_hw_queues(ctrl->tagset, 1620 ctrl->queue_count - 1); 1621 } 1622 1623 ret = nvme_tcp_start_io_queues(ctrl); 1624 if (ret) 1625 goto out_cleanup_connect_q; 1626 1627 return 0; 1628 1629 out_cleanup_connect_q: 1630 if (new) 1631 blk_cleanup_queue(ctrl->connect_q); 1632 out_free_tag_set: 1633 if (new) 1634 blk_mq_free_tag_set(ctrl->tagset); 1635 out_free_io_queues: 1636 nvme_tcp_free_io_queues(ctrl); 1637 return ret; 1638 } 1639 1640 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1641 { 1642 nvme_tcp_stop_queue(ctrl, 0); 1643 if (remove) { 1644 blk_cleanup_queue(ctrl->admin_q); 1645 blk_mq_free_tag_set(ctrl->admin_tagset); 1646 } 1647 nvme_tcp_free_admin_queue(ctrl); 1648 } 1649 1650 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1651 { 1652 int error; 1653 1654 error = nvme_tcp_alloc_admin_queue(ctrl); 1655 if (error) 1656 return error; 1657 1658 if (new) { 1659 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1660 if (IS_ERR(ctrl->admin_tagset)) { 1661 error = PTR_ERR(ctrl->admin_tagset); 1662 goto out_free_queue; 1663 } 1664 1665 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1666 if (IS_ERR(ctrl->admin_q)) { 1667 error = PTR_ERR(ctrl->admin_q); 1668 goto out_free_tagset; 1669 } 1670 } 1671 1672 error = nvme_tcp_start_queue(ctrl, 0); 1673 if (error) 1674 goto out_cleanup_queue; 1675 1676 error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 1677 if (error) { 1678 dev_err(ctrl->device, 1679 "prop_get NVME_REG_CAP failed\n"); 1680 goto out_stop_queue; 1681 } 1682 1683 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 1684 1685 error = nvme_enable_ctrl(ctrl, ctrl->cap); 1686 if (error) 1687 goto out_stop_queue; 1688 1689 error = nvme_init_identify(ctrl); 1690 if (error) 1691 goto out_stop_queue; 1692 1693 return 0; 1694 1695 out_stop_queue: 1696 nvme_tcp_stop_queue(ctrl, 0); 1697 out_cleanup_queue: 1698 if (new) 1699 blk_cleanup_queue(ctrl->admin_q); 1700 out_free_tagset: 1701 if (new) 1702 blk_mq_free_tag_set(ctrl->admin_tagset); 1703 out_free_queue: 1704 nvme_tcp_free_admin_queue(ctrl); 1705 return error; 1706 } 1707 1708 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1709 bool remove) 1710 { 1711 blk_mq_quiesce_queue(ctrl->admin_q); 1712 nvme_tcp_stop_queue(ctrl, 0); 1713 blk_mq_tagset_busy_iter(ctrl->admin_tagset, nvme_cancel_request, ctrl); 1714 blk_mq_unquiesce_queue(ctrl->admin_q); 1715 nvme_tcp_destroy_admin_queue(ctrl, remove); 1716 } 1717 1718 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1719 bool remove) 1720 { 1721 if (ctrl->queue_count <= 1) 1722 return; 1723 nvme_stop_queues(ctrl); 1724 nvme_tcp_stop_io_queues(ctrl); 1725 blk_mq_tagset_busy_iter(ctrl->tagset, nvme_cancel_request, ctrl); 1726 if (remove) 1727 nvme_start_queues(ctrl); 1728 nvme_tcp_destroy_io_queues(ctrl, remove); 1729 } 1730 1731 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1732 { 1733 /* If we are resetting/deleting then do nothing */ 1734 if (ctrl->state != NVME_CTRL_CONNECTING) { 1735 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1736 ctrl->state == NVME_CTRL_LIVE); 1737 return; 1738 } 1739 1740 if (nvmf_should_reconnect(ctrl)) { 1741 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1742 ctrl->opts->reconnect_delay); 1743 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1744 ctrl->opts->reconnect_delay * HZ); 1745 } else { 1746 dev_info(ctrl->device, "Removing controller...\n"); 1747 nvme_delete_ctrl(ctrl); 1748 } 1749 } 1750 1751 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1752 { 1753 struct nvmf_ctrl_options *opts = ctrl->opts; 1754 int ret = -EINVAL; 1755 1756 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1757 if (ret) 1758 return ret; 1759 1760 if (ctrl->icdoff) { 1761 dev_err(ctrl->device, "icdoff is not supported!\n"); 1762 goto destroy_admin; 1763 } 1764 1765 if (opts->queue_size > ctrl->sqsize + 1) 1766 dev_warn(ctrl->device, 1767 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1768 opts->queue_size, ctrl->sqsize + 1); 1769 1770 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1771 dev_warn(ctrl->device, 1772 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1773 ctrl->sqsize + 1, ctrl->maxcmd); 1774 ctrl->sqsize = ctrl->maxcmd - 1; 1775 } 1776 1777 if (ctrl->queue_count > 1) { 1778 ret = nvme_tcp_configure_io_queues(ctrl, new); 1779 if (ret) 1780 goto destroy_admin; 1781 } 1782 1783 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1784 /* state change failure is ok if we're in DELETING state */ 1785 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1786 ret = -EINVAL; 1787 goto destroy_io; 1788 } 1789 1790 nvme_start_ctrl(ctrl); 1791 return 0; 1792 1793 destroy_io: 1794 if (ctrl->queue_count > 1) 1795 nvme_tcp_destroy_io_queues(ctrl, new); 1796 destroy_admin: 1797 nvme_tcp_stop_queue(ctrl, 0); 1798 nvme_tcp_destroy_admin_queue(ctrl, new); 1799 return ret; 1800 } 1801 1802 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1803 { 1804 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1805 struct nvme_tcp_ctrl, connect_work); 1806 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1807 1808 ++ctrl->nr_reconnects; 1809 1810 if (nvme_tcp_setup_ctrl(ctrl, false)) 1811 goto requeue; 1812 1813 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1814 ctrl->nr_reconnects); 1815 1816 ctrl->nr_reconnects = 0; 1817 1818 return; 1819 1820 requeue: 1821 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1822 ctrl->nr_reconnects); 1823 nvme_tcp_reconnect_or_remove(ctrl); 1824 } 1825 1826 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1827 { 1828 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1829 struct nvme_tcp_ctrl, err_work); 1830 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1831 1832 nvme_stop_keep_alive(ctrl); 1833 nvme_tcp_teardown_io_queues(ctrl, false); 1834 /* unquiesce to fail fast pending requests */ 1835 nvme_start_queues(ctrl); 1836 nvme_tcp_teardown_admin_queue(ctrl, false); 1837 1838 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1839 /* state change failure is ok if we're in DELETING state */ 1840 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1841 return; 1842 } 1843 1844 nvme_tcp_reconnect_or_remove(ctrl); 1845 } 1846 1847 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1848 { 1849 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1850 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1851 1852 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1853 if (shutdown) 1854 nvme_shutdown_ctrl(ctrl); 1855 else 1856 nvme_disable_ctrl(ctrl, ctrl->cap); 1857 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 1858 } 1859 1860 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 1861 { 1862 nvme_tcp_teardown_ctrl(ctrl, true); 1863 } 1864 1865 static void nvme_reset_ctrl_work(struct work_struct *work) 1866 { 1867 struct nvme_ctrl *ctrl = 1868 container_of(work, struct nvme_ctrl, reset_work); 1869 1870 nvme_stop_ctrl(ctrl); 1871 nvme_tcp_teardown_ctrl(ctrl, false); 1872 1873 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1874 /* state change failure is ok if we're in DELETING state */ 1875 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1876 return; 1877 } 1878 1879 if (nvme_tcp_setup_ctrl(ctrl, false)) 1880 goto out_fail; 1881 1882 return; 1883 1884 out_fail: 1885 ++ctrl->nr_reconnects; 1886 nvme_tcp_reconnect_or_remove(ctrl); 1887 } 1888 1889 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 1890 { 1891 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1892 1893 if (list_empty(&ctrl->list)) 1894 goto free_ctrl; 1895 1896 mutex_lock(&nvme_tcp_ctrl_mutex); 1897 list_del(&ctrl->list); 1898 mutex_unlock(&nvme_tcp_ctrl_mutex); 1899 1900 nvmf_free_options(nctrl->opts); 1901 free_ctrl: 1902 kfree(ctrl->queues); 1903 kfree(ctrl); 1904 } 1905 1906 static void nvme_tcp_set_sg_null(struct nvme_command *c) 1907 { 1908 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1909 1910 sg->addr = 0; 1911 sg->length = 0; 1912 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1913 NVME_SGL_FMT_TRANSPORT_A; 1914 } 1915 1916 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 1917 struct nvme_command *c, u32 data_len) 1918 { 1919 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1920 1921 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1922 sg->length = cpu_to_le32(data_len); 1923 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1924 } 1925 1926 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 1927 u32 data_len) 1928 { 1929 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1930 1931 sg->addr = 0; 1932 sg->length = cpu_to_le32(data_len); 1933 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1934 NVME_SGL_FMT_TRANSPORT_A; 1935 } 1936 1937 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 1938 { 1939 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 1940 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1941 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 1942 struct nvme_command *cmd = &pdu->cmd; 1943 u8 hdgst = nvme_tcp_hdgst_len(queue); 1944 1945 memset(pdu, 0, sizeof(*pdu)); 1946 pdu->hdr.type = nvme_tcp_cmd; 1947 if (queue->hdr_digest) 1948 pdu->hdr.flags |= NVME_TCP_F_HDGST; 1949 pdu->hdr.hlen = sizeof(*pdu); 1950 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 1951 1952 cmd->common.opcode = nvme_admin_async_event; 1953 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1954 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1955 nvme_tcp_set_sg_null(cmd); 1956 1957 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 1958 ctrl->async_req.offset = 0; 1959 ctrl->async_req.curr_bio = NULL; 1960 ctrl->async_req.data_len = 0; 1961 1962 nvme_tcp_queue_request(&ctrl->async_req); 1963 } 1964 1965 static enum blk_eh_timer_return 1966 nvme_tcp_timeout(struct request *rq, bool reserved) 1967 { 1968 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1969 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 1970 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 1971 1972 dev_warn(ctrl->ctrl.device, 1973 "queue %d: timeout request %#x type %d\n", 1974 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 1975 1976 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1977 /* 1978 * Teardown immediately if controller times out while starting 1979 * or we are already started error recovery. all outstanding 1980 * requests are completed on shutdown, so we return BLK_EH_DONE. 1981 */ 1982 flush_work(&ctrl->err_work); 1983 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 1984 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 1985 return BLK_EH_DONE; 1986 } 1987 1988 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1989 nvme_tcp_error_recovery(&ctrl->ctrl); 1990 1991 return BLK_EH_RESET_TIMER; 1992 } 1993 1994 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 1995 struct request *rq) 1996 { 1997 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1998 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 1999 struct nvme_command *c = &pdu->cmd; 2000 2001 c->common.flags |= NVME_CMD_SGL_METABUF; 2002 2003 if (rq_data_dir(rq) == WRITE && req->data_len && 2004 req->data_len <= nvme_tcp_inline_data_size(queue)) 2005 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2006 else 2007 nvme_tcp_set_sg_host_data(c, req->data_len); 2008 2009 return 0; 2010 } 2011 2012 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2013 struct request *rq) 2014 { 2015 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2016 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2017 struct nvme_tcp_queue *queue = req->queue; 2018 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2019 blk_status_t ret; 2020 2021 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2022 if (ret) 2023 return ret; 2024 2025 req->state = NVME_TCP_SEND_CMD_PDU; 2026 req->offset = 0; 2027 req->data_sent = 0; 2028 req->pdu_len = 0; 2029 req->pdu_sent = 0; 2030 req->data_len = blk_rq_payload_bytes(rq); 2031 req->curr_bio = rq->bio; 2032 2033 if (rq_data_dir(rq) == WRITE && 2034 req->data_len <= nvme_tcp_inline_data_size(queue)) 2035 req->pdu_len = req->data_len; 2036 else if (req->curr_bio) 2037 nvme_tcp_init_iter(req, READ); 2038 2039 pdu->hdr.type = nvme_tcp_cmd; 2040 pdu->hdr.flags = 0; 2041 if (queue->hdr_digest) 2042 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2043 if (queue->data_digest && req->pdu_len) { 2044 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2045 ddgst = nvme_tcp_ddgst_len(queue); 2046 } 2047 pdu->hdr.hlen = sizeof(*pdu); 2048 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2049 pdu->hdr.plen = 2050 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2051 2052 ret = nvme_tcp_map_data(queue, rq); 2053 if (unlikely(ret)) { 2054 dev_err(queue->ctrl->ctrl.device, 2055 "Failed to map data (%d)\n", ret); 2056 return ret; 2057 } 2058 2059 return 0; 2060 } 2061 2062 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2063 const struct blk_mq_queue_data *bd) 2064 { 2065 struct nvme_ns *ns = hctx->queue->queuedata; 2066 struct nvme_tcp_queue *queue = hctx->driver_data; 2067 struct request *rq = bd->rq; 2068 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2069 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2070 blk_status_t ret; 2071 2072 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2073 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2074 2075 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2076 if (unlikely(ret)) 2077 return ret; 2078 2079 blk_mq_start_request(rq); 2080 2081 nvme_tcp_queue_request(req); 2082 2083 return BLK_STS_OK; 2084 } 2085 2086 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2087 { 2088 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2089 2090 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2091 set->map[HCTX_TYPE_READ].nr_queues = ctrl->ctrl.opts->nr_io_queues; 2092 if (ctrl->ctrl.opts->nr_write_queues) { 2093 /* separate read/write queues */ 2094 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2095 ctrl->ctrl.opts->nr_write_queues; 2096 set->map[HCTX_TYPE_READ].queue_offset = 2097 ctrl->ctrl.opts->nr_write_queues; 2098 } else { 2099 /* mixed read/write queues */ 2100 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2101 ctrl->ctrl.opts->nr_io_queues; 2102 set->map[HCTX_TYPE_READ].queue_offset = 0; 2103 } 2104 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2105 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2106 return 0; 2107 } 2108 2109 static struct blk_mq_ops nvme_tcp_mq_ops = { 2110 .queue_rq = nvme_tcp_queue_rq, 2111 .complete = nvme_complete_rq, 2112 .init_request = nvme_tcp_init_request, 2113 .exit_request = nvme_tcp_exit_request, 2114 .init_hctx = nvme_tcp_init_hctx, 2115 .timeout = nvme_tcp_timeout, 2116 .map_queues = nvme_tcp_map_queues, 2117 }; 2118 2119 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2120 .queue_rq = nvme_tcp_queue_rq, 2121 .complete = nvme_complete_rq, 2122 .init_request = nvme_tcp_init_request, 2123 .exit_request = nvme_tcp_exit_request, 2124 .init_hctx = nvme_tcp_init_admin_hctx, 2125 .timeout = nvme_tcp_timeout, 2126 }; 2127 2128 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2129 .name = "tcp", 2130 .module = THIS_MODULE, 2131 .flags = NVME_F_FABRICS, 2132 .reg_read32 = nvmf_reg_read32, 2133 .reg_read64 = nvmf_reg_read64, 2134 .reg_write32 = nvmf_reg_write32, 2135 .free_ctrl = nvme_tcp_free_ctrl, 2136 .submit_async_event = nvme_tcp_submit_async_event, 2137 .delete_ctrl = nvme_tcp_delete_ctrl, 2138 .get_address = nvmf_get_address, 2139 }; 2140 2141 static bool 2142 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2143 { 2144 struct nvme_tcp_ctrl *ctrl; 2145 bool found = false; 2146 2147 mutex_lock(&nvme_tcp_ctrl_mutex); 2148 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2149 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2150 if (found) 2151 break; 2152 } 2153 mutex_unlock(&nvme_tcp_ctrl_mutex); 2154 2155 return found; 2156 } 2157 2158 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2159 struct nvmf_ctrl_options *opts) 2160 { 2161 struct nvme_tcp_ctrl *ctrl; 2162 int ret; 2163 2164 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2165 if (!ctrl) 2166 return ERR_PTR(-ENOMEM); 2167 2168 INIT_LIST_HEAD(&ctrl->list); 2169 ctrl->ctrl.opts = opts; 2170 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1; 2171 ctrl->ctrl.sqsize = opts->queue_size - 1; 2172 ctrl->ctrl.kato = opts->kato; 2173 2174 INIT_DELAYED_WORK(&ctrl->connect_work, 2175 nvme_tcp_reconnect_ctrl_work); 2176 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2177 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2178 2179 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2180 opts->trsvcid = 2181 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2182 if (!opts->trsvcid) { 2183 ret = -ENOMEM; 2184 goto out_free_ctrl; 2185 } 2186 opts->mask |= NVMF_OPT_TRSVCID; 2187 } 2188 2189 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2190 opts->traddr, opts->trsvcid, &ctrl->addr); 2191 if (ret) { 2192 pr_err("malformed address passed: %s:%s\n", 2193 opts->traddr, opts->trsvcid); 2194 goto out_free_ctrl; 2195 } 2196 2197 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2198 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2199 opts->host_traddr, NULL, &ctrl->src_addr); 2200 if (ret) { 2201 pr_err("malformed src address passed: %s\n", 2202 opts->host_traddr); 2203 goto out_free_ctrl; 2204 } 2205 } 2206 2207 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2208 ret = -EALREADY; 2209 goto out_free_ctrl; 2210 } 2211 2212 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2213 GFP_KERNEL); 2214 if (!ctrl->queues) { 2215 ret = -ENOMEM; 2216 goto out_free_ctrl; 2217 } 2218 2219 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2220 if (ret) 2221 goto out_kfree_queues; 2222 2223 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2224 WARN_ON_ONCE(1); 2225 ret = -EINTR; 2226 goto out_uninit_ctrl; 2227 } 2228 2229 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2230 if (ret) 2231 goto out_uninit_ctrl; 2232 2233 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2234 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2235 2236 nvme_get_ctrl(&ctrl->ctrl); 2237 2238 mutex_lock(&nvme_tcp_ctrl_mutex); 2239 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2240 mutex_unlock(&nvme_tcp_ctrl_mutex); 2241 2242 return &ctrl->ctrl; 2243 2244 out_uninit_ctrl: 2245 nvme_uninit_ctrl(&ctrl->ctrl); 2246 nvme_put_ctrl(&ctrl->ctrl); 2247 if (ret > 0) 2248 ret = -EIO; 2249 return ERR_PTR(ret); 2250 out_kfree_queues: 2251 kfree(ctrl->queues); 2252 out_free_ctrl: 2253 kfree(ctrl); 2254 return ERR_PTR(ret); 2255 } 2256 2257 static struct nvmf_transport_ops nvme_tcp_transport = { 2258 .name = "tcp", 2259 .module = THIS_MODULE, 2260 .required_opts = NVMF_OPT_TRADDR, 2261 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2262 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2263 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2264 NVMF_OPT_NR_WRITE_QUEUES, 2265 .create_ctrl = nvme_tcp_create_ctrl, 2266 }; 2267 2268 static int __init nvme_tcp_init_module(void) 2269 { 2270 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2271 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2272 if (!nvme_tcp_wq) 2273 return -ENOMEM; 2274 2275 nvmf_register_transport(&nvme_tcp_transport); 2276 return 0; 2277 } 2278 2279 static void __exit nvme_tcp_cleanup_module(void) 2280 { 2281 struct nvme_tcp_ctrl *ctrl; 2282 2283 nvmf_unregister_transport(&nvme_tcp_transport); 2284 2285 mutex_lock(&nvme_tcp_ctrl_mutex); 2286 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2287 nvme_delete_ctrl(&ctrl->ctrl); 2288 mutex_unlock(&nvme_tcp_ctrl_mutex); 2289 flush_workqueue(nvme_delete_wq); 2290 2291 destroy_workqueue(nvme_tcp_wq); 2292 } 2293 2294 module_init(nvme_tcp_init_module); 2295 module_exit(nvme_tcp_cleanup_module); 2296 2297 MODULE_LICENSE("GPL v2"); 2298