1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 __le32 ddgst; 50 51 struct bio *curr_bio; 52 struct iov_iter iter; 53 54 /* send state */ 55 size_t offset; 56 size_t data_sent; 57 enum nvme_tcp_send_state state; 58 }; 59 60 enum nvme_tcp_queue_flags { 61 NVME_TCP_Q_ALLOCATED = 0, 62 NVME_TCP_Q_LIVE = 1, 63 }; 64 65 enum nvme_tcp_recv_state { 66 NVME_TCP_RECV_PDU = 0, 67 NVME_TCP_RECV_DATA, 68 NVME_TCP_RECV_DDGST, 69 }; 70 71 struct nvme_tcp_ctrl; 72 struct nvme_tcp_queue { 73 struct socket *sock; 74 struct work_struct io_work; 75 int io_cpu; 76 77 spinlock_t lock; 78 struct list_head send_list; 79 80 /* recv state */ 81 void *pdu; 82 int pdu_remaining; 83 int pdu_offset; 84 size_t data_remaining; 85 size_t ddgst_remaining; 86 unsigned int nr_cqe; 87 88 /* send state */ 89 struct nvme_tcp_request *request; 90 91 int queue_size; 92 size_t cmnd_capsule_len; 93 struct nvme_tcp_ctrl *ctrl; 94 unsigned long flags; 95 bool rd_enabled; 96 97 bool hdr_digest; 98 bool data_digest; 99 struct ahash_request *rcv_hash; 100 struct ahash_request *snd_hash; 101 __le32 exp_ddgst; 102 __le32 recv_ddgst; 103 104 struct page_frag_cache pf_cache; 105 106 void (*state_change)(struct sock *); 107 void (*data_ready)(struct sock *); 108 void (*write_space)(struct sock *); 109 }; 110 111 struct nvme_tcp_ctrl { 112 /* read only in the hot path */ 113 struct nvme_tcp_queue *queues; 114 struct blk_mq_tag_set tag_set; 115 116 /* other member variables */ 117 struct list_head list; 118 struct blk_mq_tag_set admin_tag_set; 119 struct sockaddr_storage addr; 120 struct sockaddr_storage src_addr; 121 struct nvme_ctrl ctrl; 122 123 struct work_struct err_work; 124 struct delayed_work connect_work; 125 struct nvme_tcp_request async_req; 126 u32 io_queues[HCTX_MAX_TYPES]; 127 }; 128 129 static LIST_HEAD(nvme_tcp_ctrl_list); 130 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 131 static struct workqueue_struct *nvme_tcp_wq; 132 static struct blk_mq_ops nvme_tcp_mq_ops; 133 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 134 135 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 136 { 137 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 138 } 139 140 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 141 { 142 return queue - queue->ctrl->queues; 143 } 144 145 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 146 { 147 u32 queue_idx = nvme_tcp_queue_id(queue); 148 149 if (queue_idx == 0) 150 return queue->ctrl->admin_tag_set.tags[queue_idx]; 151 return queue->ctrl->tag_set.tags[queue_idx - 1]; 152 } 153 154 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 155 { 156 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 157 } 158 159 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 160 { 161 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 162 } 163 164 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 165 { 166 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 167 } 168 169 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 170 { 171 return req == &req->queue->ctrl->async_req; 172 } 173 174 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 175 { 176 struct request *rq; 177 unsigned int bytes; 178 179 if (unlikely(nvme_tcp_async_req(req))) 180 return false; /* async events don't have a request */ 181 182 rq = blk_mq_rq_from_pdu(req); 183 bytes = blk_rq_payload_bytes(rq); 184 185 return rq_data_dir(rq) == WRITE && bytes && 186 bytes <= nvme_tcp_inline_data_size(req->queue); 187 } 188 189 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 190 { 191 return req->iter.bvec->bv_page; 192 } 193 194 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 195 { 196 return req->iter.bvec->bv_offset + req->iter.iov_offset; 197 } 198 199 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 200 { 201 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 202 req->pdu_len - req->pdu_sent); 203 } 204 205 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 206 { 207 return req->iter.iov_offset; 208 } 209 210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 211 { 212 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 213 req->pdu_len - req->pdu_sent : 0; 214 } 215 216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 217 int len) 218 { 219 return nvme_tcp_pdu_data_left(req) <= len; 220 } 221 222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 223 unsigned int dir) 224 { 225 struct request *rq = blk_mq_rq_from_pdu(req); 226 struct bio_vec *vec; 227 unsigned int size; 228 int nsegs; 229 size_t offset; 230 231 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 232 vec = &rq->special_vec; 233 nsegs = 1; 234 size = blk_rq_payload_bytes(rq); 235 offset = 0; 236 } else { 237 struct bio *bio = req->curr_bio; 238 239 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 240 nsegs = bio_segments(bio); 241 size = bio->bi_iter.bi_size; 242 offset = bio->bi_iter.bi_bvec_done; 243 } 244 245 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 246 req->iter.iov_offset = offset; 247 } 248 249 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 250 int len) 251 { 252 req->data_sent += len; 253 req->pdu_sent += len; 254 iov_iter_advance(&req->iter, len); 255 if (!iov_iter_count(&req->iter) && 256 req->data_sent < req->data_len) { 257 req->curr_bio = req->curr_bio->bi_next; 258 nvme_tcp_init_iter(req, WRITE); 259 } 260 } 261 262 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 263 { 264 struct nvme_tcp_queue *queue = req->queue; 265 266 spin_lock(&queue->lock); 267 list_add_tail(&req->entry, &queue->send_list); 268 spin_unlock(&queue->lock); 269 270 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 271 } 272 273 static inline struct nvme_tcp_request * 274 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 275 { 276 struct nvme_tcp_request *req; 277 278 spin_lock(&queue->lock); 279 req = list_first_entry_or_null(&queue->send_list, 280 struct nvme_tcp_request, entry); 281 if (req) 282 list_del(&req->entry); 283 spin_unlock(&queue->lock); 284 285 return req; 286 } 287 288 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 289 __le32 *dgst) 290 { 291 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 292 crypto_ahash_final(hash); 293 } 294 295 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 296 struct page *page, off_t off, size_t len) 297 { 298 struct scatterlist sg; 299 300 sg_init_marker(&sg, 1); 301 sg_set_page(&sg, page, len, off); 302 ahash_request_set_crypt(hash, &sg, NULL, len); 303 crypto_ahash_update(hash); 304 } 305 306 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 307 void *pdu, size_t len) 308 { 309 struct scatterlist sg; 310 311 sg_init_one(&sg, pdu, len); 312 ahash_request_set_crypt(hash, &sg, pdu + len, len); 313 crypto_ahash_digest(hash); 314 } 315 316 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 317 void *pdu, size_t pdu_len) 318 { 319 struct nvme_tcp_hdr *hdr = pdu; 320 __le32 recv_digest; 321 __le32 exp_digest; 322 323 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 324 dev_err(queue->ctrl->ctrl.device, 325 "queue %d: header digest flag is cleared\n", 326 nvme_tcp_queue_id(queue)); 327 return -EPROTO; 328 } 329 330 recv_digest = *(__le32 *)(pdu + hdr->hlen); 331 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 332 exp_digest = *(__le32 *)(pdu + hdr->hlen); 333 if (recv_digest != exp_digest) { 334 dev_err(queue->ctrl->ctrl.device, 335 "header digest error: recv %#x expected %#x\n", 336 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 337 return -EIO; 338 } 339 340 return 0; 341 } 342 343 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 344 { 345 struct nvme_tcp_hdr *hdr = pdu; 346 u8 digest_len = nvme_tcp_hdgst_len(queue); 347 u32 len; 348 349 len = le32_to_cpu(hdr->plen) - hdr->hlen - 350 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 351 352 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 353 dev_err(queue->ctrl->ctrl.device, 354 "queue %d: data digest flag is cleared\n", 355 nvme_tcp_queue_id(queue)); 356 return -EPROTO; 357 } 358 crypto_ahash_init(queue->rcv_hash); 359 360 return 0; 361 } 362 363 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 364 struct request *rq, unsigned int hctx_idx) 365 { 366 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 367 368 page_frag_free(req->pdu); 369 } 370 371 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 372 struct request *rq, unsigned int hctx_idx, 373 unsigned int numa_node) 374 { 375 struct nvme_tcp_ctrl *ctrl = set->driver_data; 376 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 377 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 378 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 379 u8 hdgst = nvme_tcp_hdgst_len(queue); 380 381 req->pdu = page_frag_alloc(&queue->pf_cache, 382 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 383 GFP_KERNEL | __GFP_ZERO); 384 if (!req->pdu) 385 return -ENOMEM; 386 387 req->queue = queue; 388 nvme_req(rq)->ctrl = &ctrl->ctrl; 389 390 return 0; 391 } 392 393 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 394 unsigned int hctx_idx) 395 { 396 struct nvme_tcp_ctrl *ctrl = data; 397 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 398 399 hctx->driver_data = queue; 400 return 0; 401 } 402 403 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 404 unsigned int hctx_idx) 405 { 406 struct nvme_tcp_ctrl *ctrl = data; 407 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 408 409 hctx->driver_data = queue; 410 return 0; 411 } 412 413 static enum nvme_tcp_recv_state 414 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 415 { 416 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 417 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 418 NVME_TCP_RECV_DATA; 419 } 420 421 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 422 { 423 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 424 nvme_tcp_hdgst_len(queue); 425 queue->pdu_offset = 0; 426 queue->data_remaining = -1; 427 queue->ddgst_remaining = 0; 428 } 429 430 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 431 { 432 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 433 return; 434 435 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 436 } 437 438 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 439 struct nvme_completion *cqe) 440 { 441 struct request *rq; 442 443 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 444 if (!rq) { 445 dev_err(queue->ctrl->ctrl.device, 446 "queue %d tag 0x%x not found\n", 447 nvme_tcp_queue_id(queue), cqe->command_id); 448 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 449 return -EINVAL; 450 } 451 452 nvme_end_request(rq, cqe->status, cqe->result); 453 queue->nr_cqe++; 454 455 return 0; 456 } 457 458 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 459 struct nvme_tcp_data_pdu *pdu) 460 { 461 struct request *rq; 462 463 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 464 if (!rq) { 465 dev_err(queue->ctrl->ctrl.device, 466 "queue %d tag %#x not found\n", 467 nvme_tcp_queue_id(queue), pdu->command_id); 468 return -ENOENT; 469 } 470 471 if (!blk_rq_payload_bytes(rq)) { 472 dev_err(queue->ctrl->ctrl.device, 473 "queue %d tag %#x unexpected data\n", 474 nvme_tcp_queue_id(queue), rq->tag); 475 return -EIO; 476 } 477 478 queue->data_remaining = le32_to_cpu(pdu->data_length); 479 480 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 481 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 482 dev_err(queue->ctrl->ctrl.device, 483 "queue %d tag %#x SUCCESS set but not last PDU\n", 484 nvme_tcp_queue_id(queue), rq->tag); 485 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 486 return -EPROTO; 487 } 488 489 return 0; 490 } 491 492 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 493 struct nvme_tcp_rsp_pdu *pdu) 494 { 495 struct nvme_completion *cqe = &pdu->cqe; 496 int ret = 0; 497 498 /* 499 * AEN requests are special as they don't time out and can 500 * survive any kind of queue freeze and often don't respond to 501 * aborts. We don't even bother to allocate a struct request 502 * for them but rather special case them here. 503 */ 504 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 505 cqe->command_id))) 506 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 507 &cqe->result); 508 else 509 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 510 511 return ret; 512 } 513 514 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 515 struct nvme_tcp_r2t_pdu *pdu) 516 { 517 struct nvme_tcp_data_pdu *data = req->pdu; 518 struct nvme_tcp_queue *queue = req->queue; 519 struct request *rq = blk_mq_rq_from_pdu(req); 520 u8 hdgst = nvme_tcp_hdgst_len(queue); 521 u8 ddgst = nvme_tcp_ddgst_len(queue); 522 523 req->pdu_len = le32_to_cpu(pdu->r2t_length); 524 req->pdu_sent = 0; 525 526 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 527 dev_err(queue->ctrl->ctrl.device, 528 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 529 rq->tag, req->pdu_len, req->data_len, 530 req->data_sent); 531 return -EPROTO; 532 } 533 534 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 535 dev_err(queue->ctrl->ctrl.device, 536 "req %d unexpected r2t offset %u (expected %zu)\n", 537 rq->tag, le32_to_cpu(pdu->r2t_offset), 538 req->data_sent); 539 return -EPROTO; 540 } 541 542 memset(data, 0, sizeof(*data)); 543 data->hdr.type = nvme_tcp_h2c_data; 544 data->hdr.flags = NVME_TCP_F_DATA_LAST; 545 if (queue->hdr_digest) 546 data->hdr.flags |= NVME_TCP_F_HDGST; 547 if (queue->data_digest) 548 data->hdr.flags |= NVME_TCP_F_DDGST; 549 data->hdr.hlen = sizeof(*data); 550 data->hdr.pdo = data->hdr.hlen + hdgst; 551 data->hdr.plen = 552 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 553 data->ttag = pdu->ttag; 554 data->command_id = rq->tag; 555 data->data_offset = cpu_to_le32(req->data_sent); 556 data->data_length = cpu_to_le32(req->pdu_len); 557 return 0; 558 } 559 560 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 561 struct nvme_tcp_r2t_pdu *pdu) 562 { 563 struct nvme_tcp_request *req; 564 struct request *rq; 565 int ret; 566 567 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 568 if (!rq) { 569 dev_err(queue->ctrl->ctrl.device, 570 "queue %d tag %#x not found\n", 571 nvme_tcp_queue_id(queue), pdu->command_id); 572 return -ENOENT; 573 } 574 req = blk_mq_rq_to_pdu(rq); 575 576 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 577 if (unlikely(ret)) 578 return ret; 579 580 req->state = NVME_TCP_SEND_H2C_PDU; 581 req->offset = 0; 582 583 nvme_tcp_queue_request(req); 584 585 return 0; 586 } 587 588 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 589 unsigned int *offset, size_t *len) 590 { 591 struct nvme_tcp_hdr *hdr; 592 char *pdu = queue->pdu; 593 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 594 int ret; 595 596 ret = skb_copy_bits(skb, *offset, 597 &pdu[queue->pdu_offset], rcv_len); 598 if (unlikely(ret)) 599 return ret; 600 601 queue->pdu_remaining -= rcv_len; 602 queue->pdu_offset += rcv_len; 603 *offset += rcv_len; 604 *len -= rcv_len; 605 if (queue->pdu_remaining) 606 return 0; 607 608 hdr = queue->pdu; 609 if (queue->hdr_digest) { 610 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 611 if (unlikely(ret)) 612 return ret; 613 } 614 615 616 if (queue->data_digest) { 617 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 618 if (unlikely(ret)) 619 return ret; 620 } 621 622 switch (hdr->type) { 623 case nvme_tcp_c2h_data: 624 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 625 case nvme_tcp_rsp: 626 nvme_tcp_init_recv_ctx(queue); 627 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 628 case nvme_tcp_r2t: 629 nvme_tcp_init_recv_ctx(queue); 630 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 631 default: 632 dev_err(queue->ctrl->ctrl.device, 633 "unsupported pdu type (%d)\n", hdr->type); 634 return -EINVAL; 635 } 636 } 637 638 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 639 { 640 union nvme_result res = {}; 641 642 nvme_end_request(rq, cpu_to_le16(status << 1), res); 643 } 644 645 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 646 unsigned int *offset, size_t *len) 647 { 648 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 649 struct nvme_tcp_request *req; 650 struct request *rq; 651 652 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 653 if (!rq) { 654 dev_err(queue->ctrl->ctrl.device, 655 "queue %d tag %#x not found\n", 656 nvme_tcp_queue_id(queue), pdu->command_id); 657 return -ENOENT; 658 } 659 req = blk_mq_rq_to_pdu(rq); 660 661 while (true) { 662 int recv_len, ret; 663 664 recv_len = min_t(size_t, *len, queue->data_remaining); 665 if (!recv_len) 666 break; 667 668 if (!iov_iter_count(&req->iter)) { 669 req->curr_bio = req->curr_bio->bi_next; 670 671 /* 672 * If we don`t have any bios it means that controller 673 * sent more data than we requested, hence error 674 */ 675 if (!req->curr_bio) { 676 dev_err(queue->ctrl->ctrl.device, 677 "queue %d no space in request %#x", 678 nvme_tcp_queue_id(queue), rq->tag); 679 nvme_tcp_init_recv_ctx(queue); 680 return -EIO; 681 } 682 nvme_tcp_init_iter(req, READ); 683 } 684 685 /* we can read only from what is left in this bio */ 686 recv_len = min_t(size_t, recv_len, 687 iov_iter_count(&req->iter)); 688 689 if (queue->data_digest) 690 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 691 &req->iter, recv_len, queue->rcv_hash); 692 else 693 ret = skb_copy_datagram_iter(skb, *offset, 694 &req->iter, recv_len); 695 if (ret) { 696 dev_err(queue->ctrl->ctrl.device, 697 "queue %d failed to copy request %#x data", 698 nvme_tcp_queue_id(queue), rq->tag); 699 return ret; 700 } 701 702 *len -= recv_len; 703 *offset += recv_len; 704 queue->data_remaining -= recv_len; 705 } 706 707 if (!queue->data_remaining) { 708 if (queue->data_digest) { 709 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 710 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 711 } else { 712 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 713 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 714 queue->nr_cqe++; 715 } 716 nvme_tcp_init_recv_ctx(queue); 717 } 718 } 719 720 return 0; 721 } 722 723 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 724 struct sk_buff *skb, unsigned int *offset, size_t *len) 725 { 726 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 727 char *ddgst = (char *)&queue->recv_ddgst; 728 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 729 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 730 int ret; 731 732 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 733 if (unlikely(ret)) 734 return ret; 735 736 queue->ddgst_remaining -= recv_len; 737 *offset += recv_len; 738 *len -= recv_len; 739 if (queue->ddgst_remaining) 740 return 0; 741 742 if (queue->recv_ddgst != queue->exp_ddgst) { 743 dev_err(queue->ctrl->ctrl.device, 744 "data digest error: recv %#x expected %#x\n", 745 le32_to_cpu(queue->recv_ddgst), 746 le32_to_cpu(queue->exp_ddgst)); 747 return -EIO; 748 } 749 750 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 751 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 752 pdu->command_id); 753 754 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 755 queue->nr_cqe++; 756 } 757 758 nvme_tcp_init_recv_ctx(queue); 759 return 0; 760 } 761 762 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 763 unsigned int offset, size_t len) 764 { 765 struct nvme_tcp_queue *queue = desc->arg.data; 766 size_t consumed = len; 767 int result; 768 769 while (len) { 770 switch (nvme_tcp_recv_state(queue)) { 771 case NVME_TCP_RECV_PDU: 772 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 773 break; 774 case NVME_TCP_RECV_DATA: 775 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 776 break; 777 case NVME_TCP_RECV_DDGST: 778 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 779 break; 780 default: 781 result = -EFAULT; 782 } 783 if (result) { 784 dev_err(queue->ctrl->ctrl.device, 785 "receive failed: %d\n", result); 786 queue->rd_enabled = false; 787 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 788 return result; 789 } 790 } 791 792 return consumed; 793 } 794 795 static void nvme_tcp_data_ready(struct sock *sk) 796 { 797 struct nvme_tcp_queue *queue; 798 799 read_lock(&sk->sk_callback_lock); 800 queue = sk->sk_user_data; 801 if (likely(queue && queue->rd_enabled)) 802 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 803 read_unlock(&sk->sk_callback_lock); 804 } 805 806 static void nvme_tcp_write_space(struct sock *sk) 807 { 808 struct nvme_tcp_queue *queue; 809 810 read_lock_bh(&sk->sk_callback_lock); 811 queue = sk->sk_user_data; 812 if (likely(queue && sk_stream_is_writeable(sk))) { 813 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 814 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 815 } 816 read_unlock_bh(&sk->sk_callback_lock); 817 } 818 819 static void nvme_tcp_state_change(struct sock *sk) 820 { 821 struct nvme_tcp_queue *queue; 822 823 read_lock(&sk->sk_callback_lock); 824 queue = sk->sk_user_data; 825 if (!queue) 826 goto done; 827 828 switch (sk->sk_state) { 829 case TCP_CLOSE: 830 case TCP_CLOSE_WAIT: 831 case TCP_LAST_ACK: 832 case TCP_FIN_WAIT1: 833 case TCP_FIN_WAIT2: 834 /* fallthrough */ 835 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 836 break; 837 default: 838 dev_info(queue->ctrl->ctrl.device, 839 "queue %d socket state %d\n", 840 nvme_tcp_queue_id(queue), sk->sk_state); 841 } 842 843 queue->state_change(sk); 844 done: 845 read_unlock(&sk->sk_callback_lock); 846 } 847 848 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 849 { 850 queue->request = NULL; 851 } 852 853 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 854 { 855 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 856 } 857 858 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 859 { 860 struct nvme_tcp_queue *queue = req->queue; 861 862 while (true) { 863 struct page *page = nvme_tcp_req_cur_page(req); 864 size_t offset = nvme_tcp_req_cur_offset(req); 865 size_t len = nvme_tcp_req_cur_length(req); 866 bool last = nvme_tcp_pdu_last_send(req, len); 867 int ret, flags = MSG_DONTWAIT; 868 869 if (last && !queue->data_digest) 870 flags |= MSG_EOR; 871 else 872 flags |= MSG_MORE; 873 874 /* can't zcopy slab pages */ 875 if (unlikely(PageSlab(page))) { 876 ret = sock_no_sendpage(queue->sock, page, offset, len, 877 flags); 878 } else { 879 ret = kernel_sendpage(queue->sock, page, offset, len, 880 flags); 881 } 882 if (ret <= 0) 883 return ret; 884 885 nvme_tcp_advance_req(req, ret); 886 if (queue->data_digest) 887 nvme_tcp_ddgst_update(queue->snd_hash, page, 888 offset, ret); 889 890 /* fully successful last write*/ 891 if (last && ret == len) { 892 if (queue->data_digest) { 893 nvme_tcp_ddgst_final(queue->snd_hash, 894 &req->ddgst); 895 req->state = NVME_TCP_SEND_DDGST; 896 req->offset = 0; 897 } else { 898 nvme_tcp_done_send_req(queue); 899 } 900 return 1; 901 } 902 } 903 return -EAGAIN; 904 } 905 906 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 907 { 908 struct nvme_tcp_queue *queue = req->queue; 909 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 910 bool inline_data = nvme_tcp_has_inline_data(req); 911 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 912 u8 hdgst = nvme_tcp_hdgst_len(queue); 913 int len = sizeof(*pdu) + hdgst - req->offset; 914 int ret; 915 916 if (queue->hdr_digest && !req->offset) 917 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 918 919 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 920 offset_in_page(pdu) + req->offset, len, flags); 921 if (unlikely(ret <= 0)) 922 return ret; 923 924 len -= ret; 925 if (!len) { 926 if (inline_data) { 927 req->state = NVME_TCP_SEND_DATA; 928 if (queue->data_digest) 929 crypto_ahash_init(queue->snd_hash); 930 nvme_tcp_init_iter(req, WRITE); 931 } else { 932 nvme_tcp_done_send_req(queue); 933 } 934 return 1; 935 } 936 req->offset += ret; 937 938 return -EAGAIN; 939 } 940 941 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 942 { 943 struct nvme_tcp_queue *queue = req->queue; 944 struct nvme_tcp_data_pdu *pdu = req->pdu; 945 u8 hdgst = nvme_tcp_hdgst_len(queue); 946 int len = sizeof(*pdu) - req->offset + hdgst; 947 int ret; 948 949 if (queue->hdr_digest && !req->offset) 950 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 951 952 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 953 offset_in_page(pdu) + req->offset, len, 954 MSG_DONTWAIT | MSG_MORE); 955 if (unlikely(ret <= 0)) 956 return ret; 957 958 len -= ret; 959 if (!len) { 960 req->state = NVME_TCP_SEND_DATA; 961 if (queue->data_digest) 962 crypto_ahash_init(queue->snd_hash); 963 if (!req->data_sent) 964 nvme_tcp_init_iter(req, WRITE); 965 return 1; 966 } 967 req->offset += ret; 968 969 return -EAGAIN; 970 } 971 972 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 973 { 974 struct nvme_tcp_queue *queue = req->queue; 975 int ret; 976 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 977 struct kvec iov = { 978 .iov_base = &req->ddgst + req->offset, 979 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 980 }; 981 982 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 983 if (unlikely(ret <= 0)) 984 return ret; 985 986 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 987 nvme_tcp_done_send_req(queue); 988 return 1; 989 } 990 991 req->offset += ret; 992 return -EAGAIN; 993 } 994 995 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 996 { 997 struct nvme_tcp_request *req; 998 int ret = 1; 999 1000 if (!queue->request) { 1001 queue->request = nvme_tcp_fetch_request(queue); 1002 if (!queue->request) 1003 return 0; 1004 } 1005 req = queue->request; 1006 1007 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1008 ret = nvme_tcp_try_send_cmd_pdu(req); 1009 if (ret <= 0) 1010 goto done; 1011 if (!nvme_tcp_has_inline_data(req)) 1012 return ret; 1013 } 1014 1015 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1016 ret = nvme_tcp_try_send_data_pdu(req); 1017 if (ret <= 0) 1018 goto done; 1019 } 1020 1021 if (req->state == NVME_TCP_SEND_DATA) { 1022 ret = nvme_tcp_try_send_data(req); 1023 if (ret <= 0) 1024 goto done; 1025 } 1026 1027 if (req->state == NVME_TCP_SEND_DDGST) 1028 ret = nvme_tcp_try_send_ddgst(req); 1029 done: 1030 if (ret == -EAGAIN) { 1031 ret = 0; 1032 } else if (ret < 0) { 1033 dev_err(queue->ctrl->ctrl.device, 1034 "failed to send request %d\n", ret); 1035 if (ret != -EPIPE && ret != -ECONNRESET) 1036 nvme_tcp_fail_request(queue->request); 1037 nvme_tcp_done_send_req(queue); 1038 } 1039 return ret; 1040 } 1041 1042 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1043 { 1044 struct socket *sock = queue->sock; 1045 struct sock *sk = sock->sk; 1046 read_descriptor_t rd_desc; 1047 int consumed; 1048 1049 rd_desc.arg.data = queue; 1050 rd_desc.count = 1; 1051 lock_sock(sk); 1052 queue->nr_cqe = 0; 1053 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1054 release_sock(sk); 1055 return consumed; 1056 } 1057 1058 static void nvme_tcp_io_work(struct work_struct *w) 1059 { 1060 struct nvme_tcp_queue *queue = 1061 container_of(w, struct nvme_tcp_queue, io_work); 1062 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1063 1064 do { 1065 bool pending = false; 1066 int result; 1067 1068 result = nvme_tcp_try_send(queue); 1069 if (result > 0) 1070 pending = true; 1071 else if (unlikely(result < 0)) 1072 break; 1073 1074 result = nvme_tcp_try_recv(queue); 1075 if (result > 0) 1076 pending = true; 1077 else if (unlikely(result < 0)) 1078 break; 1079 1080 if (!pending) 1081 return; 1082 1083 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1084 1085 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1086 } 1087 1088 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1089 { 1090 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1091 1092 ahash_request_free(queue->rcv_hash); 1093 ahash_request_free(queue->snd_hash); 1094 crypto_free_ahash(tfm); 1095 } 1096 1097 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1098 { 1099 struct crypto_ahash *tfm; 1100 1101 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1102 if (IS_ERR(tfm)) 1103 return PTR_ERR(tfm); 1104 1105 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1106 if (!queue->snd_hash) 1107 goto free_tfm; 1108 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1109 1110 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1111 if (!queue->rcv_hash) 1112 goto free_snd_hash; 1113 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1114 1115 return 0; 1116 free_snd_hash: 1117 ahash_request_free(queue->snd_hash); 1118 free_tfm: 1119 crypto_free_ahash(tfm); 1120 return -ENOMEM; 1121 } 1122 1123 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1124 { 1125 struct nvme_tcp_request *async = &ctrl->async_req; 1126 1127 page_frag_free(async->pdu); 1128 } 1129 1130 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1131 { 1132 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1133 struct nvme_tcp_request *async = &ctrl->async_req; 1134 u8 hdgst = nvme_tcp_hdgst_len(queue); 1135 1136 async->pdu = page_frag_alloc(&queue->pf_cache, 1137 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1138 GFP_KERNEL | __GFP_ZERO); 1139 if (!async->pdu) 1140 return -ENOMEM; 1141 1142 async->queue = &ctrl->queues[0]; 1143 return 0; 1144 } 1145 1146 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1147 { 1148 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1149 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1150 1151 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1152 return; 1153 1154 if (queue->hdr_digest || queue->data_digest) 1155 nvme_tcp_free_crypto(queue); 1156 1157 sock_release(queue->sock); 1158 kfree(queue->pdu); 1159 } 1160 1161 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1162 { 1163 struct nvme_tcp_icreq_pdu *icreq; 1164 struct nvme_tcp_icresp_pdu *icresp; 1165 struct msghdr msg = {}; 1166 struct kvec iov; 1167 bool ctrl_hdgst, ctrl_ddgst; 1168 int ret; 1169 1170 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1171 if (!icreq) 1172 return -ENOMEM; 1173 1174 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1175 if (!icresp) { 1176 ret = -ENOMEM; 1177 goto free_icreq; 1178 } 1179 1180 icreq->hdr.type = nvme_tcp_icreq; 1181 icreq->hdr.hlen = sizeof(*icreq); 1182 icreq->hdr.pdo = 0; 1183 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1184 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1185 icreq->maxr2t = 0; /* single inflight r2t supported */ 1186 icreq->hpda = 0; /* no alignment constraint */ 1187 if (queue->hdr_digest) 1188 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1189 if (queue->data_digest) 1190 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1191 1192 iov.iov_base = icreq; 1193 iov.iov_len = sizeof(*icreq); 1194 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1195 if (ret < 0) 1196 goto free_icresp; 1197 1198 memset(&msg, 0, sizeof(msg)); 1199 iov.iov_base = icresp; 1200 iov.iov_len = sizeof(*icresp); 1201 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1202 iov.iov_len, msg.msg_flags); 1203 if (ret < 0) 1204 goto free_icresp; 1205 1206 ret = -EINVAL; 1207 if (icresp->hdr.type != nvme_tcp_icresp) { 1208 pr_err("queue %d: bad type returned %d\n", 1209 nvme_tcp_queue_id(queue), icresp->hdr.type); 1210 goto free_icresp; 1211 } 1212 1213 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1214 pr_err("queue %d: bad pdu length returned %d\n", 1215 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1216 goto free_icresp; 1217 } 1218 1219 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1220 pr_err("queue %d: bad pfv returned %d\n", 1221 nvme_tcp_queue_id(queue), icresp->pfv); 1222 goto free_icresp; 1223 } 1224 1225 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1226 if ((queue->data_digest && !ctrl_ddgst) || 1227 (!queue->data_digest && ctrl_ddgst)) { 1228 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1229 nvme_tcp_queue_id(queue), 1230 queue->data_digest ? "enabled" : "disabled", 1231 ctrl_ddgst ? "enabled" : "disabled"); 1232 goto free_icresp; 1233 } 1234 1235 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1236 if ((queue->hdr_digest && !ctrl_hdgst) || 1237 (!queue->hdr_digest && ctrl_hdgst)) { 1238 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1239 nvme_tcp_queue_id(queue), 1240 queue->hdr_digest ? "enabled" : "disabled", 1241 ctrl_hdgst ? "enabled" : "disabled"); 1242 goto free_icresp; 1243 } 1244 1245 if (icresp->cpda != 0) { 1246 pr_err("queue %d: unsupported cpda returned %d\n", 1247 nvme_tcp_queue_id(queue), icresp->cpda); 1248 goto free_icresp; 1249 } 1250 1251 ret = 0; 1252 free_icresp: 1253 kfree(icresp); 1254 free_icreq: 1255 kfree(icreq); 1256 return ret; 1257 } 1258 1259 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1260 { 1261 return nvme_tcp_queue_id(queue) == 0; 1262 } 1263 1264 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1265 { 1266 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1267 int qid = nvme_tcp_queue_id(queue); 1268 1269 return !nvme_tcp_admin_queue(queue) && 1270 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1271 } 1272 1273 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1274 { 1275 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1276 int qid = nvme_tcp_queue_id(queue); 1277 1278 return !nvme_tcp_admin_queue(queue) && 1279 !nvme_tcp_default_queue(queue) && 1280 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1281 ctrl->io_queues[HCTX_TYPE_READ]; 1282 } 1283 1284 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1285 { 1286 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1287 int qid = nvme_tcp_queue_id(queue); 1288 1289 return !nvme_tcp_admin_queue(queue) && 1290 !nvme_tcp_default_queue(queue) && 1291 !nvme_tcp_read_queue(queue) && 1292 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1293 ctrl->io_queues[HCTX_TYPE_READ] + 1294 ctrl->io_queues[HCTX_TYPE_POLL]; 1295 } 1296 1297 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1298 { 1299 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1300 int qid = nvme_tcp_queue_id(queue); 1301 int n = 0; 1302 1303 if (nvme_tcp_default_queue(queue)) 1304 n = qid - 1; 1305 else if (nvme_tcp_read_queue(queue)) 1306 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1307 else if (nvme_tcp_poll_queue(queue)) 1308 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1309 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1310 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1311 } 1312 1313 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1314 int qid, size_t queue_size) 1315 { 1316 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1317 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1318 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1319 int ret, opt, rcv_pdu_size; 1320 1321 queue->ctrl = ctrl; 1322 INIT_LIST_HEAD(&queue->send_list); 1323 spin_lock_init(&queue->lock); 1324 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1325 queue->queue_size = queue_size; 1326 1327 if (qid > 0) 1328 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1329 else 1330 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1331 NVME_TCP_ADMIN_CCSZ; 1332 1333 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1334 IPPROTO_TCP, &queue->sock); 1335 if (ret) { 1336 dev_err(nctrl->device, 1337 "failed to create socket: %d\n", ret); 1338 return ret; 1339 } 1340 1341 /* Single syn retry */ 1342 opt = 1; 1343 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1344 (char *)&opt, sizeof(opt)); 1345 if (ret) { 1346 dev_err(nctrl->device, 1347 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1348 goto err_sock; 1349 } 1350 1351 /* Set TCP no delay */ 1352 opt = 1; 1353 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1354 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1355 if (ret) { 1356 dev_err(nctrl->device, 1357 "failed to set TCP_NODELAY sock opt %d\n", ret); 1358 goto err_sock; 1359 } 1360 1361 /* 1362 * Cleanup whatever is sitting in the TCP transmit queue on socket 1363 * close. This is done to prevent stale data from being sent should 1364 * the network connection be restored before TCP times out. 1365 */ 1366 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1367 (char *)&sol, sizeof(sol)); 1368 if (ret) { 1369 dev_err(nctrl->device, 1370 "failed to set SO_LINGER sock opt %d\n", ret); 1371 goto err_sock; 1372 } 1373 1374 if (so_priority > 0) { 1375 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_PRIORITY, 1376 (char *)&so_priority, sizeof(so_priority)); 1377 if (ret) { 1378 dev_err(ctrl->ctrl.device, 1379 "failed to set SO_PRIORITY sock opt, ret %d\n", 1380 ret); 1381 goto err_sock; 1382 } 1383 } 1384 1385 /* Set socket type of service */ 1386 if (nctrl->opts->tos >= 0) { 1387 opt = nctrl->opts->tos; 1388 ret = kernel_setsockopt(queue->sock, SOL_IP, IP_TOS, 1389 (char *)&opt, sizeof(opt)); 1390 if (ret) { 1391 dev_err(nctrl->device, 1392 "failed to set IP_TOS sock opt %d\n", ret); 1393 goto err_sock; 1394 } 1395 } 1396 1397 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1398 nvme_tcp_set_queue_io_cpu(queue); 1399 queue->request = NULL; 1400 queue->data_remaining = 0; 1401 queue->ddgst_remaining = 0; 1402 queue->pdu_remaining = 0; 1403 queue->pdu_offset = 0; 1404 sk_set_memalloc(queue->sock->sk); 1405 1406 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1407 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1408 sizeof(ctrl->src_addr)); 1409 if (ret) { 1410 dev_err(nctrl->device, 1411 "failed to bind queue %d socket %d\n", 1412 qid, ret); 1413 goto err_sock; 1414 } 1415 } 1416 1417 queue->hdr_digest = nctrl->opts->hdr_digest; 1418 queue->data_digest = nctrl->opts->data_digest; 1419 if (queue->hdr_digest || queue->data_digest) { 1420 ret = nvme_tcp_alloc_crypto(queue); 1421 if (ret) { 1422 dev_err(nctrl->device, 1423 "failed to allocate queue %d crypto\n", qid); 1424 goto err_sock; 1425 } 1426 } 1427 1428 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1429 nvme_tcp_hdgst_len(queue); 1430 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1431 if (!queue->pdu) { 1432 ret = -ENOMEM; 1433 goto err_crypto; 1434 } 1435 1436 dev_dbg(nctrl->device, "connecting queue %d\n", 1437 nvme_tcp_queue_id(queue)); 1438 1439 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1440 sizeof(ctrl->addr), 0); 1441 if (ret) { 1442 dev_err(nctrl->device, 1443 "failed to connect socket: %d\n", ret); 1444 goto err_rcv_pdu; 1445 } 1446 1447 ret = nvme_tcp_init_connection(queue); 1448 if (ret) 1449 goto err_init_connect; 1450 1451 queue->rd_enabled = true; 1452 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1453 nvme_tcp_init_recv_ctx(queue); 1454 1455 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1456 queue->sock->sk->sk_user_data = queue; 1457 queue->state_change = queue->sock->sk->sk_state_change; 1458 queue->data_ready = queue->sock->sk->sk_data_ready; 1459 queue->write_space = queue->sock->sk->sk_write_space; 1460 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1461 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1462 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1463 #ifdef CONFIG_NET_RX_BUSY_POLL 1464 queue->sock->sk->sk_ll_usec = 1; 1465 #endif 1466 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1467 1468 return 0; 1469 1470 err_init_connect: 1471 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1472 err_rcv_pdu: 1473 kfree(queue->pdu); 1474 err_crypto: 1475 if (queue->hdr_digest || queue->data_digest) 1476 nvme_tcp_free_crypto(queue); 1477 err_sock: 1478 sock_release(queue->sock); 1479 queue->sock = NULL; 1480 return ret; 1481 } 1482 1483 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1484 { 1485 struct socket *sock = queue->sock; 1486 1487 write_lock_bh(&sock->sk->sk_callback_lock); 1488 sock->sk->sk_user_data = NULL; 1489 sock->sk->sk_data_ready = queue->data_ready; 1490 sock->sk->sk_state_change = queue->state_change; 1491 sock->sk->sk_write_space = queue->write_space; 1492 write_unlock_bh(&sock->sk->sk_callback_lock); 1493 } 1494 1495 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1496 { 1497 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1498 nvme_tcp_restore_sock_calls(queue); 1499 cancel_work_sync(&queue->io_work); 1500 } 1501 1502 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1503 { 1504 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1505 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1506 1507 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1508 return; 1509 1510 __nvme_tcp_stop_queue(queue); 1511 } 1512 1513 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1514 { 1515 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1516 int ret; 1517 1518 if (idx) 1519 ret = nvmf_connect_io_queue(nctrl, idx, false); 1520 else 1521 ret = nvmf_connect_admin_queue(nctrl); 1522 1523 if (!ret) { 1524 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1525 } else { 1526 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1527 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1528 dev_err(nctrl->device, 1529 "failed to connect queue: %d ret=%d\n", idx, ret); 1530 } 1531 return ret; 1532 } 1533 1534 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1535 bool admin) 1536 { 1537 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1538 struct blk_mq_tag_set *set; 1539 int ret; 1540 1541 if (admin) { 1542 set = &ctrl->admin_tag_set; 1543 memset(set, 0, sizeof(*set)); 1544 set->ops = &nvme_tcp_admin_mq_ops; 1545 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1546 set->reserved_tags = 2; /* connect + keep-alive */ 1547 set->numa_node = NUMA_NO_NODE; 1548 set->cmd_size = sizeof(struct nvme_tcp_request); 1549 set->driver_data = ctrl; 1550 set->nr_hw_queues = 1; 1551 set->timeout = ADMIN_TIMEOUT; 1552 } else { 1553 set = &ctrl->tag_set; 1554 memset(set, 0, sizeof(*set)); 1555 set->ops = &nvme_tcp_mq_ops; 1556 set->queue_depth = nctrl->sqsize + 1; 1557 set->reserved_tags = 1; /* fabric connect */ 1558 set->numa_node = NUMA_NO_NODE; 1559 set->flags = BLK_MQ_F_SHOULD_MERGE; 1560 set->cmd_size = sizeof(struct nvme_tcp_request); 1561 set->driver_data = ctrl; 1562 set->nr_hw_queues = nctrl->queue_count - 1; 1563 set->timeout = NVME_IO_TIMEOUT; 1564 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1565 } 1566 1567 ret = blk_mq_alloc_tag_set(set); 1568 if (ret) 1569 return ERR_PTR(ret); 1570 1571 return set; 1572 } 1573 1574 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1575 { 1576 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1577 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1578 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1579 } 1580 1581 nvme_tcp_free_queue(ctrl, 0); 1582 } 1583 1584 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1585 { 1586 int i; 1587 1588 for (i = 1; i < ctrl->queue_count; i++) 1589 nvme_tcp_free_queue(ctrl, i); 1590 } 1591 1592 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1593 { 1594 int i; 1595 1596 for (i = 1; i < ctrl->queue_count; i++) 1597 nvme_tcp_stop_queue(ctrl, i); 1598 } 1599 1600 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1601 { 1602 int i, ret = 0; 1603 1604 for (i = 1; i < ctrl->queue_count; i++) { 1605 ret = nvme_tcp_start_queue(ctrl, i); 1606 if (ret) 1607 goto out_stop_queues; 1608 } 1609 1610 return 0; 1611 1612 out_stop_queues: 1613 for (i--; i >= 1; i--) 1614 nvme_tcp_stop_queue(ctrl, i); 1615 return ret; 1616 } 1617 1618 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1619 { 1620 int ret; 1621 1622 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1623 if (ret) 1624 return ret; 1625 1626 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1627 if (ret) 1628 goto out_free_queue; 1629 1630 return 0; 1631 1632 out_free_queue: 1633 nvme_tcp_free_queue(ctrl, 0); 1634 return ret; 1635 } 1636 1637 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1638 { 1639 int i, ret; 1640 1641 for (i = 1; i < ctrl->queue_count; i++) { 1642 ret = nvme_tcp_alloc_queue(ctrl, i, 1643 ctrl->sqsize + 1); 1644 if (ret) 1645 goto out_free_queues; 1646 } 1647 1648 return 0; 1649 1650 out_free_queues: 1651 for (i--; i >= 1; i--) 1652 nvme_tcp_free_queue(ctrl, i); 1653 1654 return ret; 1655 } 1656 1657 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1658 { 1659 unsigned int nr_io_queues; 1660 1661 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1662 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1663 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1664 1665 return nr_io_queues; 1666 } 1667 1668 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1669 unsigned int nr_io_queues) 1670 { 1671 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1672 struct nvmf_ctrl_options *opts = nctrl->opts; 1673 1674 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1675 /* 1676 * separate read/write queues 1677 * hand out dedicated default queues only after we have 1678 * sufficient read queues. 1679 */ 1680 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1681 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1682 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1683 min(opts->nr_write_queues, nr_io_queues); 1684 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1685 } else { 1686 /* 1687 * shared read/write queues 1688 * either no write queues were requested, or we don't have 1689 * sufficient queue count to have dedicated default queues. 1690 */ 1691 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1692 min(opts->nr_io_queues, nr_io_queues); 1693 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1694 } 1695 1696 if (opts->nr_poll_queues && nr_io_queues) { 1697 /* map dedicated poll queues only if we have queues left */ 1698 ctrl->io_queues[HCTX_TYPE_POLL] = 1699 min(opts->nr_poll_queues, nr_io_queues); 1700 } 1701 } 1702 1703 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1704 { 1705 unsigned int nr_io_queues; 1706 int ret; 1707 1708 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1709 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1710 if (ret) 1711 return ret; 1712 1713 ctrl->queue_count = nr_io_queues + 1; 1714 if (ctrl->queue_count < 2) 1715 return 0; 1716 1717 dev_info(ctrl->device, 1718 "creating %d I/O queues.\n", nr_io_queues); 1719 1720 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1721 1722 return __nvme_tcp_alloc_io_queues(ctrl); 1723 } 1724 1725 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1726 { 1727 nvme_tcp_stop_io_queues(ctrl); 1728 if (remove) { 1729 blk_cleanup_queue(ctrl->connect_q); 1730 blk_mq_free_tag_set(ctrl->tagset); 1731 } 1732 nvme_tcp_free_io_queues(ctrl); 1733 } 1734 1735 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1736 { 1737 int ret; 1738 1739 ret = nvme_tcp_alloc_io_queues(ctrl); 1740 if (ret) 1741 return ret; 1742 1743 if (new) { 1744 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1745 if (IS_ERR(ctrl->tagset)) { 1746 ret = PTR_ERR(ctrl->tagset); 1747 goto out_free_io_queues; 1748 } 1749 1750 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1751 if (IS_ERR(ctrl->connect_q)) { 1752 ret = PTR_ERR(ctrl->connect_q); 1753 goto out_free_tag_set; 1754 } 1755 } else { 1756 blk_mq_update_nr_hw_queues(ctrl->tagset, 1757 ctrl->queue_count - 1); 1758 } 1759 1760 ret = nvme_tcp_start_io_queues(ctrl); 1761 if (ret) 1762 goto out_cleanup_connect_q; 1763 1764 return 0; 1765 1766 out_cleanup_connect_q: 1767 if (new) 1768 blk_cleanup_queue(ctrl->connect_q); 1769 out_free_tag_set: 1770 if (new) 1771 blk_mq_free_tag_set(ctrl->tagset); 1772 out_free_io_queues: 1773 nvme_tcp_free_io_queues(ctrl); 1774 return ret; 1775 } 1776 1777 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1778 { 1779 nvme_tcp_stop_queue(ctrl, 0); 1780 if (remove) { 1781 blk_cleanup_queue(ctrl->admin_q); 1782 blk_cleanup_queue(ctrl->fabrics_q); 1783 blk_mq_free_tag_set(ctrl->admin_tagset); 1784 } 1785 nvme_tcp_free_admin_queue(ctrl); 1786 } 1787 1788 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1789 { 1790 int error; 1791 1792 error = nvme_tcp_alloc_admin_queue(ctrl); 1793 if (error) 1794 return error; 1795 1796 if (new) { 1797 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1798 if (IS_ERR(ctrl->admin_tagset)) { 1799 error = PTR_ERR(ctrl->admin_tagset); 1800 goto out_free_queue; 1801 } 1802 1803 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1804 if (IS_ERR(ctrl->fabrics_q)) { 1805 error = PTR_ERR(ctrl->fabrics_q); 1806 goto out_free_tagset; 1807 } 1808 1809 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1810 if (IS_ERR(ctrl->admin_q)) { 1811 error = PTR_ERR(ctrl->admin_q); 1812 goto out_cleanup_fabrics_q; 1813 } 1814 } 1815 1816 error = nvme_tcp_start_queue(ctrl, 0); 1817 if (error) 1818 goto out_cleanup_queue; 1819 1820 error = nvme_enable_ctrl(ctrl); 1821 if (error) 1822 goto out_stop_queue; 1823 1824 blk_mq_unquiesce_queue(ctrl->admin_q); 1825 1826 error = nvme_init_identify(ctrl); 1827 if (error) 1828 goto out_stop_queue; 1829 1830 return 0; 1831 1832 out_stop_queue: 1833 nvme_tcp_stop_queue(ctrl, 0); 1834 out_cleanup_queue: 1835 if (new) 1836 blk_cleanup_queue(ctrl->admin_q); 1837 out_cleanup_fabrics_q: 1838 if (new) 1839 blk_cleanup_queue(ctrl->fabrics_q); 1840 out_free_tagset: 1841 if (new) 1842 blk_mq_free_tag_set(ctrl->admin_tagset); 1843 out_free_queue: 1844 nvme_tcp_free_admin_queue(ctrl); 1845 return error; 1846 } 1847 1848 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1849 bool remove) 1850 { 1851 blk_mq_quiesce_queue(ctrl->admin_q); 1852 nvme_tcp_stop_queue(ctrl, 0); 1853 if (ctrl->admin_tagset) { 1854 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1855 nvme_cancel_request, ctrl); 1856 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1857 } 1858 if (remove) 1859 blk_mq_unquiesce_queue(ctrl->admin_q); 1860 nvme_tcp_destroy_admin_queue(ctrl, remove); 1861 } 1862 1863 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1864 bool remove) 1865 { 1866 if (ctrl->queue_count <= 1) 1867 return; 1868 nvme_stop_queues(ctrl); 1869 nvme_tcp_stop_io_queues(ctrl); 1870 if (ctrl->tagset) { 1871 blk_mq_tagset_busy_iter(ctrl->tagset, 1872 nvme_cancel_request, ctrl); 1873 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1874 } 1875 if (remove) 1876 nvme_start_queues(ctrl); 1877 nvme_tcp_destroy_io_queues(ctrl, remove); 1878 } 1879 1880 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1881 { 1882 /* If we are resetting/deleting then do nothing */ 1883 if (ctrl->state != NVME_CTRL_CONNECTING) { 1884 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1885 ctrl->state == NVME_CTRL_LIVE); 1886 return; 1887 } 1888 1889 if (nvmf_should_reconnect(ctrl)) { 1890 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1891 ctrl->opts->reconnect_delay); 1892 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1893 ctrl->opts->reconnect_delay * HZ); 1894 } else { 1895 dev_info(ctrl->device, "Removing controller...\n"); 1896 nvme_delete_ctrl(ctrl); 1897 } 1898 } 1899 1900 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1901 { 1902 struct nvmf_ctrl_options *opts = ctrl->opts; 1903 int ret; 1904 1905 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1906 if (ret) 1907 return ret; 1908 1909 if (ctrl->icdoff) { 1910 dev_err(ctrl->device, "icdoff is not supported!\n"); 1911 goto destroy_admin; 1912 } 1913 1914 if (opts->queue_size > ctrl->sqsize + 1) 1915 dev_warn(ctrl->device, 1916 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1917 opts->queue_size, ctrl->sqsize + 1); 1918 1919 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1920 dev_warn(ctrl->device, 1921 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1922 ctrl->sqsize + 1, ctrl->maxcmd); 1923 ctrl->sqsize = ctrl->maxcmd - 1; 1924 } 1925 1926 if (ctrl->queue_count > 1) { 1927 ret = nvme_tcp_configure_io_queues(ctrl, new); 1928 if (ret) 1929 goto destroy_admin; 1930 } 1931 1932 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1933 /* 1934 * state change failure is ok if we're in DELETING state, 1935 * unless we're during creation of a new controller to 1936 * avoid races with teardown flow. 1937 */ 1938 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1939 WARN_ON_ONCE(new); 1940 ret = -EINVAL; 1941 goto destroy_io; 1942 } 1943 1944 nvme_start_ctrl(ctrl); 1945 return 0; 1946 1947 destroy_io: 1948 if (ctrl->queue_count > 1) 1949 nvme_tcp_destroy_io_queues(ctrl, new); 1950 destroy_admin: 1951 nvme_tcp_stop_queue(ctrl, 0); 1952 nvme_tcp_destroy_admin_queue(ctrl, new); 1953 return ret; 1954 } 1955 1956 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1957 { 1958 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1959 struct nvme_tcp_ctrl, connect_work); 1960 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1961 1962 ++ctrl->nr_reconnects; 1963 1964 if (nvme_tcp_setup_ctrl(ctrl, false)) 1965 goto requeue; 1966 1967 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1968 ctrl->nr_reconnects); 1969 1970 ctrl->nr_reconnects = 0; 1971 1972 return; 1973 1974 requeue: 1975 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1976 ctrl->nr_reconnects); 1977 nvme_tcp_reconnect_or_remove(ctrl); 1978 } 1979 1980 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1981 { 1982 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1983 struct nvme_tcp_ctrl, err_work); 1984 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1985 1986 nvme_stop_keep_alive(ctrl); 1987 nvme_tcp_teardown_io_queues(ctrl, false); 1988 /* unquiesce to fail fast pending requests */ 1989 nvme_start_queues(ctrl); 1990 nvme_tcp_teardown_admin_queue(ctrl, false); 1991 blk_mq_unquiesce_queue(ctrl->admin_q); 1992 1993 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1994 /* state change failure is ok if we're in DELETING state */ 1995 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1996 return; 1997 } 1998 1999 nvme_tcp_reconnect_or_remove(ctrl); 2000 } 2001 2002 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2003 { 2004 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2005 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2006 2007 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2008 blk_mq_quiesce_queue(ctrl->admin_q); 2009 if (shutdown) 2010 nvme_shutdown_ctrl(ctrl); 2011 else 2012 nvme_disable_ctrl(ctrl); 2013 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2014 } 2015 2016 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2017 { 2018 nvme_tcp_teardown_ctrl(ctrl, true); 2019 } 2020 2021 static void nvme_reset_ctrl_work(struct work_struct *work) 2022 { 2023 struct nvme_ctrl *ctrl = 2024 container_of(work, struct nvme_ctrl, reset_work); 2025 2026 nvme_stop_ctrl(ctrl); 2027 nvme_tcp_teardown_ctrl(ctrl, false); 2028 2029 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2030 /* state change failure is ok if we're in DELETING state */ 2031 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 2032 return; 2033 } 2034 2035 if (nvme_tcp_setup_ctrl(ctrl, false)) 2036 goto out_fail; 2037 2038 return; 2039 2040 out_fail: 2041 ++ctrl->nr_reconnects; 2042 nvme_tcp_reconnect_or_remove(ctrl); 2043 } 2044 2045 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2046 { 2047 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2048 2049 if (list_empty(&ctrl->list)) 2050 goto free_ctrl; 2051 2052 mutex_lock(&nvme_tcp_ctrl_mutex); 2053 list_del(&ctrl->list); 2054 mutex_unlock(&nvme_tcp_ctrl_mutex); 2055 2056 nvmf_free_options(nctrl->opts); 2057 free_ctrl: 2058 kfree(ctrl->queues); 2059 kfree(ctrl); 2060 } 2061 2062 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2063 { 2064 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2065 2066 sg->addr = 0; 2067 sg->length = 0; 2068 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2069 NVME_SGL_FMT_TRANSPORT_A; 2070 } 2071 2072 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2073 struct nvme_command *c, u32 data_len) 2074 { 2075 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2076 2077 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2078 sg->length = cpu_to_le32(data_len); 2079 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2080 } 2081 2082 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2083 u32 data_len) 2084 { 2085 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2086 2087 sg->addr = 0; 2088 sg->length = cpu_to_le32(data_len); 2089 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2090 NVME_SGL_FMT_TRANSPORT_A; 2091 } 2092 2093 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2094 { 2095 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2096 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2097 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2098 struct nvme_command *cmd = &pdu->cmd; 2099 u8 hdgst = nvme_tcp_hdgst_len(queue); 2100 2101 memset(pdu, 0, sizeof(*pdu)); 2102 pdu->hdr.type = nvme_tcp_cmd; 2103 if (queue->hdr_digest) 2104 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2105 pdu->hdr.hlen = sizeof(*pdu); 2106 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2107 2108 cmd->common.opcode = nvme_admin_async_event; 2109 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2110 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2111 nvme_tcp_set_sg_null(cmd); 2112 2113 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2114 ctrl->async_req.offset = 0; 2115 ctrl->async_req.curr_bio = NULL; 2116 ctrl->async_req.data_len = 0; 2117 2118 nvme_tcp_queue_request(&ctrl->async_req); 2119 } 2120 2121 static enum blk_eh_timer_return 2122 nvme_tcp_timeout(struct request *rq, bool reserved) 2123 { 2124 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2125 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2126 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2127 2128 /* 2129 * Restart the timer if a controller reset is already scheduled. Any 2130 * timed out commands would be handled before entering the connecting 2131 * state. 2132 */ 2133 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 2134 return BLK_EH_RESET_TIMER; 2135 2136 dev_warn(ctrl->ctrl.device, 2137 "queue %d: timeout request %#x type %d\n", 2138 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2139 2140 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2141 /* 2142 * Teardown immediately if controller times out while starting 2143 * or we are already started error recovery. all outstanding 2144 * requests are completed on shutdown, so we return BLK_EH_DONE. 2145 */ 2146 flush_work(&ctrl->err_work); 2147 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2148 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2149 return BLK_EH_DONE; 2150 } 2151 2152 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2153 nvme_tcp_error_recovery(&ctrl->ctrl); 2154 2155 return BLK_EH_RESET_TIMER; 2156 } 2157 2158 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2159 struct request *rq) 2160 { 2161 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2162 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2163 struct nvme_command *c = &pdu->cmd; 2164 2165 c->common.flags |= NVME_CMD_SGL_METABUF; 2166 2167 if (rq_data_dir(rq) == WRITE && req->data_len && 2168 req->data_len <= nvme_tcp_inline_data_size(queue)) 2169 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2170 else 2171 nvme_tcp_set_sg_host_data(c, req->data_len); 2172 2173 return 0; 2174 } 2175 2176 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2177 struct request *rq) 2178 { 2179 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2180 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2181 struct nvme_tcp_queue *queue = req->queue; 2182 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2183 blk_status_t ret; 2184 2185 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2186 if (ret) 2187 return ret; 2188 2189 req->state = NVME_TCP_SEND_CMD_PDU; 2190 req->offset = 0; 2191 req->data_sent = 0; 2192 req->pdu_len = 0; 2193 req->pdu_sent = 0; 2194 req->data_len = blk_rq_payload_bytes(rq); 2195 req->curr_bio = rq->bio; 2196 2197 if (rq_data_dir(rq) == WRITE && 2198 req->data_len <= nvme_tcp_inline_data_size(queue)) 2199 req->pdu_len = req->data_len; 2200 else if (req->curr_bio) 2201 nvme_tcp_init_iter(req, READ); 2202 2203 pdu->hdr.type = nvme_tcp_cmd; 2204 pdu->hdr.flags = 0; 2205 if (queue->hdr_digest) 2206 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2207 if (queue->data_digest && req->pdu_len) { 2208 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2209 ddgst = nvme_tcp_ddgst_len(queue); 2210 } 2211 pdu->hdr.hlen = sizeof(*pdu); 2212 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2213 pdu->hdr.plen = 2214 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2215 2216 ret = nvme_tcp_map_data(queue, rq); 2217 if (unlikely(ret)) { 2218 nvme_cleanup_cmd(rq); 2219 dev_err(queue->ctrl->ctrl.device, 2220 "Failed to map data (%d)\n", ret); 2221 return ret; 2222 } 2223 2224 return 0; 2225 } 2226 2227 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2228 const struct blk_mq_queue_data *bd) 2229 { 2230 struct nvme_ns *ns = hctx->queue->queuedata; 2231 struct nvme_tcp_queue *queue = hctx->driver_data; 2232 struct request *rq = bd->rq; 2233 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2234 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2235 blk_status_t ret; 2236 2237 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2238 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2239 2240 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2241 if (unlikely(ret)) 2242 return ret; 2243 2244 blk_mq_start_request(rq); 2245 2246 nvme_tcp_queue_request(req); 2247 2248 return BLK_STS_OK; 2249 } 2250 2251 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2252 { 2253 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2254 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2255 2256 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2257 /* separate read/write queues */ 2258 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2259 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2260 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2261 set->map[HCTX_TYPE_READ].nr_queues = 2262 ctrl->io_queues[HCTX_TYPE_READ]; 2263 set->map[HCTX_TYPE_READ].queue_offset = 2264 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2265 } else { 2266 /* shared read/write queues */ 2267 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2268 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2269 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2270 set->map[HCTX_TYPE_READ].nr_queues = 2271 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2272 set->map[HCTX_TYPE_READ].queue_offset = 0; 2273 } 2274 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2275 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2276 2277 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2278 /* map dedicated poll queues only if we have queues left */ 2279 set->map[HCTX_TYPE_POLL].nr_queues = 2280 ctrl->io_queues[HCTX_TYPE_POLL]; 2281 set->map[HCTX_TYPE_POLL].queue_offset = 2282 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2283 ctrl->io_queues[HCTX_TYPE_READ]; 2284 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2285 } 2286 2287 dev_info(ctrl->ctrl.device, 2288 "mapped %d/%d/%d default/read/poll queues.\n", 2289 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2290 ctrl->io_queues[HCTX_TYPE_READ], 2291 ctrl->io_queues[HCTX_TYPE_POLL]); 2292 2293 return 0; 2294 } 2295 2296 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2297 { 2298 struct nvme_tcp_queue *queue = hctx->driver_data; 2299 struct sock *sk = queue->sock->sk; 2300 2301 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2302 sk_busy_loop(sk, true); 2303 nvme_tcp_try_recv(queue); 2304 return queue->nr_cqe; 2305 } 2306 2307 static struct blk_mq_ops nvme_tcp_mq_ops = { 2308 .queue_rq = nvme_tcp_queue_rq, 2309 .complete = nvme_complete_rq, 2310 .init_request = nvme_tcp_init_request, 2311 .exit_request = nvme_tcp_exit_request, 2312 .init_hctx = nvme_tcp_init_hctx, 2313 .timeout = nvme_tcp_timeout, 2314 .map_queues = nvme_tcp_map_queues, 2315 .poll = nvme_tcp_poll, 2316 }; 2317 2318 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2319 .queue_rq = nvme_tcp_queue_rq, 2320 .complete = nvme_complete_rq, 2321 .init_request = nvme_tcp_init_request, 2322 .exit_request = nvme_tcp_exit_request, 2323 .init_hctx = nvme_tcp_init_admin_hctx, 2324 .timeout = nvme_tcp_timeout, 2325 }; 2326 2327 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2328 .name = "tcp", 2329 .module = THIS_MODULE, 2330 .flags = NVME_F_FABRICS, 2331 .reg_read32 = nvmf_reg_read32, 2332 .reg_read64 = nvmf_reg_read64, 2333 .reg_write32 = nvmf_reg_write32, 2334 .free_ctrl = nvme_tcp_free_ctrl, 2335 .submit_async_event = nvme_tcp_submit_async_event, 2336 .delete_ctrl = nvme_tcp_delete_ctrl, 2337 .get_address = nvmf_get_address, 2338 }; 2339 2340 static bool 2341 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2342 { 2343 struct nvme_tcp_ctrl *ctrl; 2344 bool found = false; 2345 2346 mutex_lock(&nvme_tcp_ctrl_mutex); 2347 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2348 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2349 if (found) 2350 break; 2351 } 2352 mutex_unlock(&nvme_tcp_ctrl_mutex); 2353 2354 return found; 2355 } 2356 2357 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2358 struct nvmf_ctrl_options *opts) 2359 { 2360 struct nvme_tcp_ctrl *ctrl; 2361 int ret; 2362 2363 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2364 if (!ctrl) 2365 return ERR_PTR(-ENOMEM); 2366 2367 INIT_LIST_HEAD(&ctrl->list); 2368 ctrl->ctrl.opts = opts; 2369 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2370 opts->nr_poll_queues + 1; 2371 ctrl->ctrl.sqsize = opts->queue_size - 1; 2372 ctrl->ctrl.kato = opts->kato; 2373 2374 INIT_DELAYED_WORK(&ctrl->connect_work, 2375 nvme_tcp_reconnect_ctrl_work); 2376 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2377 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2378 2379 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2380 opts->trsvcid = 2381 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2382 if (!opts->trsvcid) { 2383 ret = -ENOMEM; 2384 goto out_free_ctrl; 2385 } 2386 opts->mask |= NVMF_OPT_TRSVCID; 2387 } 2388 2389 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2390 opts->traddr, opts->trsvcid, &ctrl->addr); 2391 if (ret) { 2392 pr_err("malformed address passed: %s:%s\n", 2393 opts->traddr, opts->trsvcid); 2394 goto out_free_ctrl; 2395 } 2396 2397 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2398 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2399 opts->host_traddr, NULL, &ctrl->src_addr); 2400 if (ret) { 2401 pr_err("malformed src address passed: %s\n", 2402 opts->host_traddr); 2403 goto out_free_ctrl; 2404 } 2405 } 2406 2407 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2408 ret = -EALREADY; 2409 goto out_free_ctrl; 2410 } 2411 2412 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2413 GFP_KERNEL); 2414 if (!ctrl->queues) { 2415 ret = -ENOMEM; 2416 goto out_free_ctrl; 2417 } 2418 2419 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2420 if (ret) 2421 goto out_kfree_queues; 2422 2423 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2424 WARN_ON_ONCE(1); 2425 ret = -EINTR; 2426 goto out_uninit_ctrl; 2427 } 2428 2429 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2430 if (ret) 2431 goto out_uninit_ctrl; 2432 2433 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2434 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2435 2436 mutex_lock(&nvme_tcp_ctrl_mutex); 2437 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2438 mutex_unlock(&nvme_tcp_ctrl_mutex); 2439 2440 return &ctrl->ctrl; 2441 2442 out_uninit_ctrl: 2443 nvme_uninit_ctrl(&ctrl->ctrl); 2444 nvme_put_ctrl(&ctrl->ctrl); 2445 if (ret > 0) 2446 ret = -EIO; 2447 return ERR_PTR(ret); 2448 out_kfree_queues: 2449 kfree(ctrl->queues); 2450 out_free_ctrl: 2451 kfree(ctrl); 2452 return ERR_PTR(ret); 2453 } 2454 2455 static struct nvmf_transport_ops nvme_tcp_transport = { 2456 .name = "tcp", 2457 .module = THIS_MODULE, 2458 .required_opts = NVMF_OPT_TRADDR, 2459 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2460 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2461 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2462 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2463 NVMF_OPT_TOS, 2464 .create_ctrl = nvme_tcp_create_ctrl, 2465 }; 2466 2467 static int __init nvme_tcp_init_module(void) 2468 { 2469 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2470 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2471 if (!nvme_tcp_wq) 2472 return -ENOMEM; 2473 2474 nvmf_register_transport(&nvme_tcp_transport); 2475 return 0; 2476 } 2477 2478 static void __exit nvme_tcp_cleanup_module(void) 2479 { 2480 struct nvme_tcp_ctrl *ctrl; 2481 2482 nvmf_unregister_transport(&nvme_tcp_transport); 2483 2484 mutex_lock(&nvme_tcp_ctrl_mutex); 2485 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2486 nvme_delete_ctrl(&ctrl->ctrl); 2487 mutex_unlock(&nvme_tcp_ctrl_mutex); 2488 flush_workqueue(nvme_delete_wq); 2489 2490 destroy_workqueue(nvme_tcp_wq); 2491 } 2492 2493 module_init(nvme_tcp_init_module); 2494 module_exit(nvme_tcp_cleanup_module); 2495 2496 MODULE_LICENSE("GPL v2"); 2497