xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 890f0b0d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	__le32			ddgst;
50 
51 	struct bio		*curr_bio;
52 	struct iov_iter		iter;
53 
54 	/* send state */
55 	size_t			offset;
56 	size_t			data_sent;
57 	enum nvme_tcp_send_state state;
58 };
59 
60 enum nvme_tcp_queue_flags {
61 	NVME_TCP_Q_ALLOCATED	= 0,
62 	NVME_TCP_Q_LIVE		= 1,
63 };
64 
65 enum nvme_tcp_recv_state {
66 	NVME_TCP_RECV_PDU = 0,
67 	NVME_TCP_RECV_DATA,
68 	NVME_TCP_RECV_DDGST,
69 };
70 
71 struct nvme_tcp_ctrl;
72 struct nvme_tcp_queue {
73 	struct socket		*sock;
74 	struct work_struct	io_work;
75 	int			io_cpu;
76 
77 	spinlock_t		lock;
78 	struct list_head	send_list;
79 
80 	/* recv state */
81 	void			*pdu;
82 	int			pdu_remaining;
83 	int			pdu_offset;
84 	size_t			data_remaining;
85 	size_t			ddgst_remaining;
86 	unsigned int		nr_cqe;
87 
88 	/* send state */
89 	struct nvme_tcp_request *request;
90 
91 	int			queue_size;
92 	size_t			cmnd_capsule_len;
93 	struct nvme_tcp_ctrl	*ctrl;
94 	unsigned long		flags;
95 	bool			rd_enabled;
96 
97 	bool			hdr_digest;
98 	bool			data_digest;
99 	struct ahash_request	*rcv_hash;
100 	struct ahash_request	*snd_hash;
101 	__le32			exp_ddgst;
102 	__le32			recv_ddgst;
103 
104 	struct page_frag_cache	pf_cache;
105 
106 	void (*state_change)(struct sock *);
107 	void (*data_ready)(struct sock *);
108 	void (*write_space)(struct sock *);
109 };
110 
111 struct nvme_tcp_ctrl {
112 	/* read only in the hot path */
113 	struct nvme_tcp_queue	*queues;
114 	struct blk_mq_tag_set	tag_set;
115 
116 	/* other member variables */
117 	struct list_head	list;
118 	struct blk_mq_tag_set	admin_tag_set;
119 	struct sockaddr_storage addr;
120 	struct sockaddr_storage src_addr;
121 	struct nvme_ctrl	ctrl;
122 
123 	struct work_struct	err_work;
124 	struct delayed_work	connect_work;
125 	struct nvme_tcp_request async_req;
126 	u32			io_queues[HCTX_MAX_TYPES];
127 };
128 
129 static LIST_HEAD(nvme_tcp_ctrl_list);
130 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
131 static struct workqueue_struct *nvme_tcp_wq;
132 static struct blk_mq_ops nvme_tcp_mq_ops;
133 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
134 
135 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
136 {
137 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
138 }
139 
140 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
141 {
142 	return queue - queue->ctrl->queues;
143 }
144 
145 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
146 {
147 	u32 queue_idx = nvme_tcp_queue_id(queue);
148 
149 	if (queue_idx == 0)
150 		return queue->ctrl->admin_tag_set.tags[queue_idx];
151 	return queue->ctrl->tag_set.tags[queue_idx - 1];
152 }
153 
154 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
155 {
156 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
157 }
158 
159 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
160 {
161 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
162 }
163 
164 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
165 {
166 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
167 }
168 
169 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
170 {
171 	return req == &req->queue->ctrl->async_req;
172 }
173 
174 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
175 {
176 	struct request *rq;
177 	unsigned int bytes;
178 
179 	if (unlikely(nvme_tcp_async_req(req)))
180 		return false; /* async events don't have a request */
181 
182 	rq = blk_mq_rq_from_pdu(req);
183 	bytes = blk_rq_payload_bytes(rq);
184 
185 	return rq_data_dir(rq) == WRITE && bytes &&
186 		bytes <= nvme_tcp_inline_data_size(req->queue);
187 }
188 
189 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
190 {
191 	return req->iter.bvec->bv_page;
192 }
193 
194 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
195 {
196 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
197 }
198 
199 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
200 {
201 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
202 			req->pdu_len - req->pdu_sent);
203 }
204 
205 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
206 {
207 	return req->iter.iov_offset;
208 }
209 
210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213 			req->pdu_len - req->pdu_sent : 0;
214 }
215 
216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217 		int len)
218 {
219 	return nvme_tcp_pdu_data_left(req) <= len;
220 }
221 
222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223 		unsigned int dir)
224 {
225 	struct request *rq = blk_mq_rq_from_pdu(req);
226 	struct bio_vec *vec;
227 	unsigned int size;
228 	int nsegs;
229 	size_t offset;
230 
231 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232 		vec = &rq->special_vec;
233 		nsegs = 1;
234 		size = blk_rq_payload_bytes(rq);
235 		offset = 0;
236 	} else {
237 		struct bio *bio = req->curr_bio;
238 
239 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
240 		nsegs = bio_segments(bio);
241 		size = bio->bi_iter.bi_size;
242 		offset = bio->bi_iter.bi_bvec_done;
243 	}
244 
245 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
246 	req->iter.iov_offset = offset;
247 }
248 
249 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
250 		int len)
251 {
252 	req->data_sent += len;
253 	req->pdu_sent += len;
254 	iov_iter_advance(&req->iter, len);
255 	if (!iov_iter_count(&req->iter) &&
256 	    req->data_sent < req->data_len) {
257 		req->curr_bio = req->curr_bio->bi_next;
258 		nvme_tcp_init_iter(req, WRITE);
259 	}
260 }
261 
262 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
263 {
264 	struct nvme_tcp_queue *queue = req->queue;
265 
266 	spin_lock(&queue->lock);
267 	list_add_tail(&req->entry, &queue->send_list);
268 	spin_unlock(&queue->lock);
269 
270 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
271 }
272 
273 static inline struct nvme_tcp_request *
274 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
275 {
276 	struct nvme_tcp_request *req;
277 
278 	spin_lock(&queue->lock);
279 	req = list_first_entry_or_null(&queue->send_list,
280 			struct nvme_tcp_request, entry);
281 	if (req)
282 		list_del(&req->entry);
283 	spin_unlock(&queue->lock);
284 
285 	return req;
286 }
287 
288 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
289 		__le32 *dgst)
290 {
291 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
292 	crypto_ahash_final(hash);
293 }
294 
295 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
296 		struct page *page, off_t off, size_t len)
297 {
298 	struct scatterlist sg;
299 
300 	sg_init_marker(&sg, 1);
301 	sg_set_page(&sg, page, len, off);
302 	ahash_request_set_crypt(hash, &sg, NULL, len);
303 	crypto_ahash_update(hash);
304 }
305 
306 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
307 		void *pdu, size_t len)
308 {
309 	struct scatterlist sg;
310 
311 	sg_init_one(&sg, pdu, len);
312 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
313 	crypto_ahash_digest(hash);
314 }
315 
316 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
317 		void *pdu, size_t pdu_len)
318 {
319 	struct nvme_tcp_hdr *hdr = pdu;
320 	__le32 recv_digest;
321 	__le32 exp_digest;
322 
323 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
324 		dev_err(queue->ctrl->ctrl.device,
325 			"queue %d: header digest flag is cleared\n",
326 			nvme_tcp_queue_id(queue));
327 		return -EPROTO;
328 	}
329 
330 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
331 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
332 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
333 	if (recv_digest != exp_digest) {
334 		dev_err(queue->ctrl->ctrl.device,
335 			"header digest error: recv %#x expected %#x\n",
336 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
337 		return -EIO;
338 	}
339 
340 	return 0;
341 }
342 
343 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
344 {
345 	struct nvme_tcp_hdr *hdr = pdu;
346 	u8 digest_len = nvme_tcp_hdgst_len(queue);
347 	u32 len;
348 
349 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
350 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
351 
352 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
353 		dev_err(queue->ctrl->ctrl.device,
354 			"queue %d: data digest flag is cleared\n",
355 		nvme_tcp_queue_id(queue));
356 		return -EPROTO;
357 	}
358 	crypto_ahash_init(queue->rcv_hash);
359 
360 	return 0;
361 }
362 
363 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
364 		struct request *rq, unsigned int hctx_idx)
365 {
366 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
367 
368 	page_frag_free(req->pdu);
369 }
370 
371 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
372 		struct request *rq, unsigned int hctx_idx,
373 		unsigned int numa_node)
374 {
375 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
376 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
377 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
378 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
379 	u8 hdgst = nvme_tcp_hdgst_len(queue);
380 
381 	req->pdu = page_frag_alloc(&queue->pf_cache,
382 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
383 		GFP_KERNEL | __GFP_ZERO);
384 	if (!req->pdu)
385 		return -ENOMEM;
386 
387 	req->queue = queue;
388 	nvme_req(rq)->ctrl = &ctrl->ctrl;
389 
390 	return 0;
391 }
392 
393 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
394 		unsigned int hctx_idx)
395 {
396 	struct nvme_tcp_ctrl *ctrl = data;
397 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
398 
399 	hctx->driver_data = queue;
400 	return 0;
401 }
402 
403 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 		unsigned int hctx_idx)
405 {
406 	struct nvme_tcp_ctrl *ctrl = data;
407 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
408 
409 	hctx->driver_data = queue;
410 	return 0;
411 }
412 
413 static enum nvme_tcp_recv_state
414 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
415 {
416 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
417 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
418 		NVME_TCP_RECV_DATA;
419 }
420 
421 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
422 {
423 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
424 				nvme_tcp_hdgst_len(queue);
425 	queue->pdu_offset = 0;
426 	queue->data_remaining = -1;
427 	queue->ddgst_remaining = 0;
428 }
429 
430 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
431 {
432 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
433 		return;
434 
435 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
436 }
437 
438 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
439 		struct nvme_completion *cqe)
440 {
441 	struct request *rq;
442 
443 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
444 	if (!rq) {
445 		dev_err(queue->ctrl->ctrl.device,
446 			"queue %d tag 0x%x not found\n",
447 			nvme_tcp_queue_id(queue), cqe->command_id);
448 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
449 		return -EINVAL;
450 	}
451 
452 	nvme_end_request(rq, cqe->status, cqe->result);
453 	queue->nr_cqe++;
454 
455 	return 0;
456 }
457 
458 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
459 		struct nvme_tcp_data_pdu *pdu)
460 {
461 	struct request *rq;
462 
463 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
464 	if (!rq) {
465 		dev_err(queue->ctrl->ctrl.device,
466 			"queue %d tag %#x not found\n",
467 			nvme_tcp_queue_id(queue), pdu->command_id);
468 		return -ENOENT;
469 	}
470 
471 	if (!blk_rq_payload_bytes(rq)) {
472 		dev_err(queue->ctrl->ctrl.device,
473 			"queue %d tag %#x unexpected data\n",
474 			nvme_tcp_queue_id(queue), rq->tag);
475 		return -EIO;
476 	}
477 
478 	queue->data_remaining = le32_to_cpu(pdu->data_length);
479 
480 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
481 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
482 		dev_err(queue->ctrl->ctrl.device,
483 			"queue %d tag %#x SUCCESS set but not last PDU\n",
484 			nvme_tcp_queue_id(queue), rq->tag);
485 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
486 		return -EPROTO;
487 	}
488 
489 	return 0;
490 }
491 
492 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
493 		struct nvme_tcp_rsp_pdu *pdu)
494 {
495 	struct nvme_completion *cqe = &pdu->cqe;
496 	int ret = 0;
497 
498 	/*
499 	 * AEN requests are special as they don't time out and can
500 	 * survive any kind of queue freeze and often don't respond to
501 	 * aborts.  We don't even bother to allocate a struct request
502 	 * for them but rather special case them here.
503 	 */
504 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
505 				     cqe->command_id)))
506 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
507 				&cqe->result);
508 	else
509 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
510 
511 	return ret;
512 }
513 
514 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
515 		struct nvme_tcp_r2t_pdu *pdu)
516 {
517 	struct nvme_tcp_data_pdu *data = req->pdu;
518 	struct nvme_tcp_queue *queue = req->queue;
519 	struct request *rq = blk_mq_rq_from_pdu(req);
520 	u8 hdgst = nvme_tcp_hdgst_len(queue);
521 	u8 ddgst = nvme_tcp_ddgst_len(queue);
522 
523 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
524 	req->pdu_sent = 0;
525 
526 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
527 		dev_err(queue->ctrl->ctrl.device,
528 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
529 			rq->tag, req->pdu_len, req->data_len,
530 			req->data_sent);
531 		return -EPROTO;
532 	}
533 
534 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
535 		dev_err(queue->ctrl->ctrl.device,
536 			"req %d unexpected r2t offset %u (expected %zu)\n",
537 			rq->tag, le32_to_cpu(pdu->r2t_offset),
538 			req->data_sent);
539 		return -EPROTO;
540 	}
541 
542 	memset(data, 0, sizeof(*data));
543 	data->hdr.type = nvme_tcp_h2c_data;
544 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
545 	if (queue->hdr_digest)
546 		data->hdr.flags |= NVME_TCP_F_HDGST;
547 	if (queue->data_digest)
548 		data->hdr.flags |= NVME_TCP_F_DDGST;
549 	data->hdr.hlen = sizeof(*data);
550 	data->hdr.pdo = data->hdr.hlen + hdgst;
551 	data->hdr.plen =
552 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
553 	data->ttag = pdu->ttag;
554 	data->command_id = rq->tag;
555 	data->data_offset = cpu_to_le32(req->data_sent);
556 	data->data_length = cpu_to_le32(req->pdu_len);
557 	return 0;
558 }
559 
560 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
561 		struct nvme_tcp_r2t_pdu *pdu)
562 {
563 	struct nvme_tcp_request *req;
564 	struct request *rq;
565 	int ret;
566 
567 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
568 	if (!rq) {
569 		dev_err(queue->ctrl->ctrl.device,
570 			"queue %d tag %#x not found\n",
571 			nvme_tcp_queue_id(queue), pdu->command_id);
572 		return -ENOENT;
573 	}
574 	req = blk_mq_rq_to_pdu(rq);
575 
576 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
577 	if (unlikely(ret))
578 		return ret;
579 
580 	req->state = NVME_TCP_SEND_H2C_PDU;
581 	req->offset = 0;
582 
583 	nvme_tcp_queue_request(req);
584 
585 	return 0;
586 }
587 
588 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
589 		unsigned int *offset, size_t *len)
590 {
591 	struct nvme_tcp_hdr *hdr;
592 	char *pdu = queue->pdu;
593 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
594 	int ret;
595 
596 	ret = skb_copy_bits(skb, *offset,
597 		&pdu[queue->pdu_offset], rcv_len);
598 	if (unlikely(ret))
599 		return ret;
600 
601 	queue->pdu_remaining -= rcv_len;
602 	queue->pdu_offset += rcv_len;
603 	*offset += rcv_len;
604 	*len -= rcv_len;
605 	if (queue->pdu_remaining)
606 		return 0;
607 
608 	hdr = queue->pdu;
609 	if (queue->hdr_digest) {
610 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
611 		if (unlikely(ret))
612 			return ret;
613 	}
614 
615 
616 	if (queue->data_digest) {
617 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
618 		if (unlikely(ret))
619 			return ret;
620 	}
621 
622 	switch (hdr->type) {
623 	case nvme_tcp_c2h_data:
624 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
625 	case nvme_tcp_rsp:
626 		nvme_tcp_init_recv_ctx(queue);
627 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
628 	case nvme_tcp_r2t:
629 		nvme_tcp_init_recv_ctx(queue);
630 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
631 	default:
632 		dev_err(queue->ctrl->ctrl.device,
633 			"unsupported pdu type (%d)\n", hdr->type);
634 		return -EINVAL;
635 	}
636 }
637 
638 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
639 {
640 	union nvme_result res = {};
641 
642 	nvme_end_request(rq, cpu_to_le16(status << 1), res);
643 }
644 
645 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
646 			      unsigned int *offset, size_t *len)
647 {
648 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
649 	struct nvme_tcp_request *req;
650 	struct request *rq;
651 
652 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
653 	if (!rq) {
654 		dev_err(queue->ctrl->ctrl.device,
655 			"queue %d tag %#x not found\n",
656 			nvme_tcp_queue_id(queue), pdu->command_id);
657 		return -ENOENT;
658 	}
659 	req = blk_mq_rq_to_pdu(rq);
660 
661 	while (true) {
662 		int recv_len, ret;
663 
664 		recv_len = min_t(size_t, *len, queue->data_remaining);
665 		if (!recv_len)
666 			break;
667 
668 		if (!iov_iter_count(&req->iter)) {
669 			req->curr_bio = req->curr_bio->bi_next;
670 
671 			/*
672 			 * If we don`t have any bios it means that controller
673 			 * sent more data than we requested, hence error
674 			 */
675 			if (!req->curr_bio) {
676 				dev_err(queue->ctrl->ctrl.device,
677 					"queue %d no space in request %#x",
678 					nvme_tcp_queue_id(queue), rq->tag);
679 				nvme_tcp_init_recv_ctx(queue);
680 				return -EIO;
681 			}
682 			nvme_tcp_init_iter(req, READ);
683 		}
684 
685 		/* we can read only from what is left in this bio */
686 		recv_len = min_t(size_t, recv_len,
687 				iov_iter_count(&req->iter));
688 
689 		if (queue->data_digest)
690 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
691 				&req->iter, recv_len, queue->rcv_hash);
692 		else
693 			ret = skb_copy_datagram_iter(skb, *offset,
694 					&req->iter, recv_len);
695 		if (ret) {
696 			dev_err(queue->ctrl->ctrl.device,
697 				"queue %d failed to copy request %#x data",
698 				nvme_tcp_queue_id(queue), rq->tag);
699 			return ret;
700 		}
701 
702 		*len -= recv_len;
703 		*offset += recv_len;
704 		queue->data_remaining -= recv_len;
705 	}
706 
707 	if (!queue->data_remaining) {
708 		if (queue->data_digest) {
709 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
710 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
711 		} else {
712 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
713 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
714 				queue->nr_cqe++;
715 			}
716 			nvme_tcp_init_recv_ctx(queue);
717 		}
718 	}
719 
720 	return 0;
721 }
722 
723 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
724 		struct sk_buff *skb, unsigned int *offset, size_t *len)
725 {
726 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
727 	char *ddgst = (char *)&queue->recv_ddgst;
728 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
729 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
730 	int ret;
731 
732 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
733 	if (unlikely(ret))
734 		return ret;
735 
736 	queue->ddgst_remaining -= recv_len;
737 	*offset += recv_len;
738 	*len -= recv_len;
739 	if (queue->ddgst_remaining)
740 		return 0;
741 
742 	if (queue->recv_ddgst != queue->exp_ddgst) {
743 		dev_err(queue->ctrl->ctrl.device,
744 			"data digest error: recv %#x expected %#x\n",
745 			le32_to_cpu(queue->recv_ddgst),
746 			le32_to_cpu(queue->exp_ddgst));
747 		return -EIO;
748 	}
749 
750 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
751 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
752 						pdu->command_id);
753 
754 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
755 		queue->nr_cqe++;
756 	}
757 
758 	nvme_tcp_init_recv_ctx(queue);
759 	return 0;
760 }
761 
762 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
763 			     unsigned int offset, size_t len)
764 {
765 	struct nvme_tcp_queue *queue = desc->arg.data;
766 	size_t consumed = len;
767 	int result;
768 
769 	while (len) {
770 		switch (nvme_tcp_recv_state(queue)) {
771 		case NVME_TCP_RECV_PDU:
772 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
773 			break;
774 		case NVME_TCP_RECV_DATA:
775 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
776 			break;
777 		case NVME_TCP_RECV_DDGST:
778 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
779 			break;
780 		default:
781 			result = -EFAULT;
782 		}
783 		if (result) {
784 			dev_err(queue->ctrl->ctrl.device,
785 				"receive failed:  %d\n", result);
786 			queue->rd_enabled = false;
787 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
788 			return result;
789 		}
790 	}
791 
792 	return consumed;
793 }
794 
795 static void nvme_tcp_data_ready(struct sock *sk)
796 {
797 	struct nvme_tcp_queue *queue;
798 
799 	read_lock(&sk->sk_callback_lock);
800 	queue = sk->sk_user_data;
801 	if (likely(queue && queue->rd_enabled))
802 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
803 	read_unlock(&sk->sk_callback_lock);
804 }
805 
806 static void nvme_tcp_write_space(struct sock *sk)
807 {
808 	struct nvme_tcp_queue *queue;
809 
810 	read_lock_bh(&sk->sk_callback_lock);
811 	queue = sk->sk_user_data;
812 	if (likely(queue && sk_stream_is_writeable(sk))) {
813 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
814 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
815 	}
816 	read_unlock_bh(&sk->sk_callback_lock);
817 }
818 
819 static void nvme_tcp_state_change(struct sock *sk)
820 {
821 	struct nvme_tcp_queue *queue;
822 
823 	read_lock(&sk->sk_callback_lock);
824 	queue = sk->sk_user_data;
825 	if (!queue)
826 		goto done;
827 
828 	switch (sk->sk_state) {
829 	case TCP_CLOSE:
830 	case TCP_CLOSE_WAIT:
831 	case TCP_LAST_ACK:
832 	case TCP_FIN_WAIT1:
833 	case TCP_FIN_WAIT2:
834 		/* fallthrough */
835 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
836 		break;
837 	default:
838 		dev_info(queue->ctrl->ctrl.device,
839 			"queue %d socket state %d\n",
840 			nvme_tcp_queue_id(queue), sk->sk_state);
841 	}
842 
843 	queue->state_change(sk);
844 done:
845 	read_unlock(&sk->sk_callback_lock);
846 }
847 
848 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
849 {
850 	queue->request = NULL;
851 }
852 
853 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
854 {
855 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
856 }
857 
858 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
859 {
860 	struct nvme_tcp_queue *queue = req->queue;
861 
862 	while (true) {
863 		struct page *page = nvme_tcp_req_cur_page(req);
864 		size_t offset = nvme_tcp_req_cur_offset(req);
865 		size_t len = nvme_tcp_req_cur_length(req);
866 		bool last = nvme_tcp_pdu_last_send(req, len);
867 		int ret, flags = MSG_DONTWAIT;
868 
869 		if (last && !queue->data_digest)
870 			flags |= MSG_EOR;
871 		else
872 			flags |= MSG_MORE;
873 
874 		/* can't zcopy slab pages */
875 		if (unlikely(PageSlab(page))) {
876 			ret = sock_no_sendpage(queue->sock, page, offset, len,
877 					flags);
878 		} else {
879 			ret = kernel_sendpage(queue->sock, page, offset, len,
880 					flags);
881 		}
882 		if (ret <= 0)
883 			return ret;
884 
885 		nvme_tcp_advance_req(req, ret);
886 		if (queue->data_digest)
887 			nvme_tcp_ddgst_update(queue->snd_hash, page,
888 					offset, ret);
889 
890 		/* fully successful last write*/
891 		if (last && ret == len) {
892 			if (queue->data_digest) {
893 				nvme_tcp_ddgst_final(queue->snd_hash,
894 					&req->ddgst);
895 				req->state = NVME_TCP_SEND_DDGST;
896 				req->offset = 0;
897 			} else {
898 				nvme_tcp_done_send_req(queue);
899 			}
900 			return 1;
901 		}
902 	}
903 	return -EAGAIN;
904 }
905 
906 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
907 {
908 	struct nvme_tcp_queue *queue = req->queue;
909 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
910 	bool inline_data = nvme_tcp_has_inline_data(req);
911 	int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
912 	u8 hdgst = nvme_tcp_hdgst_len(queue);
913 	int len = sizeof(*pdu) + hdgst - req->offset;
914 	int ret;
915 
916 	if (queue->hdr_digest && !req->offset)
917 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
918 
919 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
920 			offset_in_page(pdu) + req->offset, len,  flags);
921 	if (unlikely(ret <= 0))
922 		return ret;
923 
924 	len -= ret;
925 	if (!len) {
926 		if (inline_data) {
927 			req->state = NVME_TCP_SEND_DATA;
928 			if (queue->data_digest)
929 				crypto_ahash_init(queue->snd_hash);
930 			nvme_tcp_init_iter(req, WRITE);
931 		} else {
932 			nvme_tcp_done_send_req(queue);
933 		}
934 		return 1;
935 	}
936 	req->offset += ret;
937 
938 	return -EAGAIN;
939 }
940 
941 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
942 {
943 	struct nvme_tcp_queue *queue = req->queue;
944 	struct nvme_tcp_data_pdu *pdu = req->pdu;
945 	u8 hdgst = nvme_tcp_hdgst_len(queue);
946 	int len = sizeof(*pdu) - req->offset + hdgst;
947 	int ret;
948 
949 	if (queue->hdr_digest && !req->offset)
950 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
951 
952 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
953 			offset_in_page(pdu) + req->offset, len,
954 			MSG_DONTWAIT | MSG_MORE);
955 	if (unlikely(ret <= 0))
956 		return ret;
957 
958 	len -= ret;
959 	if (!len) {
960 		req->state = NVME_TCP_SEND_DATA;
961 		if (queue->data_digest)
962 			crypto_ahash_init(queue->snd_hash);
963 		if (!req->data_sent)
964 			nvme_tcp_init_iter(req, WRITE);
965 		return 1;
966 	}
967 	req->offset += ret;
968 
969 	return -EAGAIN;
970 }
971 
972 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
973 {
974 	struct nvme_tcp_queue *queue = req->queue;
975 	int ret;
976 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
977 	struct kvec iov = {
978 		.iov_base = &req->ddgst + req->offset,
979 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
980 	};
981 
982 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
983 	if (unlikely(ret <= 0))
984 		return ret;
985 
986 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
987 		nvme_tcp_done_send_req(queue);
988 		return 1;
989 	}
990 
991 	req->offset += ret;
992 	return -EAGAIN;
993 }
994 
995 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
996 {
997 	struct nvme_tcp_request *req;
998 	int ret = 1;
999 
1000 	if (!queue->request) {
1001 		queue->request = nvme_tcp_fetch_request(queue);
1002 		if (!queue->request)
1003 			return 0;
1004 	}
1005 	req = queue->request;
1006 
1007 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1008 		ret = nvme_tcp_try_send_cmd_pdu(req);
1009 		if (ret <= 0)
1010 			goto done;
1011 		if (!nvme_tcp_has_inline_data(req))
1012 			return ret;
1013 	}
1014 
1015 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1016 		ret = nvme_tcp_try_send_data_pdu(req);
1017 		if (ret <= 0)
1018 			goto done;
1019 	}
1020 
1021 	if (req->state == NVME_TCP_SEND_DATA) {
1022 		ret = nvme_tcp_try_send_data(req);
1023 		if (ret <= 0)
1024 			goto done;
1025 	}
1026 
1027 	if (req->state == NVME_TCP_SEND_DDGST)
1028 		ret = nvme_tcp_try_send_ddgst(req);
1029 done:
1030 	if (ret == -EAGAIN) {
1031 		ret = 0;
1032 	} else if (ret < 0) {
1033 		dev_err(queue->ctrl->ctrl.device,
1034 			"failed to send request %d\n", ret);
1035 		if (ret != -EPIPE && ret != -ECONNRESET)
1036 			nvme_tcp_fail_request(queue->request);
1037 		nvme_tcp_done_send_req(queue);
1038 	}
1039 	return ret;
1040 }
1041 
1042 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1043 {
1044 	struct socket *sock = queue->sock;
1045 	struct sock *sk = sock->sk;
1046 	read_descriptor_t rd_desc;
1047 	int consumed;
1048 
1049 	rd_desc.arg.data = queue;
1050 	rd_desc.count = 1;
1051 	lock_sock(sk);
1052 	queue->nr_cqe = 0;
1053 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1054 	release_sock(sk);
1055 	return consumed;
1056 }
1057 
1058 static void nvme_tcp_io_work(struct work_struct *w)
1059 {
1060 	struct nvme_tcp_queue *queue =
1061 		container_of(w, struct nvme_tcp_queue, io_work);
1062 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1063 
1064 	do {
1065 		bool pending = false;
1066 		int result;
1067 
1068 		result = nvme_tcp_try_send(queue);
1069 		if (result > 0)
1070 			pending = true;
1071 		else if (unlikely(result < 0))
1072 			break;
1073 
1074 		result = nvme_tcp_try_recv(queue);
1075 		if (result > 0)
1076 			pending = true;
1077 		else if (unlikely(result < 0))
1078 			break;
1079 
1080 		if (!pending)
1081 			return;
1082 
1083 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1084 
1085 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1086 }
1087 
1088 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1089 {
1090 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1091 
1092 	ahash_request_free(queue->rcv_hash);
1093 	ahash_request_free(queue->snd_hash);
1094 	crypto_free_ahash(tfm);
1095 }
1096 
1097 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1098 {
1099 	struct crypto_ahash *tfm;
1100 
1101 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1102 	if (IS_ERR(tfm))
1103 		return PTR_ERR(tfm);
1104 
1105 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1106 	if (!queue->snd_hash)
1107 		goto free_tfm;
1108 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1109 
1110 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1111 	if (!queue->rcv_hash)
1112 		goto free_snd_hash;
1113 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1114 
1115 	return 0;
1116 free_snd_hash:
1117 	ahash_request_free(queue->snd_hash);
1118 free_tfm:
1119 	crypto_free_ahash(tfm);
1120 	return -ENOMEM;
1121 }
1122 
1123 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1124 {
1125 	struct nvme_tcp_request *async = &ctrl->async_req;
1126 
1127 	page_frag_free(async->pdu);
1128 }
1129 
1130 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1131 {
1132 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1133 	struct nvme_tcp_request *async = &ctrl->async_req;
1134 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1135 
1136 	async->pdu = page_frag_alloc(&queue->pf_cache,
1137 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1138 		GFP_KERNEL | __GFP_ZERO);
1139 	if (!async->pdu)
1140 		return -ENOMEM;
1141 
1142 	async->queue = &ctrl->queues[0];
1143 	return 0;
1144 }
1145 
1146 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1147 {
1148 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1149 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1150 
1151 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1152 		return;
1153 
1154 	if (queue->hdr_digest || queue->data_digest)
1155 		nvme_tcp_free_crypto(queue);
1156 
1157 	sock_release(queue->sock);
1158 	kfree(queue->pdu);
1159 }
1160 
1161 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1162 {
1163 	struct nvme_tcp_icreq_pdu *icreq;
1164 	struct nvme_tcp_icresp_pdu *icresp;
1165 	struct msghdr msg = {};
1166 	struct kvec iov;
1167 	bool ctrl_hdgst, ctrl_ddgst;
1168 	int ret;
1169 
1170 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1171 	if (!icreq)
1172 		return -ENOMEM;
1173 
1174 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1175 	if (!icresp) {
1176 		ret = -ENOMEM;
1177 		goto free_icreq;
1178 	}
1179 
1180 	icreq->hdr.type = nvme_tcp_icreq;
1181 	icreq->hdr.hlen = sizeof(*icreq);
1182 	icreq->hdr.pdo = 0;
1183 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1184 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1185 	icreq->maxr2t = 0; /* single inflight r2t supported */
1186 	icreq->hpda = 0; /* no alignment constraint */
1187 	if (queue->hdr_digest)
1188 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1189 	if (queue->data_digest)
1190 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1191 
1192 	iov.iov_base = icreq;
1193 	iov.iov_len = sizeof(*icreq);
1194 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1195 	if (ret < 0)
1196 		goto free_icresp;
1197 
1198 	memset(&msg, 0, sizeof(msg));
1199 	iov.iov_base = icresp;
1200 	iov.iov_len = sizeof(*icresp);
1201 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1202 			iov.iov_len, msg.msg_flags);
1203 	if (ret < 0)
1204 		goto free_icresp;
1205 
1206 	ret = -EINVAL;
1207 	if (icresp->hdr.type != nvme_tcp_icresp) {
1208 		pr_err("queue %d: bad type returned %d\n",
1209 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1210 		goto free_icresp;
1211 	}
1212 
1213 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1214 		pr_err("queue %d: bad pdu length returned %d\n",
1215 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1216 		goto free_icresp;
1217 	}
1218 
1219 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1220 		pr_err("queue %d: bad pfv returned %d\n",
1221 			nvme_tcp_queue_id(queue), icresp->pfv);
1222 		goto free_icresp;
1223 	}
1224 
1225 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1226 	if ((queue->data_digest && !ctrl_ddgst) ||
1227 	    (!queue->data_digest && ctrl_ddgst)) {
1228 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1229 			nvme_tcp_queue_id(queue),
1230 			queue->data_digest ? "enabled" : "disabled",
1231 			ctrl_ddgst ? "enabled" : "disabled");
1232 		goto free_icresp;
1233 	}
1234 
1235 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1236 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1237 	    (!queue->hdr_digest && ctrl_hdgst)) {
1238 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1239 			nvme_tcp_queue_id(queue),
1240 			queue->hdr_digest ? "enabled" : "disabled",
1241 			ctrl_hdgst ? "enabled" : "disabled");
1242 		goto free_icresp;
1243 	}
1244 
1245 	if (icresp->cpda != 0) {
1246 		pr_err("queue %d: unsupported cpda returned %d\n",
1247 			nvme_tcp_queue_id(queue), icresp->cpda);
1248 		goto free_icresp;
1249 	}
1250 
1251 	ret = 0;
1252 free_icresp:
1253 	kfree(icresp);
1254 free_icreq:
1255 	kfree(icreq);
1256 	return ret;
1257 }
1258 
1259 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1260 {
1261 	return nvme_tcp_queue_id(queue) == 0;
1262 }
1263 
1264 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1265 {
1266 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1267 	int qid = nvme_tcp_queue_id(queue);
1268 
1269 	return !nvme_tcp_admin_queue(queue) &&
1270 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1271 }
1272 
1273 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1274 {
1275 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1276 	int qid = nvme_tcp_queue_id(queue);
1277 
1278 	return !nvme_tcp_admin_queue(queue) &&
1279 		!nvme_tcp_default_queue(queue) &&
1280 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1281 			  ctrl->io_queues[HCTX_TYPE_READ];
1282 }
1283 
1284 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1285 {
1286 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1287 	int qid = nvme_tcp_queue_id(queue);
1288 
1289 	return !nvme_tcp_admin_queue(queue) &&
1290 		!nvme_tcp_default_queue(queue) &&
1291 		!nvme_tcp_read_queue(queue) &&
1292 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1293 			  ctrl->io_queues[HCTX_TYPE_READ] +
1294 			  ctrl->io_queues[HCTX_TYPE_POLL];
1295 }
1296 
1297 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1298 {
1299 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1300 	int qid = nvme_tcp_queue_id(queue);
1301 	int n = 0;
1302 
1303 	if (nvme_tcp_default_queue(queue))
1304 		n = qid - 1;
1305 	else if (nvme_tcp_read_queue(queue))
1306 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1307 	else if (nvme_tcp_poll_queue(queue))
1308 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1309 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1310 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1311 }
1312 
1313 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1314 		int qid, size_t queue_size)
1315 {
1316 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1317 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1318 	struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1319 	int ret, opt, rcv_pdu_size;
1320 
1321 	queue->ctrl = ctrl;
1322 	INIT_LIST_HEAD(&queue->send_list);
1323 	spin_lock_init(&queue->lock);
1324 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1325 	queue->queue_size = queue_size;
1326 
1327 	if (qid > 0)
1328 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1329 	else
1330 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1331 						NVME_TCP_ADMIN_CCSZ;
1332 
1333 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1334 			IPPROTO_TCP, &queue->sock);
1335 	if (ret) {
1336 		dev_err(nctrl->device,
1337 			"failed to create socket: %d\n", ret);
1338 		return ret;
1339 	}
1340 
1341 	/* Single syn retry */
1342 	opt = 1;
1343 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1344 			(char *)&opt, sizeof(opt));
1345 	if (ret) {
1346 		dev_err(nctrl->device,
1347 			"failed to set TCP_SYNCNT sock opt %d\n", ret);
1348 		goto err_sock;
1349 	}
1350 
1351 	/* Set TCP no delay */
1352 	opt = 1;
1353 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1354 			TCP_NODELAY, (char *)&opt, sizeof(opt));
1355 	if (ret) {
1356 		dev_err(nctrl->device,
1357 			"failed to set TCP_NODELAY sock opt %d\n", ret);
1358 		goto err_sock;
1359 	}
1360 
1361 	/*
1362 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1363 	 * close. This is done to prevent stale data from being sent should
1364 	 * the network connection be restored before TCP times out.
1365 	 */
1366 	ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1367 			(char *)&sol, sizeof(sol));
1368 	if (ret) {
1369 		dev_err(nctrl->device,
1370 			"failed to set SO_LINGER sock opt %d\n", ret);
1371 		goto err_sock;
1372 	}
1373 
1374 	if (so_priority > 0) {
1375 		ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_PRIORITY,
1376 				(char *)&so_priority, sizeof(so_priority));
1377 		if (ret) {
1378 			dev_err(ctrl->ctrl.device,
1379 				"failed to set SO_PRIORITY sock opt, ret %d\n",
1380 				ret);
1381 			goto err_sock;
1382 		}
1383 	}
1384 
1385 	/* Set socket type of service */
1386 	if (nctrl->opts->tos >= 0) {
1387 		opt = nctrl->opts->tos;
1388 		ret = kernel_setsockopt(queue->sock, SOL_IP, IP_TOS,
1389 				(char *)&opt, sizeof(opt));
1390 		if (ret) {
1391 			dev_err(nctrl->device,
1392 				"failed to set IP_TOS sock opt %d\n", ret);
1393 			goto err_sock;
1394 		}
1395 	}
1396 
1397 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1398 	nvme_tcp_set_queue_io_cpu(queue);
1399 	queue->request = NULL;
1400 	queue->data_remaining = 0;
1401 	queue->ddgst_remaining = 0;
1402 	queue->pdu_remaining = 0;
1403 	queue->pdu_offset = 0;
1404 	sk_set_memalloc(queue->sock->sk);
1405 
1406 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1407 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1408 			sizeof(ctrl->src_addr));
1409 		if (ret) {
1410 			dev_err(nctrl->device,
1411 				"failed to bind queue %d socket %d\n",
1412 				qid, ret);
1413 			goto err_sock;
1414 		}
1415 	}
1416 
1417 	queue->hdr_digest = nctrl->opts->hdr_digest;
1418 	queue->data_digest = nctrl->opts->data_digest;
1419 	if (queue->hdr_digest || queue->data_digest) {
1420 		ret = nvme_tcp_alloc_crypto(queue);
1421 		if (ret) {
1422 			dev_err(nctrl->device,
1423 				"failed to allocate queue %d crypto\n", qid);
1424 			goto err_sock;
1425 		}
1426 	}
1427 
1428 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1429 			nvme_tcp_hdgst_len(queue);
1430 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1431 	if (!queue->pdu) {
1432 		ret = -ENOMEM;
1433 		goto err_crypto;
1434 	}
1435 
1436 	dev_dbg(nctrl->device, "connecting queue %d\n",
1437 			nvme_tcp_queue_id(queue));
1438 
1439 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1440 		sizeof(ctrl->addr), 0);
1441 	if (ret) {
1442 		dev_err(nctrl->device,
1443 			"failed to connect socket: %d\n", ret);
1444 		goto err_rcv_pdu;
1445 	}
1446 
1447 	ret = nvme_tcp_init_connection(queue);
1448 	if (ret)
1449 		goto err_init_connect;
1450 
1451 	queue->rd_enabled = true;
1452 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1453 	nvme_tcp_init_recv_ctx(queue);
1454 
1455 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1456 	queue->sock->sk->sk_user_data = queue;
1457 	queue->state_change = queue->sock->sk->sk_state_change;
1458 	queue->data_ready = queue->sock->sk->sk_data_ready;
1459 	queue->write_space = queue->sock->sk->sk_write_space;
1460 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1461 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1462 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1463 #ifdef CONFIG_NET_RX_BUSY_POLL
1464 	queue->sock->sk->sk_ll_usec = 1;
1465 #endif
1466 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1467 
1468 	return 0;
1469 
1470 err_init_connect:
1471 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1472 err_rcv_pdu:
1473 	kfree(queue->pdu);
1474 err_crypto:
1475 	if (queue->hdr_digest || queue->data_digest)
1476 		nvme_tcp_free_crypto(queue);
1477 err_sock:
1478 	sock_release(queue->sock);
1479 	queue->sock = NULL;
1480 	return ret;
1481 }
1482 
1483 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1484 {
1485 	struct socket *sock = queue->sock;
1486 
1487 	write_lock_bh(&sock->sk->sk_callback_lock);
1488 	sock->sk->sk_user_data  = NULL;
1489 	sock->sk->sk_data_ready = queue->data_ready;
1490 	sock->sk->sk_state_change = queue->state_change;
1491 	sock->sk->sk_write_space  = queue->write_space;
1492 	write_unlock_bh(&sock->sk->sk_callback_lock);
1493 }
1494 
1495 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1496 {
1497 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1498 	nvme_tcp_restore_sock_calls(queue);
1499 	cancel_work_sync(&queue->io_work);
1500 }
1501 
1502 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1503 {
1504 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1505 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1506 
1507 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1508 		return;
1509 
1510 	__nvme_tcp_stop_queue(queue);
1511 }
1512 
1513 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1514 {
1515 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1516 	int ret;
1517 
1518 	if (idx)
1519 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1520 	else
1521 		ret = nvmf_connect_admin_queue(nctrl);
1522 
1523 	if (!ret) {
1524 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1525 	} else {
1526 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1527 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1528 		dev_err(nctrl->device,
1529 			"failed to connect queue: %d ret=%d\n", idx, ret);
1530 	}
1531 	return ret;
1532 }
1533 
1534 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1535 		bool admin)
1536 {
1537 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1538 	struct blk_mq_tag_set *set;
1539 	int ret;
1540 
1541 	if (admin) {
1542 		set = &ctrl->admin_tag_set;
1543 		memset(set, 0, sizeof(*set));
1544 		set->ops = &nvme_tcp_admin_mq_ops;
1545 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1546 		set->reserved_tags = 2; /* connect + keep-alive */
1547 		set->numa_node = NUMA_NO_NODE;
1548 		set->cmd_size = sizeof(struct nvme_tcp_request);
1549 		set->driver_data = ctrl;
1550 		set->nr_hw_queues = 1;
1551 		set->timeout = ADMIN_TIMEOUT;
1552 	} else {
1553 		set = &ctrl->tag_set;
1554 		memset(set, 0, sizeof(*set));
1555 		set->ops = &nvme_tcp_mq_ops;
1556 		set->queue_depth = nctrl->sqsize + 1;
1557 		set->reserved_tags = 1; /* fabric connect */
1558 		set->numa_node = NUMA_NO_NODE;
1559 		set->flags = BLK_MQ_F_SHOULD_MERGE;
1560 		set->cmd_size = sizeof(struct nvme_tcp_request);
1561 		set->driver_data = ctrl;
1562 		set->nr_hw_queues = nctrl->queue_count - 1;
1563 		set->timeout = NVME_IO_TIMEOUT;
1564 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1565 	}
1566 
1567 	ret = blk_mq_alloc_tag_set(set);
1568 	if (ret)
1569 		return ERR_PTR(ret);
1570 
1571 	return set;
1572 }
1573 
1574 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1575 {
1576 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1577 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1578 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1579 	}
1580 
1581 	nvme_tcp_free_queue(ctrl, 0);
1582 }
1583 
1584 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1585 {
1586 	int i;
1587 
1588 	for (i = 1; i < ctrl->queue_count; i++)
1589 		nvme_tcp_free_queue(ctrl, i);
1590 }
1591 
1592 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1593 {
1594 	int i;
1595 
1596 	for (i = 1; i < ctrl->queue_count; i++)
1597 		nvme_tcp_stop_queue(ctrl, i);
1598 }
1599 
1600 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1601 {
1602 	int i, ret = 0;
1603 
1604 	for (i = 1; i < ctrl->queue_count; i++) {
1605 		ret = nvme_tcp_start_queue(ctrl, i);
1606 		if (ret)
1607 			goto out_stop_queues;
1608 	}
1609 
1610 	return 0;
1611 
1612 out_stop_queues:
1613 	for (i--; i >= 1; i--)
1614 		nvme_tcp_stop_queue(ctrl, i);
1615 	return ret;
1616 }
1617 
1618 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1619 {
1620 	int ret;
1621 
1622 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1623 	if (ret)
1624 		return ret;
1625 
1626 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1627 	if (ret)
1628 		goto out_free_queue;
1629 
1630 	return 0;
1631 
1632 out_free_queue:
1633 	nvme_tcp_free_queue(ctrl, 0);
1634 	return ret;
1635 }
1636 
1637 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1638 {
1639 	int i, ret;
1640 
1641 	for (i = 1; i < ctrl->queue_count; i++) {
1642 		ret = nvme_tcp_alloc_queue(ctrl, i,
1643 				ctrl->sqsize + 1);
1644 		if (ret)
1645 			goto out_free_queues;
1646 	}
1647 
1648 	return 0;
1649 
1650 out_free_queues:
1651 	for (i--; i >= 1; i--)
1652 		nvme_tcp_free_queue(ctrl, i);
1653 
1654 	return ret;
1655 }
1656 
1657 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1658 {
1659 	unsigned int nr_io_queues;
1660 
1661 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1662 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1663 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1664 
1665 	return nr_io_queues;
1666 }
1667 
1668 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1669 		unsigned int nr_io_queues)
1670 {
1671 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1672 	struct nvmf_ctrl_options *opts = nctrl->opts;
1673 
1674 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1675 		/*
1676 		 * separate read/write queues
1677 		 * hand out dedicated default queues only after we have
1678 		 * sufficient read queues.
1679 		 */
1680 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1681 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1682 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1683 			min(opts->nr_write_queues, nr_io_queues);
1684 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1685 	} else {
1686 		/*
1687 		 * shared read/write queues
1688 		 * either no write queues were requested, or we don't have
1689 		 * sufficient queue count to have dedicated default queues.
1690 		 */
1691 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1692 			min(opts->nr_io_queues, nr_io_queues);
1693 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1694 	}
1695 
1696 	if (opts->nr_poll_queues && nr_io_queues) {
1697 		/* map dedicated poll queues only if we have queues left */
1698 		ctrl->io_queues[HCTX_TYPE_POLL] =
1699 			min(opts->nr_poll_queues, nr_io_queues);
1700 	}
1701 }
1702 
1703 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1704 {
1705 	unsigned int nr_io_queues;
1706 	int ret;
1707 
1708 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1709 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1710 	if (ret)
1711 		return ret;
1712 
1713 	ctrl->queue_count = nr_io_queues + 1;
1714 	if (ctrl->queue_count < 2)
1715 		return 0;
1716 
1717 	dev_info(ctrl->device,
1718 		"creating %d I/O queues.\n", nr_io_queues);
1719 
1720 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1721 
1722 	return __nvme_tcp_alloc_io_queues(ctrl);
1723 }
1724 
1725 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1726 {
1727 	nvme_tcp_stop_io_queues(ctrl);
1728 	if (remove) {
1729 		blk_cleanup_queue(ctrl->connect_q);
1730 		blk_mq_free_tag_set(ctrl->tagset);
1731 	}
1732 	nvme_tcp_free_io_queues(ctrl);
1733 }
1734 
1735 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1736 {
1737 	int ret;
1738 
1739 	ret = nvme_tcp_alloc_io_queues(ctrl);
1740 	if (ret)
1741 		return ret;
1742 
1743 	if (new) {
1744 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1745 		if (IS_ERR(ctrl->tagset)) {
1746 			ret = PTR_ERR(ctrl->tagset);
1747 			goto out_free_io_queues;
1748 		}
1749 
1750 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1751 		if (IS_ERR(ctrl->connect_q)) {
1752 			ret = PTR_ERR(ctrl->connect_q);
1753 			goto out_free_tag_set;
1754 		}
1755 	} else {
1756 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1757 			ctrl->queue_count - 1);
1758 	}
1759 
1760 	ret = nvme_tcp_start_io_queues(ctrl);
1761 	if (ret)
1762 		goto out_cleanup_connect_q;
1763 
1764 	return 0;
1765 
1766 out_cleanup_connect_q:
1767 	if (new)
1768 		blk_cleanup_queue(ctrl->connect_q);
1769 out_free_tag_set:
1770 	if (new)
1771 		blk_mq_free_tag_set(ctrl->tagset);
1772 out_free_io_queues:
1773 	nvme_tcp_free_io_queues(ctrl);
1774 	return ret;
1775 }
1776 
1777 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1778 {
1779 	nvme_tcp_stop_queue(ctrl, 0);
1780 	if (remove) {
1781 		blk_cleanup_queue(ctrl->admin_q);
1782 		blk_cleanup_queue(ctrl->fabrics_q);
1783 		blk_mq_free_tag_set(ctrl->admin_tagset);
1784 	}
1785 	nvme_tcp_free_admin_queue(ctrl);
1786 }
1787 
1788 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1789 {
1790 	int error;
1791 
1792 	error = nvme_tcp_alloc_admin_queue(ctrl);
1793 	if (error)
1794 		return error;
1795 
1796 	if (new) {
1797 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1798 		if (IS_ERR(ctrl->admin_tagset)) {
1799 			error = PTR_ERR(ctrl->admin_tagset);
1800 			goto out_free_queue;
1801 		}
1802 
1803 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1804 		if (IS_ERR(ctrl->fabrics_q)) {
1805 			error = PTR_ERR(ctrl->fabrics_q);
1806 			goto out_free_tagset;
1807 		}
1808 
1809 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1810 		if (IS_ERR(ctrl->admin_q)) {
1811 			error = PTR_ERR(ctrl->admin_q);
1812 			goto out_cleanup_fabrics_q;
1813 		}
1814 	}
1815 
1816 	error = nvme_tcp_start_queue(ctrl, 0);
1817 	if (error)
1818 		goto out_cleanup_queue;
1819 
1820 	error = nvme_enable_ctrl(ctrl);
1821 	if (error)
1822 		goto out_stop_queue;
1823 
1824 	blk_mq_unquiesce_queue(ctrl->admin_q);
1825 
1826 	error = nvme_init_identify(ctrl);
1827 	if (error)
1828 		goto out_stop_queue;
1829 
1830 	return 0;
1831 
1832 out_stop_queue:
1833 	nvme_tcp_stop_queue(ctrl, 0);
1834 out_cleanup_queue:
1835 	if (new)
1836 		blk_cleanup_queue(ctrl->admin_q);
1837 out_cleanup_fabrics_q:
1838 	if (new)
1839 		blk_cleanup_queue(ctrl->fabrics_q);
1840 out_free_tagset:
1841 	if (new)
1842 		blk_mq_free_tag_set(ctrl->admin_tagset);
1843 out_free_queue:
1844 	nvme_tcp_free_admin_queue(ctrl);
1845 	return error;
1846 }
1847 
1848 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1849 		bool remove)
1850 {
1851 	blk_mq_quiesce_queue(ctrl->admin_q);
1852 	nvme_tcp_stop_queue(ctrl, 0);
1853 	if (ctrl->admin_tagset) {
1854 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1855 			nvme_cancel_request, ctrl);
1856 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1857 	}
1858 	if (remove)
1859 		blk_mq_unquiesce_queue(ctrl->admin_q);
1860 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1861 }
1862 
1863 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1864 		bool remove)
1865 {
1866 	if (ctrl->queue_count <= 1)
1867 		return;
1868 	nvme_stop_queues(ctrl);
1869 	nvme_tcp_stop_io_queues(ctrl);
1870 	if (ctrl->tagset) {
1871 		blk_mq_tagset_busy_iter(ctrl->tagset,
1872 			nvme_cancel_request, ctrl);
1873 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1874 	}
1875 	if (remove)
1876 		nvme_start_queues(ctrl);
1877 	nvme_tcp_destroy_io_queues(ctrl, remove);
1878 }
1879 
1880 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1881 {
1882 	/* If we are resetting/deleting then do nothing */
1883 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1884 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1885 			ctrl->state == NVME_CTRL_LIVE);
1886 		return;
1887 	}
1888 
1889 	if (nvmf_should_reconnect(ctrl)) {
1890 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1891 			ctrl->opts->reconnect_delay);
1892 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1893 				ctrl->opts->reconnect_delay * HZ);
1894 	} else {
1895 		dev_info(ctrl->device, "Removing controller...\n");
1896 		nvme_delete_ctrl(ctrl);
1897 	}
1898 }
1899 
1900 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1901 {
1902 	struct nvmf_ctrl_options *opts = ctrl->opts;
1903 	int ret;
1904 
1905 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1906 	if (ret)
1907 		return ret;
1908 
1909 	if (ctrl->icdoff) {
1910 		dev_err(ctrl->device, "icdoff is not supported!\n");
1911 		goto destroy_admin;
1912 	}
1913 
1914 	if (opts->queue_size > ctrl->sqsize + 1)
1915 		dev_warn(ctrl->device,
1916 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1917 			opts->queue_size, ctrl->sqsize + 1);
1918 
1919 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1920 		dev_warn(ctrl->device,
1921 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1922 			ctrl->sqsize + 1, ctrl->maxcmd);
1923 		ctrl->sqsize = ctrl->maxcmd - 1;
1924 	}
1925 
1926 	if (ctrl->queue_count > 1) {
1927 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1928 		if (ret)
1929 			goto destroy_admin;
1930 	}
1931 
1932 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1933 		/*
1934 		 * state change failure is ok if we're in DELETING state,
1935 		 * unless we're during creation of a new controller to
1936 		 * avoid races with teardown flow.
1937 		 */
1938 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1939 		WARN_ON_ONCE(new);
1940 		ret = -EINVAL;
1941 		goto destroy_io;
1942 	}
1943 
1944 	nvme_start_ctrl(ctrl);
1945 	return 0;
1946 
1947 destroy_io:
1948 	if (ctrl->queue_count > 1)
1949 		nvme_tcp_destroy_io_queues(ctrl, new);
1950 destroy_admin:
1951 	nvme_tcp_stop_queue(ctrl, 0);
1952 	nvme_tcp_destroy_admin_queue(ctrl, new);
1953 	return ret;
1954 }
1955 
1956 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1957 {
1958 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1959 			struct nvme_tcp_ctrl, connect_work);
1960 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1961 
1962 	++ctrl->nr_reconnects;
1963 
1964 	if (nvme_tcp_setup_ctrl(ctrl, false))
1965 		goto requeue;
1966 
1967 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1968 			ctrl->nr_reconnects);
1969 
1970 	ctrl->nr_reconnects = 0;
1971 
1972 	return;
1973 
1974 requeue:
1975 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1976 			ctrl->nr_reconnects);
1977 	nvme_tcp_reconnect_or_remove(ctrl);
1978 }
1979 
1980 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1981 {
1982 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1983 				struct nvme_tcp_ctrl, err_work);
1984 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1985 
1986 	nvme_stop_keep_alive(ctrl);
1987 	nvme_tcp_teardown_io_queues(ctrl, false);
1988 	/* unquiesce to fail fast pending requests */
1989 	nvme_start_queues(ctrl);
1990 	nvme_tcp_teardown_admin_queue(ctrl, false);
1991 	blk_mq_unquiesce_queue(ctrl->admin_q);
1992 
1993 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1994 		/* state change failure is ok if we're in DELETING state */
1995 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1996 		return;
1997 	}
1998 
1999 	nvme_tcp_reconnect_or_remove(ctrl);
2000 }
2001 
2002 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2003 {
2004 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2005 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2006 
2007 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2008 	blk_mq_quiesce_queue(ctrl->admin_q);
2009 	if (shutdown)
2010 		nvme_shutdown_ctrl(ctrl);
2011 	else
2012 		nvme_disable_ctrl(ctrl);
2013 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2014 }
2015 
2016 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2017 {
2018 	nvme_tcp_teardown_ctrl(ctrl, true);
2019 }
2020 
2021 static void nvme_reset_ctrl_work(struct work_struct *work)
2022 {
2023 	struct nvme_ctrl *ctrl =
2024 		container_of(work, struct nvme_ctrl, reset_work);
2025 
2026 	nvme_stop_ctrl(ctrl);
2027 	nvme_tcp_teardown_ctrl(ctrl, false);
2028 
2029 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2030 		/* state change failure is ok if we're in DELETING state */
2031 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
2032 		return;
2033 	}
2034 
2035 	if (nvme_tcp_setup_ctrl(ctrl, false))
2036 		goto out_fail;
2037 
2038 	return;
2039 
2040 out_fail:
2041 	++ctrl->nr_reconnects;
2042 	nvme_tcp_reconnect_or_remove(ctrl);
2043 }
2044 
2045 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2046 {
2047 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2048 
2049 	if (list_empty(&ctrl->list))
2050 		goto free_ctrl;
2051 
2052 	mutex_lock(&nvme_tcp_ctrl_mutex);
2053 	list_del(&ctrl->list);
2054 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2055 
2056 	nvmf_free_options(nctrl->opts);
2057 free_ctrl:
2058 	kfree(ctrl->queues);
2059 	kfree(ctrl);
2060 }
2061 
2062 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2063 {
2064 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2065 
2066 	sg->addr = 0;
2067 	sg->length = 0;
2068 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2069 			NVME_SGL_FMT_TRANSPORT_A;
2070 }
2071 
2072 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2073 		struct nvme_command *c, u32 data_len)
2074 {
2075 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2076 
2077 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2078 	sg->length = cpu_to_le32(data_len);
2079 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2080 }
2081 
2082 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2083 		u32 data_len)
2084 {
2085 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2086 
2087 	sg->addr = 0;
2088 	sg->length = cpu_to_le32(data_len);
2089 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2090 			NVME_SGL_FMT_TRANSPORT_A;
2091 }
2092 
2093 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2094 {
2095 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2096 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2097 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2098 	struct nvme_command *cmd = &pdu->cmd;
2099 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2100 
2101 	memset(pdu, 0, sizeof(*pdu));
2102 	pdu->hdr.type = nvme_tcp_cmd;
2103 	if (queue->hdr_digest)
2104 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2105 	pdu->hdr.hlen = sizeof(*pdu);
2106 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2107 
2108 	cmd->common.opcode = nvme_admin_async_event;
2109 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2110 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2111 	nvme_tcp_set_sg_null(cmd);
2112 
2113 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2114 	ctrl->async_req.offset = 0;
2115 	ctrl->async_req.curr_bio = NULL;
2116 	ctrl->async_req.data_len = 0;
2117 
2118 	nvme_tcp_queue_request(&ctrl->async_req);
2119 }
2120 
2121 static enum blk_eh_timer_return
2122 nvme_tcp_timeout(struct request *rq, bool reserved)
2123 {
2124 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2125 	struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2126 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2127 
2128 	/*
2129 	 * Restart the timer if a controller reset is already scheduled. Any
2130 	 * timed out commands would be handled before entering the connecting
2131 	 * state.
2132 	 */
2133 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
2134 		return BLK_EH_RESET_TIMER;
2135 
2136 	dev_warn(ctrl->ctrl.device,
2137 		"queue %d: timeout request %#x type %d\n",
2138 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2139 
2140 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2141 		/*
2142 		 * Teardown immediately if controller times out while starting
2143 		 * or we are already started error recovery. all outstanding
2144 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
2145 		 */
2146 		flush_work(&ctrl->err_work);
2147 		nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2148 		nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2149 		return BLK_EH_DONE;
2150 	}
2151 
2152 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2153 	nvme_tcp_error_recovery(&ctrl->ctrl);
2154 
2155 	return BLK_EH_RESET_TIMER;
2156 }
2157 
2158 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2159 			struct request *rq)
2160 {
2161 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2162 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2163 	struct nvme_command *c = &pdu->cmd;
2164 
2165 	c->common.flags |= NVME_CMD_SGL_METABUF;
2166 
2167 	if (rq_data_dir(rq) == WRITE && req->data_len &&
2168 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2169 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2170 	else
2171 		nvme_tcp_set_sg_host_data(c, req->data_len);
2172 
2173 	return 0;
2174 }
2175 
2176 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2177 		struct request *rq)
2178 {
2179 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2180 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2181 	struct nvme_tcp_queue *queue = req->queue;
2182 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2183 	blk_status_t ret;
2184 
2185 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2186 	if (ret)
2187 		return ret;
2188 
2189 	req->state = NVME_TCP_SEND_CMD_PDU;
2190 	req->offset = 0;
2191 	req->data_sent = 0;
2192 	req->pdu_len = 0;
2193 	req->pdu_sent = 0;
2194 	req->data_len = blk_rq_payload_bytes(rq);
2195 	req->curr_bio = rq->bio;
2196 
2197 	if (rq_data_dir(rq) == WRITE &&
2198 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2199 		req->pdu_len = req->data_len;
2200 	else if (req->curr_bio)
2201 		nvme_tcp_init_iter(req, READ);
2202 
2203 	pdu->hdr.type = nvme_tcp_cmd;
2204 	pdu->hdr.flags = 0;
2205 	if (queue->hdr_digest)
2206 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2207 	if (queue->data_digest && req->pdu_len) {
2208 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2209 		ddgst = nvme_tcp_ddgst_len(queue);
2210 	}
2211 	pdu->hdr.hlen = sizeof(*pdu);
2212 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2213 	pdu->hdr.plen =
2214 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2215 
2216 	ret = nvme_tcp_map_data(queue, rq);
2217 	if (unlikely(ret)) {
2218 		nvme_cleanup_cmd(rq);
2219 		dev_err(queue->ctrl->ctrl.device,
2220 			"Failed to map data (%d)\n", ret);
2221 		return ret;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2228 		const struct blk_mq_queue_data *bd)
2229 {
2230 	struct nvme_ns *ns = hctx->queue->queuedata;
2231 	struct nvme_tcp_queue *queue = hctx->driver_data;
2232 	struct request *rq = bd->rq;
2233 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2234 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2235 	blk_status_t ret;
2236 
2237 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2238 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2239 
2240 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2241 	if (unlikely(ret))
2242 		return ret;
2243 
2244 	blk_mq_start_request(rq);
2245 
2246 	nvme_tcp_queue_request(req);
2247 
2248 	return BLK_STS_OK;
2249 }
2250 
2251 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2252 {
2253 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2254 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2255 
2256 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2257 		/* separate read/write queues */
2258 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2259 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2260 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2261 		set->map[HCTX_TYPE_READ].nr_queues =
2262 			ctrl->io_queues[HCTX_TYPE_READ];
2263 		set->map[HCTX_TYPE_READ].queue_offset =
2264 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2265 	} else {
2266 		/* shared read/write queues */
2267 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2268 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2269 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2270 		set->map[HCTX_TYPE_READ].nr_queues =
2271 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2272 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2273 	}
2274 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2275 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2276 
2277 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2278 		/* map dedicated poll queues only if we have queues left */
2279 		set->map[HCTX_TYPE_POLL].nr_queues =
2280 				ctrl->io_queues[HCTX_TYPE_POLL];
2281 		set->map[HCTX_TYPE_POLL].queue_offset =
2282 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2283 			ctrl->io_queues[HCTX_TYPE_READ];
2284 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2285 	}
2286 
2287 	dev_info(ctrl->ctrl.device,
2288 		"mapped %d/%d/%d default/read/poll queues.\n",
2289 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2290 		ctrl->io_queues[HCTX_TYPE_READ],
2291 		ctrl->io_queues[HCTX_TYPE_POLL]);
2292 
2293 	return 0;
2294 }
2295 
2296 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2297 {
2298 	struct nvme_tcp_queue *queue = hctx->driver_data;
2299 	struct sock *sk = queue->sock->sk;
2300 
2301 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2302 		sk_busy_loop(sk, true);
2303 	nvme_tcp_try_recv(queue);
2304 	return queue->nr_cqe;
2305 }
2306 
2307 static struct blk_mq_ops nvme_tcp_mq_ops = {
2308 	.queue_rq	= nvme_tcp_queue_rq,
2309 	.complete	= nvme_complete_rq,
2310 	.init_request	= nvme_tcp_init_request,
2311 	.exit_request	= nvme_tcp_exit_request,
2312 	.init_hctx	= nvme_tcp_init_hctx,
2313 	.timeout	= nvme_tcp_timeout,
2314 	.map_queues	= nvme_tcp_map_queues,
2315 	.poll		= nvme_tcp_poll,
2316 };
2317 
2318 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2319 	.queue_rq	= nvme_tcp_queue_rq,
2320 	.complete	= nvme_complete_rq,
2321 	.init_request	= nvme_tcp_init_request,
2322 	.exit_request	= nvme_tcp_exit_request,
2323 	.init_hctx	= nvme_tcp_init_admin_hctx,
2324 	.timeout	= nvme_tcp_timeout,
2325 };
2326 
2327 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2328 	.name			= "tcp",
2329 	.module			= THIS_MODULE,
2330 	.flags			= NVME_F_FABRICS,
2331 	.reg_read32		= nvmf_reg_read32,
2332 	.reg_read64		= nvmf_reg_read64,
2333 	.reg_write32		= nvmf_reg_write32,
2334 	.free_ctrl		= nvme_tcp_free_ctrl,
2335 	.submit_async_event	= nvme_tcp_submit_async_event,
2336 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2337 	.get_address		= nvmf_get_address,
2338 };
2339 
2340 static bool
2341 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2342 {
2343 	struct nvme_tcp_ctrl *ctrl;
2344 	bool found = false;
2345 
2346 	mutex_lock(&nvme_tcp_ctrl_mutex);
2347 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2348 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2349 		if (found)
2350 			break;
2351 	}
2352 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2353 
2354 	return found;
2355 }
2356 
2357 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2358 		struct nvmf_ctrl_options *opts)
2359 {
2360 	struct nvme_tcp_ctrl *ctrl;
2361 	int ret;
2362 
2363 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2364 	if (!ctrl)
2365 		return ERR_PTR(-ENOMEM);
2366 
2367 	INIT_LIST_HEAD(&ctrl->list);
2368 	ctrl->ctrl.opts = opts;
2369 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2370 				opts->nr_poll_queues + 1;
2371 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2372 	ctrl->ctrl.kato = opts->kato;
2373 
2374 	INIT_DELAYED_WORK(&ctrl->connect_work,
2375 			nvme_tcp_reconnect_ctrl_work);
2376 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2377 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2378 
2379 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2380 		opts->trsvcid =
2381 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2382 		if (!opts->trsvcid) {
2383 			ret = -ENOMEM;
2384 			goto out_free_ctrl;
2385 		}
2386 		opts->mask |= NVMF_OPT_TRSVCID;
2387 	}
2388 
2389 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2390 			opts->traddr, opts->trsvcid, &ctrl->addr);
2391 	if (ret) {
2392 		pr_err("malformed address passed: %s:%s\n",
2393 			opts->traddr, opts->trsvcid);
2394 		goto out_free_ctrl;
2395 	}
2396 
2397 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2398 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2399 			opts->host_traddr, NULL, &ctrl->src_addr);
2400 		if (ret) {
2401 			pr_err("malformed src address passed: %s\n",
2402 			       opts->host_traddr);
2403 			goto out_free_ctrl;
2404 		}
2405 	}
2406 
2407 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2408 		ret = -EALREADY;
2409 		goto out_free_ctrl;
2410 	}
2411 
2412 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2413 				GFP_KERNEL);
2414 	if (!ctrl->queues) {
2415 		ret = -ENOMEM;
2416 		goto out_free_ctrl;
2417 	}
2418 
2419 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2420 	if (ret)
2421 		goto out_kfree_queues;
2422 
2423 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2424 		WARN_ON_ONCE(1);
2425 		ret = -EINTR;
2426 		goto out_uninit_ctrl;
2427 	}
2428 
2429 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2430 	if (ret)
2431 		goto out_uninit_ctrl;
2432 
2433 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2434 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2435 
2436 	mutex_lock(&nvme_tcp_ctrl_mutex);
2437 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2438 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2439 
2440 	return &ctrl->ctrl;
2441 
2442 out_uninit_ctrl:
2443 	nvme_uninit_ctrl(&ctrl->ctrl);
2444 	nvme_put_ctrl(&ctrl->ctrl);
2445 	if (ret > 0)
2446 		ret = -EIO;
2447 	return ERR_PTR(ret);
2448 out_kfree_queues:
2449 	kfree(ctrl->queues);
2450 out_free_ctrl:
2451 	kfree(ctrl);
2452 	return ERR_PTR(ret);
2453 }
2454 
2455 static struct nvmf_transport_ops nvme_tcp_transport = {
2456 	.name		= "tcp",
2457 	.module		= THIS_MODULE,
2458 	.required_opts	= NVMF_OPT_TRADDR,
2459 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2460 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2461 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2462 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2463 			  NVMF_OPT_TOS,
2464 	.create_ctrl	= nvme_tcp_create_ctrl,
2465 };
2466 
2467 static int __init nvme_tcp_init_module(void)
2468 {
2469 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2470 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2471 	if (!nvme_tcp_wq)
2472 		return -ENOMEM;
2473 
2474 	nvmf_register_transport(&nvme_tcp_transport);
2475 	return 0;
2476 }
2477 
2478 static void __exit nvme_tcp_cleanup_module(void)
2479 {
2480 	struct nvme_tcp_ctrl *ctrl;
2481 
2482 	nvmf_unregister_transport(&nvme_tcp_transport);
2483 
2484 	mutex_lock(&nvme_tcp_ctrl_mutex);
2485 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2486 		nvme_delete_ctrl(&ctrl->ctrl);
2487 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2488 	flush_workqueue(nvme_delete_wq);
2489 
2490 	destroy_workqueue(nvme_tcp_wq);
2491 }
2492 
2493 module_init(nvme_tcp_init_module);
2494 module_exit(nvme_tcp_cleanup_module);
2495 
2496 MODULE_LICENSE("GPL v2");
2497