xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		queue_lock;
80 	struct mutex		send_mutex;
81 	struct llist_head	req_list;
82 	struct list_head	send_list;
83 	bool			more_requests;
84 
85 	/* recv state */
86 	void			*pdu;
87 	int			pdu_remaining;
88 	int			pdu_offset;
89 	size_t			data_remaining;
90 	size_t			ddgst_remaining;
91 	unsigned int		nr_cqe;
92 
93 	/* send state */
94 	struct nvme_tcp_request *request;
95 
96 	int			queue_size;
97 	size_t			cmnd_capsule_len;
98 	struct nvme_tcp_ctrl	*ctrl;
99 	unsigned long		flags;
100 	bool			rd_enabled;
101 
102 	bool			hdr_digest;
103 	bool			data_digest;
104 	struct ahash_request	*rcv_hash;
105 	struct ahash_request	*snd_hash;
106 	__le32			exp_ddgst;
107 	__le32			recv_ddgst;
108 
109 	struct page_frag_cache	pf_cache;
110 
111 	void (*state_change)(struct sock *);
112 	void (*data_ready)(struct sock *);
113 	void (*write_space)(struct sock *);
114 };
115 
116 struct nvme_tcp_ctrl {
117 	/* read only in the hot path */
118 	struct nvme_tcp_queue	*queues;
119 	struct blk_mq_tag_set	tag_set;
120 
121 	/* other member variables */
122 	struct list_head	list;
123 	struct blk_mq_tag_set	admin_tag_set;
124 	struct sockaddr_storage addr;
125 	struct sockaddr_storage src_addr;
126 	struct nvme_ctrl	ctrl;
127 
128 	struct work_struct	err_work;
129 	struct delayed_work	connect_work;
130 	struct nvme_tcp_request async_req;
131 	u32			io_queues[HCTX_MAX_TYPES];
132 };
133 
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140 
141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 {
143 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
144 }
145 
146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 {
148 	return queue - queue->ctrl->queues;
149 }
150 
151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 {
153 	u32 queue_idx = nvme_tcp_queue_id(queue);
154 
155 	if (queue_idx == 0)
156 		return queue->ctrl->admin_tag_set.tags[queue_idx];
157 	return queue->ctrl->tag_set.tags[queue_idx - 1];
158 }
159 
160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 {
162 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
163 }
164 
165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 {
167 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
168 }
169 
170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 {
172 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174 
175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 {
177 	return req == &req->queue->ctrl->async_req;
178 }
179 
180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
181 {
182 	struct request *rq;
183 
184 	if (unlikely(nvme_tcp_async_req(req)))
185 		return false; /* async events don't have a request */
186 
187 	rq = blk_mq_rq_from_pdu(req);
188 
189 	return rq_data_dir(rq) == WRITE && req->data_len &&
190 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
191 }
192 
193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 {
195 	return req->iter.bvec->bv_page;
196 }
197 
198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 {
200 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
201 }
202 
203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 {
205 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
206 			req->pdu_len - req->pdu_sent);
207 }
208 
209 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
210 {
211 	return req->iter.iov_offset;
212 }
213 
214 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
215 {
216 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
217 			req->pdu_len - req->pdu_sent : 0;
218 }
219 
220 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
221 		int len)
222 {
223 	return nvme_tcp_pdu_data_left(req) <= len;
224 }
225 
226 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
227 		unsigned int dir)
228 {
229 	struct request *rq = blk_mq_rq_from_pdu(req);
230 	struct bio_vec *vec;
231 	unsigned int size;
232 	int nsegs;
233 	size_t offset;
234 
235 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
236 		vec = &rq->special_vec;
237 		nsegs = 1;
238 		size = blk_rq_payload_bytes(rq);
239 		offset = 0;
240 	} else {
241 		struct bio *bio = req->curr_bio;
242 
243 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
244 		nsegs = bio_segments(bio);
245 		size = bio->bi_iter.bi_size;
246 		offset = bio->bi_iter.bi_bvec_done;
247 	}
248 
249 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
250 	req->iter.iov_offset = offset;
251 }
252 
253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
254 		int len)
255 {
256 	req->data_sent += len;
257 	req->pdu_sent += len;
258 	iov_iter_advance(&req->iter, len);
259 	if (!iov_iter_count(&req->iter) &&
260 	    req->data_sent < req->data_len) {
261 		req->curr_bio = req->curr_bio->bi_next;
262 		nvme_tcp_init_iter(req, WRITE);
263 	}
264 }
265 
266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
267 {
268 	int ret;
269 
270 	/* drain the send queue as much as we can... */
271 	do {
272 		ret = nvme_tcp_try_send(queue);
273 	} while (ret > 0);
274 }
275 
276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
277 		bool sync, bool last)
278 {
279 	struct nvme_tcp_queue *queue = req->queue;
280 	bool empty;
281 
282 	empty = llist_add(&req->lentry, &queue->req_list) &&
283 		list_empty(&queue->send_list) && !queue->request;
284 
285 	/*
286 	 * if we're the first on the send_list and we can try to send
287 	 * directly, otherwise queue io_work. Also, only do that if we
288 	 * are on the same cpu, so we don't introduce contention.
289 	 */
290 	if (queue->io_cpu == __smp_processor_id() &&
291 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
292 		queue->more_requests = !last;
293 		nvme_tcp_send_all(queue);
294 		queue->more_requests = false;
295 		mutex_unlock(&queue->send_mutex);
296 	} else if (last) {
297 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
298 	}
299 }
300 
301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
302 {
303 	struct nvme_tcp_request *req;
304 	struct llist_node *node;
305 
306 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
307 		req = llist_entry(node, struct nvme_tcp_request, lentry);
308 		list_add(&req->entry, &queue->send_list);
309 	}
310 }
311 
312 static inline struct nvme_tcp_request *
313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
314 {
315 	struct nvme_tcp_request *req;
316 
317 	req = list_first_entry_or_null(&queue->send_list,
318 			struct nvme_tcp_request, entry);
319 	if (!req) {
320 		nvme_tcp_process_req_list(queue);
321 		req = list_first_entry_or_null(&queue->send_list,
322 				struct nvme_tcp_request, entry);
323 		if (unlikely(!req))
324 			return NULL;
325 	}
326 
327 	list_del(&req->entry);
328 	return req;
329 }
330 
331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
332 		__le32 *dgst)
333 {
334 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
335 	crypto_ahash_final(hash);
336 }
337 
338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
339 		struct page *page, off_t off, size_t len)
340 {
341 	struct scatterlist sg;
342 
343 	sg_init_marker(&sg, 1);
344 	sg_set_page(&sg, page, len, off);
345 	ahash_request_set_crypt(hash, &sg, NULL, len);
346 	crypto_ahash_update(hash);
347 }
348 
349 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
350 		void *pdu, size_t len)
351 {
352 	struct scatterlist sg;
353 
354 	sg_init_one(&sg, pdu, len);
355 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
356 	crypto_ahash_digest(hash);
357 }
358 
359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
360 		void *pdu, size_t pdu_len)
361 {
362 	struct nvme_tcp_hdr *hdr = pdu;
363 	__le32 recv_digest;
364 	__le32 exp_digest;
365 
366 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
367 		dev_err(queue->ctrl->ctrl.device,
368 			"queue %d: header digest flag is cleared\n",
369 			nvme_tcp_queue_id(queue));
370 		return -EPROTO;
371 	}
372 
373 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
374 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
375 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
376 	if (recv_digest != exp_digest) {
377 		dev_err(queue->ctrl->ctrl.device,
378 			"header digest error: recv %#x expected %#x\n",
379 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
380 		return -EIO;
381 	}
382 
383 	return 0;
384 }
385 
386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
387 {
388 	struct nvme_tcp_hdr *hdr = pdu;
389 	u8 digest_len = nvme_tcp_hdgst_len(queue);
390 	u32 len;
391 
392 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
393 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
394 
395 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
396 		dev_err(queue->ctrl->ctrl.device,
397 			"queue %d: data digest flag is cleared\n",
398 		nvme_tcp_queue_id(queue));
399 		return -EPROTO;
400 	}
401 	crypto_ahash_init(queue->rcv_hash);
402 
403 	return 0;
404 }
405 
406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
407 		struct request *rq, unsigned int hctx_idx)
408 {
409 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
410 
411 	page_frag_free(req->pdu);
412 }
413 
414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
415 		struct request *rq, unsigned int hctx_idx,
416 		unsigned int numa_node)
417 {
418 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
419 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
420 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
421 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
422 	u8 hdgst = nvme_tcp_hdgst_len(queue);
423 
424 	req->pdu = page_frag_alloc(&queue->pf_cache,
425 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
426 		GFP_KERNEL | __GFP_ZERO);
427 	if (!req->pdu)
428 		return -ENOMEM;
429 
430 	req->queue = queue;
431 	nvme_req(rq)->ctrl = &ctrl->ctrl;
432 
433 	return 0;
434 }
435 
436 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
437 		unsigned int hctx_idx)
438 {
439 	struct nvme_tcp_ctrl *ctrl = data;
440 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
441 
442 	hctx->driver_data = queue;
443 	return 0;
444 }
445 
446 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
447 		unsigned int hctx_idx)
448 {
449 	struct nvme_tcp_ctrl *ctrl = data;
450 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
451 
452 	hctx->driver_data = queue;
453 	return 0;
454 }
455 
456 static enum nvme_tcp_recv_state
457 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
458 {
459 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
460 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
461 		NVME_TCP_RECV_DATA;
462 }
463 
464 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
465 {
466 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
467 				nvme_tcp_hdgst_len(queue);
468 	queue->pdu_offset = 0;
469 	queue->data_remaining = -1;
470 	queue->ddgst_remaining = 0;
471 }
472 
473 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
474 {
475 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
476 		return;
477 
478 	dev_warn(ctrl->device, "starting error recovery\n");
479 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
480 }
481 
482 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
483 		struct nvme_completion *cqe)
484 {
485 	struct request *rq;
486 
487 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
488 	if (!rq) {
489 		dev_err(queue->ctrl->ctrl.device,
490 			"queue %d tag 0x%x not found\n",
491 			nvme_tcp_queue_id(queue), cqe->command_id);
492 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
493 		return -EINVAL;
494 	}
495 
496 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
497 		nvme_complete_rq(rq);
498 	queue->nr_cqe++;
499 
500 	return 0;
501 }
502 
503 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
504 		struct nvme_tcp_data_pdu *pdu)
505 {
506 	struct request *rq;
507 
508 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
509 	if (!rq) {
510 		dev_err(queue->ctrl->ctrl.device,
511 			"queue %d tag %#x not found\n",
512 			nvme_tcp_queue_id(queue), pdu->command_id);
513 		return -ENOENT;
514 	}
515 
516 	if (!blk_rq_payload_bytes(rq)) {
517 		dev_err(queue->ctrl->ctrl.device,
518 			"queue %d tag %#x unexpected data\n",
519 			nvme_tcp_queue_id(queue), rq->tag);
520 		return -EIO;
521 	}
522 
523 	queue->data_remaining = le32_to_cpu(pdu->data_length);
524 
525 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
526 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
527 		dev_err(queue->ctrl->ctrl.device,
528 			"queue %d tag %#x SUCCESS set but not last PDU\n",
529 			nvme_tcp_queue_id(queue), rq->tag);
530 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
531 		return -EPROTO;
532 	}
533 
534 	return 0;
535 }
536 
537 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
538 		struct nvme_tcp_rsp_pdu *pdu)
539 {
540 	struct nvme_completion *cqe = &pdu->cqe;
541 	int ret = 0;
542 
543 	/*
544 	 * AEN requests are special as they don't time out and can
545 	 * survive any kind of queue freeze and often don't respond to
546 	 * aborts.  We don't even bother to allocate a struct request
547 	 * for them but rather special case them here.
548 	 */
549 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
550 				     cqe->command_id)))
551 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
552 				&cqe->result);
553 	else
554 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
555 
556 	return ret;
557 }
558 
559 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
560 		struct nvme_tcp_r2t_pdu *pdu)
561 {
562 	struct nvme_tcp_data_pdu *data = req->pdu;
563 	struct nvme_tcp_queue *queue = req->queue;
564 	struct request *rq = blk_mq_rq_from_pdu(req);
565 	u8 hdgst = nvme_tcp_hdgst_len(queue);
566 	u8 ddgst = nvme_tcp_ddgst_len(queue);
567 
568 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
569 	req->pdu_sent = 0;
570 
571 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
572 		dev_err(queue->ctrl->ctrl.device,
573 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
574 			rq->tag, req->pdu_len, req->data_len,
575 			req->data_sent);
576 		return -EPROTO;
577 	}
578 
579 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
580 		dev_err(queue->ctrl->ctrl.device,
581 			"req %d unexpected r2t offset %u (expected %zu)\n",
582 			rq->tag, le32_to_cpu(pdu->r2t_offset),
583 			req->data_sent);
584 		return -EPROTO;
585 	}
586 
587 	memset(data, 0, sizeof(*data));
588 	data->hdr.type = nvme_tcp_h2c_data;
589 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
590 	if (queue->hdr_digest)
591 		data->hdr.flags |= NVME_TCP_F_HDGST;
592 	if (queue->data_digest)
593 		data->hdr.flags |= NVME_TCP_F_DDGST;
594 	data->hdr.hlen = sizeof(*data);
595 	data->hdr.pdo = data->hdr.hlen + hdgst;
596 	data->hdr.plen =
597 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
598 	data->ttag = pdu->ttag;
599 	data->command_id = rq->tag;
600 	data->data_offset = cpu_to_le32(req->data_sent);
601 	data->data_length = cpu_to_le32(req->pdu_len);
602 	return 0;
603 }
604 
605 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
606 		struct nvme_tcp_r2t_pdu *pdu)
607 {
608 	struct nvme_tcp_request *req;
609 	struct request *rq;
610 	int ret;
611 
612 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
613 	if (!rq) {
614 		dev_err(queue->ctrl->ctrl.device,
615 			"queue %d tag %#x not found\n",
616 			nvme_tcp_queue_id(queue), pdu->command_id);
617 		return -ENOENT;
618 	}
619 	req = blk_mq_rq_to_pdu(rq);
620 
621 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
622 	if (unlikely(ret))
623 		return ret;
624 
625 	req->state = NVME_TCP_SEND_H2C_PDU;
626 	req->offset = 0;
627 
628 	nvme_tcp_queue_request(req, false, true);
629 
630 	return 0;
631 }
632 
633 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
634 		unsigned int *offset, size_t *len)
635 {
636 	struct nvme_tcp_hdr *hdr;
637 	char *pdu = queue->pdu;
638 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
639 	int ret;
640 
641 	ret = skb_copy_bits(skb, *offset,
642 		&pdu[queue->pdu_offset], rcv_len);
643 	if (unlikely(ret))
644 		return ret;
645 
646 	queue->pdu_remaining -= rcv_len;
647 	queue->pdu_offset += rcv_len;
648 	*offset += rcv_len;
649 	*len -= rcv_len;
650 	if (queue->pdu_remaining)
651 		return 0;
652 
653 	hdr = queue->pdu;
654 	if (queue->hdr_digest) {
655 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
656 		if (unlikely(ret))
657 			return ret;
658 	}
659 
660 
661 	if (queue->data_digest) {
662 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
663 		if (unlikely(ret))
664 			return ret;
665 	}
666 
667 	switch (hdr->type) {
668 	case nvme_tcp_c2h_data:
669 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
670 	case nvme_tcp_rsp:
671 		nvme_tcp_init_recv_ctx(queue);
672 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
673 	case nvme_tcp_r2t:
674 		nvme_tcp_init_recv_ctx(queue);
675 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
676 	default:
677 		dev_err(queue->ctrl->ctrl.device,
678 			"unsupported pdu type (%d)\n", hdr->type);
679 		return -EINVAL;
680 	}
681 }
682 
683 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
684 {
685 	union nvme_result res = {};
686 
687 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
688 		nvme_complete_rq(rq);
689 }
690 
691 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
692 			      unsigned int *offset, size_t *len)
693 {
694 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
695 	struct nvme_tcp_request *req;
696 	struct request *rq;
697 
698 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
699 	if (!rq) {
700 		dev_err(queue->ctrl->ctrl.device,
701 			"queue %d tag %#x not found\n",
702 			nvme_tcp_queue_id(queue), pdu->command_id);
703 		return -ENOENT;
704 	}
705 	req = blk_mq_rq_to_pdu(rq);
706 
707 	while (true) {
708 		int recv_len, ret;
709 
710 		recv_len = min_t(size_t, *len, queue->data_remaining);
711 		if (!recv_len)
712 			break;
713 
714 		if (!iov_iter_count(&req->iter)) {
715 			req->curr_bio = req->curr_bio->bi_next;
716 
717 			/*
718 			 * If we don`t have any bios it means that controller
719 			 * sent more data than we requested, hence error
720 			 */
721 			if (!req->curr_bio) {
722 				dev_err(queue->ctrl->ctrl.device,
723 					"queue %d no space in request %#x",
724 					nvme_tcp_queue_id(queue), rq->tag);
725 				nvme_tcp_init_recv_ctx(queue);
726 				return -EIO;
727 			}
728 			nvme_tcp_init_iter(req, READ);
729 		}
730 
731 		/* we can read only from what is left in this bio */
732 		recv_len = min_t(size_t, recv_len,
733 				iov_iter_count(&req->iter));
734 
735 		if (queue->data_digest)
736 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
737 				&req->iter, recv_len, queue->rcv_hash);
738 		else
739 			ret = skb_copy_datagram_iter(skb, *offset,
740 					&req->iter, recv_len);
741 		if (ret) {
742 			dev_err(queue->ctrl->ctrl.device,
743 				"queue %d failed to copy request %#x data",
744 				nvme_tcp_queue_id(queue), rq->tag);
745 			return ret;
746 		}
747 
748 		*len -= recv_len;
749 		*offset += recv_len;
750 		queue->data_remaining -= recv_len;
751 	}
752 
753 	if (!queue->data_remaining) {
754 		if (queue->data_digest) {
755 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
756 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
757 		} else {
758 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
759 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
760 				queue->nr_cqe++;
761 			}
762 			nvme_tcp_init_recv_ctx(queue);
763 		}
764 	}
765 
766 	return 0;
767 }
768 
769 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
770 		struct sk_buff *skb, unsigned int *offset, size_t *len)
771 {
772 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
773 	char *ddgst = (char *)&queue->recv_ddgst;
774 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
775 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
776 	int ret;
777 
778 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
779 	if (unlikely(ret))
780 		return ret;
781 
782 	queue->ddgst_remaining -= recv_len;
783 	*offset += recv_len;
784 	*len -= recv_len;
785 	if (queue->ddgst_remaining)
786 		return 0;
787 
788 	if (queue->recv_ddgst != queue->exp_ddgst) {
789 		dev_err(queue->ctrl->ctrl.device,
790 			"data digest error: recv %#x expected %#x\n",
791 			le32_to_cpu(queue->recv_ddgst),
792 			le32_to_cpu(queue->exp_ddgst));
793 		return -EIO;
794 	}
795 
796 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
797 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
798 						pdu->command_id);
799 
800 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
801 		queue->nr_cqe++;
802 	}
803 
804 	nvme_tcp_init_recv_ctx(queue);
805 	return 0;
806 }
807 
808 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
809 			     unsigned int offset, size_t len)
810 {
811 	struct nvme_tcp_queue *queue = desc->arg.data;
812 	size_t consumed = len;
813 	int result;
814 
815 	while (len) {
816 		switch (nvme_tcp_recv_state(queue)) {
817 		case NVME_TCP_RECV_PDU:
818 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
819 			break;
820 		case NVME_TCP_RECV_DATA:
821 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
822 			break;
823 		case NVME_TCP_RECV_DDGST:
824 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
825 			break;
826 		default:
827 			result = -EFAULT;
828 		}
829 		if (result) {
830 			dev_err(queue->ctrl->ctrl.device,
831 				"receive failed:  %d\n", result);
832 			queue->rd_enabled = false;
833 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
834 			return result;
835 		}
836 	}
837 
838 	return consumed;
839 }
840 
841 static void nvme_tcp_data_ready(struct sock *sk)
842 {
843 	struct nvme_tcp_queue *queue;
844 
845 	read_lock_bh(&sk->sk_callback_lock);
846 	queue = sk->sk_user_data;
847 	if (likely(queue && queue->rd_enabled) &&
848 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
849 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
850 	read_unlock_bh(&sk->sk_callback_lock);
851 }
852 
853 static void nvme_tcp_write_space(struct sock *sk)
854 {
855 	struct nvme_tcp_queue *queue;
856 
857 	read_lock_bh(&sk->sk_callback_lock);
858 	queue = sk->sk_user_data;
859 	if (likely(queue && sk_stream_is_writeable(sk))) {
860 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
861 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
862 	}
863 	read_unlock_bh(&sk->sk_callback_lock);
864 }
865 
866 static void nvme_tcp_state_change(struct sock *sk)
867 {
868 	struct nvme_tcp_queue *queue;
869 
870 	read_lock(&sk->sk_callback_lock);
871 	queue = sk->sk_user_data;
872 	if (!queue)
873 		goto done;
874 
875 	switch (sk->sk_state) {
876 	case TCP_CLOSE:
877 	case TCP_CLOSE_WAIT:
878 	case TCP_LAST_ACK:
879 	case TCP_FIN_WAIT1:
880 	case TCP_FIN_WAIT2:
881 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
882 		break;
883 	default:
884 		dev_info(queue->ctrl->ctrl.device,
885 			"queue %d socket state %d\n",
886 			nvme_tcp_queue_id(queue), sk->sk_state);
887 	}
888 
889 	queue->state_change(sk);
890 done:
891 	read_unlock(&sk->sk_callback_lock);
892 }
893 
894 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
895 {
896 	return !list_empty(&queue->send_list) ||
897 		!llist_empty(&queue->req_list) || queue->more_requests;
898 }
899 
900 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
901 {
902 	queue->request = NULL;
903 }
904 
905 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
906 {
907 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
908 }
909 
910 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
911 {
912 	struct nvme_tcp_queue *queue = req->queue;
913 
914 	while (true) {
915 		struct page *page = nvme_tcp_req_cur_page(req);
916 		size_t offset = nvme_tcp_req_cur_offset(req);
917 		size_t len = nvme_tcp_req_cur_length(req);
918 		bool last = nvme_tcp_pdu_last_send(req, len);
919 		int ret, flags = MSG_DONTWAIT;
920 
921 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
922 			flags |= MSG_EOR;
923 		else
924 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
925 
926 		if (sendpage_ok(page)) {
927 			ret = kernel_sendpage(queue->sock, page, offset, len,
928 					flags);
929 		} else {
930 			ret = sock_no_sendpage(queue->sock, page, offset, len,
931 					flags);
932 		}
933 		if (ret <= 0)
934 			return ret;
935 
936 		nvme_tcp_advance_req(req, ret);
937 		if (queue->data_digest)
938 			nvme_tcp_ddgst_update(queue->snd_hash, page,
939 					offset, ret);
940 
941 		/* fully successful last write*/
942 		if (last && ret == len) {
943 			if (queue->data_digest) {
944 				nvme_tcp_ddgst_final(queue->snd_hash,
945 					&req->ddgst);
946 				req->state = NVME_TCP_SEND_DDGST;
947 				req->offset = 0;
948 			} else {
949 				nvme_tcp_done_send_req(queue);
950 			}
951 			return 1;
952 		}
953 	}
954 	return -EAGAIN;
955 }
956 
957 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
958 {
959 	struct nvme_tcp_queue *queue = req->queue;
960 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
961 	bool inline_data = nvme_tcp_has_inline_data(req);
962 	u8 hdgst = nvme_tcp_hdgst_len(queue);
963 	int len = sizeof(*pdu) + hdgst - req->offset;
964 	int flags = MSG_DONTWAIT;
965 	int ret;
966 
967 	if (inline_data || nvme_tcp_queue_more(queue))
968 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
969 	else
970 		flags |= MSG_EOR;
971 
972 	if (queue->hdr_digest && !req->offset)
973 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
974 
975 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
976 			offset_in_page(pdu) + req->offset, len,  flags);
977 	if (unlikely(ret <= 0))
978 		return ret;
979 
980 	len -= ret;
981 	if (!len) {
982 		if (inline_data) {
983 			req->state = NVME_TCP_SEND_DATA;
984 			if (queue->data_digest)
985 				crypto_ahash_init(queue->snd_hash);
986 			nvme_tcp_init_iter(req, WRITE);
987 		} else {
988 			nvme_tcp_done_send_req(queue);
989 		}
990 		return 1;
991 	}
992 	req->offset += ret;
993 
994 	return -EAGAIN;
995 }
996 
997 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
998 {
999 	struct nvme_tcp_queue *queue = req->queue;
1000 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1001 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1002 	int len = sizeof(*pdu) - req->offset + hdgst;
1003 	int ret;
1004 
1005 	if (queue->hdr_digest && !req->offset)
1006 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1007 
1008 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1009 			offset_in_page(pdu) + req->offset, len,
1010 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1011 	if (unlikely(ret <= 0))
1012 		return ret;
1013 
1014 	len -= ret;
1015 	if (!len) {
1016 		req->state = NVME_TCP_SEND_DATA;
1017 		if (queue->data_digest)
1018 			crypto_ahash_init(queue->snd_hash);
1019 		if (!req->data_sent)
1020 			nvme_tcp_init_iter(req, WRITE);
1021 		return 1;
1022 	}
1023 	req->offset += ret;
1024 
1025 	return -EAGAIN;
1026 }
1027 
1028 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1029 {
1030 	struct nvme_tcp_queue *queue = req->queue;
1031 	int ret;
1032 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1033 	struct kvec iov = {
1034 		.iov_base = &req->ddgst + req->offset,
1035 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1036 	};
1037 
1038 	if (nvme_tcp_queue_more(queue))
1039 		msg.msg_flags |= MSG_MORE;
1040 	else
1041 		msg.msg_flags |= MSG_EOR;
1042 
1043 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1044 	if (unlikely(ret <= 0))
1045 		return ret;
1046 
1047 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1048 		nvme_tcp_done_send_req(queue);
1049 		return 1;
1050 	}
1051 
1052 	req->offset += ret;
1053 	return -EAGAIN;
1054 }
1055 
1056 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1057 {
1058 	struct nvme_tcp_request *req;
1059 	int ret = 1;
1060 
1061 	if (!queue->request) {
1062 		queue->request = nvme_tcp_fetch_request(queue);
1063 		if (!queue->request)
1064 			return 0;
1065 	}
1066 	req = queue->request;
1067 
1068 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1069 		ret = nvme_tcp_try_send_cmd_pdu(req);
1070 		if (ret <= 0)
1071 			goto done;
1072 		if (!nvme_tcp_has_inline_data(req))
1073 			return ret;
1074 	}
1075 
1076 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1077 		ret = nvme_tcp_try_send_data_pdu(req);
1078 		if (ret <= 0)
1079 			goto done;
1080 	}
1081 
1082 	if (req->state == NVME_TCP_SEND_DATA) {
1083 		ret = nvme_tcp_try_send_data(req);
1084 		if (ret <= 0)
1085 			goto done;
1086 	}
1087 
1088 	if (req->state == NVME_TCP_SEND_DDGST)
1089 		ret = nvme_tcp_try_send_ddgst(req);
1090 done:
1091 	if (ret == -EAGAIN) {
1092 		ret = 0;
1093 	} else if (ret < 0) {
1094 		dev_err(queue->ctrl->ctrl.device,
1095 			"failed to send request %d\n", ret);
1096 		if (ret != -EPIPE && ret != -ECONNRESET)
1097 			nvme_tcp_fail_request(queue->request);
1098 		nvme_tcp_done_send_req(queue);
1099 	}
1100 	return ret;
1101 }
1102 
1103 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1104 {
1105 	struct socket *sock = queue->sock;
1106 	struct sock *sk = sock->sk;
1107 	read_descriptor_t rd_desc;
1108 	int consumed;
1109 
1110 	rd_desc.arg.data = queue;
1111 	rd_desc.count = 1;
1112 	lock_sock(sk);
1113 	queue->nr_cqe = 0;
1114 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1115 	release_sock(sk);
1116 	return consumed;
1117 }
1118 
1119 static void nvme_tcp_io_work(struct work_struct *w)
1120 {
1121 	struct nvme_tcp_queue *queue =
1122 		container_of(w, struct nvme_tcp_queue, io_work);
1123 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1124 
1125 	do {
1126 		bool pending = false;
1127 		int result;
1128 
1129 		if (mutex_trylock(&queue->send_mutex)) {
1130 			result = nvme_tcp_try_send(queue);
1131 			mutex_unlock(&queue->send_mutex);
1132 			if (result > 0)
1133 				pending = true;
1134 			else if (unlikely(result < 0))
1135 				break;
1136 		}
1137 
1138 		result = nvme_tcp_try_recv(queue);
1139 		if (result > 0)
1140 			pending = true;
1141 		else if (unlikely(result < 0))
1142 			return;
1143 
1144 		if (!pending)
1145 			return;
1146 
1147 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1148 
1149 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1150 }
1151 
1152 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1153 {
1154 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1155 
1156 	ahash_request_free(queue->rcv_hash);
1157 	ahash_request_free(queue->snd_hash);
1158 	crypto_free_ahash(tfm);
1159 }
1160 
1161 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1162 {
1163 	struct crypto_ahash *tfm;
1164 
1165 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1166 	if (IS_ERR(tfm))
1167 		return PTR_ERR(tfm);
1168 
1169 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1170 	if (!queue->snd_hash)
1171 		goto free_tfm;
1172 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1173 
1174 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1175 	if (!queue->rcv_hash)
1176 		goto free_snd_hash;
1177 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1178 
1179 	return 0;
1180 free_snd_hash:
1181 	ahash_request_free(queue->snd_hash);
1182 free_tfm:
1183 	crypto_free_ahash(tfm);
1184 	return -ENOMEM;
1185 }
1186 
1187 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1188 {
1189 	struct nvme_tcp_request *async = &ctrl->async_req;
1190 
1191 	page_frag_free(async->pdu);
1192 }
1193 
1194 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1195 {
1196 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1197 	struct nvme_tcp_request *async = &ctrl->async_req;
1198 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1199 
1200 	async->pdu = page_frag_alloc(&queue->pf_cache,
1201 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1202 		GFP_KERNEL | __GFP_ZERO);
1203 	if (!async->pdu)
1204 		return -ENOMEM;
1205 
1206 	async->queue = &ctrl->queues[0];
1207 	return 0;
1208 }
1209 
1210 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1211 {
1212 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1213 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1214 
1215 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1216 		return;
1217 
1218 	if (queue->hdr_digest || queue->data_digest)
1219 		nvme_tcp_free_crypto(queue);
1220 
1221 	sock_release(queue->sock);
1222 	kfree(queue->pdu);
1223 	mutex_destroy(&queue->queue_lock);
1224 }
1225 
1226 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1227 {
1228 	struct nvme_tcp_icreq_pdu *icreq;
1229 	struct nvme_tcp_icresp_pdu *icresp;
1230 	struct msghdr msg = {};
1231 	struct kvec iov;
1232 	bool ctrl_hdgst, ctrl_ddgst;
1233 	int ret;
1234 
1235 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1236 	if (!icreq)
1237 		return -ENOMEM;
1238 
1239 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1240 	if (!icresp) {
1241 		ret = -ENOMEM;
1242 		goto free_icreq;
1243 	}
1244 
1245 	icreq->hdr.type = nvme_tcp_icreq;
1246 	icreq->hdr.hlen = sizeof(*icreq);
1247 	icreq->hdr.pdo = 0;
1248 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1249 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1250 	icreq->maxr2t = 0; /* single inflight r2t supported */
1251 	icreq->hpda = 0; /* no alignment constraint */
1252 	if (queue->hdr_digest)
1253 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1254 	if (queue->data_digest)
1255 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1256 
1257 	iov.iov_base = icreq;
1258 	iov.iov_len = sizeof(*icreq);
1259 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1260 	if (ret < 0)
1261 		goto free_icresp;
1262 
1263 	memset(&msg, 0, sizeof(msg));
1264 	iov.iov_base = icresp;
1265 	iov.iov_len = sizeof(*icresp);
1266 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1267 			iov.iov_len, msg.msg_flags);
1268 	if (ret < 0)
1269 		goto free_icresp;
1270 
1271 	ret = -EINVAL;
1272 	if (icresp->hdr.type != nvme_tcp_icresp) {
1273 		pr_err("queue %d: bad type returned %d\n",
1274 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1275 		goto free_icresp;
1276 	}
1277 
1278 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1279 		pr_err("queue %d: bad pdu length returned %d\n",
1280 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1281 		goto free_icresp;
1282 	}
1283 
1284 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1285 		pr_err("queue %d: bad pfv returned %d\n",
1286 			nvme_tcp_queue_id(queue), icresp->pfv);
1287 		goto free_icresp;
1288 	}
1289 
1290 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1291 	if ((queue->data_digest && !ctrl_ddgst) ||
1292 	    (!queue->data_digest && ctrl_ddgst)) {
1293 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1294 			nvme_tcp_queue_id(queue),
1295 			queue->data_digest ? "enabled" : "disabled",
1296 			ctrl_ddgst ? "enabled" : "disabled");
1297 		goto free_icresp;
1298 	}
1299 
1300 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1301 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1302 	    (!queue->hdr_digest && ctrl_hdgst)) {
1303 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1304 			nvme_tcp_queue_id(queue),
1305 			queue->hdr_digest ? "enabled" : "disabled",
1306 			ctrl_hdgst ? "enabled" : "disabled");
1307 		goto free_icresp;
1308 	}
1309 
1310 	if (icresp->cpda != 0) {
1311 		pr_err("queue %d: unsupported cpda returned %d\n",
1312 			nvme_tcp_queue_id(queue), icresp->cpda);
1313 		goto free_icresp;
1314 	}
1315 
1316 	ret = 0;
1317 free_icresp:
1318 	kfree(icresp);
1319 free_icreq:
1320 	kfree(icreq);
1321 	return ret;
1322 }
1323 
1324 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1325 {
1326 	return nvme_tcp_queue_id(queue) == 0;
1327 }
1328 
1329 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1330 {
1331 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1332 	int qid = nvme_tcp_queue_id(queue);
1333 
1334 	return !nvme_tcp_admin_queue(queue) &&
1335 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1336 }
1337 
1338 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1339 {
1340 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1341 	int qid = nvme_tcp_queue_id(queue);
1342 
1343 	return !nvme_tcp_admin_queue(queue) &&
1344 		!nvme_tcp_default_queue(queue) &&
1345 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1346 			  ctrl->io_queues[HCTX_TYPE_READ];
1347 }
1348 
1349 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1350 {
1351 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1352 	int qid = nvme_tcp_queue_id(queue);
1353 
1354 	return !nvme_tcp_admin_queue(queue) &&
1355 		!nvme_tcp_default_queue(queue) &&
1356 		!nvme_tcp_read_queue(queue) &&
1357 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1358 			  ctrl->io_queues[HCTX_TYPE_READ] +
1359 			  ctrl->io_queues[HCTX_TYPE_POLL];
1360 }
1361 
1362 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1363 {
1364 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1365 	int qid = nvme_tcp_queue_id(queue);
1366 	int n = 0;
1367 
1368 	if (nvme_tcp_default_queue(queue))
1369 		n = qid - 1;
1370 	else if (nvme_tcp_read_queue(queue))
1371 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1372 	else if (nvme_tcp_poll_queue(queue))
1373 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1374 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1375 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1376 }
1377 
1378 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1379 		int qid, size_t queue_size)
1380 {
1381 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1382 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1383 	int ret, rcv_pdu_size;
1384 
1385 	mutex_init(&queue->queue_lock);
1386 	queue->ctrl = ctrl;
1387 	init_llist_head(&queue->req_list);
1388 	INIT_LIST_HEAD(&queue->send_list);
1389 	mutex_init(&queue->send_mutex);
1390 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1391 	queue->queue_size = queue_size;
1392 
1393 	if (qid > 0)
1394 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1395 	else
1396 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1397 						NVME_TCP_ADMIN_CCSZ;
1398 
1399 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1400 			IPPROTO_TCP, &queue->sock);
1401 	if (ret) {
1402 		dev_err(nctrl->device,
1403 			"failed to create socket: %d\n", ret);
1404 		goto err_destroy_mutex;
1405 	}
1406 
1407 	/* Single syn retry */
1408 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1409 
1410 	/* Set TCP no delay */
1411 	tcp_sock_set_nodelay(queue->sock->sk);
1412 
1413 	/*
1414 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1415 	 * close. This is done to prevent stale data from being sent should
1416 	 * the network connection be restored before TCP times out.
1417 	 */
1418 	sock_no_linger(queue->sock->sk);
1419 
1420 	if (so_priority > 0)
1421 		sock_set_priority(queue->sock->sk, so_priority);
1422 
1423 	/* Set socket type of service */
1424 	if (nctrl->opts->tos >= 0)
1425 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1426 
1427 	/* Set 10 seconds timeout for icresp recvmsg */
1428 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1429 
1430 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1431 	nvme_tcp_set_queue_io_cpu(queue);
1432 	queue->request = NULL;
1433 	queue->data_remaining = 0;
1434 	queue->ddgst_remaining = 0;
1435 	queue->pdu_remaining = 0;
1436 	queue->pdu_offset = 0;
1437 	sk_set_memalloc(queue->sock->sk);
1438 
1439 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1440 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1441 			sizeof(ctrl->src_addr));
1442 		if (ret) {
1443 			dev_err(nctrl->device,
1444 				"failed to bind queue %d socket %d\n",
1445 				qid, ret);
1446 			goto err_sock;
1447 		}
1448 	}
1449 
1450 	queue->hdr_digest = nctrl->opts->hdr_digest;
1451 	queue->data_digest = nctrl->opts->data_digest;
1452 	if (queue->hdr_digest || queue->data_digest) {
1453 		ret = nvme_tcp_alloc_crypto(queue);
1454 		if (ret) {
1455 			dev_err(nctrl->device,
1456 				"failed to allocate queue %d crypto\n", qid);
1457 			goto err_sock;
1458 		}
1459 	}
1460 
1461 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1462 			nvme_tcp_hdgst_len(queue);
1463 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1464 	if (!queue->pdu) {
1465 		ret = -ENOMEM;
1466 		goto err_crypto;
1467 	}
1468 
1469 	dev_dbg(nctrl->device, "connecting queue %d\n",
1470 			nvme_tcp_queue_id(queue));
1471 
1472 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1473 		sizeof(ctrl->addr), 0);
1474 	if (ret) {
1475 		dev_err(nctrl->device,
1476 			"failed to connect socket: %d\n", ret);
1477 		goto err_rcv_pdu;
1478 	}
1479 
1480 	ret = nvme_tcp_init_connection(queue);
1481 	if (ret)
1482 		goto err_init_connect;
1483 
1484 	queue->rd_enabled = true;
1485 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1486 	nvme_tcp_init_recv_ctx(queue);
1487 
1488 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1489 	queue->sock->sk->sk_user_data = queue;
1490 	queue->state_change = queue->sock->sk->sk_state_change;
1491 	queue->data_ready = queue->sock->sk->sk_data_ready;
1492 	queue->write_space = queue->sock->sk->sk_write_space;
1493 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1494 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1495 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1496 #ifdef CONFIG_NET_RX_BUSY_POLL
1497 	queue->sock->sk->sk_ll_usec = 1;
1498 #endif
1499 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1500 
1501 	return 0;
1502 
1503 err_init_connect:
1504 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1505 err_rcv_pdu:
1506 	kfree(queue->pdu);
1507 err_crypto:
1508 	if (queue->hdr_digest || queue->data_digest)
1509 		nvme_tcp_free_crypto(queue);
1510 err_sock:
1511 	sock_release(queue->sock);
1512 	queue->sock = NULL;
1513 err_destroy_mutex:
1514 	mutex_destroy(&queue->queue_lock);
1515 	return ret;
1516 }
1517 
1518 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1519 {
1520 	struct socket *sock = queue->sock;
1521 
1522 	write_lock_bh(&sock->sk->sk_callback_lock);
1523 	sock->sk->sk_user_data  = NULL;
1524 	sock->sk->sk_data_ready = queue->data_ready;
1525 	sock->sk->sk_state_change = queue->state_change;
1526 	sock->sk->sk_write_space  = queue->write_space;
1527 	write_unlock_bh(&sock->sk->sk_callback_lock);
1528 }
1529 
1530 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1531 {
1532 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1533 	nvme_tcp_restore_sock_calls(queue);
1534 	cancel_work_sync(&queue->io_work);
1535 }
1536 
1537 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1538 {
1539 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1540 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1541 
1542 	mutex_lock(&queue->queue_lock);
1543 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1544 		__nvme_tcp_stop_queue(queue);
1545 	mutex_unlock(&queue->queue_lock);
1546 }
1547 
1548 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1549 {
1550 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1551 	int ret;
1552 
1553 	if (idx)
1554 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1555 	else
1556 		ret = nvmf_connect_admin_queue(nctrl);
1557 
1558 	if (!ret) {
1559 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1560 	} else {
1561 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1562 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1563 		dev_err(nctrl->device,
1564 			"failed to connect queue: %d ret=%d\n", idx, ret);
1565 	}
1566 	return ret;
1567 }
1568 
1569 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1570 		bool admin)
1571 {
1572 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1573 	struct blk_mq_tag_set *set;
1574 	int ret;
1575 
1576 	if (admin) {
1577 		set = &ctrl->admin_tag_set;
1578 		memset(set, 0, sizeof(*set));
1579 		set->ops = &nvme_tcp_admin_mq_ops;
1580 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1581 		set->reserved_tags = 2; /* connect + keep-alive */
1582 		set->numa_node = nctrl->numa_node;
1583 		set->flags = BLK_MQ_F_BLOCKING;
1584 		set->cmd_size = sizeof(struct nvme_tcp_request);
1585 		set->driver_data = ctrl;
1586 		set->nr_hw_queues = 1;
1587 		set->timeout = NVME_ADMIN_TIMEOUT;
1588 	} else {
1589 		set = &ctrl->tag_set;
1590 		memset(set, 0, sizeof(*set));
1591 		set->ops = &nvme_tcp_mq_ops;
1592 		set->queue_depth = nctrl->sqsize + 1;
1593 		set->reserved_tags = 1; /* fabric connect */
1594 		set->numa_node = nctrl->numa_node;
1595 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1596 		set->cmd_size = sizeof(struct nvme_tcp_request);
1597 		set->driver_data = ctrl;
1598 		set->nr_hw_queues = nctrl->queue_count - 1;
1599 		set->timeout = NVME_IO_TIMEOUT;
1600 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1601 	}
1602 
1603 	ret = blk_mq_alloc_tag_set(set);
1604 	if (ret)
1605 		return ERR_PTR(ret);
1606 
1607 	return set;
1608 }
1609 
1610 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1611 {
1612 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1613 		cancel_work_sync(&ctrl->async_event_work);
1614 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1615 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1616 	}
1617 
1618 	nvme_tcp_free_queue(ctrl, 0);
1619 }
1620 
1621 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1622 {
1623 	int i;
1624 
1625 	for (i = 1; i < ctrl->queue_count; i++)
1626 		nvme_tcp_free_queue(ctrl, i);
1627 }
1628 
1629 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1630 {
1631 	int i;
1632 
1633 	for (i = 1; i < ctrl->queue_count; i++)
1634 		nvme_tcp_stop_queue(ctrl, i);
1635 }
1636 
1637 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1638 {
1639 	int i, ret = 0;
1640 
1641 	for (i = 1; i < ctrl->queue_count; i++) {
1642 		ret = nvme_tcp_start_queue(ctrl, i);
1643 		if (ret)
1644 			goto out_stop_queues;
1645 	}
1646 
1647 	return 0;
1648 
1649 out_stop_queues:
1650 	for (i--; i >= 1; i--)
1651 		nvme_tcp_stop_queue(ctrl, i);
1652 	return ret;
1653 }
1654 
1655 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1656 {
1657 	int ret;
1658 
1659 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1660 	if (ret)
1661 		return ret;
1662 
1663 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1664 	if (ret)
1665 		goto out_free_queue;
1666 
1667 	return 0;
1668 
1669 out_free_queue:
1670 	nvme_tcp_free_queue(ctrl, 0);
1671 	return ret;
1672 }
1673 
1674 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1675 {
1676 	int i, ret;
1677 
1678 	for (i = 1; i < ctrl->queue_count; i++) {
1679 		ret = nvme_tcp_alloc_queue(ctrl, i,
1680 				ctrl->sqsize + 1);
1681 		if (ret)
1682 			goto out_free_queues;
1683 	}
1684 
1685 	return 0;
1686 
1687 out_free_queues:
1688 	for (i--; i >= 1; i--)
1689 		nvme_tcp_free_queue(ctrl, i);
1690 
1691 	return ret;
1692 }
1693 
1694 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1695 {
1696 	unsigned int nr_io_queues;
1697 
1698 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1699 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1700 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1701 
1702 	return nr_io_queues;
1703 }
1704 
1705 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1706 		unsigned int nr_io_queues)
1707 {
1708 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1709 	struct nvmf_ctrl_options *opts = nctrl->opts;
1710 
1711 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1712 		/*
1713 		 * separate read/write queues
1714 		 * hand out dedicated default queues only after we have
1715 		 * sufficient read queues.
1716 		 */
1717 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1718 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1719 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1720 			min(opts->nr_write_queues, nr_io_queues);
1721 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1722 	} else {
1723 		/*
1724 		 * shared read/write queues
1725 		 * either no write queues were requested, or we don't have
1726 		 * sufficient queue count to have dedicated default queues.
1727 		 */
1728 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1729 			min(opts->nr_io_queues, nr_io_queues);
1730 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1731 	}
1732 
1733 	if (opts->nr_poll_queues && nr_io_queues) {
1734 		/* map dedicated poll queues only if we have queues left */
1735 		ctrl->io_queues[HCTX_TYPE_POLL] =
1736 			min(opts->nr_poll_queues, nr_io_queues);
1737 	}
1738 }
1739 
1740 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1741 {
1742 	unsigned int nr_io_queues;
1743 	int ret;
1744 
1745 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1746 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1747 	if (ret)
1748 		return ret;
1749 
1750 	ctrl->queue_count = nr_io_queues + 1;
1751 	if (ctrl->queue_count < 2)
1752 		return 0;
1753 
1754 	dev_info(ctrl->device,
1755 		"creating %d I/O queues.\n", nr_io_queues);
1756 
1757 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1758 
1759 	return __nvme_tcp_alloc_io_queues(ctrl);
1760 }
1761 
1762 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1763 {
1764 	nvme_tcp_stop_io_queues(ctrl);
1765 	if (remove) {
1766 		blk_cleanup_queue(ctrl->connect_q);
1767 		blk_mq_free_tag_set(ctrl->tagset);
1768 	}
1769 	nvme_tcp_free_io_queues(ctrl);
1770 }
1771 
1772 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1773 {
1774 	int ret;
1775 
1776 	ret = nvme_tcp_alloc_io_queues(ctrl);
1777 	if (ret)
1778 		return ret;
1779 
1780 	if (new) {
1781 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1782 		if (IS_ERR(ctrl->tagset)) {
1783 			ret = PTR_ERR(ctrl->tagset);
1784 			goto out_free_io_queues;
1785 		}
1786 
1787 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1788 		if (IS_ERR(ctrl->connect_q)) {
1789 			ret = PTR_ERR(ctrl->connect_q);
1790 			goto out_free_tag_set;
1791 		}
1792 	}
1793 
1794 	ret = nvme_tcp_start_io_queues(ctrl);
1795 	if (ret)
1796 		goto out_cleanup_connect_q;
1797 
1798 	if (!new) {
1799 		nvme_start_queues(ctrl);
1800 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1801 			/*
1802 			 * If we timed out waiting for freeze we are likely to
1803 			 * be stuck.  Fail the controller initialization just
1804 			 * to be safe.
1805 			 */
1806 			ret = -ENODEV;
1807 			goto out_wait_freeze_timed_out;
1808 		}
1809 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1810 			ctrl->queue_count - 1);
1811 		nvme_unfreeze(ctrl);
1812 	}
1813 
1814 	return 0;
1815 
1816 out_wait_freeze_timed_out:
1817 	nvme_stop_queues(ctrl);
1818 	nvme_tcp_stop_io_queues(ctrl);
1819 out_cleanup_connect_q:
1820 	if (new)
1821 		blk_cleanup_queue(ctrl->connect_q);
1822 out_free_tag_set:
1823 	if (new)
1824 		blk_mq_free_tag_set(ctrl->tagset);
1825 out_free_io_queues:
1826 	nvme_tcp_free_io_queues(ctrl);
1827 	return ret;
1828 }
1829 
1830 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1831 {
1832 	nvme_tcp_stop_queue(ctrl, 0);
1833 	if (remove) {
1834 		blk_cleanup_queue(ctrl->admin_q);
1835 		blk_cleanup_queue(ctrl->fabrics_q);
1836 		blk_mq_free_tag_set(ctrl->admin_tagset);
1837 	}
1838 	nvme_tcp_free_admin_queue(ctrl);
1839 }
1840 
1841 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1842 {
1843 	int error;
1844 
1845 	error = nvme_tcp_alloc_admin_queue(ctrl);
1846 	if (error)
1847 		return error;
1848 
1849 	if (new) {
1850 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1851 		if (IS_ERR(ctrl->admin_tagset)) {
1852 			error = PTR_ERR(ctrl->admin_tagset);
1853 			goto out_free_queue;
1854 		}
1855 
1856 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1857 		if (IS_ERR(ctrl->fabrics_q)) {
1858 			error = PTR_ERR(ctrl->fabrics_q);
1859 			goto out_free_tagset;
1860 		}
1861 
1862 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1863 		if (IS_ERR(ctrl->admin_q)) {
1864 			error = PTR_ERR(ctrl->admin_q);
1865 			goto out_cleanup_fabrics_q;
1866 		}
1867 	}
1868 
1869 	error = nvme_tcp_start_queue(ctrl, 0);
1870 	if (error)
1871 		goto out_cleanup_queue;
1872 
1873 	error = nvme_enable_ctrl(ctrl);
1874 	if (error)
1875 		goto out_stop_queue;
1876 
1877 	blk_mq_unquiesce_queue(ctrl->admin_q);
1878 
1879 	error = nvme_init_identify(ctrl);
1880 	if (error)
1881 		goto out_stop_queue;
1882 
1883 	return 0;
1884 
1885 out_stop_queue:
1886 	nvme_tcp_stop_queue(ctrl, 0);
1887 out_cleanup_queue:
1888 	if (new)
1889 		blk_cleanup_queue(ctrl->admin_q);
1890 out_cleanup_fabrics_q:
1891 	if (new)
1892 		blk_cleanup_queue(ctrl->fabrics_q);
1893 out_free_tagset:
1894 	if (new)
1895 		blk_mq_free_tag_set(ctrl->admin_tagset);
1896 out_free_queue:
1897 	nvme_tcp_free_admin_queue(ctrl);
1898 	return error;
1899 }
1900 
1901 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1902 		bool remove)
1903 {
1904 	blk_mq_quiesce_queue(ctrl->admin_q);
1905 	blk_sync_queue(ctrl->admin_q);
1906 	nvme_tcp_stop_queue(ctrl, 0);
1907 	if (ctrl->admin_tagset) {
1908 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1909 			nvme_cancel_request, ctrl);
1910 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1911 	}
1912 	if (remove)
1913 		blk_mq_unquiesce_queue(ctrl->admin_q);
1914 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1915 }
1916 
1917 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1918 		bool remove)
1919 {
1920 	if (ctrl->queue_count <= 1)
1921 		return;
1922 	blk_mq_quiesce_queue(ctrl->admin_q);
1923 	nvme_start_freeze(ctrl);
1924 	nvme_stop_queues(ctrl);
1925 	nvme_sync_io_queues(ctrl);
1926 	nvme_tcp_stop_io_queues(ctrl);
1927 	if (ctrl->tagset) {
1928 		blk_mq_tagset_busy_iter(ctrl->tagset,
1929 			nvme_cancel_request, ctrl);
1930 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1931 	}
1932 	if (remove)
1933 		nvme_start_queues(ctrl);
1934 	nvme_tcp_destroy_io_queues(ctrl, remove);
1935 }
1936 
1937 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1938 {
1939 	/* If we are resetting/deleting then do nothing */
1940 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1941 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1942 			ctrl->state == NVME_CTRL_LIVE);
1943 		return;
1944 	}
1945 
1946 	if (nvmf_should_reconnect(ctrl)) {
1947 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1948 			ctrl->opts->reconnect_delay);
1949 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1950 				ctrl->opts->reconnect_delay * HZ);
1951 	} else {
1952 		dev_info(ctrl->device, "Removing controller...\n");
1953 		nvme_delete_ctrl(ctrl);
1954 	}
1955 }
1956 
1957 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1958 {
1959 	struct nvmf_ctrl_options *opts = ctrl->opts;
1960 	int ret;
1961 
1962 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1963 	if (ret)
1964 		return ret;
1965 
1966 	if (ctrl->icdoff) {
1967 		dev_err(ctrl->device, "icdoff is not supported!\n");
1968 		goto destroy_admin;
1969 	}
1970 
1971 	if (opts->queue_size > ctrl->sqsize + 1)
1972 		dev_warn(ctrl->device,
1973 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1974 			opts->queue_size, ctrl->sqsize + 1);
1975 
1976 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1977 		dev_warn(ctrl->device,
1978 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1979 			ctrl->sqsize + 1, ctrl->maxcmd);
1980 		ctrl->sqsize = ctrl->maxcmd - 1;
1981 	}
1982 
1983 	if (ctrl->queue_count > 1) {
1984 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1985 		if (ret)
1986 			goto destroy_admin;
1987 	}
1988 
1989 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1990 		/*
1991 		 * state change failure is ok if we started ctrl delete,
1992 		 * unless we're during creation of a new controller to
1993 		 * avoid races with teardown flow.
1994 		 */
1995 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1996 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
1997 		WARN_ON_ONCE(new);
1998 		ret = -EINVAL;
1999 		goto destroy_io;
2000 	}
2001 
2002 	nvme_start_ctrl(ctrl);
2003 	return 0;
2004 
2005 destroy_io:
2006 	if (ctrl->queue_count > 1)
2007 		nvme_tcp_destroy_io_queues(ctrl, new);
2008 destroy_admin:
2009 	nvme_tcp_stop_queue(ctrl, 0);
2010 	nvme_tcp_destroy_admin_queue(ctrl, new);
2011 	return ret;
2012 }
2013 
2014 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2015 {
2016 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2017 			struct nvme_tcp_ctrl, connect_work);
2018 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2019 
2020 	++ctrl->nr_reconnects;
2021 
2022 	if (nvme_tcp_setup_ctrl(ctrl, false))
2023 		goto requeue;
2024 
2025 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2026 			ctrl->nr_reconnects);
2027 
2028 	ctrl->nr_reconnects = 0;
2029 
2030 	return;
2031 
2032 requeue:
2033 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2034 			ctrl->nr_reconnects);
2035 	nvme_tcp_reconnect_or_remove(ctrl);
2036 }
2037 
2038 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2039 {
2040 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2041 				struct nvme_tcp_ctrl, err_work);
2042 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2043 
2044 	nvme_stop_keep_alive(ctrl);
2045 	nvme_tcp_teardown_io_queues(ctrl, false);
2046 	/* unquiesce to fail fast pending requests */
2047 	nvme_start_queues(ctrl);
2048 	nvme_tcp_teardown_admin_queue(ctrl, false);
2049 	blk_mq_unquiesce_queue(ctrl->admin_q);
2050 
2051 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2052 		/* state change failure is ok if we started ctrl delete */
2053 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2054 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2055 		return;
2056 	}
2057 
2058 	nvme_tcp_reconnect_or_remove(ctrl);
2059 }
2060 
2061 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2062 {
2063 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2064 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2065 
2066 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2067 	blk_mq_quiesce_queue(ctrl->admin_q);
2068 	if (shutdown)
2069 		nvme_shutdown_ctrl(ctrl);
2070 	else
2071 		nvme_disable_ctrl(ctrl);
2072 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2073 }
2074 
2075 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2076 {
2077 	nvme_tcp_teardown_ctrl(ctrl, true);
2078 }
2079 
2080 static void nvme_reset_ctrl_work(struct work_struct *work)
2081 {
2082 	struct nvme_ctrl *ctrl =
2083 		container_of(work, struct nvme_ctrl, reset_work);
2084 
2085 	nvme_stop_ctrl(ctrl);
2086 	nvme_tcp_teardown_ctrl(ctrl, false);
2087 
2088 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2089 		/* state change failure is ok if we started ctrl delete */
2090 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2091 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2092 		return;
2093 	}
2094 
2095 	if (nvme_tcp_setup_ctrl(ctrl, false))
2096 		goto out_fail;
2097 
2098 	return;
2099 
2100 out_fail:
2101 	++ctrl->nr_reconnects;
2102 	nvme_tcp_reconnect_or_remove(ctrl);
2103 }
2104 
2105 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2106 {
2107 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2108 
2109 	if (list_empty(&ctrl->list))
2110 		goto free_ctrl;
2111 
2112 	mutex_lock(&nvme_tcp_ctrl_mutex);
2113 	list_del(&ctrl->list);
2114 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2115 
2116 	nvmf_free_options(nctrl->opts);
2117 free_ctrl:
2118 	kfree(ctrl->queues);
2119 	kfree(ctrl);
2120 }
2121 
2122 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2123 {
2124 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2125 
2126 	sg->addr = 0;
2127 	sg->length = 0;
2128 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2129 			NVME_SGL_FMT_TRANSPORT_A;
2130 }
2131 
2132 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2133 		struct nvme_command *c, u32 data_len)
2134 {
2135 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2136 
2137 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2138 	sg->length = cpu_to_le32(data_len);
2139 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2140 }
2141 
2142 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2143 		u32 data_len)
2144 {
2145 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2146 
2147 	sg->addr = 0;
2148 	sg->length = cpu_to_le32(data_len);
2149 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2150 			NVME_SGL_FMT_TRANSPORT_A;
2151 }
2152 
2153 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2154 {
2155 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2156 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2157 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2158 	struct nvme_command *cmd = &pdu->cmd;
2159 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2160 
2161 	memset(pdu, 0, sizeof(*pdu));
2162 	pdu->hdr.type = nvme_tcp_cmd;
2163 	if (queue->hdr_digest)
2164 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2165 	pdu->hdr.hlen = sizeof(*pdu);
2166 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2167 
2168 	cmd->common.opcode = nvme_admin_async_event;
2169 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2170 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2171 	nvme_tcp_set_sg_null(cmd);
2172 
2173 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2174 	ctrl->async_req.offset = 0;
2175 	ctrl->async_req.curr_bio = NULL;
2176 	ctrl->async_req.data_len = 0;
2177 
2178 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2179 }
2180 
2181 static void nvme_tcp_complete_timed_out(struct request *rq)
2182 {
2183 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2184 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2185 
2186 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2187 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2188 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2189 		blk_mq_complete_request(rq);
2190 	}
2191 }
2192 
2193 static enum blk_eh_timer_return
2194 nvme_tcp_timeout(struct request *rq, bool reserved)
2195 {
2196 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2197 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2198 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2199 
2200 	dev_warn(ctrl->device,
2201 		"queue %d: timeout request %#x type %d\n",
2202 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2203 
2204 	if (ctrl->state != NVME_CTRL_LIVE) {
2205 		/*
2206 		 * If we are resetting, connecting or deleting we should
2207 		 * complete immediately because we may block controller
2208 		 * teardown or setup sequence
2209 		 * - ctrl disable/shutdown fabrics requests
2210 		 * - connect requests
2211 		 * - initialization admin requests
2212 		 * - I/O requests that entered after unquiescing and
2213 		 *   the controller stopped responding
2214 		 *
2215 		 * All other requests should be cancelled by the error
2216 		 * recovery work, so it's fine that we fail it here.
2217 		 */
2218 		nvme_tcp_complete_timed_out(rq);
2219 		return BLK_EH_DONE;
2220 	}
2221 
2222 	/*
2223 	 * LIVE state should trigger the normal error recovery which will
2224 	 * handle completing this request.
2225 	 */
2226 	nvme_tcp_error_recovery(ctrl);
2227 	return BLK_EH_RESET_TIMER;
2228 }
2229 
2230 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2231 			struct request *rq)
2232 {
2233 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2234 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2235 	struct nvme_command *c = &pdu->cmd;
2236 
2237 	c->common.flags |= NVME_CMD_SGL_METABUF;
2238 
2239 	if (!blk_rq_nr_phys_segments(rq))
2240 		nvme_tcp_set_sg_null(c);
2241 	else if (rq_data_dir(rq) == WRITE &&
2242 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2243 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2244 	else
2245 		nvme_tcp_set_sg_host_data(c, req->data_len);
2246 
2247 	return 0;
2248 }
2249 
2250 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2251 		struct request *rq)
2252 {
2253 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2254 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2255 	struct nvme_tcp_queue *queue = req->queue;
2256 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2257 	blk_status_t ret;
2258 
2259 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2260 	if (ret)
2261 		return ret;
2262 
2263 	req->state = NVME_TCP_SEND_CMD_PDU;
2264 	req->offset = 0;
2265 	req->data_sent = 0;
2266 	req->pdu_len = 0;
2267 	req->pdu_sent = 0;
2268 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2269 				blk_rq_payload_bytes(rq) : 0;
2270 	req->curr_bio = rq->bio;
2271 
2272 	if (rq_data_dir(rq) == WRITE &&
2273 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2274 		req->pdu_len = req->data_len;
2275 	else if (req->curr_bio)
2276 		nvme_tcp_init_iter(req, READ);
2277 
2278 	pdu->hdr.type = nvme_tcp_cmd;
2279 	pdu->hdr.flags = 0;
2280 	if (queue->hdr_digest)
2281 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2282 	if (queue->data_digest && req->pdu_len) {
2283 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2284 		ddgst = nvme_tcp_ddgst_len(queue);
2285 	}
2286 	pdu->hdr.hlen = sizeof(*pdu);
2287 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2288 	pdu->hdr.plen =
2289 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2290 
2291 	ret = nvme_tcp_map_data(queue, rq);
2292 	if (unlikely(ret)) {
2293 		nvme_cleanup_cmd(rq);
2294 		dev_err(queue->ctrl->ctrl.device,
2295 			"Failed to map data (%d)\n", ret);
2296 		return ret;
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2303 {
2304 	struct nvme_tcp_queue *queue = hctx->driver_data;
2305 
2306 	if (!llist_empty(&queue->req_list))
2307 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2308 }
2309 
2310 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2311 		const struct blk_mq_queue_data *bd)
2312 {
2313 	struct nvme_ns *ns = hctx->queue->queuedata;
2314 	struct nvme_tcp_queue *queue = hctx->driver_data;
2315 	struct request *rq = bd->rq;
2316 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2317 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2318 	blk_status_t ret;
2319 
2320 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2321 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2322 
2323 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2324 	if (unlikely(ret))
2325 		return ret;
2326 
2327 	blk_mq_start_request(rq);
2328 
2329 	nvme_tcp_queue_request(req, true, bd->last);
2330 
2331 	return BLK_STS_OK;
2332 }
2333 
2334 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2335 {
2336 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2337 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2338 
2339 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2340 		/* separate read/write queues */
2341 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2342 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2343 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2344 		set->map[HCTX_TYPE_READ].nr_queues =
2345 			ctrl->io_queues[HCTX_TYPE_READ];
2346 		set->map[HCTX_TYPE_READ].queue_offset =
2347 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2348 	} else {
2349 		/* shared read/write queues */
2350 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2351 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2352 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2353 		set->map[HCTX_TYPE_READ].nr_queues =
2354 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2355 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2356 	}
2357 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2358 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2359 
2360 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2361 		/* map dedicated poll queues only if we have queues left */
2362 		set->map[HCTX_TYPE_POLL].nr_queues =
2363 				ctrl->io_queues[HCTX_TYPE_POLL];
2364 		set->map[HCTX_TYPE_POLL].queue_offset =
2365 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2366 			ctrl->io_queues[HCTX_TYPE_READ];
2367 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2368 	}
2369 
2370 	dev_info(ctrl->ctrl.device,
2371 		"mapped %d/%d/%d default/read/poll queues.\n",
2372 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2373 		ctrl->io_queues[HCTX_TYPE_READ],
2374 		ctrl->io_queues[HCTX_TYPE_POLL]);
2375 
2376 	return 0;
2377 }
2378 
2379 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2380 {
2381 	struct nvme_tcp_queue *queue = hctx->driver_data;
2382 	struct sock *sk = queue->sock->sk;
2383 
2384 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2385 		return 0;
2386 
2387 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2388 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2389 		sk_busy_loop(sk, true);
2390 	nvme_tcp_try_recv(queue);
2391 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2392 	return queue->nr_cqe;
2393 }
2394 
2395 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2396 	.queue_rq	= nvme_tcp_queue_rq,
2397 	.commit_rqs	= nvme_tcp_commit_rqs,
2398 	.complete	= nvme_complete_rq,
2399 	.init_request	= nvme_tcp_init_request,
2400 	.exit_request	= nvme_tcp_exit_request,
2401 	.init_hctx	= nvme_tcp_init_hctx,
2402 	.timeout	= nvme_tcp_timeout,
2403 	.map_queues	= nvme_tcp_map_queues,
2404 	.poll		= nvme_tcp_poll,
2405 };
2406 
2407 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2408 	.queue_rq	= nvme_tcp_queue_rq,
2409 	.complete	= nvme_complete_rq,
2410 	.init_request	= nvme_tcp_init_request,
2411 	.exit_request	= nvme_tcp_exit_request,
2412 	.init_hctx	= nvme_tcp_init_admin_hctx,
2413 	.timeout	= nvme_tcp_timeout,
2414 };
2415 
2416 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2417 	.name			= "tcp",
2418 	.module			= THIS_MODULE,
2419 	.flags			= NVME_F_FABRICS,
2420 	.reg_read32		= nvmf_reg_read32,
2421 	.reg_read64		= nvmf_reg_read64,
2422 	.reg_write32		= nvmf_reg_write32,
2423 	.free_ctrl		= nvme_tcp_free_ctrl,
2424 	.submit_async_event	= nvme_tcp_submit_async_event,
2425 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2426 	.get_address		= nvmf_get_address,
2427 };
2428 
2429 static bool
2430 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2431 {
2432 	struct nvme_tcp_ctrl *ctrl;
2433 	bool found = false;
2434 
2435 	mutex_lock(&nvme_tcp_ctrl_mutex);
2436 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2437 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2438 		if (found)
2439 			break;
2440 	}
2441 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2442 
2443 	return found;
2444 }
2445 
2446 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2447 		struct nvmf_ctrl_options *opts)
2448 {
2449 	struct nvme_tcp_ctrl *ctrl;
2450 	int ret;
2451 
2452 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2453 	if (!ctrl)
2454 		return ERR_PTR(-ENOMEM);
2455 
2456 	INIT_LIST_HEAD(&ctrl->list);
2457 	ctrl->ctrl.opts = opts;
2458 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2459 				opts->nr_poll_queues + 1;
2460 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2461 	ctrl->ctrl.kato = opts->kato;
2462 
2463 	INIT_DELAYED_WORK(&ctrl->connect_work,
2464 			nvme_tcp_reconnect_ctrl_work);
2465 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2466 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2467 
2468 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2469 		opts->trsvcid =
2470 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2471 		if (!opts->trsvcid) {
2472 			ret = -ENOMEM;
2473 			goto out_free_ctrl;
2474 		}
2475 		opts->mask |= NVMF_OPT_TRSVCID;
2476 	}
2477 
2478 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2479 			opts->traddr, opts->trsvcid, &ctrl->addr);
2480 	if (ret) {
2481 		pr_err("malformed address passed: %s:%s\n",
2482 			opts->traddr, opts->trsvcid);
2483 		goto out_free_ctrl;
2484 	}
2485 
2486 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2487 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2488 			opts->host_traddr, NULL, &ctrl->src_addr);
2489 		if (ret) {
2490 			pr_err("malformed src address passed: %s\n",
2491 			       opts->host_traddr);
2492 			goto out_free_ctrl;
2493 		}
2494 	}
2495 
2496 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2497 		ret = -EALREADY;
2498 		goto out_free_ctrl;
2499 	}
2500 
2501 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2502 				GFP_KERNEL);
2503 	if (!ctrl->queues) {
2504 		ret = -ENOMEM;
2505 		goto out_free_ctrl;
2506 	}
2507 
2508 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2509 	if (ret)
2510 		goto out_kfree_queues;
2511 
2512 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2513 		WARN_ON_ONCE(1);
2514 		ret = -EINTR;
2515 		goto out_uninit_ctrl;
2516 	}
2517 
2518 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2519 	if (ret)
2520 		goto out_uninit_ctrl;
2521 
2522 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2523 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2524 
2525 	mutex_lock(&nvme_tcp_ctrl_mutex);
2526 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2527 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2528 
2529 	return &ctrl->ctrl;
2530 
2531 out_uninit_ctrl:
2532 	nvme_uninit_ctrl(&ctrl->ctrl);
2533 	nvme_put_ctrl(&ctrl->ctrl);
2534 	if (ret > 0)
2535 		ret = -EIO;
2536 	return ERR_PTR(ret);
2537 out_kfree_queues:
2538 	kfree(ctrl->queues);
2539 out_free_ctrl:
2540 	kfree(ctrl);
2541 	return ERR_PTR(ret);
2542 }
2543 
2544 static struct nvmf_transport_ops nvme_tcp_transport = {
2545 	.name		= "tcp",
2546 	.module		= THIS_MODULE,
2547 	.required_opts	= NVMF_OPT_TRADDR,
2548 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2549 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2550 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2551 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2552 			  NVMF_OPT_TOS,
2553 	.create_ctrl	= nvme_tcp_create_ctrl,
2554 };
2555 
2556 static int __init nvme_tcp_init_module(void)
2557 {
2558 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2559 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2560 	if (!nvme_tcp_wq)
2561 		return -ENOMEM;
2562 
2563 	nvmf_register_transport(&nvme_tcp_transport);
2564 	return 0;
2565 }
2566 
2567 static void __exit nvme_tcp_cleanup_module(void)
2568 {
2569 	struct nvme_tcp_ctrl *ctrl;
2570 
2571 	nvmf_unregister_transport(&nvme_tcp_transport);
2572 
2573 	mutex_lock(&nvme_tcp_ctrl_mutex);
2574 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2575 		nvme_delete_ctrl(&ctrl->ctrl);
2576 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2577 	flush_workqueue(nvme_delete_wq);
2578 
2579 	destroy_workqueue(nvme_tcp_wq);
2580 }
2581 
2582 module_init(nvme_tcp_init_module);
2583 module_exit(nvme_tcp_cleanup_module);
2584 
2585 MODULE_LICENSE("GPL v2");
2586