1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 __le32 ddgst; 50 51 struct bio *curr_bio; 52 struct iov_iter iter; 53 54 /* send state */ 55 size_t offset; 56 size_t data_sent; 57 enum nvme_tcp_send_state state; 58 }; 59 60 enum nvme_tcp_queue_flags { 61 NVME_TCP_Q_ALLOCATED = 0, 62 NVME_TCP_Q_LIVE = 1, 63 NVME_TCP_Q_POLLING = 2, 64 }; 65 66 enum nvme_tcp_recv_state { 67 NVME_TCP_RECV_PDU = 0, 68 NVME_TCP_RECV_DATA, 69 NVME_TCP_RECV_DDGST, 70 }; 71 72 struct nvme_tcp_ctrl; 73 struct nvme_tcp_queue { 74 struct socket *sock; 75 struct work_struct io_work; 76 int io_cpu; 77 78 spinlock_t lock; 79 struct mutex send_mutex; 80 struct list_head send_list; 81 82 /* recv state */ 83 void *pdu; 84 int pdu_remaining; 85 int pdu_offset; 86 size_t data_remaining; 87 size_t ddgst_remaining; 88 unsigned int nr_cqe; 89 90 /* send state */ 91 struct nvme_tcp_request *request; 92 93 int queue_size; 94 size_t cmnd_capsule_len; 95 struct nvme_tcp_ctrl *ctrl; 96 unsigned long flags; 97 bool rd_enabled; 98 99 bool hdr_digest; 100 bool data_digest; 101 struct ahash_request *rcv_hash; 102 struct ahash_request *snd_hash; 103 __le32 exp_ddgst; 104 __le32 recv_ddgst; 105 106 struct page_frag_cache pf_cache; 107 108 void (*state_change)(struct sock *); 109 void (*data_ready)(struct sock *); 110 void (*write_space)(struct sock *); 111 }; 112 113 struct nvme_tcp_ctrl { 114 /* read only in the hot path */ 115 struct nvme_tcp_queue *queues; 116 struct blk_mq_tag_set tag_set; 117 118 /* other member variables */ 119 struct list_head list; 120 struct blk_mq_tag_set admin_tag_set; 121 struct sockaddr_storage addr; 122 struct sockaddr_storage src_addr; 123 struct nvme_ctrl ctrl; 124 125 struct work_struct err_work; 126 struct delayed_work connect_work; 127 struct nvme_tcp_request async_req; 128 u32 io_queues[HCTX_MAX_TYPES]; 129 }; 130 131 static LIST_HEAD(nvme_tcp_ctrl_list); 132 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 133 static struct workqueue_struct *nvme_tcp_wq; 134 static const struct blk_mq_ops nvme_tcp_mq_ops; 135 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 136 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 137 138 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 139 { 140 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 141 } 142 143 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 144 { 145 return queue - queue->ctrl->queues; 146 } 147 148 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 149 { 150 u32 queue_idx = nvme_tcp_queue_id(queue); 151 152 if (queue_idx == 0) 153 return queue->ctrl->admin_tag_set.tags[queue_idx]; 154 return queue->ctrl->tag_set.tags[queue_idx - 1]; 155 } 156 157 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 158 { 159 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 160 } 161 162 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 163 { 164 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 165 } 166 167 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 168 { 169 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 170 } 171 172 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 173 { 174 return req == &req->queue->ctrl->async_req; 175 } 176 177 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 178 { 179 struct request *rq; 180 181 if (unlikely(nvme_tcp_async_req(req))) 182 return false; /* async events don't have a request */ 183 184 rq = blk_mq_rq_from_pdu(req); 185 186 return rq_data_dir(rq) == WRITE && req->data_len && 187 req->data_len <= nvme_tcp_inline_data_size(req->queue); 188 } 189 190 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 191 { 192 return req->iter.bvec->bv_page; 193 } 194 195 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 196 { 197 return req->iter.bvec->bv_offset + req->iter.iov_offset; 198 } 199 200 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 201 { 202 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 203 req->pdu_len - req->pdu_sent); 204 } 205 206 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 207 { 208 return req->iter.iov_offset; 209 } 210 211 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 212 { 213 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 214 req->pdu_len - req->pdu_sent : 0; 215 } 216 217 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 218 int len) 219 { 220 return nvme_tcp_pdu_data_left(req) <= len; 221 } 222 223 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 224 unsigned int dir) 225 { 226 struct request *rq = blk_mq_rq_from_pdu(req); 227 struct bio_vec *vec; 228 unsigned int size; 229 int nsegs; 230 size_t offset; 231 232 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 233 vec = &rq->special_vec; 234 nsegs = 1; 235 size = blk_rq_payload_bytes(rq); 236 offset = 0; 237 } else { 238 struct bio *bio = req->curr_bio; 239 240 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 241 nsegs = bio_segments(bio); 242 size = bio->bi_iter.bi_size; 243 offset = bio->bi_iter.bi_bvec_done; 244 } 245 246 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 247 req->iter.iov_offset = offset; 248 } 249 250 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 251 int len) 252 { 253 req->data_sent += len; 254 req->pdu_sent += len; 255 iov_iter_advance(&req->iter, len); 256 if (!iov_iter_count(&req->iter) && 257 req->data_sent < req->data_len) { 258 req->curr_bio = req->curr_bio->bi_next; 259 nvme_tcp_init_iter(req, WRITE); 260 } 261 } 262 263 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 264 bool sync) 265 { 266 struct nvme_tcp_queue *queue = req->queue; 267 bool empty; 268 269 spin_lock(&queue->lock); 270 empty = list_empty(&queue->send_list) && !queue->request; 271 list_add_tail(&req->entry, &queue->send_list); 272 spin_unlock(&queue->lock); 273 274 /* 275 * if we're the first on the send_list and we can try to send 276 * directly, otherwise queue io_work. Also, only do that if we 277 * are on the same cpu, so we don't introduce contention. 278 */ 279 if (queue->io_cpu == smp_processor_id() && 280 sync && empty && mutex_trylock(&queue->send_mutex)) { 281 nvme_tcp_try_send(queue); 282 mutex_unlock(&queue->send_mutex); 283 } else { 284 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 285 } 286 } 287 288 static inline struct nvme_tcp_request * 289 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 290 { 291 struct nvme_tcp_request *req; 292 293 spin_lock(&queue->lock); 294 req = list_first_entry_or_null(&queue->send_list, 295 struct nvme_tcp_request, entry); 296 if (req) 297 list_del(&req->entry); 298 spin_unlock(&queue->lock); 299 300 return req; 301 } 302 303 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 304 __le32 *dgst) 305 { 306 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 307 crypto_ahash_final(hash); 308 } 309 310 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 311 struct page *page, off_t off, size_t len) 312 { 313 struct scatterlist sg; 314 315 sg_init_marker(&sg, 1); 316 sg_set_page(&sg, page, len, off); 317 ahash_request_set_crypt(hash, &sg, NULL, len); 318 crypto_ahash_update(hash); 319 } 320 321 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 322 void *pdu, size_t len) 323 { 324 struct scatterlist sg; 325 326 sg_init_one(&sg, pdu, len); 327 ahash_request_set_crypt(hash, &sg, pdu + len, len); 328 crypto_ahash_digest(hash); 329 } 330 331 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 332 void *pdu, size_t pdu_len) 333 { 334 struct nvme_tcp_hdr *hdr = pdu; 335 __le32 recv_digest; 336 __le32 exp_digest; 337 338 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 339 dev_err(queue->ctrl->ctrl.device, 340 "queue %d: header digest flag is cleared\n", 341 nvme_tcp_queue_id(queue)); 342 return -EPROTO; 343 } 344 345 recv_digest = *(__le32 *)(pdu + hdr->hlen); 346 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 347 exp_digest = *(__le32 *)(pdu + hdr->hlen); 348 if (recv_digest != exp_digest) { 349 dev_err(queue->ctrl->ctrl.device, 350 "header digest error: recv %#x expected %#x\n", 351 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 352 return -EIO; 353 } 354 355 return 0; 356 } 357 358 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 359 { 360 struct nvme_tcp_hdr *hdr = pdu; 361 u8 digest_len = nvme_tcp_hdgst_len(queue); 362 u32 len; 363 364 len = le32_to_cpu(hdr->plen) - hdr->hlen - 365 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 366 367 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 368 dev_err(queue->ctrl->ctrl.device, 369 "queue %d: data digest flag is cleared\n", 370 nvme_tcp_queue_id(queue)); 371 return -EPROTO; 372 } 373 crypto_ahash_init(queue->rcv_hash); 374 375 return 0; 376 } 377 378 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 379 struct request *rq, unsigned int hctx_idx) 380 { 381 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 382 383 page_frag_free(req->pdu); 384 } 385 386 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 387 struct request *rq, unsigned int hctx_idx, 388 unsigned int numa_node) 389 { 390 struct nvme_tcp_ctrl *ctrl = set->driver_data; 391 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 392 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 393 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 394 u8 hdgst = nvme_tcp_hdgst_len(queue); 395 396 req->pdu = page_frag_alloc(&queue->pf_cache, 397 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 398 GFP_KERNEL | __GFP_ZERO); 399 if (!req->pdu) 400 return -ENOMEM; 401 402 req->queue = queue; 403 nvme_req(rq)->ctrl = &ctrl->ctrl; 404 405 return 0; 406 } 407 408 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_tcp_ctrl *ctrl = data; 412 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 413 414 hctx->driver_data = queue; 415 return 0; 416 } 417 418 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 419 unsigned int hctx_idx) 420 { 421 struct nvme_tcp_ctrl *ctrl = data; 422 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 423 424 hctx->driver_data = queue; 425 return 0; 426 } 427 428 static enum nvme_tcp_recv_state 429 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 430 { 431 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 432 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 433 NVME_TCP_RECV_DATA; 434 } 435 436 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 437 { 438 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 439 nvme_tcp_hdgst_len(queue); 440 queue->pdu_offset = 0; 441 queue->data_remaining = -1; 442 queue->ddgst_remaining = 0; 443 } 444 445 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 446 { 447 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 448 return; 449 450 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 451 } 452 453 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 454 struct nvme_completion *cqe) 455 { 456 struct request *rq; 457 458 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 459 if (!rq) { 460 dev_err(queue->ctrl->ctrl.device, 461 "queue %d tag 0x%x not found\n", 462 nvme_tcp_queue_id(queue), cqe->command_id); 463 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 464 return -EINVAL; 465 } 466 467 nvme_end_request(rq, cqe->status, cqe->result); 468 queue->nr_cqe++; 469 470 return 0; 471 } 472 473 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 474 struct nvme_tcp_data_pdu *pdu) 475 { 476 struct request *rq; 477 478 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 479 if (!rq) { 480 dev_err(queue->ctrl->ctrl.device, 481 "queue %d tag %#x not found\n", 482 nvme_tcp_queue_id(queue), pdu->command_id); 483 return -ENOENT; 484 } 485 486 if (!blk_rq_payload_bytes(rq)) { 487 dev_err(queue->ctrl->ctrl.device, 488 "queue %d tag %#x unexpected data\n", 489 nvme_tcp_queue_id(queue), rq->tag); 490 return -EIO; 491 } 492 493 queue->data_remaining = le32_to_cpu(pdu->data_length); 494 495 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 496 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 497 dev_err(queue->ctrl->ctrl.device, 498 "queue %d tag %#x SUCCESS set but not last PDU\n", 499 nvme_tcp_queue_id(queue), rq->tag); 500 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 501 return -EPROTO; 502 } 503 504 return 0; 505 } 506 507 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 508 struct nvme_tcp_rsp_pdu *pdu) 509 { 510 struct nvme_completion *cqe = &pdu->cqe; 511 int ret = 0; 512 513 /* 514 * AEN requests are special as they don't time out and can 515 * survive any kind of queue freeze and often don't respond to 516 * aborts. We don't even bother to allocate a struct request 517 * for them but rather special case them here. 518 */ 519 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 520 cqe->command_id))) 521 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 522 &cqe->result); 523 else 524 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 525 526 return ret; 527 } 528 529 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 530 struct nvme_tcp_r2t_pdu *pdu) 531 { 532 struct nvme_tcp_data_pdu *data = req->pdu; 533 struct nvme_tcp_queue *queue = req->queue; 534 struct request *rq = blk_mq_rq_from_pdu(req); 535 u8 hdgst = nvme_tcp_hdgst_len(queue); 536 u8 ddgst = nvme_tcp_ddgst_len(queue); 537 538 req->pdu_len = le32_to_cpu(pdu->r2t_length); 539 req->pdu_sent = 0; 540 541 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 542 dev_err(queue->ctrl->ctrl.device, 543 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 544 rq->tag, req->pdu_len, req->data_len, 545 req->data_sent); 546 return -EPROTO; 547 } 548 549 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 550 dev_err(queue->ctrl->ctrl.device, 551 "req %d unexpected r2t offset %u (expected %zu)\n", 552 rq->tag, le32_to_cpu(pdu->r2t_offset), 553 req->data_sent); 554 return -EPROTO; 555 } 556 557 memset(data, 0, sizeof(*data)); 558 data->hdr.type = nvme_tcp_h2c_data; 559 data->hdr.flags = NVME_TCP_F_DATA_LAST; 560 if (queue->hdr_digest) 561 data->hdr.flags |= NVME_TCP_F_HDGST; 562 if (queue->data_digest) 563 data->hdr.flags |= NVME_TCP_F_DDGST; 564 data->hdr.hlen = sizeof(*data); 565 data->hdr.pdo = data->hdr.hlen + hdgst; 566 data->hdr.plen = 567 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 568 data->ttag = pdu->ttag; 569 data->command_id = rq->tag; 570 data->data_offset = cpu_to_le32(req->data_sent); 571 data->data_length = cpu_to_le32(req->pdu_len); 572 return 0; 573 } 574 575 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 576 struct nvme_tcp_r2t_pdu *pdu) 577 { 578 struct nvme_tcp_request *req; 579 struct request *rq; 580 int ret; 581 582 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 583 if (!rq) { 584 dev_err(queue->ctrl->ctrl.device, 585 "queue %d tag %#x not found\n", 586 nvme_tcp_queue_id(queue), pdu->command_id); 587 return -ENOENT; 588 } 589 req = blk_mq_rq_to_pdu(rq); 590 591 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 592 if (unlikely(ret)) 593 return ret; 594 595 req->state = NVME_TCP_SEND_H2C_PDU; 596 req->offset = 0; 597 598 nvme_tcp_queue_request(req, false); 599 600 return 0; 601 } 602 603 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 604 unsigned int *offset, size_t *len) 605 { 606 struct nvme_tcp_hdr *hdr; 607 char *pdu = queue->pdu; 608 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 609 int ret; 610 611 ret = skb_copy_bits(skb, *offset, 612 &pdu[queue->pdu_offset], rcv_len); 613 if (unlikely(ret)) 614 return ret; 615 616 queue->pdu_remaining -= rcv_len; 617 queue->pdu_offset += rcv_len; 618 *offset += rcv_len; 619 *len -= rcv_len; 620 if (queue->pdu_remaining) 621 return 0; 622 623 hdr = queue->pdu; 624 if (queue->hdr_digest) { 625 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 626 if (unlikely(ret)) 627 return ret; 628 } 629 630 631 if (queue->data_digest) { 632 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 633 if (unlikely(ret)) 634 return ret; 635 } 636 637 switch (hdr->type) { 638 case nvme_tcp_c2h_data: 639 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 640 case nvme_tcp_rsp: 641 nvme_tcp_init_recv_ctx(queue); 642 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 643 case nvme_tcp_r2t: 644 nvme_tcp_init_recv_ctx(queue); 645 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 646 default: 647 dev_err(queue->ctrl->ctrl.device, 648 "unsupported pdu type (%d)\n", hdr->type); 649 return -EINVAL; 650 } 651 } 652 653 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 654 { 655 union nvme_result res = {}; 656 657 nvme_end_request(rq, cpu_to_le16(status << 1), res); 658 } 659 660 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 661 unsigned int *offset, size_t *len) 662 { 663 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 664 struct nvme_tcp_request *req; 665 struct request *rq; 666 667 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 668 if (!rq) { 669 dev_err(queue->ctrl->ctrl.device, 670 "queue %d tag %#x not found\n", 671 nvme_tcp_queue_id(queue), pdu->command_id); 672 return -ENOENT; 673 } 674 req = blk_mq_rq_to_pdu(rq); 675 676 while (true) { 677 int recv_len, ret; 678 679 recv_len = min_t(size_t, *len, queue->data_remaining); 680 if (!recv_len) 681 break; 682 683 if (!iov_iter_count(&req->iter)) { 684 req->curr_bio = req->curr_bio->bi_next; 685 686 /* 687 * If we don`t have any bios it means that controller 688 * sent more data than we requested, hence error 689 */ 690 if (!req->curr_bio) { 691 dev_err(queue->ctrl->ctrl.device, 692 "queue %d no space in request %#x", 693 nvme_tcp_queue_id(queue), rq->tag); 694 nvme_tcp_init_recv_ctx(queue); 695 return -EIO; 696 } 697 nvme_tcp_init_iter(req, READ); 698 } 699 700 /* we can read only from what is left in this bio */ 701 recv_len = min_t(size_t, recv_len, 702 iov_iter_count(&req->iter)); 703 704 if (queue->data_digest) 705 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 706 &req->iter, recv_len, queue->rcv_hash); 707 else 708 ret = skb_copy_datagram_iter(skb, *offset, 709 &req->iter, recv_len); 710 if (ret) { 711 dev_err(queue->ctrl->ctrl.device, 712 "queue %d failed to copy request %#x data", 713 nvme_tcp_queue_id(queue), rq->tag); 714 return ret; 715 } 716 717 *len -= recv_len; 718 *offset += recv_len; 719 queue->data_remaining -= recv_len; 720 } 721 722 if (!queue->data_remaining) { 723 if (queue->data_digest) { 724 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 725 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 726 } else { 727 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 728 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 729 queue->nr_cqe++; 730 } 731 nvme_tcp_init_recv_ctx(queue); 732 } 733 } 734 735 return 0; 736 } 737 738 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 739 struct sk_buff *skb, unsigned int *offset, size_t *len) 740 { 741 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 742 char *ddgst = (char *)&queue->recv_ddgst; 743 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 744 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 745 int ret; 746 747 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 748 if (unlikely(ret)) 749 return ret; 750 751 queue->ddgst_remaining -= recv_len; 752 *offset += recv_len; 753 *len -= recv_len; 754 if (queue->ddgst_remaining) 755 return 0; 756 757 if (queue->recv_ddgst != queue->exp_ddgst) { 758 dev_err(queue->ctrl->ctrl.device, 759 "data digest error: recv %#x expected %#x\n", 760 le32_to_cpu(queue->recv_ddgst), 761 le32_to_cpu(queue->exp_ddgst)); 762 return -EIO; 763 } 764 765 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 766 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 767 pdu->command_id); 768 769 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 770 queue->nr_cqe++; 771 } 772 773 nvme_tcp_init_recv_ctx(queue); 774 return 0; 775 } 776 777 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 778 unsigned int offset, size_t len) 779 { 780 struct nvme_tcp_queue *queue = desc->arg.data; 781 size_t consumed = len; 782 int result; 783 784 while (len) { 785 switch (nvme_tcp_recv_state(queue)) { 786 case NVME_TCP_RECV_PDU: 787 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 788 break; 789 case NVME_TCP_RECV_DATA: 790 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 791 break; 792 case NVME_TCP_RECV_DDGST: 793 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 794 break; 795 default: 796 result = -EFAULT; 797 } 798 if (result) { 799 dev_err(queue->ctrl->ctrl.device, 800 "receive failed: %d\n", result); 801 queue->rd_enabled = false; 802 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 803 return result; 804 } 805 } 806 807 return consumed; 808 } 809 810 static void nvme_tcp_data_ready(struct sock *sk) 811 { 812 struct nvme_tcp_queue *queue; 813 814 read_lock_bh(&sk->sk_callback_lock); 815 queue = sk->sk_user_data; 816 if (likely(queue && queue->rd_enabled) && 817 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 818 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 819 read_unlock_bh(&sk->sk_callback_lock); 820 } 821 822 static void nvme_tcp_write_space(struct sock *sk) 823 { 824 struct nvme_tcp_queue *queue; 825 826 read_lock_bh(&sk->sk_callback_lock); 827 queue = sk->sk_user_data; 828 if (likely(queue && sk_stream_is_writeable(sk))) { 829 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 830 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 831 } 832 read_unlock_bh(&sk->sk_callback_lock); 833 } 834 835 static void nvme_tcp_state_change(struct sock *sk) 836 { 837 struct nvme_tcp_queue *queue; 838 839 read_lock(&sk->sk_callback_lock); 840 queue = sk->sk_user_data; 841 if (!queue) 842 goto done; 843 844 switch (sk->sk_state) { 845 case TCP_CLOSE: 846 case TCP_CLOSE_WAIT: 847 case TCP_LAST_ACK: 848 case TCP_FIN_WAIT1: 849 case TCP_FIN_WAIT2: 850 /* fallthrough */ 851 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 852 break; 853 default: 854 dev_info(queue->ctrl->ctrl.device, 855 "queue %d socket state %d\n", 856 nvme_tcp_queue_id(queue), sk->sk_state); 857 } 858 859 queue->state_change(sk); 860 done: 861 read_unlock(&sk->sk_callback_lock); 862 } 863 864 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 865 { 866 queue->request = NULL; 867 } 868 869 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 870 { 871 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 872 } 873 874 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 875 { 876 struct nvme_tcp_queue *queue = req->queue; 877 878 while (true) { 879 struct page *page = nvme_tcp_req_cur_page(req); 880 size_t offset = nvme_tcp_req_cur_offset(req); 881 size_t len = nvme_tcp_req_cur_length(req); 882 bool last = nvme_tcp_pdu_last_send(req, len); 883 int ret, flags = MSG_DONTWAIT; 884 885 if (last && !queue->data_digest) 886 flags |= MSG_EOR; 887 else 888 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 889 890 /* can't zcopy slab pages */ 891 if (unlikely(PageSlab(page))) { 892 ret = sock_no_sendpage(queue->sock, page, offset, len, 893 flags); 894 } else { 895 ret = kernel_sendpage(queue->sock, page, offset, len, 896 flags); 897 } 898 if (ret <= 0) 899 return ret; 900 901 nvme_tcp_advance_req(req, ret); 902 if (queue->data_digest) 903 nvme_tcp_ddgst_update(queue->snd_hash, page, 904 offset, ret); 905 906 /* fully successful last write*/ 907 if (last && ret == len) { 908 if (queue->data_digest) { 909 nvme_tcp_ddgst_final(queue->snd_hash, 910 &req->ddgst); 911 req->state = NVME_TCP_SEND_DDGST; 912 req->offset = 0; 913 } else { 914 nvme_tcp_done_send_req(queue); 915 } 916 return 1; 917 } 918 } 919 return -EAGAIN; 920 } 921 922 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 923 { 924 struct nvme_tcp_queue *queue = req->queue; 925 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 926 bool inline_data = nvme_tcp_has_inline_data(req); 927 u8 hdgst = nvme_tcp_hdgst_len(queue); 928 int len = sizeof(*pdu) + hdgst - req->offset; 929 int flags = MSG_DONTWAIT; 930 int ret; 931 932 if (inline_data) 933 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 934 else 935 flags |= MSG_EOR; 936 937 if (queue->hdr_digest && !req->offset) 938 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 939 940 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 941 offset_in_page(pdu) + req->offset, len, flags); 942 if (unlikely(ret <= 0)) 943 return ret; 944 945 len -= ret; 946 if (!len) { 947 if (inline_data) { 948 req->state = NVME_TCP_SEND_DATA; 949 if (queue->data_digest) 950 crypto_ahash_init(queue->snd_hash); 951 nvme_tcp_init_iter(req, WRITE); 952 } else { 953 nvme_tcp_done_send_req(queue); 954 } 955 return 1; 956 } 957 req->offset += ret; 958 959 return -EAGAIN; 960 } 961 962 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 963 { 964 struct nvme_tcp_queue *queue = req->queue; 965 struct nvme_tcp_data_pdu *pdu = req->pdu; 966 u8 hdgst = nvme_tcp_hdgst_len(queue); 967 int len = sizeof(*pdu) - req->offset + hdgst; 968 int ret; 969 970 if (queue->hdr_digest && !req->offset) 971 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 972 973 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 974 offset_in_page(pdu) + req->offset, len, 975 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 976 if (unlikely(ret <= 0)) 977 return ret; 978 979 len -= ret; 980 if (!len) { 981 req->state = NVME_TCP_SEND_DATA; 982 if (queue->data_digest) 983 crypto_ahash_init(queue->snd_hash); 984 if (!req->data_sent) 985 nvme_tcp_init_iter(req, WRITE); 986 return 1; 987 } 988 req->offset += ret; 989 990 return -EAGAIN; 991 } 992 993 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 994 { 995 struct nvme_tcp_queue *queue = req->queue; 996 int ret; 997 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 998 struct kvec iov = { 999 .iov_base = &req->ddgst + req->offset, 1000 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1001 }; 1002 1003 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1004 if (unlikely(ret <= 0)) 1005 return ret; 1006 1007 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1008 nvme_tcp_done_send_req(queue); 1009 return 1; 1010 } 1011 1012 req->offset += ret; 1013 return -EAGAIN; 1014 } 1015 1016 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1017 { 1018 struct nvme_tcp_request *req; 1019 int ret = 1; 1020 1021 if (!queue->request) { 1022 queue->request = nvme_tcp_fetch_request(queue); 1023 if (!queue->request) 1024 return 0; 1025 } 1026 req = queue->request; 1027 1028 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1029 ret = nvme_tcp_try_send_cmd_pdu(req); 1030 if (ret <= 0) 1031 goto done; 1032 if (!nvme_tcp_has_inline_data(req)) 1033 return ret; 1034 } 1035 1036 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1037 ret = nvme_tcp_try_send_data_pdu(req); 1038 if (ret <= 0) 1039 goto done; 1040 } 1041 1042 if (req->state == NVME_TCP_SEND_DATA) { 1043 ret = nvme_tcp_try_send_data(req); 1044 if (ret <= 0) 1045 goto done; 1046 } 1047 1048 if (req->state == NVME_TCP_SEND_DDGST) 1049 ret = nvme_tcp_try_send_ddgst(req); 1050 done: 1051 if (ret == -EAGAIN) { 1052 ret = 0; 1053 } else if (ret < 0) { 1054 dev_err(queue->ctrl->ctrl.device, 1055 "failed to send request %d\n", ret); 1056 if (ret != -EPIPE && ret != -ECONNRESET) 1057 nvme_tcp_fail_request(queue->request); 1058 nvme_tcp_done_send_req(queue); 1059 } 1060 return ret; 1061 } 1062 1063 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1064 { 1065 struct socket *sock = queue->sock; 1066 struct sock *sk = sock->sk; 1067 read_descriptor_t rd_desc; 1068 int consumed; 1069 1070 rd_desc.arg.data = queue; 1071 rd_desc.count = 1; 1072 lock_sock(sk); 1073 queue->nr_cqe = 0; 1074 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1075 release_sock(sk); 1076 return consumed; 1077 } 1078 1079 static void nvme_tcp_io_work(struct work_struct *w) 1080 { 1081 struct nvme_tcp_queue *queue = 1082 container_of(w, struct nvme_tcp_queue, io_work); 1083 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1084 1085 do { 1086 bool pending = false; 1087 int result; 1088 1089 if (mutex_trylock(&queue->send_mutex)) { 1090 result = nvme_tcp_try_send(queue); 1091 mutex_unlock(&queue->send_mutex); 1092 if (result > 0) 1093 pending = true; 1094 else if (unlikely(result < 0)) 1095 break; 1096 } 1097 1098 result = nvme_tcp_try_recv(queue); 1099 if (result > 0) 1100 pending = true; 1101 else if (unlikely(result < 0)) 1102 return; 1103 1104 if (!pending) 1105 return; 1106 1107 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1108 1109 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1110 } 1111 1112 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1113 { 1114 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1115 1116 ahash_request_free(queue->rcv_hash); 1117 ahash_request_free(queue->snd_hash); 1118 crypto_free_ahash(tfm); 1119 } 1120 1121 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1122 { 1123 struct crypto_ahash *tfm; 1124 1125 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1126 if (IS_ERR(tfm)) 1127 return PTR_ERR(tfm); 1128 1129 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1130 if (!queue->snd_hash) 1131 goto free_tfm; 1132 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1133 1134 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1135 if (!queue->rcv_hash) 1136 goto free_snd_hash; 1137 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1138 1139 return 0; 1140 free_snd_hash: 1141 ahash_request_free(queue->snd_hash); 1142 free_tfm: 1143 crypto_free_ahash(tfm); 1144 return -ENOMEM; 1145 } 1146 1147 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1148 { 1149 struct nvme_tcp_request *async = &ctrl->async_req; 1150 1151 page_frag_free(async->pdu); 1152 } 1153 1154 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1155 { 1156 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1157 struct nvme_tcp_request *async = &ctrl->async_req; 1158 u8 hdgst = nvme_tcp_hdgst_len(queue); 1159 1160 async->pdu = page_frag_alloc(&queue->pf_cache, 1161 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1162 GFP_KERNEL | __GFP_ZERO); 1163 if (!async->pdu) 1164 return -ENOMEM; 1165 1166 async->queue = &ctrl->queues[0]; 1167 return 0; 1168 } 1169 1170 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1171 { 1172 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1173 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1174 1175 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1176 return; 1177 1178 if (queue->hdr_digest || queue->data_digest) 1179 nvme_tcp_free_crypto(queue); 1180 1181 sock_release(queue->sock); 1182 kfree(queue->pdu); 1183 } 1184 1185 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1186 { 1187 struct nvme_tcp_icreq_pdu *icreq; 1188 struct nvme_tcp_icresp_pdu *icresp; 1189 struct msghdr msg = {}; 1190 struct kvec iov; 1191 bool ctrl_hdgst, ctrl_ddgst; 1192 int ret; 1193 1194 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1195 if (!icreq) 1196 return -ENOMEM; 1197 1198 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1199 if (!icresp) { 1200 ret = -ENOMEM; 1201 goto free_icreq; 1202 } 1203 1204 icreq->hdr.type = nvme_tcp_icreq; 1205 icreq->hdr.hlen = sizeof(*icreq); 1206 icreq->hdr.pdo = 0; 1207 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1208 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1209 icreq->maxr2t = 0; /* single inflight r2t supported */ 1210 icreq->hpda = 0; /* no alignment constraint */ 1211 if (queue->hdr_digest) 1212 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1213 if (queue->data_digest) 1214 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1215 1216 iov.iov_base = icreq; 1217 iov.iov_len = sizeof(*icreq); 1218 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1219 if (ret < 0) 1220 goto free_icresp; 1221 1222 memset(&msg, 0, sizeof(msg)); 1223 iov.iov_base = icresp; 1224 iov.iov_len = sizeof(*icresp); 1225 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1226 iov.iov_len, msg.msg_flags); 1227 if (ret < 0) 1228 goto free_icresp; 1229 1230 ret = -EINVAL; 1231 if (icresp->hdr.type != nvme_tcp_icresp) { 1232 pr_err("queue %d: bad type returned %d\n", 1233 nvme_tcp_queue_id(queue), icresp->hdr.type); 1234 goto free_icresp; 1235 } 1236 1237 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1238 pr_err("queue %d: bad pdu length returned %d\n", 1239 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1240 goto free_icresp; 1241 } 1242 1243 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1244 pr_err("queue %d: bad pfv returned %d\n", 1245 nvme_tcp_queue_id(queue), icresp->pfv); 1246 goto free_icresp; 1247 } 1248 1249 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1250 if ((queue->data_digest && !ctrl_ddgst) || 1251 (!queue->data_digest && ctrl_ddgst)) { 1252 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1253 nvme_tcp_queue_id(queue), 1254 queue->data_digest ? "enabled" : "disabled", 1255 ctrl_ddgst ? "enabled" : "disabled"); 1256 goto free_icresp; 1257 } 1258 1259 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1260 if ((queue->hdr_digest && !ctrl_hdgst) || 1261 (!queue->hdr_digest && ctrl_hdgst)) { 1262 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1263 nvme_tcp_queue_id(queue), 1264 queue->hdr_digest ? "enabled" : "disabled", 1265 ctrl_hdgst ? "enabled" : "disabled"); 1266 goto free_icresp; 1267 } 1268 1269 if (icresp->cpda != 0) { 1270 pr_err("queue %d: unsupported cpda returned %d\n", 1271 nvme_tcp_queue_id(queue), icresp->cpda); 1272 goto free_icresp; 1273 } 1274 1275 ret = 0; 1276 free_icresp: 1277 kfree(icresp); 1278 free_icreq: 1279 kfree(icreq); 1280 return ret; 1281 } 1282 1283 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1284 { 1285 return nvme_tcp_queue_id(queue) == 0; 1286 } 1287 1288 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1289 { 1290 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1291 int qid = nvme_tcp_queue_id(queue); 1292 1293 return !nvme_tcp_admin_queue(queue) && 1294 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1295 } 1296 1297 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1298 { 1299 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1300 int qid = nvme_tcp_queue_id(queue); 1301 1302 return !nvme_tcp_admin_queue(queue) && 1303 !nvme_tcp_default_queue(queue) && 1304 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1305 ctrl->io_queues[HCTX_TYPE_READ]; 1306 } 1307 1308 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1309 { 1310 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1311 int qid = nvme_tcp_queue_id(queue); 1312 1313 return !nvme_tcp_admin_queue(queue) && 1314 !nvme_tcp_default_queue(queue) && 1315 !nvme_tcp_read_queue(queue) && 1316 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1317 ctrl->io_queues[HCTX_TYPE_READ] + 1318 ctrl->io_queues[HCTX_TYPE_POLL]; 1319 } 1320 1321 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1322 { 1323 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1324 int qid = nvme_tcp_queue_id(queue); 1325 int n = 0; 1326 1327 if (nvme_tcp_default_queue(queue)) 1328 n = qid - 1; 1329 else if (nvme_tcp_read_queue(queue)) 1330 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1331 else if (nvme_tcp_poll_queue(queue)) 1332 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1333 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1334 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1335 } 1336 1337 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1338 int qid, size_t queue_size) 1339 { 1340 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1341 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1342 int ret, rcv_pdu_size; 1343 1344 queue->ctrl = ctrl; 1345 INIT_LIST_HEAD(&queue->send_list); 1346 spin_lock_init(&queue->lock); 1347 mutex_init(&queue->send_mutex); 1348 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1349 queue->queue_size = queue_size; 1350 1351 if (qid > 0) 1352 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1353 else 1354 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1355 NVME_TCP_ADMIN_CCSZ; 1356 1357 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1358 IPPROTO_TCP, &queue->sock); 1359 if (ret) { 1360 dev_err(nctrl->device, 1361 "failed to create socket: %d\n", ret); 1362 return ret; 1363 } 1364 1365 /* Single syn retry */ 1366 tcp_sock_set_syncnt(queue->sock->sk, 1); 1367 1368 /* Set TCP no delay */ 1369 tcp_sock_set_nodelay(queue->sock->sk); 1370 1371 /* 1372 * Cleanup whatever is sitting in the TCP transmit queue on socket 1373 * close. This is done to prevent stale data from being sent should 1374 * the network connection be restored before TCP times out. 1375 */ 1376 sock_no_linger(queue->sock->sk); 1377 1378 if (so_priority > 0) 1379 sock_set_priority(queue->sock->sk, so_priority); 1380 1381 /* Set socket type of service */ 1382 if (nctrl->opts->tos >= 0) 1383 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1384 1385 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1386 nvme_tcp_set_queue_io_cpu(queue); 1387 queue->request = NULL; 1388 queue->data_remaining = 0; 1389 queue->ddgst_remaining = 0; 1390 queue->pdu_remaining = 0; 1391 queue->pdu_offset = 0; 1392 sk_set_memalloc(queue->sock->sk); 1393 1394 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1395 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1396 sizeof(ctrl->src_addr)); 1397 if (ret) { 1398 dev_err(nctrl->device, 1399 "failed to bind queue %d socket %d\n", 1400 qid, ret); 1401 goto err_sock; 1402 } 1403 } 1404 1405 queue->hdr_digest = nctrl->opts->hdr_digest; 1406 queue->data_digest = nctrl->opts->data_digest; 1407 if (queue->hdr_digest || queue->data_digest) { 1408 ret = nvme_tcp_alloc_crypto(queue); 1409 if (ret) { 1410 dev_err(nctrl->device, 1411 "failed to allocate queue %d crypto\n", qid); 1412 goto err_sock; 1413 } 1414 } 1415 1416 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1417 nvme_tcp_hdgst_len(queue); 1418 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1419 if (!queue->pdu) { 1420 ret = -ENOMEM; 1421 goto err_crypto; 1422 } 1423 1424 dev_dbg(nctrl->device, "connecting queue %d\n", 1425 nvme_tcp_queue_id(queue)); 1426 1427 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1428 sizeof(ctrl->addr), 0); 1429 if (ret) { 1430 dev_err(nctrl->device, 1431 "failed to connect socket: %d\n", ret); 1432 goto err_rcv_pdu; 1433 } 1434 1435 ret = nvme_tcp_init_connection(queue); 1436 if (ret) 1437 goto err_init_connect; 1438 1439 queue->rd_enabled = true; 1440 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1441 nvme_tcp_init_recv_ctx(queue); 1442 1443 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1444 queue->sock->sk->sk_user_data = queue; 1445 queue->state_change = queue->sock->sk->sk_state_change; 1446 queue->data_ready = queue->sock->sk->sk_data_ready; 1447 queue->write_space = queue->sock->sk->sk_write_space; 1448 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1449 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1450 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1451 #ifdef CONFIG_NET_RX_BUSY_POLL 1452 queue->sock->sk->sk_ll_usec = 1; 1453 #endif 1454 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1455 1456 return 0; 1457 1458 err_init_connect: 1459 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1460 err_rcv_pdu: 1461 kfree(queue->pdu); 1462 err_crypto: 1463 if (queue->hdr_digest || queue->data_digest) 1464 nvme_tcp_free_crypto(queue); 1465 err_sock: 1466 sock_release(queue->sock); 1467 queue->sock = NULL; 1468 return ret; 1469 } 1470 1471 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1472 { 1473 struct socket *sock = queue->sock; 1474 1475 write_lock_bh(&sock->sk->sk_callback_lock); 1476 sock->sk->sk_user_data = NULL; 1477 sock->sk->sk_data_ready = queue->data_ready; 1478 sock->sk->sk_state_change = queue->state_change; 1479 sock->sk->sk_write_space = queue->write_space; 1480 write_unlock_bh(&sock->sk->sk_callback_lock); 1481 } 1482 1483 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1484 { 1485 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1486 nvme_tcp_restore_sock_calls(queue); 1487 cancel_work_sync(&queue->io_work); 1488 } 1489 1490 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1491 { 1492 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1493 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1494 1495 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1496 return; 1497 1498 __nvme_tcp_stop_queue(queue); 1499 } 1500 1501 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1502 { 1503 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1504 int ret; 1505 1506 if (idx) 1507 ret = nvmf_connect_io_queue(nctrl, idx, false); 1508 else 1509 ret = nvmf_connect_admin_queue(nctrl); 1510 1511 if (!ret) { 1512 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1513 } else { 1514 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1515 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1516 dev_err(nctrl->device, 1517 "failed to connect queue: %d ret=%d\n", idx, ret); 1518 } 1519 return ret; 1520 } 1521 1522 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1523 bool admin) 1524 { 1525 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1526 struct blk_mq_tag_set *set; 1527 int ret; 1528 1529 if (admin) { 1530 set = &ctrl->admin_tag_set; 1531 memset(set, 0, sizeof(*set)); 1532 set->ops = &nvme_tcp_admin_mq_ops; 1533 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1534 set->reserved_tags = 2; /* connect + keep-alive */ 1535 set->numa_node = NUMA_NO_NODE; 1536 set->flags = BLK_MQ_F_BLOCKING; 1537 set->cmd_size = sizeof(struct nvme_tcp_request); 1538 set->driver_data = ctrl; 1539 set->nr_hw_queues = 1; 1540 set->timeout = ADMIN_TIMEOUT; 1541 } else { 1542 set = &ctrl->tag_set; 1543 memset(set, 0, sizeof(*set)); 1544 set->ops = &nvme_tcp_mq_ops; 1545 set->queue_depth = nctrl->sqsize + 1; 1546 set->reserved_tags = 1; /* fabric connect */ 1547 set->numa_node = NUMA_NO_NODE; 1548 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1549 set->cmd_size = sizeof(struct nvme_tcp_request); 1550 set->driver_data = ctrl; 1551 set->nr_hw_queues = nctrl->queue_count - 1; 1552 set->timeout = NVME_IO_TIMEOUT; 1553 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1554 } 1555 1556 ret = blk_mq_alloc_tag_set(set); 1557 if (ret) 1558 return ERR_PTR(ret); 1559 1560 return set; 1561 } 1562 1563 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1564 { 1565 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1566 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1567 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1568 } 1569 1570 nvme_tcp_free_queue(ctrl, 0); 1571 } 1572 1573 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1574 { 1575 int i; 1576 1577 for (i = 1; i < ctrl->queue_count; i++) 1578 nvme_tcp_free_queue(ctrl, i); 1579 } 1580 1581 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1582 { 1583 int i; 1584 1585 for (i = 1; i < ctrl->queue_count; i++) 1586 nvme_tcp_stop_queue(ctrl, i); 1587 } 1588 1589 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1590 { 1591 int i, ret = 0; 1592 1593 for (i = 1; i < ctrl->queue_count; i++) { 1594 ret = nvme_tcp_start_queue(ctrl, i); 1595 if (ret) 1596 goto out_stop_queues; 1597 } 1598 1599 return 0; 1600 1601 out_stop_queues: 1602 for (i--; i >= 1; i--) 1603 nvme_tcp_stop_queue(ctrl, i); 1604 return ret; 1605 } 1606 1607 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1608 { 1609 int ret; 1610 1611 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1612 if (ret) 1613 return ret; 1614 1615 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1616 if (ret) 1617 goto out_free_queue; 1618 1619 return 0; 1620 1621 out_free_queue: 1622 nvme_tcp_free_queue(ctrl, 0); 1623 return ret; 1624 } 1625 1626 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1627 { 1628 int i, ret; 1629 1630 for (i = 1; i < ctrl->queue_count; i++) { 1631 ret = nvme_tcp_alloc_queue(ctrl, i, 1632 ctrl->sqsize + 1); 1633 if (ret) 1634 goto out_free_queues; 1635 } 1636 1637 return 0; 1638 1639 out_free_queues: 1640 for (i--; i >= 1; i--) 1641 nvme_tcp_free_queue(ctrl, i); 1642 1643 return ret; 1644 } 1645 1646 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1647 { 1648 unsigned int nr_io_queues; 1649 1650 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1651 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1652 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1653 1654 return nr_io_queues; 1655 } 1656 1657 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1658 unsigned int nr_io_queues) 1659 { 1660 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1661 struct nvmf_ctrl_options *opts = nctrl->opts; 1662 1663 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1664 /* 1665 * separate read/write queues 1666 * hand out dedicated default queues only after we have 1667 * sufficient read queues. 1668 */ 1669 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1670 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1671 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1672 min(opts->nr_write_queues, nr_io_queues); 1673 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1674 } else { 1675 /* 1676 * shared read/write queues 1677 * either no write queues were requested, or we don't have 1678 * sufficient queue count to have dedicated default queues. 1679 */ 1680 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1681 min(opts->nr_io_queues, nr_io_queues); 1682 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1683 } 1684 1685 if (opts->nr_poll_queues && nr_io_queues) { 1686 /* map dedicated poll queues only if we have queues left */ 1687 ctrl->io_queues[HCTX_TYPE_POLL] = 1688 min(opts->nr_poll_queues, nr_io_queues); 1689 } 1690 } 1691 1692 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1693 { 1694 unsigned int nr_io_queues; 1695 int ret; 1696 1697 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1698 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1699 if (ret) 1700 return ret; 1701 1702 ctrl->queue_count = nr_io_queues + 1; 1703 if (ctrl->queue_count < 2) 1704 return 0; 1705 1706 dev_info(ctrl->device, 1707 "creating %d I/O queues.\n", nr_io_queues); 1708 1709 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1710 1711 return __nvme_tcp_alloc_io_queues(ctrl); 1712 } 1713 1714 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1715 { 1716 nvme_tcp_stop_io_queues(ctrl); 1717 if (remove) { 1718 blk_cleanup_queue(ctrl->connect_q); 1719 blk_mq_free_tag_set(ctrl->tagset); 1720 } 1721 nvme_tcp_free_io_queues(ctrl); 1722 } 1723 1724 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1725 { 1726 int ret; 1727 1728 ret = nvme_tcp_alloc_io_queues(ctrl); 1729 if (ret) 1730 return ret; 1731 1732 if (new) { 1733 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1734 if (IS_ERR(ctrl->tagset)) { 1735 ret = PTR_ERR(ctrl->tagset); 1736 goto out_free_io_queues; 1737 } 1738 1739 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1740 if (IS_ERR(ctrl->connect_q)) { 1741 ret = PTR_ERR(ctrl->connect_q); 1742 goto out_free_tag_set; 1743 } 1744 } else { 1745 blk_mq_update_nr_hw_queues(ctrl->tagset, 1746 ctrl->queue_count - 1); 1747 } 1748 1749 ret = nvme_tcp_start_io_queues(ctrl); 1750 if (ret) 1751 goto out_cleanup_connect_q; 1752 1753 return 0; 1754 1755 out_cleanup_connect_q: 1756 if (new) 1757 blk_cleanup_queue(ctrl->connect_q); 1758 out_free_tag_set: 1759 if (new) 1760 blk_mq_free_tag_set(ctrl->tagset); 1761 out_free_io_queues: 1762 nvme_tcp_free_io_queues(ctrl); 1763 return ret; 1764 } 1765 1766 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1767 { 1768 nvme_tcp_stop_queue(ctrl, 0); 1769 if (remove) { 1770 blk_cleanup_queue(ctrl->admin_q); 1771 blk_cleanup_queue(ctrl->fabrics_q); 1772 blk_mq_free_tag_set(ctrl->admin_tagset); 1773 } 1774 nvme_tcp_free_admin_queue(ctrl); 1775 } 1776 1777 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1778 { 1779 int error; 1780 1781 error = nvme_tcp_alloc_admin_queue(ctrl); 1782 if (error) 1783 return error; 1784 1785 if (new) { 1786 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1787 if (IS_ERR(ctrl->admin_tagset)) { 1788 error = PTR_ERR(ctrl->admin_tagset); 1789 goto out_free_queue; 1790 } 1791 1792 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1793 if (IS_ERR(ctrl->fabrics_q)) { 1794 error = PTR_ERR(ctrl->fabrics_q); 1795 goto out_free_tagset; 1796 } 1797 1798 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1799 if (IS_ERR(ctrl->admin_q)) { 1800 error = PTR_ERR(ctrl->admin_q); 1801 goto out_cleanup_fabrics_q; 1802 } 1803 } 1804 1805 error = nvme_tcp_start_queue(ctrl, 0); 1806 if (error) 1807 goto out_cleanup_queue; 1808 1809 error = nvme_enable_ctrl(ctrl); 1810 if (error) 1811 goto out_stop_queue; 1812 1813 blk_mq_unquiesce_queue(ctrl->admin_q); 1814 1815 error = nvme_init_identify(ctrl); 1816 if (error) 1817 goto out_stop_queue; 1818 1819 return 0; 1820 1821 out_stop_queue: 1822 nvme_tcp_stop_queue(ctrl, 0); 1823 out_cleanup_queue: 1824 if (new) 1825 blk_cleanup_queue(ctrl->admin_q); 1826 out_cleanup_fabrics_q: 1827 if (new) 1828 blk_cleanup_queue(ctrl->fabrics_q); 1829 out_free_tagset: 1830 if (new) 1831 blk_mq_free_tag_set(ctrl->admin_tagset); 1832 out_free_queue: 1833 nvme_tcp_free_admin_queue(ctrl); 1834 return error; 1835 } 1836 1837 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1838 bool remove) 1839 { 1840 blk_mq_quiesce_queue(ctrl->admin_q); 1841 nvme_tcp_stop_queue(ctrl, 0); 1842 if (ctrl->admin_tagset) { 1843 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1844 nvme_cancel_request, ctrl); 1845 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1846 } 1847 if (remove) 1848 blk_mq_unquiesce_queue(ctrl->admin_q); 1849 nvme_tcp_destroy_admin_queue(ctrl, remove); 1850 } 1851 1852 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1853 bool remove) 1854 { 1855 if (ctrl->queue_count <= 1) 1856 return; 1857 nvme_stop_queues(ctrl); 1858 nvme_tcp_stop_io_queues(ctrl); 1859 if (ctrl->tagset) { 1860 blk_mq_tagset_busy_iter(ctrl->tagset, 1861 nvme_cancel_request, ctrl); 1862 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1863 } 1864 if (remove) 1865 nvme_start_queues(ctrl); 1866 nvme_tcp_destroy_io_queues(ctrl, remove); 1867 } 1868 1869 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1870 { 1871 /* If we are resetting/deleting then do nothing */ 1872 if (ctrl->state != NVME_CTRL_CONNECTING) { 1873 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1874 ctrl->state == NVME_CTRL_LIVE); 1875 return; 1876 } 1877 1878 if (nvmf_should_reconnect(ctrl)) { 1879 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1880 ctrl->opts->reconnect_delay); 1881 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1882 ctrl->opts->reconnect_delay * HZ); 1883 } else { 1884 dev_info(ctrl->device, "Removing controller...\n"); 1885 nvme_delete_ctrl(ctrl); 1886 } 1887 } 1888 1889 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1890 { 1891 struct nvmf_ctrl_options *opts = ctrl->opts; 1892 int ret; 1893 1894 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1895 if (ret) 1896 return ret; 1897 1898 if (ctrl->icdoff) { 1899 dev_err(ctrl->device, "icdoff is not supported!\n"); 1900 goto destroy_admin; 1901 } 1902 1903 if (opts->queue_size > ctrl->sqsize + 1) 1904 dev_warn(ctrl->device, 1905 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1906 opts->queue_size, ctrl->sqsize + 1); 1907 1908 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1909 dev_warn(ctrl->device, 1910 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1911 ctrl->sqsize + 1, ctrl->maxcmd); 1912 ctrl->sqsize = ctrl->maxcmd - 1; 1913 } 1914 1915 if (ctrl->queue_count > 1) { 1916 ret = nvme_tcp_configure_io_queues(ctrl, new); 1917 if (ret) 1918 goto destroy_admin; 1919 } 1920 1921 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1922 /* 1923 * state change failure is ok if we're in DELETING state, 1924 * unless we're during creation of a new controller to 1925 * avoid races with teardown flow. 1926 */ 1927 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1928 WARN_ON_ONCE(new); 1929 ret = -EINVAL; 1930 goto destroy_io; 1931 } 1932 1933 nvme_start_ctrl(ctrl); 1934 return 0; 1935 1936 destroy_io: 1937 if (ctrl->queue_count > 1) 1938 nvme_tcp_destroy_io_queues(ctrl, new); 1939 destroy_admin: 1940 nvme_tcp_stop_queue(ctrl, 0); 1941 nvme_tcp_destroy_admin_queue(ctrl, new); 1942 return ret; 1943 } 1944 1945 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1946 { 1947 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1948 struct nvme_tcp_ctrl, connect_work); 1949 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1950 1951 ++ctrl->nr_reconnects; 1952 1953 if (nvme_tcp_setup_ctrl(ctrl, false)) 1954 goto requeue; 1955 1956 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1957 ctrl->nr_reconnects); 1958 1959 ctrl->nr_reconnects = 0; 1960 1961 return; 1962 1963 requeue: 1964 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1965 ctrl->nr_reconnects); 1966 nvme_tcp_reconnect_or_remove(ctrl); 1967 } 1968 1969 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1970 { 1971 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1972 struct nvme_tcp_ctrl, err_work); 1973 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1974 1975 nvme_stop_keep_alive(ctrl); 1976 nvme_tcp_teardown_io_queues(ctrl, false); 1977 /* unquiesce to fail fast pending requests */ 1978 nvme_start_queues(ctrl); 1979 nvme_tcp_teardown_admin_queue(ctrl, false); 1980 blk_mq_unquiesce_queue(ctrl->admin_q); 1981 1982 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1983 /* state change failure is ok if we're in DELETING state */ 1984 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1985 return; 1986 } 1987 1988 nvme_tcp_reconnect_or_remove(ctrl); 1989 } 1990 1991 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1992 { 1993 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1994 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1995 1996 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1997 blk_mq_quiesce_queue(ctrl->admin_q); 1998 if (shutdown) 1999 nvme_shutdown_ctrl(ctrl); 2000 else 2001 nvme_disable_ctrl(ctrl); 2002 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2003 } 2004 2005 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2006 { 2007 nvme_tcp_teardown_ctrl(ctrl, true); 2008 } 2009 2010 static void nvme_reset_ctrl_work(struct work_struct *work) 2011 { 2012 struct nvme_ctrl *ctrl = 2013 container_of(work, struct nvme_ctrl, reset_work); 2014 2015 nvme_stop_ctrl(ctrl); 2016 nvme_tcp_teardown_ctrl(ctrl, false); 2017 2018 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2019 /* state change failure is ok if we're in DELETING state */ 2020 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 2021 return; 2022 } 2023 2024 if (nvme_tcp_setup_ctrl(ctrl, false)) 2025 goto out_fail; 2026 2027 return; 2028 2029 out_fail: 2030 ++ctrl->nr_reconnects; 2031 nvme_tcp_reconnect_or_remove(ctrl); 2032 } 2033 2034 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2035 { 2036 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2037 2038 if (list_empty(&ctrl->list)) 2039 goto free_ctrl; 2040 2041 mutex_lock(&nvme_tcp_ctrl_mutex); 2042 list_del(&ctrl->list); 2043 mutex_unlock(&nvme_tcp_ctrl_mutex); 2044 2045 nvmf_free_options(nctrl->opts); 2046 free_ctrl: 2047 kfree(ctrl->queues); 2048 kfree(ctrl); 2049 } 2050 2051 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2052 { 2053 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2054 2055 sg->addr = 0; 2056 sg->length = 0; 2057 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2058 NVME_SGL_FMT_TRANSPORT_A; 2059 } 2060 2061 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2062 struct nvme_command *c, u32 data_len) 2063 { 2064 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2065 2066 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2067 sg->length = cpu_to_le32(data_len); 2068 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2069 } 2070 2071 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2072 u32 data_len) 2073 { 2074 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2075 2076 sg->addr = 0; 2077 sg->length = cpu_to_le32(data_len); 2078 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2079 NVME_SGL_FMT_TRANSPORT_A; 2080 } 2081 2082 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2083 { 2084 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2085 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2086 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2087 struct nvme_command *cmd = &pdu->cmd; 2088 u8 hdgst = nvme_tcp_hdgst_len(queue); 2089 2090 memset(pdu, 0, sizeof(*pdu)); 2091 pdu->hdr.type = nvme_tcp_cmd; 2092 if (queue->hdr_digest) 2093 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2094 pdu->hdr.hlen = sizeof(*pdu); 2095 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2096 2097 cmd->common.opcode = nvme_admin_async_event; 2098 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2099 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2100 nvme_tcp_set_sg_null(cmd); 2101 2102 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2103 ctrl->async_req.offset = 0; 2104 ctrl->async_req.curr_bio = NULL; 2105 ctrl->async_req.data_len = 0; 2106 2107 nvme_tcp_queue_request(&ctrl->async_req, true); 2108 } 2109 2110 static enum blk_eh_timer_return 2111 nvme_tcp_timeout(struct request *rq, bool reserved) 2112 { 2113 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2114 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2115 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2116 2117 /* 2118 * Restart the timer if a controller reset is already scheduled. Any 2119 * timed out commands would be handled before entering the connecting 2120 * state. 2121 */ 2122 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 2123 return BLK_EH_RESET_TIMER; 2124 2125 dev_warn(ctrl->ctrl.device, 2126 "queue %d: timeout request %#x type %d\n", 2127 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2128 2129 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2130 /* 2131 * Teardown immediately if controller times out while starting 2132 * or we are already started error recovery. all outstanding 2133 * requests are completed on shutdown, so we return BLK_EH_DONE. 2134 */ 2135 flush_work(&ctrl->err_work); 2136 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2137 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2138 return BLK_EH_DONE; 2139 } 2140 2141 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2142 nvme_tcp_error_recovery(&ctrl->ctrl); 2143 2144 return BLK_EH_RESET_TIMER; 2145 } 2146 2147 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2148 struct request *rq) 2149 { 2150 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2151 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2152 struct nvme_command *c = &pdu->cmd; 2153 2154 c->common.flags |= NVME_CMD_SGL_METABUF; 2155 2156 if (!blk_rq_nr_phys_segments(rq)) 2157 nvme_tcp_set_sg_null(c); 2158 else if (rq_data_dir(rq) == WRITE && 2159 req->data_len <= nvme_tcp_inline_data_size(queue)) 2160 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2161 else 2162 nvme_tcp_set_sg_host_data(c, req->data_len); 2163 2164 return 0; 2165 } 2166 2167 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2168 struct request *rq) 2169 { 2170 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2171 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2172 struct nvme_tcp_queue *queue = req->queue; 2173 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2174 blk_status_t ret; 2175 2176 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2177 if (ret) 2178 return ret; 2179 2180 req->state = NVME_TCP_SEND_CMD_PDU; 2181 req->offset = 0; 2182 req->data_sent = 0; 2183 req->pdu_len = 0; 2184 req->pdu_sent = 0; 2185 req->data_len = blk_rq_nr_phys_segments(rq) ? 2186 blk_rq_payload_bytes(rq) : 0; 2187 req->curr_bio = rq->bio; 2188 2189 if (rq_data_dir(rq) == WRITE && 2190 req->data_len <= nvme_tcp_inline_data_size(queue)) 2191 req->pdu_len = req->data_len; 2192 else if (req->curr_bio) 2193 nvme_tcp_init_iter(req, READ); 2194 2195 pdu->hdr.type = nvme_tcp_cmd; 2196 pdu->hdr.flags = 0; 2197 if (queue->hdr_digest) 2198 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2199 if (queue->data_digest && req->pdu_len) { 2200 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2201 ddgst = nvme_tcp_ddgst_len(queue); 2202 } 2203 pdu->hdr.hlen = sizeof(*pdu); 2204 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2205 pdu->hdr.plen = 2206 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2207 2208 ret = nvme_tcp_map_data(queue, rq); 2209 if (unlikely(ret)) { 2210 nvme_cleanup_cmd(rq); 2211 dev_err(queue->ctrl->ctrl.device, 2212 "Failed to map data (%d)\n", ret); 2213 return ret; 2214 } 2215 2216 return 0; 2217 } 2218 2219 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2220 const struct blk_mq_queue_data *bd) 2221 { 2222 struct nvme_ns *ns = hctx->queue->queuedata; 2223 struct nvme_tcp_queue *queue = hctx->driver_data; 2224 struct request *rq = bd->rq; 2225 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2226 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2227 blk_status_t ret; 2228 2229 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2230 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2231 2232 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2233 if (unlikely(ret)) 2234 return ret; 2235 2236 blk_mq_start_request(rq); 2237 2238 nvme_tcp_queue_request(req, true); 2239 2240 return BLK_STS_OK; 2241 } 2242 2243 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2244 { 2245 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2246 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2247 2248 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2249 /* separate read/write queues */ 2250 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2251 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2252 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2253 set->map[HCTX_TYPE_READ].nr_queues = 2254 ctrl->io_queues[HCTX_TYPE_READ]; 2255 set->map[HCTX_TYPE_READ].queue_offset = 2256 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2257 } else { 2258 /* shared read/write queues */ 2259 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2260 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2261 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2262 set->map[HCTX_TYPE_READ].nr_queues = 2263 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2264 set->map[HCTX_TYPE_READ].queue_offset = 0; 2265 } 2266 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2267 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2268 2269 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2270 /* map dedicated poll queues only if we have queues left */ 2271 set->map[HCTX_TYPE_POLL].nr_queues = 2272 ctrl->io_queues[HCTX_TYPE_POLL]; 2273 set->map[HCTX_TYPE_POLL].queue_offset = 2274 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2275 ctrl->io_queues[HCTX_TYPE_READ]; 2276 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2277 } 2278 2279 dev_info(ctrl->ctrl.device, 2280 "mapped %d/%d/%d default/read/poll queues.\n", 2281 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2282 ctrl->io_queues[HCTX_TYPE_READ], 2283 ctrl->io_queues[HCTX_TYPE_POLL]); 2284 2285 return 0; 2286 } 2287 2288 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2289 { 2290 struct nvme_tcp_queue *queue = hctx->driver_data; 2291 struct sock *sk = queue->sock->sk; 2292 2293 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2294 return 0; 2295 2296 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2297 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2298 sk_busy_loop(sk, true); 2299 nvme_tcp_try_recv(queue); 2300 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2301 return queue->nr_cqe; 2302 } 2303 2304 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2305 .queue_rq = nvme_tcp_queue_rq, 2306 .complete = nvme_complete_rq, 2307 .init_request = nvme_tcp_init_request, 2308 .exit_request = nvme_tcp_exit_request, 2309 .init_hctx = nvme_tcp_init_hctx, 2310 .timeout = nvme_tcp_timeout, 2311 .map_queues = nvme_tcp_map_queues, 2312 .poll = nvme_tcp_poll, 2313 }; 2314 2315 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2316 .queue_rq = nvme_tcp_queue_rq, 2317 .complete = nvme_complete_rq, 2318 .init_request = nvme_tcp_init_request, 2319 .exit_request = nvme_tcp_exit_request, 2320 .init_hctx = nvme_tcp_init_admin_hctx, 2321 .timeout = nvme_tcp_timeout, 2322 }; 2323 2324 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2325 .name = "tcp", 2326 .module = THIS_MODULE, 2327 .flags = NVME_F_FABRICS, 2328 .reg_read32 = nvmf_reg_read32, 2329 .reg_read64 = nvmf_reg_read64, 2330 .reg_write32 = nvmf_reg_write32, 2331 .free_ctrl = nvme_tcp_free_ctrl, 2332 .submit_async_event = nvme_tcp_submit_async_event, 2333 .delete_ctrl = nvme_tcp_delete_ctrl, 2334 .get_address = nvmf_get_address, 2335 }; 2336 2337 static bool 2338 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2339 { 2340 struct nvme_tcp_ctrl *ctrl; 2341 bool found = false; 2342 2343 mutex_lock(&nvme_tcp_ctrl_mutex); 2344 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2345 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2346 if (found) 2347 break; 2348 } 2349 mutex_unlock(&nvme_tcp_ctrl_mutex); 2350 2351 return found; 2352 } 2353 2354 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2355 struct nvmf_ctrl_options *opts) 2356 { 2357 struct nvme_tcp_ctrl *ctrl; 2358 int ret; 2359 2360 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2361 if (!ctrl) 2362 return ERR_PTR(-ENOMEM); 2363 2364 INIT_LIST_HEAD(&ctrl->list); 2365 ctrl->ctrl.opts = opts; 2366 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2367 opts->nr_poll_queues + 1; 2368 ctrl->ctrl.sqsize = opts->queue_size - 1; 2369 ctrl->ctrl.kato = opts->kato; 2370 2371 INIT_DELAYED_WORK(&ctrl->connect_work, 2372 nvme_tcp_reconnect_ctrl_work); 2373 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2374 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2375 2376 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2377 opts->trsvcid = 2378 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2379 if (!opts->trsvcid) { 2380 ret = -ENOMEM; 2381 goto out_free_ctrl; 2382 } 2383 opts->mask |= NVMF_OPT_TRSVCID; 2384 } 2385 2386 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2387 opts->traddr, opts->trsvcid, &ctrl->addr); 2388 if (ret) { 2389 pr_err("malformed address passed: %s:%s\n", 2390 opts->traddr, opts->trsvcid); 2391 goto out_free_ctrl; 2392 } 2393 2394 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2395 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2396 opts->host_traddr, NULL, &ctrl->src_addr); 2397 if (ret) { 2398 pr_err("malformed src address passed: %s\n", 2399 opts->host_traddr); 2400 goto out_free_ctrl; 2401 } 2402 } 2403 2404 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2405 ret = -EALREADY; 2406 goto out_free_ctrl; 2407 } 2408 2409 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2410 GFP_KERNEL); 2411 if (!ctrl->queues) { 2412 ret = -ENOMEM; 2413 goto out_free_ctrl; 2414 } 2415 2416 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2417 if (ret) 2418 goto out_kfree_queues; 2419 2420 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2421 WARN_ON_ONCE(1); 2422 ret = -EINTR; 2423 goto out_uninit_ctrl; 2424 } 2425 2426 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2427 if (ret) 2428 goto out_uninit_ctrl; 2429 2430 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2431 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2432 2433 mutex_lock(&nvme_tcp_ctrl_mutex); 2434 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2435 mutex_unlock(&nvme_tcp_ctrl_mutex); 2436 2437 return &ctrl->ctrl; 2438 2439 out_uninit_ctrl: 2440 nvme_uninit_ctrl(&ctrl->ctrl); 2441 nvme_put_ctrl(&ctrl->ctrl); 2442 if (ret > 0) 2443 ret = -EIO; 2444 return ERR_PTR(ret); 2445 out_kfree_queues: 2446 kfree(ctrl->queues); 2447 out_free_ctrl: 2448 kfree(ctrl); 2449 return ERR_PTR(ret); 2450 } 2451 2452 static struct nvmf_transport_ops nvme_tcp_transport = { 2453 .name = "tcp", 2454 .module = THIS_MODULE, 2455 .required_opts = NVMF_OPT_TRADDR, 2456 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2457 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2458 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2459 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2460 NVMF_OPT_TOS, 2461 .create_ctrl = nvme_tcp_create_ctrl, 2462 }; 2463 2464 static int __init nvme_tcp_init_module(void) 2465 { 2466 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2467 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2468 if (!nvme_tcp_wq) 2469 return -ENOMEM; 2470 2471 nvmf_register_transport(&nvme_tcp_transport); 2472 return 0; 2473 } 2474 2475 static void __exit nvme_tcp_cleanup_module(void) 2476 { 2477 struct nvme_tcp_ctrl *ctrl; 2478 2479 nvmf_unregister_transport(&nvme_tcp_transport); 2480 2481 mutex_lock(&nvme_tcp_ctrl_mutex); 2482 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2483 nvme_delete_ctrl(&ctrl->ctrl); 2484 mutex_unlock(&nvme_tcp_ctrl_mutex); 2485 flush_workqueue(nvme_delete_wq); 2486 2487 destroy_workqueue(nvme_tcp_wq); 2488 } 2489 2490 module_init(nvme_tcp_init_module); 2491 module_exit(nvme_tcp_cleanup_module); 2492 2493 MODULE_LICENSE("GPL v2"); 2494