xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	__le32			ddgst;
50 
51 	struct bio		*curr_bio;
52 	struct iov_iter		iter;
53 
54 	/* send state */
55 	size_t			offset;
56 	size_t			data_sent;
57 	enum nvme_tcp_send_state state;
58 };
59 
60 enum nvme_tcp_queue_flags {
61 	NVME_TCP_Q_ALLOCATED	= 0,
62 	NVME_TCP_Q_LIVE		= 1,
63 	NVME_TCP_Q_POLLING	= 2,
64 };
65 
66 enum nvme_tcp_recv_state {
67 	NVME_TCP_RECV_PDU = 0,
68 	NVME_TCP_RECV_DATA,
69 	NVME_TCP_RECV_DDGST,
70 };
71 
72 struct nvme_tcp_ctrl;
73 struct nvme_tcp_queue {
74 	struct socket		*sock;
75 	struct work_struct	io_work;
76 	int			io_cpu;
77 
78 	spinlock_t		lock;
79 	struct mutex		send_mutex;
80 	struct list_head	send_list;
81 
82 	/* recv state */
83 	void			*pdu;
84 	int			pdu_remaining;
85 	int			pdu_offset;
86 	size_t			data_remaining;
87 	size_t			ddgst_remaining;
88 	unsigned int		nr_cqe;
89 
90 	/* send state */
91 	struct nvme_tcp_request *request;
92 
93 	int			queue_size;
94 	size_t			cmnd_capsule_len;
95 	struct nvme_tcp_ctrl	*ctrl;
96 	unsigned long		flags;
97 	bool			rd_enabled;
98 
99 	bool			hdr_digest;
100 	bool			data_digest;
101 	struct ahash_request	*rcv_hash;
102 	struct ahash_request	*snd_hash;
103 	__le32			exp_ddgst;
104 	__le32			recv_ddgst;
105 
106 	struct page_frag_cache	pf_cache;
107 
108 	void (*state_change)(struct sock *);
109 	void (*data_ready)(struct sock *);
110 	void (*write_space)(struct sock *);
111 };
112 
113 struct nvme_tcp_ctrl {
114 	/* read only in the hot path */
115 	struct nvme_tcp_queue	*queues;
116 	struct blk_mq_tag_set	tag_set;
117 
118 	/* other member variables */
119 	struct list_head	list;
120 	struct blk_mq_tag_set	admin_tag_set;
121 	struct sockaddr_storage addr;
122 	struct sockaddr_storage src_addr;
123 	struct nvme_ctrl	ctrl;
124 
125 	struct work_struct	err_work;
126 	struct delayed_work	connect_work;
127 	struct nvme_tcp_request async_req;
128 	u32			io_queues[HCTX_MAX_TYPES];
129 };
130 
131 static LIST_HEAD(nvme_tcp_ctrl_list);
132 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
133 static struct workqueue_struct *nvme_tcp_wq;
134 static const struct blk_mq_ops nvme_tcp_mq_ops;
135 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
136 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
137 
138 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
139 {
140 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
141 }
142 
143 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
144 {
145 	return queue - queue->ctrl->queues;
146 }
147 
148 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
149 {
150 	u32 queue_idx = nvme_tcp_queue_id(queue);
151 
152 	if (queue_idx == 0)
153 		return queue->ctrl->admin_tag_set.tags[queue_idx];
154 	return queue->ctrl->tag_set.tags[queue_idx - 1];
155 }
156 
157 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
158 {
159 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
160 }
161 
162 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
163 {
164 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
165 }
166 
167 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
168 {
169 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
170 }
171 
172 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
173 {
174 	return req == &req->queue->ctrl->async_req;
175 }
176 
177 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
178 {
179 	struct request *rq;
180 
181 	if (unlikely(nvme_tcp_async_req(req)))
182 		return false; /* async events don't have a request */
183 
184 	rq = blk_mq_rq_from_pdu(req);
185 
186 	return rq_data_dir(rq) == WRITE && req->data_len &&
187 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
188 }
189 
190 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
191 {
192 	return req->iter.bvec->bv_page;
193 }
194 
195 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
196 {
197 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
198 }
199 
200 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
201 {
202 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
203 			req->pdu_len - req->pdu_sent);
204 }
205 
206 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
207 {
208 	return req->iter.iov_offset;
209 }
210 
211 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
212 {
213 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
214 			req->pdu_len - req->pdu_sent : 0;
215 }
216 
217 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
218 		int len)
219 {
220 	return nvme_tcp_pdu_data_left(req) <= len;
221 }
222 
223 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
224 		unsigned int dir)
225 {
226 	struct request *rq = blk_mq_rq_from_pdu(req);
227 	struct bio_vec *vec;
228 	unsigned int size;
229 	int nsegs;
230 	size_t offset;
231 
232 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
233 		vec = &rq->special_vec;
234 		nsegs = 1;
235 		size = blk_rq_payload_bytes(rq);
236 		offset = 0;
237 	} else {
238 		struct bio *bio = req->curr_bio;
239 
240 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
241 		nsegs = bio_segments(bio);
242 		size = bio->bi_iter.bi_size;
243 		offset = bio->bi_iter.bi_bvec_done;
244 	}
245 
246 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
247 	req->iter.iov_offset = offset;
248 }
249 
250 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
251 		int len)
252 {
253 	req->data_sent += len;
254 	req->pdu_sent += len;
255 	iov_iter_advance(&req->iter, len);
256 	if (!iov_iter_count(&req->iter) &&
257 	    req->data_sent < req->data_len) {
258 		req->curr_bio = req->curr_bio->bi_next;
259 		nvme_tcp_init_iter(req, WRITE);
260 	}
261 }
262 
263 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
264 		bool sync)
265 {
266 	struct nvme_tcp_queue *queue = req->queue;
267 	bool empty;
268 
269 	spin_lock(&queue->lock);
270 	empty = list_empty(&queue->send_list) && !queue->request;
271 	list_add_tail(&req->entry, &queue->send_list);
272 	spin_unlock(&queue->lock);
273 
274 	/*
275 	 * if we're the first on the send_list and we can try to send
276 	 * directly, otherwise queue io_work. Also, only do that if we
277 	 * are on the same cpu, so we don't introduce contention.
278 	 */
279 	if (queue->io_cpu == smp_processor_id() &&
280 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
281 		nvme_tcp_try_send(queue);
282 		mutex_unlock(&queue->send_mutex);
283 	} else {
284 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
285 	}
286 }
287 
288 static inline struct nvme_tcp_request *
289 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
290 {
291 	struct nvme_tcp_request *req;
292 
293 	spin_lock(&queue->lock);
294 	req = list_first_entry_or_null(&queue->send_list,
295 			struct nvme_tcp_request, entry);
296 	if (req)
297 		list_del(&req->entry);
298 	spin_unlock(&queue->lock);
299 
300 	return req;
301 }
302 
303 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
304 		__le32 *dgst)
305 {
306 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
307 	crypto_ahash_final(hash);
308 }
309 
310 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
311 		struct page *page, off_t off, size_t len)
312 {
313 	struct scatterlist sg;
314 
315 	sg_init_marker(&sg, 1);
316 	sg_set_page(&sg, page, len, off);
317 	ahash_request_set_crypt(hash, &sg, NULL, len);
318 	crypto_ahash_update(hash);
319 }
320 
321 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
322 		void *pdu, size_t len)
323 {
324 	struct scatterlist sg;
325 
326 	sg_init_one(&sg, pdu, len);
327 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
328 	crypto_ahash_digest(hash);
329 }
330 
331 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
332 		void *pdu, size_t pdu_len)
333 {
334 	struct nvme_tcp_hdr *hdr = pdu;
335 	__le32 recv_digest;
336 	__le32 exp_digest;
337 
338 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
339 		dev_err(queue->ctrl->ctrl.device,
340 			"queue %d: header digest flag is cleared\n",
341 			nvme_tcp_queue_id(queue));
342 		return -EPROTO;
343 	}
344 
345 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
346 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
347 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
348 	if (recv_digest != exp_digest) {
349 		dev_err(queue->ctrl->ctrl.device,
350 			"header digest error: recv %#x expected %#x\n",
351 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
352 		return -EIO;
353 	}
354 
355 	return 0;
356 }
357 
358 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
359 {
360 	struct nvme_tcp_hdr *hdr = pdu;
361 	u8 digest_len = nvme_tcp_hdgst_len(queue);
362 	u32 len;
363 
364 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
365 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
366 
367 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
368 		dev_err(queue->ctrl->ctrl.device,
369 			"queue %d: data digest flag is cleared\n",
370 		nvme_tcp_queue_id(queue));
371 		return -EPROTO;
372 	}
373 	crypto_ahash_init(queue->rcv_hash);
374 
375 	return 0;
376 }
377 
378 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
379 		struct request *rq, unsigned int hctx_idx)
380 {
381 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
382 
383 	page_frag_free(req->pdu);
384 }
385 
386 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
387 		struct request *rq, unsigned int hctx_idx,
388 		unsigned int numa_node)
389 {
390 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
391 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
392 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
393 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
394 	u8 hdgst = nvme_tcp_hdgst_len(queue);
395 
396 	req->pdu = page_frag_alloc(&queue->pf_cache,
397 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
398 		GFP_KERNEL | __GFP_ZERO);
399 	if (!req->pdu)
400 		return -ENOMEM;
401 
402 	req->queue = queue;
403 	nvme_req(rq)->ctrl = &ctrl->ctrl;
404 
405 	return 0;
406 }
407 
408 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 		unsigned int hctx_idx)
410 {
411 	struct nvme_tcp_ctrl *ctrl = data;
412 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
413 
414 	hctx->driver_data = queue;
415 	return 0;
416 }
417 
418 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
419 		unsigned int hctx_idx)
420 {
421 	struct nvme_tcp_ctrl *ctrl = data;
422 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
423 
424 	hctx->driver_data = queue;
425 	return 0;
426 }
427 
428 static enum nvme_tcp_recv_state
429 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
430 {
431 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
432 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
433 		NVME_TCP_RECV_DATA;
434 }
435 
436 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
437 {
438 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
439 				nvme_tcp_hdgst_len(queue);
440 	queue->pdu_offset = 0;
441 	queue->data_remaining = -1;
442 	queue->ddgst_remaining = 0;
443 }
444 
445 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
446 {
447 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
448 		return;
449 
450 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
451 }
452 
453 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
454 		struct nvme_completion *cqe)
455 {
456 	struct request *rq;
457 
458 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
459 	if (!rq) {
460 		dev_err(queue->ctrl->ctrl.device,
461 			"queue %d tag 0x%x not found\n",
462 			nvme_tcp_queue_id(queue), cqe->command_id);
463 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
464 		return -EINVAL;
465 	}
466 
467 	nvme_end_request(rq, cqe->status, cqe->result);
468 	queue->nr_cqe++;
469 
470 	return 0;
471 }
472 
473 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
474 		struct nvme_tcp_data_pdu *pdu)
475 {
476 	struct request *rq;
477 
478 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
479 	if (!rq) {
480 		dev_err(queue->ctrl->ctrl.device,
481 			"queue %d tag %#x not found\n",
482 			nvme_tcp_queue_id(queue), pdu->command_id);
483 		return -ENOENT;
484 	}
485 
486 	if (!blk_rq_payload_bytes(rq)) {
487 		dev_err(queue->ctrl->ctrl.device,
488 			"queue %d tag %#x unexpected data\n",
489 			nvme_tcp_queue_id(queue), rq->tag);
490 		return -EIO;
491 	}
492 
493 	queue->data_remaining = le32_to_cpu(pdu->data_length);
494 
495 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
496 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
497 		dev_err(queue->ctrl->ctrl.device,
498 			"queue %d tag %#x SUCCESS set but not last PDU\n",
499 			nvme_tcp_queue_id(queue), rq->tag);
500 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
501 		return -EPROTO;
502 	}
503 
504 	return 0;
505 }
506 
507 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
508 		struct nvme_tcp_rsp_pdu *pdu)
509 {
510 	struct nvme_completion *cqe = &pdu->cqe;
511 	int ret = 0;
512 
513 	/*
514 	 * AEN requests are special as they don't time out and can
515 	 * survive any kind of queue freeze and often don't respond to
516 	 * aborts.  We don't even bother to allocate a struct request
517 	 * for them but rather special case them here.
518 	 */
519 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
520 				     cqe->command_id)))
521 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
522 				&cqe->result);
523 	else
524 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
525 
526 	return ret;
527 }
528 
529 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
530 		struct nvme_tcp_r2t_pdu *pdu)
531 {
532 	struct nvme_tcp_data_pdu *data = req->pdu;
533 	struct nvme_tcp_queue *queue = req->queue;
534 	struct request *rq = blk_mq_rq_from_pdu(req);
535 	u8 hdgst = nvme_tcp_hdgst_len(queue);
536 	u8 ddgst = nvme_tcp_ddgst_len(queue);
537 
538 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
539 	req->pdu_sent = 0;
540 
541 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
542 		dev_err(queue->ctrl->ctrl.device,
543 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
544 			rq->tag, req->pdu_len, req->data_len,
545 			req->data_sent);
546 		return -EPROTO;
547 	}
548 
549 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
550 		dev_err(queue->ctrl->ctrl.device,
551 			"req %d unexpected r2t offset %u (expected %zu)\n",
552 			rq->tag, le32_to_cpu(pdu->r2t_offset),
553 			req->data_sent);
554 		return -EPROTO;
555 	}
556 
557 	memset(data, 0, sizeof(*data));
558 	data->hdr.type = nvme_tcp_h2c_data;
559 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
560 	if (queue->hdr_digest)
561 		data->hdr.flags |= NVME_TCP_F_HDGST;
562 	if (queue->data_digest)
563 		data->hdr.flags |= NVME_TCP_F_DDGST;
564 	data->hdr.hlen = sizeof(*data);
565 	data->hdr.pdo = data->hdr.hlen + hdgst;
566 	data->hdr.plen =
567 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
568 	data->ttag = pdu->ttag;
569 	data->command_id = rq->tag;
570 	data->data_offset = cpu_to_le32(req->data_sent);
571 	data->data_length = cpu_to_le32(req->pdu_len);
572 	return 0;
573 }
574 
575 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
576 		struct nvme_tcp_r2t_pdu *pdu)
577 {
578 	struct nvme_tcp_request *req;
579 	struct request *rq;
580 	int ret;
581 
582 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
583 	if (!rq) {
584 		dev_err(queue->ctrl->ctrl.device,
585 			"queue %d tag %#x not found\n",
586 			nvme_tcp_queue_id(queue), pdu->command_id);
587 		return -ENOENT;
588 	}
589 	req = blk_mq_rq_to_pdu(rq);
590 
591 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
592 	if (unlikely(ret))
593 		return ret;
594 
595 	req->state = NVME_TCP_SEND_H2C_PDU;
596 	req->offset = 0;
597 
598 	nvme_tcp_queue_request(req, false);
599 
600 	return 0;
601 }
602 
603 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
604 		unsigned int *offset, size_t *len)
605 {
606 	struct nvme_tcp_hdr *hdr;
607 	char *pdu = queue->pdu;
608 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
609 	int ret;
610 
611 	ret = skb_copy_bits(skb, *offset,
612 		&pdu[queue->pdu_offset], rcv_len);
613 	if (unlikely(ret))
614 		return ret;
615 
616 	queue->pdu_remaining -= rcv_len;
617 	queue->pdu_offset += rcv_len;
618 	*offset += rcv_len;
619 	*len -= rcv_len;
620 	if (queue->pdu_remaining)
621 		return 0;
622 
623 	hdr = queue->pdu;
624 	if (queue->hdr_digest) {
625 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
626 		if (unlikely(ret))
627 			return ret;
628 	}
629 
630 
631 	if (queue->data_digest) {
632 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
633 		if (unlikely(ret))
634 			return ret;
635 	}
636 
637 	switch (hdr->type) {
638 	case nvme_tcp_c2h_data:
639 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
640 	case nvme_tcp_rsp:
641 		nvme_tcp_init_recv_ctx(queue);
642 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
643 	case nvme_tcp_r2t:
644 		nvme_tcp_init_recv_ctx(queue);
645 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
646 	default:
647 		dev_err(queue->ctrl->ctrl.device,
648 			"unsupported pdu type (%d)\n", hdr->type);
649 		return -EINVAL;
650 	}
651 }
652 
653 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
654 {
655 	union nvme_result res = {};
656 
657 	nvme_end_request(rq, cpu_to_le16(status << 1), res);
658 }
659 
660 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
661 			      unsigned int *offset, size_t *len)
662 {
663 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
664 	struct nvme_tcp_request *req;
665 	struct request *rq;
666 
667 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
668 	if (!rq) {
669 		dev_err(queue->ctrl->ctrl.device,
670 			"queue %d tag %#x not found\n",
671 			nvme_tcp_queue_id(queue), pdu->command_id);
672 		return -ENOENT;
673 	}
674 	req = blk_mq_rq_to_pdu(rq);
675 
676 	while (true) {
677 		int recv_len, ret;
678 
679 		recv_len = min_t(size_t, *len, queue->data_remaining);
680 		if (!recv_len)
681 			break;
682 
683 		if (!iov_iter_count(&req->iter)) {
684 			req->curr_bio = req->curr_bio->bi_next;
685 
686 			/*
687 			 * If we don`t have any bios it means that controller
688 			 * sent more data than we requested, hence error
689 			 */
690 			if (!req->curr_bio) {
691 				dev_err(queue->ctrl->ctrl.device,
692 					"queue %d no space in request %#x",
693 					nvme_tcp_queue_id(queue), rq->tag);
694 				nvme_tcp_init_recv_ctx(queue);
695 				return -EIO;
696 			}
697 			nvme_tcp_init_iter(req, READ);
698 		}
699 
700 		/* we can read only from what is left in this bio */
701 		recv_len = min_t(size_t, recv_len,
702 				iov_iter_count(&req->iter));
703 
704 		if (queue->data_digest)
705 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
706 				&req->iter, recv_len, queue->rcv_hash);
707 		else
708 			ret = skb_copy_datagram_iter(skb, *offset,
709 					&req->iter, recv_len);
710 		if (ret) {
711 			dev_err(queue->ctrl->ctrl.device,
712 				"queue %d failed to copy request %#x data",
713 				nvme_tcp_queue_id(queue), rq->tag);
714 			return ret;
715 		}
716 
717 		*len -= recv_len;
718 		*offset += recv_len;
719 		queue->data_remaining -= recv_len;
720 	}
721 
722 	if (!queue->data_remaining) {
723 		if (queue->data_digest) {
724 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
725 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
726 		} else {
727 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
728 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
729 				queue->nr_cqe++;
730 			}
731 			nvme_tcp_init_recv_ctx(queue);
732 		}
733 	}
734 
735 	return 0;
736 }
737 
738 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
739 		struct sk_buff *skb, unsigned int *offset, size_t *len)
740 {
741 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
742 	char *ddgst = (char *)&queue->recv_ddgst;
743 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
744 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
745 	int ret;
746 
747 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
748 	if (unlikely(ret))
749 		return ret;
750 
751 	queue->ddgst_remaining -= recv_len;
752 	*offset += recv_len;
753 	*len -= recv_len;
754 	if (queue->ddgst_remaining)
755 		return 0;
756 
757 	if (queue->recv_ddgst != queue->exp_ddgst) {
758 		dev_err(queue->ctrl->ctrl.device,
759 			"data digest error: recv %#x expected %#x\n",
760 			le32_to_cpu(queue->recv_ddgst),
761 			le32_to_cpu(queue->exp_ddgst));
762 		return -EIO;
763 	}
764 
765 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
766 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
767 						pdu->command_id);
768 
769 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
770 		queue->nr_cqe++;
771 	}
772 
773 	nvme_tcp_init_recv_ctx(queue);
774 	return 0;
775 }
776 
777 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
778 			     unsigned int offset, size_t len)
779 {
780 	struct nvme_tcp_queue *queue = desc->arg.data;
781 	size_t consumed = len;
782 	int result;
783 
784 	while (len) {
785 		switch (nvme_tcp_recv_state(queue)) {
786 		case NVME_TCP_RECV_PDU:
787 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
788 			break;
789 		case NVME_TCP_RECV_DATA:
790 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
791 			break;
792 		case NVME_TCP_RECV_DDGST:
793 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
794 			break;
795 		default:
796 			result = -EFAULT;
797 		}
798 		if (result) {
799 			dev_err(queue->ctrl->ctrl.device,
800 				"receive failed:  %d\n", result);
801 			queue->rd_enabled = false;
802 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
803 			return result;
804 		}
805 	}
806 
807 	return consumed;
808 }
809 
810 static void nvme_tcp_data_ready(struct sock *sk)
811 {
812 	struct nvme_tcp_queue *queue;
813 
814 	read_lock_bh(&sk->sk_callback_lock);
815 	queue = sk->sk_user_data;
816 	if (likely(queue && queue->rd_enabled) &&
817 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
818 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
819 	read_unlock_bh(&sk->sk_callback_lock);
820 }
821 
822 static void nvme_tcp_write_space(struct sock *sk)
823 {
824 	struct nvme_tcp_queue *queue;
825 
826 	read_lock_bh(&sk->sk_callback_lock);
827 	queue = sk->sk_user_data;
828 	if (likely(queue && sk_stream_is_writeable(sk))) {
829 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
830 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
831 	}
832 	read_unlock_bh(&sk->sk_callback_lock);
833 }
834 
835 static void nvme_tcp_state_change(struct sock *sk)
836 {
837 	struct nvme_tcp_queue *queue;
838 
839 	read_lock(&sk->sk_callback_lock);
840 	queue = sk->sk_user_data;
841 	if (!queue)
842 		goto done;
843 
844 	switch (sk->sk_state) {
845 	case TCP_CLOSE:
846 	case TCP_CLOSE_WAIT:
847 	case TCP_LAST_ACK:
848 	case TCP_FIN_WAIT1:
849 	case TCP_FIN_WAIT2:
850 		/* fallthrough */
851 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
852 		break;
853 	default:
854 		dev_info(queue->ctrl->ctrl.device,
855 			"queue %d socket state %d\n",
856 			nvme_tcp_queue_id(queue), sk->sk_state);
857 	}
858 
859 	queue->state_change(sk);
860 done:
861 	read_unlock(&sk->sk_callback_lock);
862 }
863 
864 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
865 {
866 	queue->request = NULL;
867 }
868 
869 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
870 {
871 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
872 }
873 
874 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
875 {
876 	struct nvme_tcp_queue *queue = req->queue;
877 
878 	while (true) {
879 		struct page *page = nvme_tcp_req_cur_page(req);
880 		size_t offset = nvme_tcp_req_cur_offset(req);
881 		size_t len = nvme_tcp_req_cur_length(req);
882 		bool last = nvme_tcp_pdu_last_send(req, len);
883 		int ret, flags = MSG_DONTWAIT;
884 
885 		if (last && !queue->data_digest)
886 			flags |= MSG_EOR;
887 		else
888 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
889 
890 		/* can't zcopy slab pages */
891 		if (unlikely(PageSlab(page))) {
892 			ret = sock_no_sendpage(queue->sock, page, offset, len,
893 					flags);
894 		} else {
895 			ret = kernel_sendpage(queue->sock, page, offset, len,
896 					flags);
897 		}
898 		if (ret <= 0)
899 			return ret;
900 
901 		nvme_tcp_advance_req(req, ret);
902 		if (queue->data_digest)
903 			nvme_tcp_ddgst_update(queue->snd_hash, page,
904 					offset, ret);
905 
906 		/* fully successful last write*/
907 		if (last && ret == len) {
908 			if (queue->data_digest) {
909 				nvme_tcp_ddgst_final(queue->snd_hash,
910 					&req->ddgst);
911 				req->state = NVME_TCP_SEND_DDGST;
912 				req->offset = 0;
913 			} else {
914 				nvme_tcp_done_send_req(queue);
915 			}
916 			return 1;
917 		}
918 	}
919 	return -EAGAIN;
920 }
921 
922 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
923 {
924 	struct nvme_tcp_queue *queue = req->queue;
925 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
926 	bool inline_data = nvme_tcp_has_inline_data(req);
927 	u8 hdgst = nvme_tcp_hdgst_len(queue);
928 	int len = sizeof(*pdu) + hdgst - req->offset;
929 	int flags = MSG_DONTWAIT;
930 	int ret;
931 
932 	if (inline_data)
933 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
934 	else
935 		flags |= MSG_EOR;
936 
937 	if (queue->hdr_digest && !req->offset)
938 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
939 
940 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
941 			offset_in_page(pdu) + req->offset, len,  flags);
942 	if (unlikely(ret <= 0))
943 		return ret;
944 
945 	len -= ret;
946 	if (!len) {
947 		if (inline_data) {
948 			req->state = NVME_TCP_SEND_DATA;
949 			if (queue->data_digest)
950 				crypto_ahash_init(queue->snd_hash);
951 			nvme_tcp_init_iter(req, WRITE);
952 		} else {
953 			nvme_tcp_done_send_req(queue);
954 		}
955 		return 1;
956 	}
957 	req->offset += ret;
958 
959 	return -EAGAIN;
960 }
961 
962 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
963 {
964 	struct nvme_tcp_queue *queue = req->queue;
965 	struct nvme_tcp_data_pdu *pdu = req->pdu;
966 	u8 hdgst = nvme_tcp_hdgst_len(queue);
967 	int len = sizeof(*pdu) - req->offset + hdgst;
968 	int ret;
969 
970 	if (queue->hdr_digest && !req->offset)
971 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
972 
973 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
974 			offset_in_page(pdu) + req->offset, len,
975 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
976 	if (unlikely(ret <= 0))
977 		return ret;
978 
979 	len -= ret;
980 	if (!len) {
981 		req->state = NVME_TCP_SEND_DATA;
982 		if (queue->data_digest)
983 			crypto_ahash_init(queue->snd_hash);
984 		if (!req->data_sent)
985 			nvme_tcp_init_iter(req, WRITE);
986 		return 1;
987 	}
988 	req->offset += ret;
989 
990 	return -EAGAIN;
991 }
992 
993 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
994 {
995 	struct nvme_tcp_queue *queue = req->queue;
996 	int ret;
997 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
998 	struct kvec iov = {
999 		.iov_base = &req->ddgst + req->offset,
1000 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1001 	};
1002 
1003 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1004 	if (unlikely(ret <= 0))
1005 		return ret;
1006 
1007 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1008 		nvme_tcp_done_send_req(queue);
1009 		return 1;
1010 	}
1011 
1012 	req->offset += ret;
1013 	return -EAGAIN;
1014 }
1015 
1016 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1017 {
1018 	struct nvme_tcp_request *req;
1019 	int ret = 1;
1020 
1021 	if (!queue->request) {
1022 		queue->request = nvme_tcp_fetch_request(queue);
1023 		if (!queue->request)
1024 			return 0;
1025 	}
1026 	req = queue->request;
1027 
1028 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1029 		ret = nvme_tcp_try_send_cmd_pdu(req);
1030 		if (ret <= 0)
1031 			goto done;
1032 		if (!nvme_tcp_has_inline_data(req))
1033 			return ret;
1034 	}
1035 
1036 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1037 		ret = nvme_tcp_try_send_data_pdu(req);
1038 		if (ret <= 0)
1039 			goto done;
1040 	}
1041 
1042 	if (req->state == NVME_TCP_SEND_DATA) {
1043 		ret = nvme_tcp_try_send_data(req);
1044 		if (ret <= 0)
1045 			goto done;
1046 	}
1047 
1048 	if (req->state == NVME_TCP_SEND_DDGST)
1049 		ret = nvme_tcp_try_send_ddgst(req);
1050 done:
1051 	if (ret == -EAGAIN) {
1052 		ret = 0;
1053 	} else if (ret < 0) {
1054 		dev_err(queue->ctrl->ctrl.device,
1055 			"failed to send request %d\n", ret);
1056 		if (ret != -EPIPE && ret != -ECONNRESET)
1057 			nvme_tcp_fail_request(queue->request);
1058 		nvme_tcp_done_send_req(queue);
1059 	}
1060 	return ret;
1061 }
1062 
1063 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1064 {
1065 	struct socket *sock = queue->sock;
1066 	struct sock *sk = sock->sk;
1067 	read_descriptor_t rd_desc;
1068 	int consumed;
1069 
1070 	rd_desc.arg.data = queue;
1071 	rd_desc.count = 1;
1072 	lock_sock(sk);
1073 	queue->nr_cqe = 0;
1074 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1075 	release_sock(sk);
1076 	return consumed;
1077 }
1078 
1079 static void nvme_tcp_io_work(struct work_struct *w)
1080 {
1081 	struct nvme_tcp_queue *queue =
1082 		container_of(w, struct nvme_tcp_queue, io_work);
1083 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1084 
1085 	do {
1086 		bool pending = false;
1087 		int result;
1088 
1089 		if (mutex_trylock(&queue->send_mutex)) {
1090 			result = nvme_tcp_try_send(queue);
1091 			mutex_unlock(&queue->send_mutex);
1092 			if (result > 0)
1093 				pending = true;
1094 			else if (unlikely(result < 0))
1095 				break;
1096 		}
1097 
1098 		result = nvme_tcp_try_recv(queue);
1099 		if (result > 0)
1100 			pending = true;
1101 		else if (unlikely(result < 0))
1102 			return;
1103 
1104 		if (!pending)
1105 			return;
1106 
1107 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1108 
1109 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1110 }
1111 
1112 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1113 {
1114 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1115 
1116 	ahash_request_free(queue->rcv_hash);
1117 	ahash_request_free(queue->snd_hash);
1118 	crypto_free_ahash(tfm);
1119 }
1120 
1121 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1122 {
1123 	struct crypto_ahash *tfm;
1124 
1125 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1126 	if (IS_ERR(tfm))
1127 		return PTR_ERR(tfm);
1128 
1129 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1130 	if (!queue->snd_hash)
1131 		goto free_tfm;
1132 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1133 
1134 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1135 	if (!queue->rcv_hash)
1136 		goto free_snd_hash;
1137 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1138 
1139 	return 0;
1140 free_snd_hash:
1141 	ahash_request_free(queue->snd_hash);
1142 free_tfm:
1143 	crypto_free_ahash(tfm);
1144 	return -ENOMEM;
1145 }
1146 
1147 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1148 {
1149 	struct nvme_tcp_request *async = &ctrl->async_req;
1150 
1151 	page_frag_free(async->pdu);
1152 }
1153 
1154 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1155 {
1156 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1157 	struct nvme_tcp_request *async = &ctrl->async_req;
1158 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1159 
1160 	async->pdu = page_frag_alloc(&queue->pf_cache,
1161 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1162 		GFP_KERNEL | __GFP_ZERO);
1163 	if (!async->pdu)
1164 		return -ENOMEM;
1165 
1166 	async->queue = &ctrl->queues[0];
1167 	return 0;
1168 }
1169 
1170 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1171 {
1172 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1173 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1174 
1175 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1176 		return;
1177 
1178 	if (queue->hdr_digest || queue->data_digest)
1179 		nvme_tcp_free_crypto(queue);
1180 
1181 	sock_release(queue->sock);
1182 	kfree(queue->pdu);
1183 }
1184 
1185 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1186 {
1187 	struct nvme_tcp_icreq_pdu *icreq;
1188 	struct nvme_tcp_icresp_pdu *icresp;
1189 	struct msghdr msg = {};
1190 	struct kvec iov;
1191 	bool ctrl_hdgst, ctrl_ddgst;
1192 	int ret;
1193 
1194 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1195 	if (!icreq)
1196 		return -ENOMEM;
1197 
1198 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1199 	if (!icresp) {
1200 		ret = -ENOMEM;
1201 		goto free_icreq;
1202 	}
1203 
1204 	icreq->hdr.type = nvme_tcp_icreq;
1205 	icreq->hdr.hlen = sizeof(*icreq);
1206 	icreq->hdr.pdo = 0;
1207 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1208 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1209 	icreq->maxr2t = 0; /* single inflight r2t supported */
1210 	icreq->hpda = 0; /* no alignment constraint */
1211 	if (queue->hdr_digest)
1212 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1213 	if (queue->data_digest)
1214 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1215 
1216 	iov.iov_base = icreq;
1217 	iov.iov_len = sizeof(*icreq);
1218 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1219 	if (ret < 0)
1220 		goto free_icresp;
1221 
1222 	memset(&msg, 0, sizeof(msg));
1223 	iov.iov_base = icresp;
1224 	iov.iov_len = sizeof(*icresp);
1225 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1226 			iov.iov_len, msg.msg_flags);
1227 	if (ret < 0)
1228 		goto free_icresp;
1229 
1230 	ret = -EINVAL;
1231 	if (icresp->hdr.type != nvme_tcp_icresp) {
1232 		pr_err("queue %d: bad type returned %d\n",
1233 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1234 		goto free_icresp;
1235 	}
1236 
1237 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1238 		pr_err("queue %d: bad pdu length returned %d\n",
1239 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1240 		goto free_icresp;
1241 	}
1242 
1243 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1244 		pr_err("queue %d: bad pfv returned %d\n",
1245 			nvme_tcp_queue_id(queue), icresp->pfv);
1246 		goto free_icresp;
1247 	}
1248 
1249 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1250 	if ((queue->data_digest && !ctrl_ddgst) ||
1251 	    (!queue->data_digest && ctrl_ddgst)) {
1252 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1253 			nvme_tcp_queue_id(queue),
1254 			queue->data_digest ? "enabled" : "disabled",
1255 			ctrl_ddgst ? "enabled" : "disabled");
1256 		goto free_icresp;
1257 	}
1258 
1259 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1260 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1261 	    (!queue->hdr_digest && ctrl_hdgst)) {
1262 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1263 			nvme_tcp_queue_id(queue),
1264 			queue->hdr_digest ? "enabled" : "disabled",
1265 			ctrl_hdgst ? "enabled" : "disabled");
1266 		goto free_icresp;
1267 	}
1268 
1269 	if (icresp->cpda != 0) {
1270 		pr_err("queue %d: unsupported cpda returned %d\n",
1271 			nvme_tcp_queue_id(queue), icresp->cpda);
1272 		goto free_icresp;
1273 	}
1274 
1275 	ret = 0;
1276 free_icresp:
1277 	kfree(icresp);
1278 free_icreq:
1279 	kfree(icreq);
1280 	return ret;
1281 }
1282 
1283 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1284 {
1285 	return nvme_tcp_queue_id(queue) == 0;
1286 }
1287 
1288 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1289 {
1290 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1291 	int qid = nvme_tcp_queue_id(queue);
1292 
1293 	return !nvme_tcp_admin_queue(queue) &&
1294 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1295 }
1296 
1297 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1298 {
1299 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1300 	int qid = nvme_tcp_queue_id(queue);
1301 
1302 	return !nvme_tcp_admin_queue(queue) &&
1303 		!nvme_tcp_default_queue(queue) &&
1304 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1305 			  ctrl->io_queues[HCTX_TYPE_READ];
1306 }
1307 
1308 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1309 {
1310 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1311 	int qid = nvme_tcp_queue_id(queue);
1312 
1313 	return !nvme_tcp_admin_queue(queue) &&
1314 		!nvme_tcp_default_queue(queue) &&
1315 		!nvme_tcp_read_queue(queue) &&
1316 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1317 			  ctrl->io_queues[HCTX_TYPE_READ] +
1318 			  ctrl->io_queues[HCTX_TYPE_POLL];
1319 }
1320 
1321 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1322 {
1323 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1324 	int qid = nvme_tcp_queue_id(queue);
1325 	int n = 0;
1326 
1327 	if (nvme_tcp_default_queue(queue))
1328 		n = qid - 1;
1329 	else if (nvme_tcp_read_queue(queue))
1330 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1331 	else if (nvme_tcp_poll_queue(queue))
1332 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1333 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1334 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1335 }
1336 
1337 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1338 		int qid, size_t queue_size)
1339 {
1340 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1341 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1342 	int ret, rcv_pdu_size;
1343 
1344 	queue->ctrl = ctrl;
1345 	INIT_LIST_HEAD(&queue->send_list);
1346 	spin_lock_init(&queue->lock);
1347 	mutex_init(&queue->send_mutex);
1348 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1349 	queue->queue_size = queue_size;
1350 
1351 	if (qid > 0)
1352 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1353 	else
1354 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1355 						NVME_TCP_ADMIN_CCSZ;
1356 
1357 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1358 			IPPROTO_TCP, &queue->sock);
1359 	if (ret) {
1360 		dev_err(nctrl->device,
1361 			"failed to create socket: %d\n", ret);
1362 		return ret;
1363 	}
1364 
1365 	/* Single syn retry */
1366 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1367 
1368 	/* Set TCP no delay */
1369 	tcp_sock_set_nodelay(queue->sock->sk);
1370 
1371 	/*
1372 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1373 	 * close. This is done to prevent stale data from being sent should
1374 	 * the network connection be restored before TCP times out.
1375 	 */
1376 	sock_no_linger(queue->sock->sk);
1377 
1378 	if (so_priority > 0)
1379 		sock_set_priority(queue->sock->sk, so_priority);
1380 
1381 	/* Set socket type of service */
1382 	if (nctrl->opts->tos >= 0)
1383 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1384 
1385 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1386 	nvme_tcp_set_queue_io_cpu(queue);
1387 	queue->request = NULL;
1388 	queue->data_remaining = 0;
1389 	queue->ddgst_remaining = 0;
1390 	queue->pdu_remaining = 0;
1391 	queue->pdu_offset = 0;
1392 	sk_set_memalloc(queue->sock->sk);
1393 
1394 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1395 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1396 			sizeof(ctrl->src_addr));
1397 		if (ret) {
1398 			dev_err(nctrl->device,
1399 				"failed to bind queue %d socket %d\n",
1400 				qid, ret);
1401 			goto err_sock;
1402 		}
1403 	}
1404 
1405 	queue->hdr_digest = nctrl->opts->hdr_digest;
1406 	queue->data_digest = nctrl->opts->data_digest;
1407 	if (queue->hdr_digest || queue->data_digest) {
1408 		ret = nvme_tcp_alloc_crypto(queue);
1409 		if (ret) {
1410 			dev_err(nctrl->device,
1411 				"failed to allocate queue %d crypto\n", qid);
1412 			goto err_sock;
1413 		}
1414 	}
1415 
1416 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1417 			nvme_tcp_hdgst_len(queue);
1418 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1419 	if (!queue->pdu) {
1420 		ret = -ENOMEM;
1421 		goto err_crypto;
1422 	}
1423 
1424 	dev_dbg(nctrl->device, "connecting queue %d\n",
1425 			nvme_tcp_queue_id(queue));
1426 
1427 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1428 		sizeof(ctrl->addr), 0);
1429 	if (ret) {
1430 		dev_err(nctrl->device,
1431 			"failed to connect socket: %d\n", ret);
1432 		goto err_rcv_pdu;
1433 	}
1434 
1435 	ret = nvme_tcp_init_connection(queue);
1436 	if (ret)
1437 		goto err_init_connect;
1438 
1439 	queue->rd_enabled = true;
1440 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1441 	nvme_tcp_init_recv_ctx(queue);
1442 
1443 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1444 	queue->sock->sk->sk_user_data = queue;
1445 	queue->state_change = queue->sock->sk->sk_state_change;
1446 	queue->data_ready = queue->sock->sk->sk_data_ready;
1447 	queue->write_space = queue->sock->sk->sk_write_space;
1448 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1449 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1450 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1451 #ifdef CONFIG_NET_RX_BUSY_POLL
1452 	queue->sock->sk->sk_ll_usec = 1;
1453 #endif
1454 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1455 
1456 	return 0;
1457 
1458 err_init_connect:
1459 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1460 err_rcv_pdu:
1461 	kfree(queue->pdu);
1462 err_crypto:
1463 	if (queue->hdr_digest || queue->data_digest)
1464 		nvme_tcp_free_crypto(queue);
1465 err_sock:
1466 	sock_release(queue->sock);
1467 	queue->sock = NULL;
1468 	return ret;
1469 }
1470 
1471 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1472 {
1473 	struct socket *sock = queue->sock;
1474 
1475 	write_lock_bh(&sock->sk->sk_callback_lock);
1476 	sock->sk->sk_user_data  = NULL;
1477 	sock->sk->sk_data_ready = queue->data_ready;
1478 	sock->sk->sk_state_change = queue->state_change;
1479 	sock->sk->sk_write_space  = queue->write_space;
1480 	write_unlock_bh(&sock->sk->sk_callback_lock);
1481 }
1482 
1483 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1484 {
1485 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1486 	nvme_tcp_restore_sock_calls(queue);
1487 	cancel_work_sync(&queue->io_work);
1488 }
1489 
1490 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1491 {
1492 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1493 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1494 
1495 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1496 		return;
1497 
1498 	__nvme_tcp_stop_queue(queue);
1499 }
1500 
1501 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1502 {
1503 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1504 	int ret;
1505 
1506 	if (idx)
1507 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1508 	else
1509 		ret = nvmf_connect_admin_queue(nctrl);
1510 
1511 	if (!ret) {
1512 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1513 	} else {
1514 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1515 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1516 		dev_err(nctrl->device,
1517 			"failed to connect queue: %d ret=%d\n", idx, ret);
1518 	}
1519 	return ret;
1520 }
1521 
1522 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1523 		bool admin)
1524 {
1525 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1526 	struct blk_mq_tag_set *set;
1527 	int ret;
1528 
1529 	if (admin) {
1530 		set = &ctrl->admin_tag_set;
1531 		memset(set, 0, sizeof(*set));
1532 		set->ops = &nvme_tcp_admin_mq_ops;
1533 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1534 		set->reserved_tags = 2; /* connect + keep-alive */
1535 		set->numa_node = NUMA_NO_NODE;
1536 		set->flags = BLK_MQ_F_BLOCKING;
1537 		set->cmd_size = sizeof(struct nvme_tcp_request);
1538 		set->driver_data = ctrl;
1539 		set->nr_hw_queues = 1;
1540 		set->timeout = ADMIN_TIMEOUT;
1541 	} else {
1542 		set = &ctrl->tag_set;
1543 		memset(set, 0, sizeof(*set));
1544 		set->ops = &nvme_tcp_mq_ops;
1545 		set->queue_depth = nctrl->sqsize + 1;
1546 		set->reserved_tags = 1; /* fabric connect */
1547 		set->numa_node = NUMA_NO_NODE;
1548 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1549 		set->cmd_size = sizeof(struct nvme_tcp_request);
1550 		set->driver_data = ctrl;
1551 		set->nr_hw_queues = nctrl->queue_count - 1;
1552 		set->timeout = NVME_IO_TIMEOUT;
1553 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1554 	}
1555 
1556 	ret = blk_mq_alloc_tag_set(set);
1557 	if (ret)
1558 		return ERR_PTR(ret);
1559 
1560 	return set;
1561 }
1562 
1563 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1564 {
1565 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1566 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1567 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1568 	}
1569 
1570 	nvme_tcp_free_queue(ctrl, 0);
1571 }
1572 
1573 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1574 {
1575 	int i;
1576 
1577 	for (i = 1; i < ctrl->queue_count; i++)
1578 		nvme_tcp_free_queue(ctrl, i);
1579 }
1580 
1581 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1582 {
1583 	int i;
1584 
1585 	for (i = 1; i < ctrl->queue_count; i++)
1586 		nvme_tcp_stop_queue(ctrl, i);
1587 }
1588 
1589 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1590 {
1591 	int i, ret = 0;
1592 
1593 	for (i = 1; i < ctrl->queue_count; i++) {
1594 		ret = nvme_tcp_start_queue(ctrl, i);
1595 		if (ret)
1596 			goto out_stop_queues;
1597 	}
1598 
1599 	return 0;
1600 
1601 out_stop_queues:
1602 	for (i--; i >= 1; i--)
1603 		nvme_tcp_stop_queue(ctrl, i);
1604 	return ret;
1605 }
1606 
1607 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1608 {
1609 	int ret;
1610 
1611 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1612 	if (ret)
1613 		return ret;
1614 
1615 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1616 	if (ret)
1617 		goto out_free_queue;
1618 
1619 	return 0;
1620 
1621 out_free_queue:
1622 	nvme_tcp_free_queue(ctrl, 0);
1623 	return ret;
1624 }
1625 
1626 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1627 {
1628 	int i, ret;
1629 
1630 	for (i = 1; i < ctrl->queue_count; i++) {
1631 		ret = nvme_tcp_alloc_queue(ctrl, i,
1632 				ctrl->sqsize + 1);
1633 		if (ret)
1634 			goto out_free_queues;
1635 	}
1636 
1637 	return 0;
1638 
1639 out_free_queues:
1640 	for (i--; i >= 1; i--)
1641 		nvme_tcp_free_queue(ctrl, i);
1642 
1643 	return ret;
1644 }
1645 
1646 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1647 {
1648 	unsigned int nr_io_queues;
1649 
1650 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1651 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1652 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1653 
1654 	return nr_io_queues;
1655 }
1656 
1657 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1658 		unsigned int nr_io_queues)
1659 {
1660 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1661 	struct nvmf_ctrl_options *opts = nctrl->opts;
1662 
1663 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1664 		/*
1665 		 * separate read/write queues
1666 		 * hand out dedicated default queues only after we have
1667 		 * sufficient read queues.
1668 		 */
1669 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1670 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1671 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1672 			min(opts->nr_write_queues, nr_io_queues);
1673 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1674 	} else {
1675 		/*
1676 		 * shared read/write queues
1677 		 * either no write queues were requested, or we don't have
1678 		 * sufficient queue count to have dedicated default queues.
1679 		 */
1680 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1681 			min(opts->nr_io_queues, nr_io_queues);
1682 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1683 	}
1684 
1685 	if (opts->nr_poll_queues && nr_io_queues) {
1686 		/* map dedicated poll queues only if we have queues left */
1687 		ctrl->io_queues[HCTX_TYPE_POLL] =
1688 			min(opts->nr_poll_queues, nr_io_queues);
1689 	}
1690 }
1691 
1692 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1693 {
1694 	unsigned int nr_io_queues;
1695 	int ret;
1696 
1697 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1698 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1699 	if (ret)
1700 		return ret;
1701 
1702 	ctrl->queue_count = nr_io_queues + 1;
1703 	if (ctrl->queue_count < 2)
1704 		return 0;
1705 
1706 	dev_info(ctrl->device,
1707 		"creating %d I/O queues.\n", nr_io_queues);
1708 
1709 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1710 
1711 	return __nvme_tcp_alloc_io_queues(ctrl);
1712 }
1713 
1714 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1715 {
1716 	nvme_tcp_stop_io_queues(ctrl);
1717 	if (remove) {
1718 		blk_cleanup_queue(ctrl->connect_q);
1719 		blk_mq_free_tag_set(ctrl->tagset);
1720 	}
1721 	nvme_tcp_free_io_queues(ctrl);
1722 }
1723 
1724 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1725 {
1726 	int ret;
1727 
1728 	ret = nvme_tcp_alloc_io_queues(ctrl);
1729 	if (ret)
1730 		return ret;
1731 
1732 	if (new) {
1733 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1734 		if (IS_ERR(ctrl->tagset)) {
1735 			ret = PTR_ERR(ctrl->tagset);
1736 			goto out_free_io_queues;
1737 		}
1738 
1739 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1740 		if (IS_ERR(ctrl->connect_q)) {
1741 			ret = PTR_ERR(ctrl->connect_q);
1742 			goto out_free_tag_set;
1743 		}
1744 	} else {
1745 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1746 			ctrl->queue_count - 1);
1747 	}
1748 
1749 	ret = nvme_tcp_start_io_queues(ctrl);
1750 	if (ret)
1751 		goto out_cleanup_connect_q;
1752 
1753 	return 0;
1754 
1755 out_cleanup_connect_q:
1756 	if (new)
1757 		blk_cleanup_queue(ctrl->connect_q);
1758 out_free_tag_set:
1759 	if (new)
1760 		blk_mq_free_tag_set(ctrl->tagset);
1761 out_free_io_queues:
1762 	nvme_tcp_free_io_queues(ctrl);
1763 	return ret;
1764 }
1765 
1766 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1767 {
1768 	nvme_tcp_stop_queue(ctrl, 0);
1769 	if (remove) {
1770 		blk_cleanup_queue(ctrl->admin_q);
1771 		blk_cleanup_queue(ctrl->fabrics_q);
1772 		blk_mq_free_tag_set(ctrl->admin_tagset);
1773 	}
1774 	nvme_tcp_free_admin_queue(ctrl);
1775 }
1776 
1777 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1778 {
1779 	int error;
1780 
1781 	error = nvme_tcp_alloc_admin_queue(ctrl);
1782 	if (error)
1783 		return error;
1784 
1785 	if (new) {
1786 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1787 		if (IS_ERR(ctrl->admin_tagset)) {
1788 			error = PTR_ERR(ctrl->admin_tagset);
1789 			goto out_free_queue;
1790 		}
1791 
1792 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1793 		if (IS_ERR(ctrl->fabrics_q)) {
1794 			error = PTR_ERR(ctrl->fabrics_q);
1795 			goto out_free_tagset;
1796 		}
1797 
1798 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1799 		if (IS_ERR(ctrl->admin_q)) {
1800 			error = PTR_ERR(ctrl->admin_q);
1801 			goto out_cleanup_fabrics_q;
1802 		}
1803 	}
1804 
1805 	error = nvme_tcp_start_queue(ctrl, 0);
1806 	if (error)
1807 		goto out_cleanup_queue;
1808 
1809 	error = nvme_enable_ctrl(ctrl);
1810 	if (error)
1811 		goto out_stop_queue;
1812 
1813 	blk_mq_unquiesce_queue(ctrl->admin_q);
1814 
1815 	error = nvme_init_identify(ctrl);
1816 	if (error)
1817 		goto out_stop_queue;
1818 
1819 	return 0;
1820 
1821 out_stop_queue:
1822 	nvme_tcp_stop_queue(ctrl, 0);
1823 out_cleanup_queue:
1824 	if (new)
1825 		blk_cleanup_queue(ctrl->admin_q);
1826 out_cleanup_fabrics_q:
1827 	if (new)
1828 		blk_cleanup_queue(ctrl->fabrics_q);
1829 out_free_tagset:
1830 	if (new)
1831 		blk_mq_free_tag_set(ctrl->admin_tagset);
1832 out_free_queue:
1833 	nvme_tcp_free_admin_queue(ctrl);
1834 	return error;
1835 }
1836 
1837 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1838 		bool remove)
1839 {
1840 	blk_mq_quiesce_queue(ctrl->admin_q);
1841 	nvme_tcp_stop_queue(ctrl, 0);
1842 	if (ctrl->admin_tagset) {
1843 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1844 			nvme_cancel_request, ctrl);
1845 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1846 	}
1847 	if (remove)
1848 		blk_mq_unquiesce_queue(ctrl->admin_q);
1849 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1850 }
1851 
1852 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1853 		bool remove)
1854 {
1855 	if (ctrl->queue_count <= 1)
1856 		return;
1857 	nvme_stop_queues(ctrl);
1858 	nvme_tcp_stop_io_queues(ctrl);
1859 	if (ctrl->tagset) {
1860 		blk_mq_tagset_busy_iter(ctrl->tagset,
1861 			nvme_cancel_request, ctrl);
1862 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1863 	}
1864 	if (remove)
1865 		nvme_start_queues(ctrl);
1866 	nvme_tcp_destroy_io_queues(ctrl, remove);
1867 }
1868 
1869 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1870 {
1871 	/* If we are resetting/deleting then do nothing */
1872 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1873 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1874 			ctrl->state == NVME_CTRL_LIVE);
1875 		return;
1876 	}
1877 
1878 	if (nvmf_should_reconnect(ctrl)) {
1879 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1880 			ctrl->opts->reconnect_delay);
1881 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1882 				ctrl->opts->reconnect_delay * HZ);
1883 	} else {
1884 		dev_info(ctrl->device, "Removing controller...\n");
1885 		nvme_delete_ctrl(ctrl);
1886 	}
1887 }
1888 
1889 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1890 {
1891 	struct nvmf_ctrl_options *opts = ctrl->opts;
1892 	int ret;
1893 
1894 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1895 	if (ret)
1896 		return ret;
1897 
1898 	if (ctrl->icdoff) {
1899 		dev_err(ctrl->device, "icdoff is not supported!\n");
1900 		goto destroy_admin;
1901 	}
1902 
1903 	if (opts->queue_size > ctrl->sqsize + 1)
1904 		dev_warn(ctrl->device,
1905 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1906 			opts->queue_size, ctrl->sqsize + 1);
1907 
1908 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1909 		dev_warn(ctrl->device,
1910 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1911 			ctrl->sqsize + 1, ctrl->maxcmd);
1912 		ctrl->sqsize = ctrl->maxcmd - 1;
1913 	}
1914 
1915 	if (ctrl->queue_count > 1) {
1916 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1917 		if (ret)
1918 			goto destroy_admin;
1919 	}
1920 
1921 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1922 		/*
1923 		 * state change failure is ok if we're in DELETING state,
1924 		 * unless we're during creation of a new controller to
1925 		 * avoid races with teardown flow.
1926 		 */
1927 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1928 		WARN_ON_ONCE(new);
1929 		ret = -EINVAL;
1930 		goto destroy_io;
1931 	}
1932 
1933 	nvme_start_ctrl(ctrl);
1934 	return 0;
1935 
1936 destroy_io:
1937 	if (ctrl->queue_count > 1)
1938 		nvme_tcp_destroy_io_queues(ctrl, new);
1939 destroy_admin:
1940 	nvme_tcp_stop_queue(ctrl, 0);
1941 	nvme_tcp_destroy_admin_queue(ctrl, new);
1942 	return ret;
1943 }
1944 
1945 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1946 {
1947 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1948 			struct nvme_tcp_ctrl, connect_work);
1949 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1950 
1951 	++ctrl->nr_reconnects;
1952 
1953 	if (nvme_tcp_setup_ctrl(ctrl, false))
1954 		goto requeue;
1955 
1956 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1957 			ctrl->nr_reconnects);
1958 
1959 	ctrl->nr_reconnects = 0;
1960 
1961 	return;
1962 
1963 requeue:
1964 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1965 			ctrl->nr_reconnects);
1966 	nvme_tcp_reconnect_or_remove(ctrl);
1967 }
1968 
1969 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1970 {
1971 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1972 				struct nvme_tcp_ctrl, err_work);
1973 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1974 
1975 	nvme_stop_keep_alive(ctrl);
1976 	nvme_tcp_teardown_io_queues(ctrl, false);
1977 	/* unquiesce to fail fast pending requests */
1978 	nvme_start_queues(ctrl);
1979 	nvme_tcp_teardown_admin_queue(ctrl, false);
1980 	blk_mq_unquiesce_queue(ctrl->admin_q);
1981 
1982 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1983 		/* state change failure is ok if we're in DELETING state */
1984 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1985 		return;
1986 	}
1987 
1988 	nvme_tcp_reconnect_or_remove(ctrl);
1989 }
1990 
1991 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1992 {
1993 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1994 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1995 
1996 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
1997 	blk_mq_quiesce_queue(ctrl->admin_q);
1998 	if (shutdown)
1999 		nvme_shutdown_ctrl(ctrl);
2000 	else
2001 		nvme_disable_ctrl(ctrl);
2002 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2003 }
2004 
2005 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2006 {
2007 	nvme_tcp_teardown_ctrl(ctrl, true);
2008 }
2009 
2010 static void nvme_reset_ctrl_work(struct work_struct *work)
2011 {
2012 	struct nvme_ctrl *ctrl =
2013 		container_of(work, struct nvme_ctrl, reset_work);
2014 
2015 	nvme_stop_ctrl(ctrl);
2016 	nvme_tcp_teardown_ctrl(ctrl, false);
2017 
2018 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2019 		/* state change failure is ok if we're in DELETING state */
2020 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
2021 		return;
2022 	}
2023 
2024 	if (nvme_tcp_setup_ctrl(ctrl, false))
2025 		goto out_fail;
2026 
2027 	return;
2028 
2029 out_fail:
2030 	++ctrl->nr_reconnects;
2031 	nvme_tcp_reconnect_or_remove(ctrl);
2032 }
2033 
2034 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2035 {
2036 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2037 
2038 	if (list_empty(&ctrl->list))
2039 		goto free_ctrl;
2040 
2041 	mutex_lock(&nvme_tcp_ctrl_mutex);
2042 	list_del(&ctrl->list);
2043 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2044 
2045 	nvmf_free_options(nctrl->opts);
2046 free_ctrl:
2047 	kfree(ctrl->queues);
2048 	kfree(ctrl);
2049 }
2050 
2051 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2052 {
2053 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2054 
2055 	sg->addr = 0;
2056 	sg->length = 0;
2057 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2058 			NVME_SGL_FMT_TRANSPORT_A;
2059 }
2060 
2061 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2062 		struct nvme_command *c, u32 data_len)
2063 {
2064 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2065 
2066 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2067 	sg->length = cpu_to_le32(data_len);
2068 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2069 }
2070 
2071 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2072 		u32 data_len)
2073 {
2074 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2075 
2076 	sg->addr = 0;
2077 	sg->length = cpu_to_le32(data_len);
2078 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2079 			NVME_SGL_FMT_TRANSPORT_A;
2080 }
2081 
2082 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2083 {
2084 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2085 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2086 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2087 	struct nvme_command *cmd = &pdu->cmd;
2088 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2089 
2090 	memset(pdu, 0, sizeof(*pdu));
2091 	pdu->hdr.type = nvme_tcp_cmd;
2092 	if (queue->hdr_digest)
2093 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2094 	pdu->hdr.hlen = sizeof(*pdu);
2095 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2096 
2097 	cmd->common.opcode = nvme_admin_async_event;
2098 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2099 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2100 	nvme_tcp_set_sg_null(cmd);
2101 
2102 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2103 	ctrl->async_req.offset = 0;
2104 	ctrl->async_req.curr_bio = NULL;
2105 	ctrl->async_req.data_len = 0;
2106 
2107 	nvme_tcp_queue_request(&ctrl->async_req, true);
2108 }
2109 
2110 static enum blk_eh_timer_return
2111 nvme_tcp_timeout(struct request *rq, bool reserved)
2112 {
2113 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2114 	struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2115 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2116 
2117 	/*
2118 	 * Restart the timer if a controller reset is already scheduled. Any
2119 	 * timed out commands would be handled before entering the connecting
2120 	 * state.
2121 	 */
2122 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
2123 		return BLK_EH_RESET_TIMER;
2124 
2125 	dev_warn(ctrl->ctrl.device,
2126 		"queue %d: timeout request %#x type %d\n",
2127 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2128 
2129 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2130 		/*
2131 		 * Teardown immediately if controller times out while starting
2132 		 * or we are already started error recovery. all outstanding
2133 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
2134 		 */
2135 		flush_work(&ctrl->err_work);
2136 		nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2137 		nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2138 		return BLK_EH_DONE;
2139 	}
2140 
2141 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2142 	nvme_tcp_error_recovery(&ctrl->ctrl);
2143 
2144 	return BLK_EH_RESET_TIMER;
2145 }
2146 
2147 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2148 			struct request *rq)
2149 {
2150 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2151 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2152 	struct nvme_command *c = &pdu->cmd;
2153 
2154 	c->common.flags |= NVME_CMD_SGL_METABUF;
2155 
2156 	if (!blk_rq_nr_phys_segments(rq))
2157 		nvme_tcp_set_sg_null(c);
2158 	else if (rq_data_dir(rq) == WRITE &&
2159 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2160 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2161 	else
2162 		nvme_tcp_set_sg_host_data(c, req->data_len);
2163 
2164 	return 0;
2165 }
2166 
2167 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2168 		struct request *rq)
2169 {
2170 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2171 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2172 	struct nvme_tcp_queue *queue = req->queue;
2173 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2174 	blk_status_t ret;
2175 
2176 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2177 	if (ret)
2178 		return ret;
2179 
2180 	req->state = NVME_TCP_SEND_CMD_PDU;
2181 	req->offset = 0;
2182 	req->data_sent = 0;
2183 	req->pdu_len = 0;
2184 	req->pdu_sent = 0;
2185 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2186 				blk_rq_payload_bytes(rq) : 0;
2187 	req->curr_bio = rq->bio;
2188 
2189 	if (rq_data_dir(rq) == WRITE &&
2190 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2191 		req->pdu_len = req->data_len;
2192 	else if (req->curr_bio)
2193 		nvme_tcp_init_iter(req, READ);
2194 
2195 	pdu->hdr.type = nvme_tcp_cmd;
2196 	pdu->hdr.flags = 0;
2197 	if (queue->hdr_digest)
2198 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2199 	if (queue->data_digest && req->pdu_len) {
2200 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2201 		ddgst = nvme_tcp_ddgst_len(queue);
2202 	}
2203 	pdu->hdr.hlen = sizeof(*pdu);
2204 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2205 	pdu->hdr.plen =
2206 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2207 
2208 	ret = nvme_tcp_map_data(queue, rq);
2209 	if (unlikely(ret)) {
2210 		nvme_cleanup_cmd(rq);
2211 		dev_err(queue->ctrl->ctrl.device,
2212 			"Failed to map data (%d)\n", ret);
2213 		return ret;
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2220 		const struct blk_mq_queue_data *bd)
2221 {
2222 	struct nvme_ns *ns = hctx->queue->queuedata;
2223 	struct nvme_tcp_queue *queue = hctx->driver_data;
2224 	struct request *rq = bd->rq;
2225 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2226 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2227 	blk_status_t ret;
2228 
2229 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2230 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2231 
2232 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2233 	if (unlikely(ret))
2234 		return ret;
2235 
2236 	blk_mq_start_request(rq);
2237 
2238 	nvme_tcp_queue_request(req, true);
2239 
2240 	return BLK_STS_OK;
2241 }
2242 
2243 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2244 {
2245 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2246 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2247 
2248 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2249 		/* separate read/write queues */
2250 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2251 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2252 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2253 		set->map[HCTX_TYPE_READ].nr_queues =
2254 			ctrl->io_queues[HCTX_TYPE_READ];
2255 		set->map[HCTX_TYPE_READ].queue_offset =
2256 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2257 	} else {
2258 		/* shared read/write queues */
2259 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2260 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2261 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2262 		set->map[HCTX_TYPE_READ].nr_queues =
2263 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2264 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2265 	}
2266 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2267 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2268 
2269 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2270 		/* map dedicated poll queues only if we have queues left */
2271 		set->map[HCTX_TYPE_POLL].nr_queues =
2272 				ctrl->io_queues[HCTX_TYPE_POLL];
2273 		set->map[HCTX_TYPE_POLL].queue_offset =
2274 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2275 			ctrl->io_queues[HCTX_TYPE_READ];
2276 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2277 	}
2278 
2279 	dev_info(ctrl->ctrl.device,
2280 		"mapped %d/%d/%d default/read/poll queues.\n",
2281 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2282 		ctrl->io_queues[HCTX_TYPE_READ],
2283 		ctrl->io_queues[HCTX_TYPE_POLL]);
2284 
2285 	return 0;
2286 }
2287 
2288 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2289 {
2290 	struct nvme_tcp_queue *queue = hctx->driver_data;
2291 	struct sock *sk = queue->sock->sk;
2292 
2293 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2294 		return 0;
2295 
2296 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2297 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2298 		sk_busy_loop(sk, true);
2299 	nvme_tcp_try_recv(queue);
2300 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2301 	return queue->nr_cqe;
2302 }
2303 
2304 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2305 	.queue_rq	= nvme_tcp_queue_rq,
2306 	.complete	= nvme_complete_rq,
2307 	.init_request	= nvme_tcp_init_request,
2308 	.exit_request	= nvme_tcp_exit_request,
2309 	.init_hctx	= nvme_tcp_init_hctx,
2310 	.timeout	= nvme_tcp_timeout,
2311 	.map_queues	= nvme_tcp_map_queues,
2312 	.poll		= nvme_tcp_poll,
2313 };
2314 
2315 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2316 	.queue_rq	= nvme_tcp_queue_rq,
2317 	.complete	= nvme_complete_rq,
2318 	.init_request	= nvme_tcp_init_request,
2319 	.exit_request	= nvme_tcp_exit_request,
2320 	.init_hctx	= nvme_tcp_init_admin_hctx,
2321 	.timeout	= nvme_tcp_timeout,
2322 };
2323 
2324 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2325 	.name			= "tcp",
2326 	.module			= THIS_MODULE,
2327 	.flags			= NVME_F_FABRICS,
2328 	.reg_read32		= nvmf_reg_read32,
2329 	.reg_read64		= nvmf_reg_read64,
2330 	.reg_write32		= nvmf_reg_write32,
2331 	.free_ctrl		= nvme_tcp_free_ctrl,
2332 	.submit_async_event	= nvme_tcp_submit_async_event,
2333 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2334 	.get_address		= nvmf_get_address,
2335 };
2336 
2337 static bool
2338 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2339 {
2340 	struct nvme_tcp_ctrl *ctrl;
2341 	bool found = false;
2342 
2343 	mutex_lock(&nvme_tcp_ctrl_mutex);
2344 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2345 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2346 		if (found)
2347 			break;
2348 	}
2349 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2350 
2351 	return found;
2352 }
2353 
2354 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2355 		struct nvmf_ctrl_options *opts)
2356 {
2357 	struct nvme_tcp_ctrl *ctrl;
2358 	int ret;
2359 
2360 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2361 	if (!ctrl)
2362 		return ERR_PTR(-ENOMEM);
2363 
2364 	INIT_LIST_HEAD(&ctrl->list);
2365 	ctrl->ctrl.opts = opts;
2366 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2367 				opts->nr_poll_queues + 1;
2368 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2369 	ctrl->ctrl.kato = opts->kato;
2370 
2371 	INIT_DELAYED_WORK(&ctrl->connect_work,
2372 			nvme_tcp_reconnect_ctrl_work);
2373 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2374 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2375 
2376 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2377 		opts->trsvcid =
2378 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2379 		if (!opts->trsvcid) {
2380 			ret = -ENOMEM;
2381 			goto out_free_ctrl;
2382 		}
2383 		opts->mask |= NVMF_OPT_TRSVCID;
2384 	}
2385 
2386 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2387 			opts->traddr, opts->trsvcid, &ctrl->addr);
2388 	if (ret) {
2389 		pr_err("malformed address passed: %s:%s\n",
2390 			opts->traddr, opts->trsvcid);
2391 		goto out_free_ctrl;
2392 	}
2393 
2394 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2395 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2396 			opts->host_traddr, NULL, &ctrl->src_addr);
2397 		if (ret) {
2398 			pr_err("malformed src address passed: %s\n",
2399 			       opts->host_traddr);
2400 			goto out_free_ctrl;
2401 		}
2402 	}
2403 
2404 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2405 		ret = -EALREADY;
2406 		goto out_free_ctrl;
2407 	}
2408 
2409 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2410 				GFP_KERNEL);
2411 	if (!ctrl->queues) {
2412 		ret = -ENOMEM;
2413 		goto out_free_ctrl;
2414 	}
2415 
2416 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2417 	if (ret)
2418 		goto out_kfree_queues;
2419 
2420 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2421 		WARN_ON_ONCE(1);
2422 		ret = -EINTR;
2423 		goto out_uninit_ctrl;
2424 	}
2425 
2426 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2427 	if (ret)
2428 		goto out_uninit_ctrl;
2429 
2430 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2431 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2432 
2433 	mutex_lock(&nvme_tcp_ctrl_mutex);
2434 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2435 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2436 
2437 	return &ctrl->ctrl;
2438 
2439 out_uninit_ctrl:
2440 	nvme_uninit_ctrl(&ctrl->ctrl);
2441 	nvme_put_ctrl(&ctrl->ctrl);
2442 	if (ret > 0)
2443 		ret = -EIO;
2444 	return ERR_PTR(ret);
2445 out_kfree_queues:
2446 	kfree(ctrl->queues);
2447 out_free_ctrl:
2448 	kfree(ctrl);
2449 	return ERR_PTR(ret);
2450 }
2451 
2452 static struct nvmf_transport_ops nvme_tcp_transport = {
2453 	.name		= "tcp",
2454 	.module		= THIS_MODULE,
2455 	.required_opts	= NVMF_OPT_TRADDR,
2456 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2457 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2458 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2459 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2460 			  NVMF_OPT_TOS,
2461 	.create_ctrl	= nvme_tcp_create_ctrl,
2462 };
2463 
2464 static int __init nvme_tcp_init_module(void)
2465 {
2466 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2467 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2468 	if (!nvme_tcp_wq)
2469 		return -ENOMEM;
2470 
2471 	nvmf_register_transport(&nvme_tcp_transport);
2472 	return 0;
2473 }
2474 
2475 static void __exit nvme_tcp_cleanup_module(void)
2476 {
2477 	struct nvme_tcp_ctrl *ctrl;
2478 
2479 	nvmf_unregister_transport(&nvme_tcp_transport);
2480 
2481 	mutex_lock(&nvme_tcp_ctrl_mutex);
2482 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2483 		nvme_delete_ctrl(&ctrl->ctrl);
2484 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2485 	flush_workqueue(nvme_delete_wq);
2486 
2487 	destroy_workqueue(nvme_tcp_wq);
2488 }
2489 
2490 module_init(nvme_tcp_init_module);
2491 module_exit(nvme_tcp_cleanup_module);
2492 
2493 MODULE_LICENSE("GPL v2");
2494