1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 __le32 ddgst; 50 51 struct bio *curr_bio; 52 struct iov_iter iter; 53 54 /* send state */ 55 size_t offset; 56 size_t data_sent; 57 enum nvme_tcp_send_state state; 58 }; 59 60 enum nvme_tcp_queue_flags { 61 NVME_TCP_Q_ALLOCATED = 0, 62 NVME_TCP_Q_LIVE = 1, 63 }; 64 65 enum nvme_tcp_recv_state { 66 NVME_TCP_RECV_PDU = 0, 67 NVME_TCP_RECV_DATA, 68 NVME_TCP_RECV_DDGST, 69 }; 70 71 struct nvme_tcp_ctrl; 72 struct nvme_tcp_queue { 73 struct socket *sock; 74 struct work_struct io_work; 75 int io_cpu; 76 77 spinlock_t lock; 78 struct list_head send_list; 79 80 /* recv state */ 81 void *pdu; 82 int pdu_remaining; 83 int pdu_offset; 84 size_t data_remaining; 85 size_t ddgst_remaining; 86 unsigned int nr_cqe; 87 88 /* send state */ 89 struct nvme_tcp_request *request; 90 91 int queue_size; 92 size_t cmnd_capsule_len; 93 struct nvme_tcp_ctrl *ctrl; 94 unsigned long flags; 95 bool rd_enabled; 96 97 bool hdr_digest; 98 bool data_digest; 99 struct ahash_request *rcv_hash; 100 struct ahash_request *snd_hash; 101 __le32 exp_ddgst; 102 __le32 recv_ddgst; 103 104 struct page_frag_cache pf_cache; 105 106 void (*state_change)(struct sock *); 107 void (*data_ready)(struct sock *); 108 void (*write_space)(struct sock *); 109 }; 110 111 struct nvme_tcp_ctrl { 112 /* read only in the hot path */ 113 struct nvme_tcp_queue *queues; 114 struct blk_mq_tag_set tag_set; 115 116 /* other member variables */ 117 struct list_head list; 118 struct blk_mq_tag_set admin_tag_set; 119 struct sockaddr_storage addr; 120 struct sockaddr_storage src_addr; 121 struct nvme_ctrl ctrl; 122 123 struct work_struct err_work; 124 struct delayed_work connect_work; 125 struct nvme_tcp_request async_req; 126 u32 io_queues[HCTX_MAX_TYPES]; 127 }; 128 129 static LIST_HEAD(nvme_tcp_ctrl_list); 130 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 131 static struct workqueue_struct *nvme_tcp_wq; 132 static struct blk_mq_ops nvme_tcp_mq_ops; 133 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 134 135 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 136 { 137 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 138 } 139 140 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 141 { 142 return queue - queue->ctrl->queues; 143 } 144 145 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 146 { 147 u32 queue_idx = nvme_tcp_queue_id(queue); 148 149 if (queue_idx == 0) 150 return queue->ctrl->admin_tag_set.tags[queue_idx]; 151 return queue->ctrl->tag_set.tags[queue_idx - 1]; 152 } 153 154 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 155 { 156 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 157 } 158 159 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 160 { 161 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 162 } 163 164 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 165 { 166 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 167 } 168 169 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 170 { 171 return req == &req->queue->ctrl->async_req; 172 } 173 174 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 175 { 176 struct request *rq; 177 178 if (unlikely(nvme_tcp_async_req(req))) 179 return false; /* async events don't have a request */ 180 181 rq = blk_mq_rq_from_pdu(req); 182 183 return rq_data_dir(rq) == WRITE && req->data_len && 184 req->data_len <= nvme_tcp_inline_data_size(req->queue); 185 } 186 187 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 188 { 189 return req->iter.bvec->bv_page; 190 } 191 192 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 193 { 194 return req->iter.bvec->bv_offset + req->iter.iov_offset; 195 } 196 197 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 198 { 199 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 200 req->pdu_len - req->pdu_sent); 201 } 202 203 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 204 { 205 return req->iter.iov_offset; 206 } 207 208 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 209 { 210 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 211 req->pdu_len - req->pdu_sent : 0; 212 } 213 214 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 215 int len) 216 { 217 return nvme_tcp_pdu_data_left(req) <= len; 218 } 219 220 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 221 unsigned int dir) 222 { 223 struct request *rq = blk_mq_rq_from_pdu(req); 224 struct bio_vec *vec; 225 unsigned int size; 226 int nsegs; 227 size_t offset; 228 229 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 230 vec = &rq->special_vec; 231 nsegs = 1; 232 size = blk_rq_payload_bytes(rq); 233 offset = 0; 234 } else { 235 struct bio *bio = req->curr_bio; 236 237 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 238 nsegs = bio_segments(bio); 239 size = bio->bi_iter.bi_size; 240 offset = bio->bi_iter.bi_bvec_done; 241 } 242 243 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 244 req->iter.iov_offset = offset; 245 } 246 247 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 248 int len) 249 { 250 req->data_sent += len; 251 req->pdu_sent += len; 252 iov_iter_advance(&req->iter, len); 253 if (!iov_iter_count(&req->iter) && 254 req->data_sent < req->data_len) { 255 req->curr_bio = req->curr_bio->bi_next; 256 nvme_tcp_init_iter(req, WRITE); 257 } 258 } 259 260 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 261 { 262 struct nvme_tcp_queue *queue = req->queue; 263 264 spin_lock(&queue->lock); 265 list_add_tail(&req->entry, &queue->send_list); 266 spin_unlock(&queue->lock); 267 268 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 269 } 270 271 static inline struct nvme_tcp_request * 272 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 273 { 274 struct nvme_tcp_request *req; 275 276 spin_lock(&queue->lock); 277 req = list_first_entry_or_null(&queue->send_list, 278 struct nvme_tcp_request, entry); 279 if (req) 280 list_del(&req->entry); 281 spin_unlock(&queue->lock); 282 283 return req; 284 } 285 286 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 287 __le32 *dgst) 288 { 289 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 290 crypto_ahash_final(hash); 291 } 292 293 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 294 struct page *page, off_t off, size_t len) 295 { 296 struct scatterlist sg; 297 298 sg_init_marker(&sg, 1); 299 sg_set_page(&sg, page, len, off); 300 ahash_request_set_crypt(hash, &sg, NULL, len); 301 crypto_ahash_update(hash); 302 } 303 304 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 305 void *pdu, size_t len) 306 { 307 struct scatterlist sg; 308 309 sg_init_one(&sg, pdu, len); 310 ahash_request_set_crypt(hash, &sg, pdu + len, len); 311 crypto_ahash_digest(hash); 312 } 313 314 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 315 void *pdu, size_t pdu_len) 316 { 317 struct nvme_tcp_hdr *hdr = pdu; 318 __le32 recv_digest; 319 __le32 exp_digest; 320 321 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 322 dev_err(queue->ctrl->ctrl.device, 323 "queue %d: header digest flag is cleared\n", 324 nvme_tcp_queue_id(queue)); 325 return -EPROTO; 326 } 327 328 recv_digest = *(__le32 *)(pdu + hdr->hlen); 329 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 330 exp_digest = *(__le32 *)(pdu + hdr->hlen); 331 if (recv_digest != exp_digest) { 332 dev_err(queue->ctrl->ctrl.device, 333 "header digest error: recv %#x expected %#x\n", 334 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 335 return -EIO; 336 } 337 338 return 0; 339 } 340 341 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 342 { 343 struct nvme_tcp_hdr *hdr = pdu; 344 u8 digest_len = nvme_tcp_hdgst_len(queue); 345 u32 len; 346 347 len = le32_to_cpu(hdr->plen) - hdr->hlen - 348 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 349 350 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 351 dev_err(queue->ctrl->ctrl.device, 352 "queue %d: data digest flag is cleared\n", 353 nvme_tcp_queue_id(queue)); 354 return -EPROTO; 355 } 356 crypto_ahash_init(queue->rcv_hash); 357 358 return 0; 359 } 360 361 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 362 struct request *rq, unsigned int hctx_idx) 363 { 364 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 365 366 page_frag_free(req->pdu); 367 } 368 369 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 370 struct request *rq, unsigned int hctx_idx, 371 unsigned int numa_node) 372 { 373 struct nvme_tcp_ctrl *ctrl = set->driver_data; 374 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 375 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 376 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 377 u8 hdgst = nvme_tcp_hdgst_len(queue); 378 379 req->pdu = page_frag_alloc(&queue->pf_cache, 380 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 381 GFP_KERNEL | __GFP_ZERO); 382 if (!req->pdu) 383 return -ENOMEM; 384 385 req->queue = queue; 386 nvme_req(rq)->ctrl = &ctrl->ctrl; 387 388 return 0; 389 } 390 391 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 392 unsigned int hctx_idx) 393 { 394 struct nvme_tcp_ctrl *ctrl = data; 395 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 396 397 hctx->driver_data = queue; 398 return 0; 399 } 400 401 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 402 unsigned int hctx_idx) 403 { 404 struct nvme_tcp_ctrl *ctrl = data; 405 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 406 407 hctx->driver_data = queue; 408 return 0; 409 } 410 411 static enum nvme_tcp_recv_state 412 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 413 { 414 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 415 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 416 NVME_TCP_RECV_DATA; 417 } 418 419 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 420 { 421 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 422 nvme_tcp_hdgst_len(queue); 423 queue->pdu_offset = 0; 424 queue->data_remaining = -1; 425 queue->ddgst_remaining = 0; 426 } 427 428 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 429 { 430 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 431 return; 432 433 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 434 } 435 436 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 437 struct nvme_completion *cqe) 438 { 439 struct request *rq; 440 441 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 442 if (!rq) { 443 dev_err(queue->ctrl->ctrl.device, 444 "queue %d tag 0x%x not found\n", 445 nvme_tcp_queue_id(queue), cqe->command_id); 446 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 447 return -EINVAL; 448 } 449 450 nvme_end_request(rq, cqe->status, cqe->result); 451 queue->nr_cqe++; 452 453 return 0; 454 } 455 456 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 457 struct nvme_tcp_data_pdu *pdu) 458 { 459 struct request *rq; 460 461 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 462 if (!rq) { 463 dev_err(queue->ctrl->ctrl.device, 464 "queue %d tag %#x not found\n", 465 nvme_tcp_queue_id(queue), pdu->command_id); 466 return -ENOENT; 467 } 468 469 if (!blk_rq_payload_bytes(rq)) { 470 dev_err(queue->ctrl->ctrl.device, 471 "queue %d tag %#x unexpected data\n", 472 nvme_tcp_queue_id(queue), rq->tag); 473 return -EIO; 474 } 475 476 queue->data_remaining = le32_to_cpu(pdu->data_length); 477 478 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 479 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 480 dev_err(queue->ctrl->ctrl.device, 481 "queue %d tag %#x SUCCESS set but not last PDU\n", 482 nvme_tcp_queue_id(queue), rq->tag); 483 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 484 return -EPROTO; 485 } 486 487 return 0; 488 } 489 490 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 491 struct nvme_tcp_rsp_pdu *pdu) 492 { 493 struct nvme_completion *cqe = &pdu->cqe; 494 int ret = 0; 495 496 /* 497 * AEN requests are special as they don't time out and can 498 * survive any kind of queue freeze and often don't respond to 499 * aborts. We don't even bother to allocate a struct request 500 * for them but rather special case them here. 501 */ 502 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 503 cqe->command_id))) 504 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 505 &cqe->result); 506 else 507 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 508 509 return ret; 510 } 511 512 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 513 struct nvme_tcp_r2t_pdu *pdu) 514 { 515 struct nvme_tcp_data_pdu *data = req->pdu; 516 struct nvme_tcp_queue *queue = req->queue; 517 struct request *rq = blk_mq_rq_from_pdu(req); 518 u8 hdgst = nvme_tcp_hdgst_len(queue); 519 u8 ddgst = nvme_tcp_ddgst_len(queue); 520 521 req->pdu_len = le32_to_cpu(pdu->r2t_length); 522 req->pdu_sent = 0; 523 524 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 525 dev_err(queue->ctrl->ctrl.device, 526 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 527 rq->tag, req->pdu_len, req->data_len, 528 req->data_sent); 529 return -EPROTO; 530 } 531 532 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 533 dev_err(queue->ctrl->ctrl.device, 534 "req %d unexpected r2t offset %u (expected %zu)\n", 535 rq->tag, le32_to_cpu(pdu->r2t_offset), 536 req->data_sent); 537 return -EPROTO; 538 } 539 540 memset(data, 0, sizeof(*data)); 541 data->hdr.type = nvme_tcp_h2c_data; 542 data->hdr.flags = NVME_TCP_F_DATA_LAST; 543 if (queue->hdr_digest) 544 data->hdr.flags |= NVME_TCP_F_HDGST; 545 if (queue->data_digest) 546 data->hdr.flags |= NVME_TCP_F_DDGST; 547 data->hdr.hlen = sizeof(*data); 548 data->hdr.pdo = data->hdr.hlen + hdgst; 549 data->hdr.plen = 550 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 551 data->ttag = pdu->ttag; 552 data->command_id = rq->tag; 553 data->data_offset = cpu_to_le32(req->data_sent); 554 data->data_length = cpu_to_le32(req->pdu_len); 555 return 0; 556 } 557 558 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 559 struct nvme_tcp_r2t_pdu *pdu) 560 { 561 struct nvme_tcp_request *req; 562 struct request *rq; 563 int ret; 564 565 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 566 if (!rq) { 567 dev_err(queue->ctrl->ctrl.device, 568 "queue %d tag %#x not found\n", 569 nvme_tcp_queue_id(queue), pdu->command_id); 570 return -ENOENT; 571 } 572 req = blk_mq_rq_to_pdu(rq); 573 574 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 575 if (unlikely(ret)) 576 return ret; 577 578 req->state = NVME_TCP_SEND_H2C_PDU; 579 req->offset = 0; 580 581 nvme_tcp_queue_request(req); 582 583 return 0; 584 } 585 586 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 587 unsigned int *offset, size_t *len) 588 { 589 struct nvme_tcp_hdr *hdr; 590 char *pdu = queue->pdu; 591 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 592 int ret; 593 594 ret = skb_copy_bits(skb, *offset, 595 &pdu[queue->pdu_offset], rcv_len); 596 if (unlikely(ret)) 597 return ret; 598 599 queue->pdu_remaining -= rcv_len; 600 queue->pdu_offset += rcv_len; 601 *offset += rcv_len; 602 *len -= rcv_len; 603 if (queue->pdu_remaining) 604 return 0; 605 606 hdr = queue->pdu; 607 if (queue->hdr_digest) { 608 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 609 if (unlikely(ret)) 610 return ret; 611 } 612 613 614 if (queue->data_digest) { 615 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 616 if (unlikely(ret)) 617 return ret; 618 } 619 620 switch (hdr->type) { 621 case nvme_tcp_c2h_data: 622 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 623 case nvme_tcp_rsp: 624 nvme_tcp_init_recv_ctx(queue); 625 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 626 case nvme_tcp_r2t: 627 nvme_tcp_init_recv_ctx(queue); 628 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 629 default: 630 dev_err(queue->ctrl->ctrl.device, 631 "unsupported pdu type (%d)\n", hdr->type); 632 return -EINVAL; 633 } 634 } 635 636 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 637 { 638 union nvme_result res = {}; 639 640 nvme_end_request(rq, cpu_to_le16(status << 1), res); 641 } 642 643 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 644 unsigned int *offset, size_t *len) 645 { 646 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 647 struct nvme_tcp_request *req; 648 struct request *rq; 649 650 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 651 if (!rq) { 652 dev_err(queue->ctrl->ctrl.device, 653 "queue %d tag %#x not found\n", 654 nvme_tcp_queue_id(queue), pdu->command_id); 655 return -ENOENT; 656 } 657 req = blk_mq_rq_to_pdu(rq); 658 659 while (true) { 660 int recv_len, ret; 661 662 recv_len = min_t(size_t, *len, queue->data_remaining); 663 if (!recv_len) 664 break; 665 666 if (!iov_iter_count(&req->iter)) { 667 req->curr_bio = req->curr_bio->bi_next; 668 669 /* 670 * If we don`t have any bios it means that controller 671 * sent more data than we requested, hence error 672 */ 673 if (!req->curr_bio) { 674 dev_err(queue->ctrl->ctrl.device, 675 "queue %d no space in request %#x", 676 nvme_tcp_queue_id(queue), rq->tag); 677 nvme_tcp_init_recv_ctx(queue); 678 return -EIO; 679 } 680 nvme_tcp_init_iter(req, READ); 681 } 682 683 /* we can read only from what is left in this bio */ 684 recv_len = min_t(size_t, recv_len, 685 iov_iter_count(&req->iter)); 686 687 if (queue->data_digest) 688 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 689 &req->iter, recv_len, queue->rcv_hash); 690 else 691 ret = skb_copy_datagram_iter(skb, *offset, 692 &req->iter, recv_len); 693 if (ret) { 694 dev_err(queue->ctrl->ctrl.device, 695 "queue %d failed to copy request %#x data", 696 nvme_tcp_queue_id(queue), rq->tag); 697 return ret; 698 } 699 700 *len -= recv_len; 701 *offset += recv_len; 702 queue->data_remaining -= recv_len; 703 } 704 705 if (!queue->data_remaining) { 706 if (queue->data_digest) { 707 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 708 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 709 } else { 710 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 711 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 712 queue->nr_cqe++; 713 } 714 nvme_tcp_init_recv_ctx(queue); 715 } 716 } 717 718 return 0; 719 } 720 721 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 722 struct sk_buff *skb, unsigned int *offset, size_t *len) 723 { 724 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 725 char *ddgst = (char *)&queue->recv_ddgst; 726 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 727 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 728 int ret; 729 730 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 731 if (unlikely(ret)) 732 return ret; 733 734 queue->ddgst_remaining -= recv_len; 735 *offset += recv_len; 736 *len -= recv_len; 737 if (queue->ddgst_remaining) 738 return 0; 739 740 if (queue->recv_ddgst != queue->exp_ddgst) { 741 dev_err(queue->ctrl->ctrl.device, 742 "data digest error: recv %#x expected %#x\n", 743 le32_to_cpu(queue->recv_ddgst), 744 le32_to_cpu(queue->exp_ddgst)); 745 return -EIO; 746 } 747 748 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 749 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 750 pdu->command_id); 751 752 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 753 queue->nr_cqe++; 754 } 755 756 nvme_tcp_init_recv_ctx(queue); 757 return 0; 758 } 759 760 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 761 unsigned int offset, size_t len) 762 { 763 struct nvme_tcp_queue *queue = desc->arg.data; 764 size_t consumed = len; 765 int result; 766 767 while (len) { 768 switch (nvme_tcp_recv_state(queue)) { 769 case NVME_TCP_RECV_PDU: 770 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 771 break; 772 case NVME_TCP_RECV_DATA: 773 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 774 break; 775 case NVME_TCP_RECV_DDGST: 776 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 777 break; 778 default: 779 result = -EFAULT; 780 } 781 if (result) { 782 dev_err(queue->ctrl->ctrl.device, 783 "receive failed: %d\n", result); 784 queue->rd_enabled = false; 785 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 786 return result; 787 } 788 } 789 790 return consumed; 791 } 792 793 static void nvme_tcp_data_ready(struct sock *sk) 794 { 795 struct nvme_tcp_queue *queue; 796 797 read_lock(&sk->sk_callback_lock); 798 queue = sk->sk_user_data; 799 if (likely(queue && queue->rd_enabled)) 800 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 801 read_unlock(&sk->sk_callback_lock); 802 } 803 804 static void nvme_tcp_write_space(struct sock *sk) 805 { 806 struct nvme_tcp_queue *queue; 807 808 read_lock_bh(&sk->sk_callback_lock); 809 queue = sk->sk_user_data; 810 if (likely(queue && sk_stream_is_writeable(sk))) { 811 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 812 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 813 } 814 read_unlock_bh(&sk->sk_callback_lock); 815 } 816 817 static void nvme_tcp_state_change(struct sock *sk) 818 { 819 struct nvme_tcp_queue *queue; 820 821 read_lock(&sk->sk_callback_lock); 822 queue = sk->sk_user_data; 823 if (!queue) 824 goto done; 825 826 switch (sk->sk_state) { 827 case TCP_CLOSE: 828 case TCP_CLOSE_WAIT: 829 case TCP_LAST_ACK: 830 case TCP_FIN_WAIT1: 831 case TCP_FIN_WAIT2: 832 /* fallthrough */ 833 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 834 break; 835 default: 836 dev_info(queue->ctrl->ctrl.device, 837 "queue %d socket state %d\n", 838 nvme_tcp_queue_id(queue), sk->sk_state); 839 } 840 841 queue->state_change(sk); 842 done: 843 read_unlock(&sk->sk_callback_lock); 844 } 845 846 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 847 { 848 queue->request = NULL; 849 } 850 851 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 852 { 853 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 854 } 855 856 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 857 { 858 struct nvme_tcp_queue *queue = req->queue; 859 860 while (true) { 861 struct page *page = nvme_tcp_req_cur_page(req); 862 size_t offset = nvme_tcp_req_cur_offset(req); 863 size_t len = nvme_tcp_req_cur_length(req); 864 bool last = nvme_tcp_pdu_last_send(req, len); 865 int ret, flags = MSG_DONTWAIT; 866 867 if (last && !queue->data_digest) 868 flags |= MSG_EOR; 869 else 870 flags |= MSG_MORE; 871 872 /* can't zcopy slab pages */ 873 if (unlikely(PageSlab(page))) { 874 ret = sock_no_sendpage(queue->sock, page, offset, len, 875 flags); 876 } else { 877 ret = kernel_sendpage(queue->sock, page, offset, len, 878 flags); 879 } 880 if (ret <= 0) 881 return ret; 882 883 nvme_tcp_advance_req(req, ret); 884 if (queue->data_digest) 885 nvme_tcp_ddgst_update(queue->snd_hash, page, 886 offset, ret); 887 888 /* fully successful last write*/ 889 if (last && ret == len) { 890 if (queue->data_digest) { 891 nvme_tcp_ddgst_final(queue->snd_hash, 892 &req->ddgst); 893 req->state = NVME_TCP_SEND_DDGST; 894 req->offset = 0; 895 } else { 896 nvme_tcp_done_send_req(queue); 897 } 898 return 1; 899 } 900 } 901 return -EAGAIN; 902 } 903 904 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 905 { 906 struct nvme_tcp_queue *queue = req->queue; 907 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 908 bool inline_data = nvme_tcp_has_inline_data(req); 909 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 910 u8 hdgst = nvme_tcp_hdgst_len(queue); 911 int len = sizeof(*pdu) + hdgst - req->offset; 912 int ret; 913 914 if (queue->hdr_digest && !req->offset) 915 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 916 917 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 918 offset_in_page(pdu) + req->offset, len, flags); 919 if (unlikely(ret <= 0)) 920 return ret; 921 922 len -= ret; 923 if (!len) { 924 if (inline_data) { 925 req->state = NVME_TCP_SEND_DATA; 926 if (queue->data_digest) 927 crypto_ahash_init(queue->snd_hash); 928 nvme_tcp_init_iter(req, WRITE); 929 } else { 930 nvme_tcp_done_send_req(queue); 931 } 932 return 1; 933 } 934 req->offset += ret; 935 936 return -EAGAIN; 937 } 938 939 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 940 { 941 struct nvme_tcp_queue *queue = req->queue; 942 struct nvme_tcp_data_pdu *pdu = req->pdu; 943 u8 hdgst = nvme_tcp_hdgst_len(queue); 944 int len = sizeof(*pdu) - req->offset + hdgst; 945 int ret; 946 947 if (queue->hdr_digest && !req->offset) 948 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 949 950 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 951 offset_in_page(pdu) + req->offset, len, 952 MSG_DONTWAIT | MSG_MORE); 953 if (unlikely(ret <= 0)) 954 return ret; 955 956 len -= ret; 957 if (!len) { 958 req->state = NVME_TCP_SEND_DATA; 959 if (queue->data_digest) 960 crypto_ahash_init(queue->snd_hash); 961 if (!req->data_sent) 962 nvme_tcp_init_iter(req, WRITE); 963 return 1; 964 } 965 req->offset += ret; 966 967 return -EAGAIN; 968 } 969 970 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 971 { 972 struct nvme_tcp_queue *queue = req->queue; 973 int ret; 974 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 975 struct kvec iov = { 976 .iov_base = &req->ddgst + req->offset, 977 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 978 }; 979 980 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 981 if (unlikely(ret <= 0)) 982 return ret; 983 984 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 985 nvme_tcp_done_send_req(queue); 986 return 1; 987 } 988 989 req->offset += ret; 990 return -EAGAIN; 991 } 992 993 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 994 { 995 struct nvme_tcp_request *req; 996 int ret = 1; 997 998 if (!queue->request) { 999 queue->request = nvme_tcp_fetch_request(queue); 1000 if (!queue->request) 1001 return 0; 1002 } 1003 req = queue->request; 1004 1005 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1006 ret = nvme_tcp_try_send_cmd_pdu(req); 1007 if (ret <= 0) 1008 goto done; 1009 if (!nvme_tcp_has_inline_data(req)) 1010 return ret; 1011 } 1012 1013 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1014 ret = nvme_tcp_try_send_data_pdu(req); 1015 if (ret <= 0) 1016 goto done; 1017 } 1018 1019 if (req->state == NVME_TCP_SEND_DATA) { 1020 ret = nvme_tcp_try_send_data(req); 1021 if (ret <= 0) 1022 goto done; 1023 } 1024 1025 if (req->state == NVME_TCP_SEND_DDGST) 1026 ret = nvme_tcp_try_send_ddgst(req); 1027 done: 1028 if (ret == -EAGAIN) { 1029 ret = 0; 1030 } else if (ret < 0) { 1031 dev_err(queue->ctrl->ctrl.device, 1032 "failed to send request %d\n", ret); 1033 if (ret != -EPIPE && ret != -ECONNRESET) 1034 nvme_tcp_fail_request(queue->request); 1035 nvme_tcp_done_send_req(queue); 1036 } 1037 return ret; 1038 } 1039 1040 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1041 { 1042 struct socket *sock = queue->sock; 1043 struct sock *sk = sock->sk; 1044 read_descriptor_t rd_desc; 1045 int consumed; 1046 1047 rd_desc.arg.data = queue; 1048 rd_desc.count = 1; 1049 lock_sock(sk); 1050 queue->nr_cqe = 0; 1051 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1052 release_sock(sk); 1053 return consumed; 1054 } 1055 1056 static void nvme_tcp_io_work(struct work_struct *w) 1057 { 1058 struct nvme_tcp_queue *queue = 1059 container_of(w, struct nvme_tcp_queue, io_work); 1060 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1061 1062 do { 1063 bool pending = false; 1064 int result; 1065 1066 result = nvme_tcp_try_send(queue); 1067 if (result > 0) 1068 pending = true; 1069 else if (unlikely(result < 0)) 1070 break; 1071 1072 result = nvme_tcp_try_recv(queue); 1073 if (result > 0) 1074 pending = true; 1075 else if (unlikely(result < 0)) 1076 return; 1077 1078 if (!pending) 1079 return; 1080 1081 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1082 1083 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1084 } 1085 1086 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1087 { 1088 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1089 1090 ahash_request_free(queue->rcv_hash); 1091 ahash_request_free(queue->snd_hash); 1092 crypto_free_ahash(tfm); 1093 } 1094 1095 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1096 { 1097 struct crypto_ahash *tfm; 1098 1099 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1100 if (IS_ERR(tfm)) 1101 return PTR_ERR(tfm); 1102 1103 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1104 if (!queue->snd_hash) 1105 goto free_tfm; 1106 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1107 1108 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1109 if (!queue->rcv_hash) 1110 goto free_snd_hash; 1111 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1112 1113 return 0; 1114 free_snd_hash: 1115 ahash_request_free(queue->snd_hash); 1116 free_tfm: 1117 crypto_free_ahash(tfm); 1118 return -ENOMEM; 1119 } 1120 1121 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1122 { 1123 struct nvme_tcp_request *async = &ctrl->async_req; 1124 1125 page_frag_free(async->pdu); 1126 } 1127 1128 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1129 { 1130 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1131 struct nvme_tcp_request *async = &ctrl->async_req; 1132 u8 hdgst = nvme_tcp_hdgst_len(queue); 1133 1134 async->pdu = page_frag_alloc(&queue->pf_cache, 1135 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1136 GFP_KERNEL | __GFP_ZERO); 1137 if (!async->pdu) 1138 return -ENOMEM; 1139 1140 async->queue = &ctrl->queues[0]; 1141 return 0; 1142 } 1143 1144 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1145 { 1146 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1147 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1148 1149 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1150 return; 1151 1152 if (queue->hdr_digest || queue->data_digest) 1153 nvme_tcp_free_crypto(queue); 1154 1155 sock_release(queue->sock); 1156 kfree(queue->pdu); 1157 } 1158 1159 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1160 { 1161 struct nvme_tcp_icreq_pdu *icreq; 1162 struct nvme_tcp_icresp_pdu *icresp; 1163 struct msghdr msg = {}; 1164 struct kvec iov; 1165 bool ctrl_hdgst, ctrl_ddgst; 1166 int ret; 1167 1168 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1169 if (!icreq) 1170 return -ENOMEM; 1171 1172 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1173 if (!icresp) { 1174 ret = -ENOMEM; 1175 goto free_icreq; 1176 } 1177 1178 icreq->hdr.type = nvme_tcp_icreq; 1179 icreq->hdr.hlen = sizeof(*icreq); 1180 icreq->hdr.pdo = 0; 1181 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1182 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1183 icreq->maxr2t = 0; /* single inflight r2t supported */ 1184 icreq->hpda = 0; /* no alignment constraint */ 1185 if (queue->hdr_digest) 1186 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1187 if (queue->data_digest) 1188 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1189 1190 iov.iov_base = icreq; 1191 iov.iov_len = sizeof(*icreq); 1192 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1193 if (ret < 0) 1194 goto free_icresp; 1195 1196 memset(&msg, 0, sizeof(msg)); 1197 iov.iov_base = icresp; 1198 iov.iov_len = sizeof(*icresp); 1199 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1200 iov.iov_len, msg.msg_flags); 1201 if (ret < 0) 1202 goto free_icresp; 1203 1204 ret = -EINVAL; 1205 if (icresp->hdr.type != nvme_tcp_icresp) { 1206 pr_err("queue %d: bad type returned %d\n", 1207 nvme_tcp_queue_id(queue), icresp->hdr.type); 1208 goto free_icresp; 1209 } 1210 1211 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1212 pr_err("queue %d: bad pdu length returned %d\n", 1213 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1214 goto free_icresp; 1215 } 1216 1217 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1218 pr_err("queue %d: bad pfv returned %d\n", 1219 nvme_tcp_queue_id(queue), icresp->pfv); 1220 goto free_icresp; 1221 } 1222 1223 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1224 if ((queue->data_digest && !ctrl_ddgst) || 1225 (!queue->data_digest && ctrl_ddgst)) { 1226 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1227 nvme_tcp_queue_id(queue), 1228 queue->data_digest ? "enabled" : "disabled", 1229 ctrl_ddgst ? "enabled" : "disabled"); 1230 goto free_icresp; 1231 } 1232 1233 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1234 if ((queue->hdr_digest && !ctrl_hdgst) || 1235 (!queue->hdr_digest && ctrl_hdgst)) { 1236 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1237 nvme_tcp_queue_id(queue), 1238 queue->hdr_digest ? "enabled" : "disabled", 1239 ctrl_hdgst ? "enabled" : "disabled"); 1240 goto free_icresp; 1241 } 1242 1243 if (icresp->cpda != 0) { 1244 pr_err("queue %d: unsupported cpda returned %d\n", 1245 nvme_tcp_queue_id(queue), icresp->cpda); 1246 goto free_icresp; 1247 } 1248 1249 ret = 0; 1250 free_icresp: 1251 kfree(icresp); 1252 free_icreq: 1253 kfree(icreq); 1254 return ret; 1255 } 1256 1257 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1258 { 1259 return nvme_tcp_queue_id(queue) == 0; 1260 } 1261 1262 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1263 { 1264 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1265 int qid = nvme_tcp_queue_id(queue); 1266 1267 return !nvme_tcp_admin_queue(queue) && 1268 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1269 } 1270 1271 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1272 { 1273 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1274 int qid = nvme_tcp_queue_id(queue); 1275 1276 return !nvme_tcp_admin_queue(queue) && 1277 !nvme_tcp_default_queue(queue) && 1278 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1279 ctrl->io_queues[HCTX_TYPE_READ]; 1280 } 1281 1282 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1283 { 1284 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1285 int qid = nvme_tcp_queue_id(queue); 1286 1287 return !nvme_tcp_admin_queue(queue) && 1288 !nvme_tcp_default_queue(queue) && 1289 !nvme_tcp_read_queue(queue) && 1290 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1291 ctrl->io_queues[HCTX_TYPE_READ] + 1292 ctrl->io_queues[HCTX_TYPE_POLL]; 1293 } 1294 1295 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1296 { 1297 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1298 int qid = nvme_tcp_queue_id(queue); 1299 int n = 0; 1300 1301 if (nvme_tcp_default_queue(queue)) 1302 n = qid - 1; 1303 else if (nvme_tcp_read_queue(queue)) 1304 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1305 else if (nvme_tcp_poll_queue(queue)) 1306 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1307 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1308 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1309 } 1310 1311 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1312 int qid, size_t queue_size) 1313 { 1314 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1315 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1316 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1317 int ret, opt, rcv_pdu_size; 1318 1319 queue->ctrl = ctrl; 1320 INIT_LIST_HEAD(&queue->send_list); 1321 spin_lock_init(&queue->lock); 1322 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1323 queue->queue_size = queue_size; 1324 1325 if (qid > 0) 1326 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1327 else 1328 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1329 NVME_TCP_ADMIN_CCSZ; 1330 1331 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1332 IPPROTO_TCP, &queue->sock); 1333 if (ret) { 1334 dev_err(nctrl->device, 1335 "failed to create socket: %d\n", ret); 1336 return ret; 1337 } 1338 1339 /* Single syn retry */ 1340 opt = 1; 1341 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1342 (char *)&opt, sizeof(opt)); 1343 if (ret) { 1344 dev_err(nctrl->device, 1345 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1346 goto err_sock; 1347 } 1348 1349 /* Set TCP no delay */ 1350 opt = 1; 1351 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1352 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1353 if (ret) { 1354 dev_err(nctrl->device, 1355 "failed to set TCP_NODELAY sock opt %d\n", ret); 1356 goto err_sock; 1357 } 1358 1359 /* 1360 * Cleanup whatever is sitting in the TCP transmit queue on socket 1361 * close. This is done to prevent stale data from being sent should 1362 * the network connection be restored before TCP times out. 1363 */ 1364 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1365 (char *)&sol, sizeof(sol)); 1366 if (ret) { 1367 dev_err(nctrl->device, 1368 "failed to set SO_LINGER sock opt %d\n", ret); 1369 goto err_sock; 1370 } 1371 1372 if (so_priority > 0) { 1373 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_PRIORITY, 1374 (char *)&so_priority, sizeof(so_priority)); 1375 if (ret) { 1376 dev_err(ctrl->ctrl.device, 1377 "failed to set SO_PRIORITY sock opt, ret %d\n", 1378 ret); 1379 goto err_sock; 1380 } 1381 } 1382 1383 /* Set socket type of service */ 1384 if (nctrl->opts->tos >= 0) { 1385 opt = nctrl->opts->tos; 1386 ret = kernel_setsockopt(queue->sock, SOL_IP, IP_TOS, 1387 (char *)&opt, sizeof(opt)); 1388 if (ret) { 1389 dev_err(nctrl->device, 1390 "failed to set IP_TOS sock opt %d\n", ret); 1391 goto err_sock; 1392 } 1393 } 1394 1395 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1396 nvme_tcp_set_queue_io_cpu(queue); 1397 queue->request = NULL; 1398 queue->data_remaining = 0; 1399 queue->ddgst_remaining = 0; 1400 queue->pdu_remaining = 0; 1401 queue->pdu_offset = 0; 1402 sk_set_memalloc(queue->sock->sk); 1403 1404 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1405 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1406 sizeof(ctrl->src_addr)); 1407 if (ret) { 1408 dev_err(nctrl->device, 1409 "failed to bind queue %d socket %d\n", 1410 qid, ret); 1411 goto err_sock; 1412 } 1413 } 1414 1415 queue->hdr_digest = nctrl->opts->hdr_digest; 1416 queue->data_digest = nctrl->opts->data_digest; 1417 if (queue->hdr_digest || queue->data_digest) { 1418 ret = nvme_tcp_alloc_crypto(queue); 1419 if (ret) { 1420 dev_err(nctrl->device, 1421 "failed to allocate queue %d crypto\n", qid); 1422 goto err_sock; 1423 } 1424 } 1425 1426 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1427 nvme_tcp_hdgst_len(queue); 1428 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1429 if (!queue->pdu) { 1430 ret = -ENOMEM; 1431 goto err_crypto; 1432 } 1433 1434 dev_dbg(nctrl->device, "connecting queue %d\n", 1435 nvme_tcp_queue_id(queue)); 1436 1437 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1438 sizeof(ctrl->addr), 0); 1439 if (ret) { 1440 dev_err(nctrl->device, 1441 "failed to connect socket: %d\n", ret); 1442 goto err_rcv_pdu; 1443 } 1444 1445 ret = nvme_tcp_init_connection(queue); 1446 if (ret) 1447 goto err_init_connect; 1448 1449 queue->rd_enabled = true; 1450 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1451 nvme_tcp_init_recv_ctx(queue); 1452 1453 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1454 queue->sock->sk->sk_user_data = queue; 1455 queue->state_change = queue->sock->sk->sk_state_change; 1456 queue->data_ready = queue->sock->sk->sk_data_ready; 1457 queue->write_space = queue->sock->sk->sk_write_space; 1458 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1459 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1460 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1461 #ifdef CONFIG_NET_RX_BUSY_POLL 1462 queue->sock->sk->sk_ll_usec = 1; 1463 #endif 1464 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1465 1466 return 0; 1467 1468 err_init_connect: 1469 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1470 err_rcv_pdu: 1471 kfree(queue->pdu); 1472 err_crypto: 1473 if (queue->hdr_digest || queue->data_digest) 1474 nvme_tcp_free_crypto(queue); 1475 err_sock: 1476 sock_release(queue->sock); 1477 queue->sock = NULL; 1478 return ret; 1479 } 1480 1481 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1482 { 1483 struct socket *sock = queue->sock; 1484 1485 write_lock_bh(&sock->sk->sk_callback_lock); 1486 sock->sk->sk_user_data = NULL; 1487 sock->sk->sk_data_ready = queue->data_ready; 1488 sock->sk->sk_state_change = queue->state_change; 1489 sock->sk->sk_write_space = queue->write_space; 1490 write_unlock_bh(&sock->sk->sk_callback_lock); 1491 } 1492 1493 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1494 { 1495 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1496 nvme_tcp_restore_sock_calls(queue); 1497 cancel_work_sync(&queue->io_work); 1498 } 1499 1500 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1501 { 1502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1503 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1504 1505 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1506 return; 1507 1508 __nvme_tcp_stop_queue(queue); 1509 } 1510 1511 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1512 { 1513 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1514 int ret; 1515 1516 if (idx) 1517 ret = nvmf_connect_io_queue(nctrl, idx, false); 1518 else 1519 ret = nvmf_connect_admin_queue(nctrl); 1520 1521 if (!ret) { 1522 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1523 } else { 1524 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1525 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1526 dev_err(nctrl->device, 1527 "failed to connect queue: %d ret=%d\n", idx, ret); 1528 } 1529 return ret; 1530 } 1531 1532 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1533 bool admin) 1534 { 1535 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1536 struct blk_mq_tag_set *set; 1537 int ret; 1538 1539 if (admin) { 1540 set = &ctrl->admin_tag_set; 1541 memset(set, 0, sizeof(*set)); 1542 set->ops = &nvme_tcp_admin_mq_ops; 1543 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1544 set->reserved_tags = 2; /* connect + keep-alive */ 1545 set->numa_node = NUMA_NO_NODE; 1546 set->cmd_size = sizeof(struct nvme_tcp_request); 1547 set->driver_data = ctrl; 1548 set->nr_hw_queues = 1; 1549 set->timeout = ADMIN_TIMEOUT; 1550 } else { 1551 set = &ctrl->tag_set; 1552 memset(set, 0, sizeof(*set)); 1553 set->ops = &nvme_tcp_mq_ops; 1554 set->queue_depth = nctrl->sqsize + 1; 1555 set->reserved_tags = 1; /* fabric connect */ 1556 set->numa_node = NUMA_NO_NODE; 1557 set->flags = BLK_MQ_F_SHOULD_MERGE; 1558 set->cmd_size = sizeof(struct nvme_tcp_request); 1559 set->driver_data = ctrl; 1560 set->nr_hw_queues = nctrl->queue_count - 1; 1561 set->timeout = NVME_IO_TIMEOUT; 1562 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1563 } 1564 1565 ret = blk_mq_alloc_tag_set(set); 1566 if (ret) 1567 return ERR_PTR(ret); 1568 1569 return set; 1570 } 1571 1572 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1573 { 1574 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1575 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1576 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1577 } 1578 1579 nvme_tcp_free_queue(ctrl, 0); 1580 } 1581 1582 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1583 { 1584 int i; 1585 1586 for (i = 1; i < ctrl->queue_count; i++) 1587 nvme_tcp_free_queue(ctrl, i); 1588 } 1589 1590 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1591 { 1592 int i; 1593 1594 for (i = 1; i < ctrl->queue_count; i++) 1595 nvme_tcp_stop_queue(ctrl, i); 1596 } 1597 1598 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1599 { 1600 int i, ret = 0; 1601 1602 for (i = 1; i < ctrl->queue_count; i++) { 1603 ret = nvme_tcp_start_queue(ctrl, i); 1604 if (ret) 1605 goto out_stop_queues; 1606 } 1607 1608 return 0; 1609 1610 out_stop_queues: 1611 for (i--; i >= 1; i--) 1612 nvme_tcp_stop_queue(ctrl, i); 1613 return ret; 1614 } 1615 1616 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1617 { 1618 int ret; 1619 1620 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1621 if (ret) 1622 return ret; 1623 1624 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1625 if (ret) 1626 goto out_free_queue; 1627 1628 return 0; 1629 1630 out_free_queue: 1631 nvme_tcp_free_queue(ctrl, 0); 1632 return ret; 1633 } 1634 1635 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1636 { 1637 int i, ret; 1638 1639 for (i = 1; i < ctrl->queue_count; i++) { 1640 ret = nvme_tcp_alloc_queue(ctrl, i, 1641 ctrl->sqsize + 1); 1642 if (ret) 1643 goto out_free_queues; 1644 } 1645 1646 return 0; 1647 1648 out_free_queues: 1649 for (i--; i >= 1; i--) 1650 nvme_tcp_free_queue(ctrl, i); 1651 1652 return ret; 1653 } 1654 1655 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1656 { 1657 unsigned int nr_io_queues; 1658 1659 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1660 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1661 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1662 1663 return nr_io_queues; 1664 } 1665 1666 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1667 unsigned int nr_io_queues) 1668 { 1669 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1670 struct nvmf_ctrl_options *opts = nctrl->opts; 1671 1672 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1673 /* 1674 * separate read/write queues 1675 * hand out dedicated default queues only after we have 1676 * sufficient read queues. 1677 */ 1678 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1679 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1680 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1681 min(opts->nr_write_queues, nr_io_queues); 1682 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1683 } else { 1684 /* 1685 * shared read/write queues 1686 * either no write queues were requested, or we don't have 1687 * sufficient queue count to have dedicated default queues. 1688 */ 1689 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1690 min(opts->nr_io_queues, nr_io_queues); 1691 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1692 } 1693 1694 if (opts->nr_poll_queues && nr_io_queues) { 1695 /* map dedicated poll queues only if we have queues left */ 1696 ctrl->io_queues[HCTX_TYPE_POLL] = 1697 min(opts->nr_poll_queues, nr_io_queues); 1698 } 1699 } 1700 1701 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1702 { 1703 unsigned int nr_io_queues; 1704 int ret; 1705 1706 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1707 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1708 if (ret) 1709 return ret; 1710 1711 ctrl->queue_count = nr_io_queues + 1; 1712 if (ctrl->queue_count < 2) 1713 return 0; 1714 1715 dev_info(ctrl->device, 1716 "creating %d I/O queues.\n", nr_io_queues); 1717 1718 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1719 1720 return __nvme_tcp_alloc_io_queues(ctrl); 1721 } 1722 1723 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1724 { 1725 nvme_tcp_stop_io_queues(ctrl); 1726 if (remove) { 1727 blk_cleanup_queue(ctrl->connect_q); 1728 blk_mq_free_tag_set(ctrl->tagset); 1729 } 1730 nvme_tcp_free_io_queues(ctrl); 1731 } 1732 1733 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1734 { 1735 int ret; 1736 1737 ret = nvme_tcp_alloc_io_queues(ctrl); 1738 if (ret) 1739 return ret; 1740 1741 if (new) { 1742 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1743 if (IS_ERR(ctrl->tagset)) { 1744 ret = PTR_ERR(ctrl->tagset); 1745 goto out_free_io_queues; 1746 } 1747 1748 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1749 if (IS_ERR(ctrl->connect_q)) { 1750 ret = PTR_ERR(ctrl->connect_q); 1751 goto out_free_tag_set; 1752 } 1753 } else { 1754 blk_mq_update_nr_hw_queues(ctrl->tagset, 1755 ctrl->queue_count - 1); 1756 } 1757 1758 ret = nvme_tcp_start_io_queues(ctrl); 1759 if (ret) 1760 goto out_cleanup_connect_q; 1761 1762 return 0; 1763 1764 out_cleanup_connect_q: 1765 if (new) 1766 blk_cleanup_queue(ctrl->connect_q); 1767 out_free_tag_set: 1768 if (new) 1769 blk_mq_free_tag_set(ctrl->tagset); 1770 out_free_io_queues: 1771 nvme_tcp_free_io_queues(ctrl); 1772 return ret; 1773 } 1774 1775 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1776 { 1777 nvme_tcp_stop_queue(ctrl, 0); 1778 if (remove) { 1779 blk_cleanup_queue(ctrl->admin_q); 1780 blk_cleanup_queue(ctrl->fabrics_q); 1781 blk_mq_free_tag_set(ctrl->admin_tagset); 1782 } 1783 nvme_tcp_free_admin_queue(ctrl); 1784 } 1785 1786 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1787 { 1788 int error; 1789 1790 error = nvme_tcp_alloc_admin_queue(ctrl); 1791 if (error) 1792 return error; 1793 1794 if (new) { 1795 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1796 if (IS_ERR(ctrl->admin_tagset)) { 1797 error = PTR_ERR(ctrl->admin_tagset); 1798 goto out_free_queue; 1799 } 1800 1801 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1802 if (IS_ERR(ctrl->fabrics_q)) { 1803 error = PTR_ERR(ctrl->fabrics_q); 1804 goto out_free_tagset; 1805 } 1806 1807 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1808 if (IS_ERR(ctrl->admin_q)) { 1809 error = PTR_ERR(ctrl->admin_q); 1810 goto out_cleanup_fabrics_q; 1811 } 1812 } 1813 1814 error = nvme_tcp_start_queue(ctrl, 0); 1815 if (error) 1816 goto out_cleanup_queue; 1817 1818 error = nvme_enable_ctrl(ctrl); 1819 if (error) 1820 goto out_stop_queue; 1821 1822 blk_mq_unquiesce_queue(ctrl->admin_q); 1823 1824 error = nvme_init_identify(ctrl); 1825 if (error) 1826 goto out_stop_queue; 1827 1828 return 0; 1829 1830 out_stop_queue: 1831 nvme_tcp_stop_queue(ctrl, 0); 1832 out_cleanup_queue: 1833 if (new) 1834 blk_cleanup_queue(ctrl->admin_q); 1835 out_cleanup_fabrics_q: 1836 if (new) 1837 blk_cleanup_queue(ctrl->fabrics_q); 1838 out_free_tagset: 1839 if (new) 1840 blk_mq_free_tag_set(ctrl->admin_tagset); 1841 out_free_queue: 1842 nvme_tcp_free_admin_queue(ctrl); 1843 return error; 1844 } 1845 1846 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1847 bool remove) 1848 { 1849 blk_mq_quiesce_queue(ctrl->admin_q); 1850 nvme_tcp_stop_queue(ctrl, 0); 1851 if (ctrl->admin_tagset) { 1852 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1853 nvme_cancel_request, ctrl); 1854 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1855 } 1856 if (remove) 1857 blk_mq_unquiesce_queue(ctrl->admin_q); 1858 nvme_tcp_destroy_admin_queue(ctrl, remove); 1859 } 1860 1861 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1862 bool remove) 1863 { 1864 if (ctrl->queue_count <= 1) 1865 return; 1866 nvme_stop_queues(ctrl); 1867 nvme_tcp_stop_io_queues(ctrl); 1868 if (ctrl->tagset) { 1869 blk_mq_tagset_busy_iter(ctrl->tagset, 1870 nvme_cancel_request, ctrl); 1871 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1872 } 1873 if (remove) 1874 nvme_start_queues(ctrl); 1875 nvme_tcp_destroy_io_queues(ctrl, remove); 1876 } 1877 1878 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1879 { 1880 /* If we are resetting/deleting then do nothing */ 1881 if (ctrl->state != NVME_CTRL_CONNECTING) { 1882 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1883 ctrl->state == NVME_CTRL_LIVE); 1884 return; 1885 } 1886 1887 if (nvmf_should_reconnect(ctrl)) { 1888 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1889 ctrl->opts->reconnect_delay); 1890 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1891 ctrl->opts->reconnect_delay * HZ); 1892 } else { 1893 dev_info(ctrl->device, "Removing controller...\n"); 1894 nvme_delete_ctrl(ctrl); 1895 } 1896 } 1897 1898 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1899 { 1900 struct nvmf_ctrl_options *opts = ctrl->opts; 1901 int ret; 1902 1903 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1904 if (ret) 1905 return ret; 1906 1907 if (ctrl->icdoff) { 1908 dev_err(ctrl->device, "icdoff is not supported!\n"); 1909 goto destroy_admin; 1910 } 1911 1912 if (opts->queue_size > ctrl->sqsize + 1) 1913 dev_warn(ctrl->device, 1914 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1915 opts->queue_size, ctrl->sqsize + 1); 1916 1917 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1918 dev_warn(ctrl->device, 1919 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1920 ctrl->sqsize + 1, ctrl->maxcmd); 1921 ctrl->sqsize = ctrl->maxcmd - 1; 1922 } 1923 1924 if (ctrl->queue_count > 1) { 1925 ret = nvme_tcp_configure_io_queues(ctrl, new); 1926 if (ret) 1927 goto destroy_admin; 1928 } 1929 1930 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1931 /* 1932 * state change failure is ok if we're in DELETING state, 1933 * unless we're during creation of a new controller to 1934 * avoid races with teardown flow. 1935 */ 1936 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1937 WARN_ON_ONCE(new); 1938 ret = -EINVAL; 1939 goto destroy_io; 1940 } 1941 1942 nvme_start_ctrl(ctrl); 1943 return 0; 1944 1945 destroy_io: 1946 if (ctrl->queue_count > 1) 1947 nvme_tcp_destroy_io_queues(ctrl, new); 1948 destroy_admin: 1949 nvme_tcp_stop_queue(ctrl, 0); 1950 nvme_tcp_destroy_admin_queue(ctrl, new); 1951 return ret; 1952 } 1953 1954 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1955 { 1956 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1957 struct nvme_tcp_ctrl, connect_work); 1958 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1959 1960 ++ctrl->nr_reconnects; 1961 1962 if (nvme_tcp_setup_ctrl(ctrl, false)) 1963 goto requeue; 1964 1965 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1966 ctrl->nr_reconnects); 1967 1968 ctrl->nr_reconnects = 0; 1969 1970 return; 1971 1972 requeue: 1973 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1974 ctrl->nr_reconnects); 1975 nvme_tcp_reconnect_or_remove(ctrl); 1976 } 1977 1978 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1979 { 1980 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1981 struct nvme_tcp_ctrl, err_work); 1982 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1983 1984 nvme_stop_keep_alive(ctrl); 1985 nvme_tcp_teardown_io_queues(ctrl, false); 1986 /* unquiesce to fail fast pending requests */ 1987 nvme_start_queues(ctrl); 1988 nvme_tcp_teardown_admin_queue(ctrl, false); 1989 blk_mq_unquiesce_queue(ctrl->admin_q); 1990 1991 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1992 /* state change failure is ok if we're in DELETING state */ 1993 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1994 return; 1995 } 1996 1997 nvme_tcp_reconnect_or_remove(ctrl); 1998 } 1999 2000 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2001 { 2002 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2003 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2004 2005 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2006 blk_mq_quiesce_queue(ctrl->admin_q); 2007 if (shutdown) 2008 nvme_shutdown_ctrl(ctrl); 2009 else 2010 nvme_disable_ctrl(ctrl); 2011 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2012 } 2013 2014 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2015 { 2016 nvme_tcp_teardown_ctrl(ctrl, true); 2017 } 2018 2019 static void nvme_reset_ctrl_work(struct work_struct *work) 2020 { 2021 struct nvme_ctrl *ctrl = 2022 container_of(work, struct nvme_ctrl, reset_work); 2023 2024 nvme_stop_ctrl(ctrl); 2025 nvme_tcp_teardown_ctrl(ctrl, false); 2026 2027 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2028 /* state change failure is ok if we're in DELETING state */ 2029 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 2030 return; 2031 } 2032 2033 if (nvme_tcp_setup_ctrl(ctrl, false)) 2034 goto out_fail; 2035 2036 return; 2037 2038 out_fail: 2039 ++ctrl->nr_reconnects; 2040 nvme_tcp_reconnect_or_remove(ctrl); 2041 } 2042 2043 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2044 { 2045 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2046 2047 if (list_empty(&ctrl->list)) 2048 goto free_ctrl; 2049 2050 mutex_lock(&nvme_tcp_ctrl_mutex); 2051 list_del(&ctrl->list); 2052 mutex_unlock(&nvme_tcp_ctrl_mutex); 2053 2054 nvmf_free_options(nctrl->opts); 2055 free_ctrl: 2056 kfree(ctrl->queues); 2057 kfree(ctrl); 2058 } 2059 2060 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2061 { 2062 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2063 2064 sg->addr = 0; 2065 sg->length = 0; 2066 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2067 NVME_SGL_FMT_TRANSPORT_A; 2068 } 2069 2070 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2071 struct nvme_command *c, u32 data_len) 2072 { 2073 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2074 2075 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2076 sg->length = cpu_to_le32(data_len); 2077 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2078 } 2079 2080 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2081 u32 data_len) 2082 { 2083 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2084 2085 sg->addr = 0; 2086 sg->length = cpu_to_le32(data_len); 2087 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2088 NVME_SGL_FMT_TRANSPORT_A; 2089 } 2090 2091 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2092 { 2093 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2094 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2095 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2096 struct nvme_command *cmd = &pdu->cmd; 2097 u8 hdgst = nvme_tcp_hdgst_len(queue); 2098 2099 memset(pdu, 0, sizeof(*pdu)); 2100 pdu->hdr.type = nvme_tcp_cmd; 2101 if (queue->hdr_digest) 2102 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2103 pdu->hdr.hlen = sizeof(*pdu); 2104 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2105 2106 cmd->common.opcode = nvme_admin_async_event; 2107 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2108 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2109 nvme_tcp_set_sg_null(cmd); 2110 2111 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2112 ctrl->async_req.offset = 0; 2113 ctrl->async_req.curr_bio = NULL; 2114 ctrl->async_req.data_len = 0; 2115 2116 nvme_tcp_queue_request(&ctrl->async_req); 2117 } 2118 2119 static enum blk_eh_timer_return 2120 nvme_tcp_timeout(struct request *rq, bool reserved) 2121 { 2122 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2123 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2124 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2125 2126 /* 2127 * Restart the timer if a controller reset is already scheduled. Any 2128 * timed out commands would be handled before entering the connecting 2129 * state. 2130 */ 2131 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 2132 return BLK_EH_RESET_TIMER; 2133 2134 dev_warn(ctrl->ctrl.device, 2135 "queue %d: timeout request %#x type %d\n", 2136 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2137 2138 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2139 /* 2140 * Teardown immediately if controller times out while starting 2141 * or we are already started error recovery. all outstanding 2142 * requests are completed on shutdown, so we return BLK_EH_DONE. 2143 */ 2144 flush_work(&ctrl->err_work); 2145 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2146 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2147 return BLK_EH_DONE; 2148 } 2149 2150 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2151 nvme_tcp_error_recovery(&ctrl->ctrl); 2152 2153 return BLK_EH_RESET_TIMER; 2154 } 2155 2156 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2157 struct request *rq) 2158 { 2159 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2160 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2161 struct nvme_command *c = &pdu->cmd; 2162 2163 c->common.flags |= NVME_CMD_SGL_METABUF; 2164 2165 if (!blk_rq_nr_phys_segments(rq)) 2166 nvme_tcp_set_sg_null(c); 2167 else if (rq_data_dir(rq) == WRITE && 2168 req->data_len <= nvme_tcp_inline_data_size(queue)) 2169 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2170 else 2171 nvme_tcp_set_sg_host_data(c, req->data_len); 2172 2173 return 0; 2174 } 2175 2176 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2177 struct request *rq) 2178 { 2179 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2180 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2181 struct nvme_tcp_queue *queue = req->queue; 2182 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2183 blk_status_t ret; 2184 2185 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2186 if (ret) 2187 return ret; 2188 2189 req->state = NVME_TCP_SEND_CMD_PDU; 2190 req->offset = 0; 2191 req->data_sent = 0; 2192 req->pdu_len = 0; 2193 req->pdu_sent = 0; 2194 req->data_len = blk_rq_nr_phys_segments(rq) ? 2195 blk_rq_payload_bytes(rq) : 0; 2196 req->curr_bio = rq->bio; 2197 2198 if (rq_data_dir(rq) == WRITE && 2199 req->data_len <= nvme_tcp_inline_data_size(queue)) 2200 req->pdu_len = req->data_len; 2201 else if (req->curr_bio) 2202 nvme_tcp_init_iter(req, READ); 2203 2204 pdu->hdr.type = nvme_tcp_cmd; 2205 pdu->hdr.flags = 0; 2206 if (queue->hdr_digest) 2207 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2208 if (queue->data_digest && req->pdu_len) { 2209 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2210 ddgst = nvme_tcp_ddgst_len(queue); 2211 } 2212 pdu->hdr.hlen = sizeof(*pdu); 2213 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2214 pdu->hdr.plen = 2215 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2216 2217 ret = nvme_tcp_map_data(queue, rq); 2218 if (unlikely(ret)) { 2219 nvme_cleanup_cmd(rq); 2220 dev_err(queue->ctrl->ctrl.device, 2221 "Failed to map data (%d)\n", ret); 2222 return ret; 2223 } 2224 2225 return 0; 2226 } 2227 2228 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2229 const struct blk_mq_queue_data *bd) 2230 { 2231 struct nvme_ns *ns = hctx->queue->queuedata; 2232 struct nvme_tcp_queue *queue = hctx->driver_data; 2233 struct request *rq = bd->rq; 2234 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2235 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2236 blk_status_t ret; 2237 2238 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2239 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2240 2241 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2242 if (unlikely(ret)) 2243 return ret; 2244 2245 blk_mq_start_request(rq); 2246 2247 nvme_tcp_queue_request(req); 2248 2249 return BLK_STS_OK; 2250 } 2251 2252 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2253 { 2254 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2255 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2256 2257 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2258 /* separate read/write queues */ 2259 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2260 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2261 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2262 set->map[HCTX_TYPE_READ].nr_queues = 2263 ctrl->io_queues[HCTX_TYPE_READ]; 2264 set->map[HCTX_TYPE_READ].queue_offset = 2265 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2266 } else { 2267 /* shared read/write queues */ 2268 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2269 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2270 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2271 set->map[HCTX_TYPE_READ].nr_queues = 2272 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2273 set->map[HCTX_TYPE_READ].queue_offset = 0; 2274 } 2275 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2276 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2277 2278 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2279 /* map dedicated poll queues only if we have queues left */ 2280 set->map[HCTX_TYPE_POLL].nr_queues = 2281 ctrl->io_queues[HCTX_TYPE_POLL]; 2282 set->map[HCTX_TYPE_POLL].queue_offset = 2283 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2284 ctrl->io_queues[HCTX_TYPE_READ]; 2285 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2286 } 2287 2288 dev_info(ctrl->ctrl.device, 2289 "mapped %d/%d/%d default/read/poll queues.\n", 2290 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2291 ctrl->io_queues[HCTX_TYPE_READ], 2292 ctrl->io_queues[HCTX_TYPE_POLL]); 2293 2294 return 0; 2295 } 2296 2297 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2298 { 2299 struct nvme_tcp_queue *queue = hctx->driver_data; 2300 struct sock *sk = queue->sock->sk; 2301 2302 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2303 return 0; 2304 2305 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2306 sk_busy_loop(sk, true); 2307 nvme_tcp_try_recv(queue); 2308 return queue->nr_cqe; 2309 } 2310 2311 static struct blk_mq_ops nvme_tcp_mq_ops = { 2312 .queue_rq = nvme_tcp_queue_rq, 2313 .complete = nvme_complete_rq, 2314 .init_request = nvme_tcp_init_request, 2315 .exit_request = nvme_tcp_exit_request, 2316 .init_hctx = nvme_tcp_init_hctx, 2317 .timeout = nvme_tcp_timeout, 2318 .map_queues = nvme_tcp_map_queues, 2319 .poll = nvme_tcp_poll, 2320 }; 2321 2322 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2323 .queue_rq = nvme_tcp_queue_rq, 2324 .complete = nvme_complete_rq, 2325 .init_request = nvme_tcp_init_request, 2326 .exit_request = nvme_tcp_exit_request, 2327 .init_hctx = nvme_tcp_init_admin_hctx, 2328 .timeout = nvme_tcp_timeout, 2329 }; 2330 2331 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2332 .name = "tcp", 2333 .module = THIS_MODULE, 2334 .flags = NVME_F_FABRICS, 2335 .reg_read32 = nvmf_reg_read32, 2336 .reg_read64 = nvmf_reg_read64, 2337 .reg_write32 = nvmf_reg_write32, 2338 .free_ctrl = nvme_tcp_free_ctrl, 2339 .submit_async_event = nvme_tcp_submit_async_event, 2340 .delete_ctrl = nvme_tcp_delete_ctrl, 2341 .get_address = nvmf_get_address, 2342 }; 2343 2344 static bool 2345 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2346 { 2347 struct nvme_tcp_ctrl *ctrl; 2348 bool found = false; 2349 2350 mutex_lock(&nvme_tcp_ctrl_mutex); 2351 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2352 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2353 if (found) 2354 break; 2355 } 2356 mutex_unlock(&nvme_tcp_ctrl_mutex); 2357 2358 return found; 2359 } 2360 2361 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2362 struct nvmf_ctrl_options *opts) 2363 { 2364 struct nvme_tcp_ctrl *ctrl; 2365 int ret; 2366 2367 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2368 if (!ctrl) 2369 return ERR_PTR(-ENOMEM); 2370 2371 INIT_LIST_HEAD(&ctrl->list); 2372 ctrl->ctrl.opts = opts; 2373 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2374 opts->nr_poll_queues + 1; 2375 ctrl->ctrl.sqsize = opts->queue_size - 1; 2376 ctrl->ctrl.kato = opts->kato; 2377 2378 INIT_DELAYED_WORK(&ctrl->connect_work, 2379 nvme_tcp_reconnect_ctrl_work); 2380 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2381 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2382 2383 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2384 opts->trsvcid = 2385 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2386 if (!opts->trsvcid) { 2387 ret = -ENOMEM; 2388 goto out_free_ctrl; 2389 } 2390 opts->mask |= NVMF_OPT_TRSVCID; 2391 } 2392 2393 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2394 opts->traddr, opts->trsvcid, &ctrl->addr); 2395 if (ret) { 2396 pr_err("malformed address passed: %s:%s\n", 2397 opts->traddr, opts->trsvcid); 2398 goto out_free_ctrl; 2399 } 2400 2401 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2402 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2403 opts->host_traddr, NULL, &ctrl->src_addr); 2404 if (ret) { 2405 pr_err("malformed src address passed: %s\n", 2406 opts->host_traddr); 2407 goto out_free_ctrl; 2408 } 2409 } 2410 2411 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2412 ret = -EALREADY; 2413 goto out_free_ctrl; 2414 } 2415 2416 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2417 GFP_KERNEL); 2418 if (!ctrl->queues) { 2419 ret = -ENOMEM; 2420 goto out_free_ctrl; 2421 } 2422 2423 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2424 if (ret) 2425 goto out_kfree_queues; 2426 2427 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2428 WARN_ON_ONCE(1); 2429 ret = -EINTR; 2430 goto out_uninit_ctrl; 2431 } 2432 2433 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2434 if (ret) 2435 goto out_uninit_ctrl; 2436 2437 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2438 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2439 2440 mutex_lock(&nvme_tcp_ctrl_mutex); 2441 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2442 mutex_unlock(&nvme_tcp_ctrl_mutex); 2443 2444 return &ctrl->ctrl; 2445 2446 out_uninit_ctrl: 2447 nvme_uninit_ctrl(&ctrl->ctrl); 2448 nvme_put_ctrl(&ctrl->ctrl); 2449 if (ret > 0) 2450 ret = -EIO; 2451 return ERR_PTR(ret); 2452 out_kfree_queues: 2453 kfree(ctrl->queues); 2454 out_free_ctrl: 2455 kfree(ctrl); 2456 return ERR_PTR(ret); 2457 } 2458 2459 static struct nvmf_transport_ops nvme_tcp_transport = { 2460 .name = "tcp", 2461 .module = THIS_MODULE, 2462 .required_opts = NVMF_OPT_TRADDR, 2463 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2464 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2465 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2466 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2467 NVMF_OPT_TOS, 2468 .create_ctrl = nvme_tcp_create_ctrl, 2469 }; 2470 2471 static int __init nvme_tcp_init_module(void) 2472 { 2473 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2474 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2475 if (!nvme_tcp_wq) 2476 return -ENOMEM; 2477 2478 nvmf_register_transport(&nvme_tcp_transport); 2479 return 0; 2480 } 2481 2482 static void __exit nvme_tcp_cleanup_module(void) 2483 { 2484 struct nvme_tcp_ctrl *ctrl; 2485 2486 nvmf_unregister_transport(&nvme_tcp_transport); 2487 2488 mutex_lock(&nvme_tcp_ctrl_mutex); 2489 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2490 nvme_delete_ctrl(&ctrl->ctrl); 2491 mutex_unlock(&nvme_tcp_ctrl_mutex); 2492 flush_workqueue(nvme_delete_wq); 2493 2494 destroy_workqueue(nvme_tcp_wq); 2495 } 2496 2497 module_init(nvme_tcp_init_module); 2498 module_exit(nvme_tcp_cleanup_module); 2499 2500 MODULE_LICENSE("GPL v2"); 2501