xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 75016ca3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	__le16			status;
49 	struct list_head	entry;
50 	struct llist_node	lentry;
51 	__le32			ddgst;
52 
53 	struct bio		*curr_bio;
54 	struct iov_iter		iter;
55 
56 	/* send state */
57 	size_t			offset;
58 	size_t			data_sent;
59 	enum nvme_tcp_send_state state;
60 };
61 
62 enum nvme_tcp_queue_flags {
63 	NVME_TCP_Q_ALLOCATED	= 0,
64 	NVME_TCP_Q_LIVE		= 1,
65 	NVME_TCP_Q_POLLING	= 2,
66 };
67 
68 enum nvme_tcp_recv_state {
69 	NVME_TCP_RECV_PDU = 0,
70 	NVME_TCP_RECV_DATA,
71 	NVME_TCP_RECV_DDGST,
72 };
73 
74 struct nvme_tcp_ctrl;
75 struct nvme_tcp_queue {
76 	struct socket		*sock;
77 	struct work_struct	io_work;
78 	int			io_cpu;
79 
80 	struct mutex		queue_lock;
81 	struct mutex		send_mutex;
82 	struct llist_head	req_list;
83 	struct list_head	send_list;
84 	bool			more_requests;
85 
86 	/* recv state */
87 	void			*pdu;
88 	int			pdu_remaining;
89 	int			pdu_offset;
90 	size_t			data_remaining;
91 	size_t			ddgst_remaining;
92 	unsigned int		nr_cqe;
93 
94 	/* send state */
95 	struct nvme_tcp_request *request;
96 
97 	int			queue_size;
98 	size_t			cmnd_capsule_len;
99 	struct nvme_tcp_ctrl	*ctrl;
100 	unsigned long		flags;
101 	bool			rd_enabled;
102 
103 	bool			hdr_digest;
104 	bool			data_digest;
105 	struct ahash_request	*rcv_hash;
106 	struct ahash_request	*snd_hash;
107 	__le32			exp_ddgst;
108 	__le32			recv_ddgst;
109 
110 	struct page_frag_cache	pf_cache;
111 
112 	void (*state_change)(struct sock *);
113 	void (*data_ready)(struct sock *);
114 	void (*write_space)(struct sock *);
115 };
116 
117 struct nvme_tcp_ctrl {
118 	/* read only in the hot path */
119 	struct nvme_tcp_queue	*queues;
120 	struct blk_mq_tag_set	tag_set;
121 
122 	/* other member variables */
123 	struct list_head	list;
124 	struct blk_mq_tag_set	admin_tag_set;
125 	struct sockaddr_storage addr;
126 	struct sockaddr_storage src_addr;
127 	struct nvme_ctrl	ctrl;
128 
129 	struct work_struct	err_work;
130 	struct delayed_work	connect_work;
131 	struct nvme_tcp_request async_req;
132 	u32			io_queues[HCTX_MAX_TYPES];
133 };
134 
135 static LIST_HEAD(nvme_tcp_ctrl_list);
136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
137 static struct workqueue_struct *nvme_tcp_wq;
138 static const struct blk_mq_ops nvme_tcp_mq_ops;
139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141 
142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 {
144 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 }
146 
147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 {
149 	return queue - queue->ctrl->queues;
150 }
151 
152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 {
154 	u32 queue_idx = nvme_tcp_queue_id(queue);
155 
156 	if (queue_idx == 0)
157 		return queue->ctrl->admin_tag_set.tags[queue_idx];
158 	return queue->ctrl->tag_set.tags[queue_idx - 1];
159 }
160 
161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 {
163 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 }
165 
166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 {
168 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 }
170 
171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 {
178 	return req == &req->queue->ctrl->async_req;
179 }
180 
181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
182 {
183 	struct request *rq;
184 
185 	if (unlikely(nvme_tcp_async_req(req)))
186 		return false; /* async events don't have a request */
187 
188 	rq = blk_mq_rq_from_pdu(req);
189 
190 	return rq_data_dir(rq) == WRITE && req->data_len &&
191 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 }
193 
194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 {
196 	return req->iter.bvec->bv_page;
197 }
198 
199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 {
201 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 }
203 
204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 {
206 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
207 			req->pdu_len - req->pdu_sent);
208 }
209 
210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213 			req->pdu_len - req->pdu_sent : 0;
214 }
215 
216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217 		int len)
218 {
219 	return nvme_tcp_pdu_data_left(req) <= len;
220 }
221 
222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223 		unsigned int dir)
224 {
225 	struct request *rq = blk_mq_rq_from_pdu(req);
226 	struct bio_vec *vec;
227 	unsigned int size;
228 	int nr_bvec;
229 	size_t offset;
230 
231 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232 		vec = &rq->special_vec;
233 		nr_bvec = 1;
234 		size = blk_rq_payload_bytes(rq);
235 		offset = 0;
236 	} else {
237 		struct bio *bio = req->curr_bio;
238 		struct bvec_iter bi;
239 		struct bio_vec bv;
240 
241 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242 		nr_bvec = 0;
243 		bio_for_each_bvec(bv, bio, bi) {
244 			nr_bvec++;
245 		}
246 		size = bio->bi_iter.bi_size;
247 		offset = bio->bi_iter.bi_bvec_done;
248 	}
249 
250 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
251 	req->iter.iov_offset = offset;
252 }
253 
254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255 		int len)
256 {
257 	req->data_sent += len;
258 	req->pdu_sent += len;
259 	iov_iter_advance(&req->iter, len);
260 	if (!iov_iter_count(&req->iter) &&
261 	    req->data_sent < req->data_len) {
262 		req->curr_bio = req->curr_bio->bi_next;
263 		nvme_tcp_init_iter(req, WRITE);
264 	}
265 }
266 
267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
268 {
269 	int ret;
270 
271 	/* drain the send queue as much as we can... */
272 	do {
273 		ret = nvme_tcp_try_send(queue);
274 	} while (ret > 0);
275 }
276 
277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
278 {
279 	return !list_empty(&queue->send_list) ||
280 		!llist_empty(&queue->req_list) || queue->more_requests;
281 }
282 
283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
284 		bool sync, bool last)
285 {
286 	struct nvme_tcp_queue *queue = req->queue;
287 	bool empty;
288 
289 	empty = llist_add(&req->lentry, &queue->req_list) &&
290 		list_empty(&queue->send_list) && !queue->request;
291 
292 	/*
293 	 * if we're the first on the send_list and we can try to send
294 	 * directly, otherwise queue io_work. Also, only do that if we
295 	 * are on the same cpu, so we don't introduce contention.
296 	 */
297 	if (queue->io_cpu == raw_smp_processor_id() &&
298 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
299 		queue->more_requests = !last;
300 		nvme_tcp_send_all(queue);
301 		queue->more_requests = false;
302 		mutex_unlock(&queue->send_mutex);
303 	}
304 
305 	if (last && nvme_tcp_queue_more(queue))
306 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
307 }
308 
309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
310 {
311 	struct nvme_tcp_request *req;
312 	struct llist_node *node;
313 
314 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
315 		req = llist_entry(node, struct nvme_tcp_request, lentry);
316 		list_add(&req->entry, &queue->send_list);
317 	}
318 }
319 
320 static inline struct nvme_tcp_request *
321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
322 {
323 	struct nvme_tcp_request *req;
324 
325 	req = list_first_entry_or_null(&queue->send_list,
326 			struct nvme_tcp_request, entry);
327 	if (!req) {
328 		nvme_tcp_process_req_list(queue);
329 		req = list_first_entry_or_null(&queue->send_list,
330 				struct nvme_tcp_request, entry);
331 		if (unlikely(!req))
332 			return NULL;
333 	}
334 
335 	list_del(&req->entry);
336 	return req;
337 }
338 
339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
340 		__le32 *dgst)
341 {
342 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
343 	crypto_ahash_final(hash);
344 }
345 
346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
347 		struct page *page, off_t off, size_t len)
348 {
349 	struct scatterlist sg;
350 
351 	sg_init_marker(&sg, 1);
352 	sg_set_page(&sg, page, len, off);
353 	ahash_request_set_crypt(hash, &sg, NULL, len);
354 	crypto_ahash_update(hash);
355 }
356 
357 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
358 		void *pdu, size_t len)
359 {
360 	struct scatterlist sg;
361 
362 	sg_init_one(&sg, pdu, len);
363 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
364 	crypto_ahash_digest(hash);
365 }
366 
367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
368 		void *pdu, size_t pdu_len)
369 {
370 	struct nvme_tcp_hdr *hdr = pdu;
371 	__le32 recv_digest;
372 	__le32 exp_digest;
373 
374 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
375 		dev_err(queue->ctrl->ctrl.device,
376 			"queue %d: header digest flag is cleared\n",
377 			nvme_tcp_queue_id(queue));
378 		return -EPROTO;
379 	}
380 
381 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
382 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
383 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
384 	if (recv_digest != exp_digest) {
385 		dev_err(queue->ctrl->ctrl.device,
386 			"header digest error: recv %#x expected %#x\n",
387 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
388 		return -EIO;
389 	}
390 
391 	return 0;
392 }
393 
394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
395 {
396 	struct nvme_tcp_hdr *hdr = pdu;
397 	u8 digest_len = nvme_tcp_hdgst_len(queue);
398 	u32 len;
399 
400 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
401 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
402 
403 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
404 		dev_err(queue->ctrl->ctrl.device,
405 			"queue %d: data digest flag is cleared\n",
406 		nvme_tcp_queue_id(queue));
407 		return -EPROTO;
408 	}
409 	crypto_ahash_init(queue->rcv_hash);
410 
411 	return 0;
412 }
413 
414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
415 		struct request *rq, unsigned int hctx_idx)
416 {
417 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
418 
419 	page_frag_free(req->pdu);
420 }
421 
422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
423 		struct request *rq, unsigned int hctx_idx,
424 		unsigned int numa_node)
425 {
426 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
427 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
428 	struct nvme_tcp_cmd_pdu *pdu;
429 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
430 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
431 	u8 hdgst = nvme_tcp_hdgst_len(queue);
432 
433 	req->pdu = page_frag_alloc(&queue->pf_cache,
434 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
435 		GFP_KERNEL | __GFP_ZERO);
436 	if (!req->pdu)
437 		return -ENOMEM;
438 
439 	pdu = req->pdu;
440 	req->queue = queue;
441 	nvme_req(rq)->ctrl = &ctrl->ctrl;
442 	nvme_req(rq)->cmd = &pdu->cmd;
443 
444 	return 0;
445 }
446 
447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
448 		unsigned int hctx_idx)
449 {
450 	struct nvme_tcp_ctrl *ctrl = data;
451 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
452 
453 	hctx->driver_data = queue;
454 	return 0;
455 }
456 
457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
458 		unsigned int hctx_idx)
459 {
460 	struct nvme_tcp_ctrl *ctrl = data;
461 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
462 
463 	hctx->driver_data = queue;
464 	return 0;
465 }
466 
467 static enum nvme_tcp_recv_state
468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
469 {
470 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
471 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
472 		NVME_TCP_RECV_DATA;
473 }
474 
475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
476 {
477 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
478 				nvme_tcp_hdgst_len(queue);
479 	queue->pdu_offset = 0;
480 	queue->data_remaining = -1;
481 	queue->ddgst_remaining = 0;
482 }
483 
484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
485 {
486 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
487 		return;
488 
489 	dev_warn(ctrl->device, "starting error recovery\n");
490 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
491 }
492 
493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
494 		struct nvme_completion *cqe)
495 {
496 	struct nvme_tcp_request *req;
497 	struct request *rq;
498 
499 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
500 	if (!rq) {
501 		dev_err(queue->ctrl->ctrl.device,
502 			"got bad cqe.command_id %#x on queue %d\n",
503 			cqe->command_id, nvme_tcp_queue_id(queue));
504 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
505 		return -EINVAL;
506 	}
507 
508 	req = blk_mq_rq_to_pdu(rq);
509 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
510 		req->status = cqe->status;
511 
512 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
513 		nvme_complete_rq(rq);
514 	queue->nr_cqe++;
515 
516 	return 0;
517 }
518 
519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
520 		struct nvme_tcp_data_pdu *pdu)
521 {
522 	struct request *rq;
523 
524 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
525 	if (!rq) {
526 		dev_err(queue->ctrl->ctrl.device,
527 			"got bad c2hdata.command_id %#x on queue %d\n",
528 			pdu->command_id, nvme_tcp_queue_id(queue));
529 		return -ENOENT;
530 	}
531 
532 	if (!blk_rq_payload_bytes(rq)) {
533 		dev_err(queue->ctrl->ctrl.device,
534 			"queue %d tag %#x unexpected data\n",
535 			nvme_tcp_queue_id(queue), rq->tag);
536 		return -EIO;
537 	}
538 
539 	queue->data_remaining = le32_to_cpu(pdu->data_length);
540 
541 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
542 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
543 		dev_err(queue->ctrl->ctrl.device,
544 			"queue %d tag %#x SUCCESS set but not last PDU\n",
545 			nvme_tcp_queue_id(queue), rq->tag);
546 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
547 		return -EPROTO;
548 	}
549 
550 	return 0;
551 }
552 
553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
554 		struct nvme_tcp_rsp_pdu *pdu)
555 {
556 	struct nvme_completion *cqe = &pdu->cqe;
557 	int ret = 0;
558 
559 	/*
560 	 * AEN requests are special as they don't time out and can
561 	 * survive any kind of queue freeze and often don't respond to
562 	 * aborts.  We don't even bother to allocate a struct request
563 	 * for them but rather special case them here.
564 	 */
565 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
566 				     cqe->command_id)))
567 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
568 				&cqe->result);
569 	else
570 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
571 
572 	return ret;
573 }
574 
575 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
576 		struct nvme_tcp_r2t_pdu *pdu)
577 {
578 	struct nvme_tcp_data_pdu *data = req->pdu;
579 	struct nvme_tcp_queue *queue = req->queue;
580 	struct request *rq = blk_mq_rq_from_pdu(req);
581 	u8 hdgst = nvme_tcp_hdgst_len(queue);
582 	u8 ddgst = nvme_tcp_ddgst_len(queue);
583 
584 	req->state = NVME_TCP_SEND_H2C_PDU;
585 	req->offset = 0;
586 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
587 	req->pdu_sent = 0;
588 
589 	memset(data, 0, sizeof(*data));
590 	data->hdr.type = nvme_tcp_h2c_data;
591 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
592 	if (queue->hdr_digest)
593 		data->hdr.flags |= NVME_TCP_F_HDGST;
594 	if (queue->data_digest)
595 		data->hdr.flags |= NVME_TCP_F_DDGST;
596 	data->hdr.hlen = sizeof(*data);
597 	data->hdr.pdo = data->hdr.hlen + hdgst;
598 	data->hdr.plen =
599 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
600 	data->ttag = pdu->ttag;
601 	data->command_id = nvme_cid(rq);
602 	data->data_offset = pdu->r2t_offset;
603 	data->data_length = cpu_to_le32(req->pdu_len);
604 }
605 
606 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
607 		struct nvme_tcp_r2t_pdu *pdu)
608 {
609 	struct nvme_tcp_request *req;
610 	struct request *rq;
611 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
612 
613 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
614 	if (!rq) {
615 		dev_err(queue->ctrl->ctrl.device,
616 			"got bad r2t.command_id %#x on queue %d\n",
617 			pdu->command_id, nvme_tcp_queue_id(queue));
618 		return -ENOENT;
619 	}
620 	req = blk_mq_rq_to_pdu(rq);
621 
622 	if (unlikely(!r2t_length)) {
623 		dev_err(queue->ctrl->ctrl.device,
624 			"req %d r2t len is %u, probably a bug...\n",
625 			rq->tag, r2t_length);
626 		return -EPROTO;
627 	}
628 
629 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
630 		dev_err(queue->ctrl->ctrl.device,
631 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
632 			rq->tag, r2t_length, req->data_len, req->data_sent);
633 		return -EPROTO;
634 	}
635 
636 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
637 		dev_err(queue->ctrl->ctrl.device,
638 			"req %d unexpected r2t offset %u (expected %zu)\n",
639 			rq->tag, le32_to_cpu(pdu->r2t_offset), req->data_sent);
640 		return -EPROTO;
641 	}
642 
643 	nvme_tcp_setup_h2c_data_pdu(req, pdu);
644 	nvme_tcp_queue_request(req, false, true);
645 
646 	return 0;
647 }
648 
649 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
650 		unsigned int *offset, size_t *len)
651 {
652 	struct nvme_tcp_hdr *hdr;
653 	char *pdu = queue->pdu;
654 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
655 	int ret;
656 
657 	ret = skb_copy_bits(skb, *offset,
658 		&pdu[queue->pdu_offset], rcv_len);
659 	if (unlikely(ret))
660 		return ret;
661 
662 	queue->pdu_remaining -= rcv_len;
663 	queue->pdu_offset += rcv_len;
664 	*offset += rcv_len;
665 	*len -= rcv_len;
666 	if (queue->pdu_remaining)
667 		return 0;
668 
669 	hdr = queue->pdu;
670 	if (queue->hdr_digest) {
671 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
672 		if (unlikely(ret))
673 			return ret;
674 	}
675 
676 
677 	if (queue->data_digest) {
678 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
679 		if (unlikely(ret))
680 			return ret;
681 	}
682 
683 	switch (hdr->type) {
684 	case nvme_tcp_c2h_data:
685 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
686 	case nvme_tcp_rsp:
687 		nvme_tcp_init_recv_ctx(queue);
688 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
689 	case nvme_tcp_r2t:
690 		nvme_tcp_init_recv_ctx(queue);
691 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
692 	default:
693 		dev_err(queue->ctrl->ctrl.device,
694 			"unsupported pdu type (%d)\n", hdr->type);
695 		return -EINVAL;
696 	}
697 }
698 
699 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
700 {
701 	union nvme_result res = {};
702 
703 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
704 		nvme_complete_rq(rq);
705 }
706 
707 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
708 			      unsigned int *offset, size_t *len)
709 {
710 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
711 	struct request *rq =
712 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
713 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
714 
715 	while (true) {
716 		int recv_len, ret;
717 
718 		recv_len = min_t(size_t, *len, queue->data_remaining);
719 		if (!recv_len)
720 			break;
721 
722 		if (!iov_iter_count(&req->iter)) {
723 			req->curr_bio = req->curr_bio->bi_next;
724 
725 			/*
726 			 * If we don`t have any bios it means that controller
727 			 * sent more data than we requested, hence error
728 			 */
729 			if (!req->curr_bio) {
730 				dev_err(queue->ctrl->ctrl.device,
731 					"queue %d no space in request %#x",
732 					nvme_tcp_queue_id(queue), rq->tag);
733 				nvme_tcp_init_recv_ctx(queue);
734 				return -EIO;
735 			}
736 			nvme_tcp_init_iter(req, READ);
737 		}
738 
739 		/* we can read only from what is left in this bio */
740 		recv_len = min_t(size_t, recv_len,
741 				iov_iter_count(&req->iter));
742 
743 		if (queue->data_digest)
744 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
745 				&req->iter, recv_len, queue->rcv_hash);
746 		else
747 			ret = skb_copy_datagram_iter(skb, *offset,
748 					&req->iter, recv_len);
749 		if (ret) {
750 			dev_err(queue->ctrl->ctrl.device,
751 				"queue %d failed to copy request %#x data",
752 				nvme_tcp_queue_id(queue), rq->tag);
753 			return ret;
754 		}
755 
756 		*len -= recv_len;
757 		*offset += recv_len;
758 		queue->data_remaining -= recv_len;
759 	}
760 
761 	if (!queue->data_remaining) {
762 		if (queue->data_digest) {
763 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
764 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
765 		} else {
766 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
767 				nvme_tcp_end_request(rq,
768 						le16_to_cpu(req->status));
769 				queue->nr_cqe++;
770 			}
771 			nvme_tcp_init_recv_ctx(queue);
772 		}
773 	}
774 
775 	return 0;
776 }
777 
778 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
779 		struct sk_buff *skb, unsigned int *offset, size_t *len)
780 {
781 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
782 	char *ddgst = (char *)&queue->recv_ddgst;
783 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
784 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
785 	int ret;
786 
787 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
788 	if (unlikely(ret))
789 		return ret;
790 
791 	queue->ddgst_remaining -= recv_len;
792 	*offset += recv_len;
793 	*len -= recv_len;
794 	if (queue->ddgst_remaining)
795 		return 0;
796 
797 	if (queue->recv_ddgst != queue->exp_ddgst) {
798 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
799 					pdu->command_id);
800 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
801 
802 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
803 
804 		dev_err(queue->ctrl->ctrl.device,
805 			"data digest error: recv %#x expected %#x\n",
806 			le32_to_cpu(queue->recv_ddgst),
807 			le32_to_cpu(queue->exp_ddgst));
808 	}
809 
810 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
811 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
812 					pdu->command_id);
813 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
814 
815 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
816 		queue->nr_cqe++;
817 	}
818 
819 	nvme_tcp_init_recv_ctx(queue);
820 	return 0;
821 }
822 
823 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
824 			     unsigned int offset, size_t len)
825 {
826 	struct nvme_tcp_queue *queue = desc->arg.data;
827 	size_t consumed = len;
828 	int result;
829 
830 	while (len) {
831 		switch (nvme_tcp_recv_state(queue)) {
832 		case NVME_TCP_RECV_PDU:
833 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
834 			break;
835 		case NVME_TCP_RECV_DATA:
836 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
837 			break;
838 		case NVME_TCP_RECV_DDGST:
839 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
840 			break;
841 		default:
842 			result = -EFAULT;
843 		}
844 		if (result) {
845 			dev_err(queue->ctrl->ctrl.device,
846 				"receive failed:  %d\n", result);
847 			queue->rd_enabled = false;
848 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
849 			return result;
850 		}
851 	}
852 
853 	return consumed;
854 }
855 
856 static void nvme_tcp_data_ready(struct sock *sk)
857 {
858 	struct nvme_tcp_queue *queue;
859 
860 	read_lock_bh(&sk->sk_callback_lock);
861 	queue = sk->sk_user_data;
862 	if (likely(queue && queue->rd_enabled) &&
863 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
864 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
865 	read_unlock_bh(&sk->sk_callback_lock);
866 }
867 
868 static void nvme_tcp_write_space(struct sock *sk)
869 {
870 	struct nvme_tcp_queue *queue;
871 
872 	read_lock_bh(&sk->sk_callback_lock);
873 	queue = sk->sk_user_data;
874 	if (likely(queue && sk_stream_is_writeable(sk))) {
875 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
876 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
877 	}
878 	read_unlock_bh(&sk->sk_callback_lock);
879 }
880 
881 static void nvme_tcp_state_change(struct sock *sk)
882 {
883 	struct nvme_tcp_queue *queue;
884 
885 	read_lock_bh(&sk->sk_callback_lock);
886 	queue = sk->sk_user_data;
887 	if (!queue)
888 		goto done;
889 
890 	switch (sk->sk_state) {
891 	case TCP_CLOSE:
892 	case TCP_CLOSE_WAIT:
893 	case TCP_LAST_ACK:
894 	case TCP_FIN_WAIT1:
895 	case TCP_FIN_WAIT2:
896 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
897 		break;
898 	default:
899 		dev_info(queue->ctrl->ctrl.device,
900 			"queue %d socket state %d\n",
901 			nvme_tcp_queue_id(queue), sk->sk_state);
902 	}
903 
904 	queue->state_change(sk);
905 done:
906 	read_unlock_bh(&sk->sk_callback_lock);
907 }
908 
909 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
910 {
911 	queue->request = NULL;
912 }
913 
914 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
915 {
916 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
917 }
918 
919 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
920 {
921 	struct nvme_tcp_queue *queue = req->queue;
922 	int req_data_len = req->data_len;
923 
924 	while (true) {
925 		struct page *page = nvme_tcp_req_cur_page(req);
926 		size_t offset = nvme_tcp_req_cur_offset(req);
927 		size_t len = nvme_tcp_req_cur_length(req);
928 		bool last = nvme_tcp_pdu_last_send(req, len);
929 		int req_data_sent = req->data_sent;
930 		int ret, flags = MSG_DONTWAIT;
931 
932 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
933 			flags |= MSG_EOR;
934 		else
935 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
936 
937 		if (sendpage_ok(page)) {
938 			ret = kernel_sendpage(queue->sock, page, offset, len,
939 					flags);
940 		} else {
941 			ret = sock_no_sendpage(queue->sock, page, offset, len,
942 					flags);
943 		}
944 		if (ret <= 0)
945 			return ret;
946 
947 		if (queue->data_digest)
948 			nvme_tcp_ddgst_update(queue->snd_hash, page,
949 					offset, ret);
950 
951 		/*
952 		 * update the request iterator except for the last payload send
953 		 * in the request where we don't want to modify it as we may
954 		 * compete with the RX path completing the request.
955 		 */
956 		if (req_data_sent + ret < req_data_len)
957 			nvme_tcp_advance_req(req, ret);
958 
959 		/* fully successful last send in current PDU */
960 		if (last && ret == len) {
961 			if (queue->data_digest) {
962 				nvme_tcp_ddgst_final(queue->snd_hash,
963 					&req->ddgst);
964 				req->state = NVME_TCP_SEND_DDGST;
965 				req->offset = 0;
966 			} else {
967 				nvme_tcp_done_send_req(queue);
968 			}
969 			return 1;
970 		}
971 	}
972 	return -EAGAIN;
973 }
974 
975 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
976 {
977 	struct nvme_tcp_queue *queue = req->queue;
978 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
979 	bool inline_data = nvme_tcp_has_inline_data(req);
980 	u8 hdgst = nvme_tcp_hdgst_len(queue);
981 	int len = sizeof(*pdu) + hdgst - req->offset;
982 	int flags = MSG_DONTWAIT;
983 	int ret;
984 
985 	if (inline_data || nvme_tcp_queue_more(queue))
986 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
987 	else
988 		flags |= MSG_EOR;
989 
990 	if (queue->hdr_digest && !req->offset)
991 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
992 
993 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
994 			offset_in_page(pdu) + req->offset, len,  flags);
995 	if (unlikely(ret <= 0))
996 		return ret;
997 
998 	len -= ret;
999 	if (!len) {
1000 		if (inline_data) {
1001 			req->state = NVME_TCP_SEND_DATA;
1002 			if (queue->data_digest)
1003 				crypto_ahash_init(queue->snd_hash);
1004 		} else {
1005 			nvme_tcp_done_send_req(queue);
1006 		}
1007 		return 1;
1008 	}
1009 	req->offset += ret;
1010 
1011 	return -EAGAIN;
1012 }
1013 
1014 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1015 {
1016 	struct nvme_tcp_queue *queue = req->queue;
1017 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1018 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1019 	int len = sizeof(*pdu) - req->offset + hdgst;
1020 	int ret;
1021 
1022 	if (queue->hdr_digest && !req->offset)
1023 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1024 
1025 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1026 			offset_in_page(pdu) + req->offset, len,
1027 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1028 	if (unlikely(ret <= 0))
1029 		return ret;
1030 
1031 	len -= ret;
1032 	if (!len) {
1033 		req->state = NVME_TCP_SEND_DATA;
1034 		if (queue->data_digest)
1035 			crypto_ahash_init(queue->snd_hash);
1036 		return 1;
1037 	}
1038 	req->offset += ret;
1039 
1040 	return -EAGAIN;
1041 }
1042 
1043 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1044 {
1045 	struct nvme_tcp_queue *queue = req->queue;
1046 	size_t offset = req->offset;
1047 	int ret;
1048 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1049 	struct kvec iov = {
1050 		.iov_base = (u8 *)&req->ddgst + req->offset,
1051 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1052 	};
1053 
1054 	if (nvme_tcp_queue_more(queue))
1055 		msg.msg_flags |= MSG_MORE;
1056 	else
1057 		msg.msg_flags |= MSG_EOR;
1058 
1059 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1060 	if (unlikely(ret <= 0))
1061 		return ret;
1062 
1063 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1064 		nvme_tcp_done_send_req(queue);
1065 		return 1;
1066 	}
1067 
1068 	req->offset += ret;
1069 	return -EAGAIN;
1070 }
1071 
1072 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1073 {
1074 	struct nvme_tcp_request *req;
1075 	int ret = 1;
1076 
1077 	if (!queue->request) {
1078 		queue->request = nvme_tcp_fetch_request(queue);
1079 		if (!queue->request)
1080 			return 0;
1081 	}
1082 	req = queue->request;
1083 
1084 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1085 		ret = nvme_tcp_try_send_cmd_pdu(req);
1086 		if (ret <= 0)
1087 			goto done;
1088 		if (!nvme_tcp_has_inline_data(req))
1089 			return ret;
1090 	}
1091 
1092 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1093 		ret = nvme_tcp_try_send_data_pdu(req);
1094 		if (ret <= 0)
1095 			goto done;
1096 	}
1097 
1098 	if (req->state == NVME_TCP_SEND_DATA) {
1099 		ret = nvme_tcp_try_send_data(req);
1100 		if (ret <= 0)
1101 			goto done;
1102 	}
1103 
1104 	if (req->state == NVME_TCP_SEND_DDGST)
1105 		ret = nvme_tcp_try_send_ddgst(req);
1106 done:
1107 	if (ret == -EAGAIN) {
1108 		ret = 0;
1109 	} else if (ret < 0) {
1110 		dev_err(queue->ctrl->ctrl.device,
1111 			"failed to send request %d\n", ret);
1112 		if (ret != -EPIPE && ret != -ECONNRESET)
1113 			nvme_tcp_fail_request(queue->request);
1114 		nvme_tcp_done_send_req(queue);
1115 	}
1116 	return ret;
1117 }
1118 
1119 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1120 {
1121 	struct socket *sock = queue->sock;
1122 	struct sock *sk = sock->sk;
1123 	read_descriptor_t rd_desc;
1124 	int consumed;
1125 
1126 	rd_desc.arg.data = queue;
1127 	rd_desc.count = 1;
1128 	lock_sock(sk);
1129 	queue->nr_cqe = 0;
1130 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1131 	release_sock(sk);
1132 	return consumed;
1133 }
1134 
1135 static void nvme_tcp_io_work(struct work_struct *w)
1136 {
1137 	struct nvme_tcp_queue *queue =
1138 		container_of(w, struct nvme_tcp_queue, io_work);
1139 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1140 
1141 	do {
1142 		bool pending = false;
1143 		int result;
1144 
1145 		if (mutex_trylock(&queue->send_mutex)) {
1146 			result = nvme_tcp_try_send(queue);
1147 			mutex_unlock(&queue->send_mutex);
1148 			if (result > 0)
1149 				pending = true;
1150 			else if (unlikely(result < 0))
1151 				break;
1152 		}
1153 
1154 		result = nvme_tcp_try_recv(queue);
1155 		if (result > 0)
1156 			pending = true;
1157 		else if (unlikely(result < 0))
1158 			return;
1159 
1160 		if (!pending)
1161 			return;
1162 
1163 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1164 
1165 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1166 }
1167 
1168 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1169 {
1170 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1171 
1172 	ahash_request_free(queue->rcv_hash);
1173 	ahash_request_free(queue->snd_hash);
1174 	crypto_free_ahash(tfm);
1175 }
1176 
1177 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1178 {
1179 	struct crypto_ahash *tfm;
1180 
1181 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1182 	if (IS_ERR(tfm))
1183 		return PTR_ERR(tfm);
1184 
1185 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1186 	if (!queue->snd_hash)
1187 		goto free_tfm;
1188 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1189 
1190 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1191 	if (!queue->rcv_hash)
1192 		goto free_snd_hash;
1193 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1194 
1195 	return 0;
1196 free_snd_hash:
1197 	ahash_request_free(queue->snd_hash);
1198 free_tfm:
1199 	crypto_free_ahash(tfm);
1200 	return -ENOMEM;
1201 }
1202 
1203 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1204 {
1205 	struct nvme_tcp_request *async = &ctrl->async_req;
1206 
1207 	page_frag_free(async->pdu);
1208 }
1209 
1210 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1211 {
1212 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1213 	struct nvme_tcp_request *async = &ctrl->async_req;
1214 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1215 
1216 	async->pdu = page_frag_alloc(&queue->pf_cache,
1217 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1218 		GFP_KERNEL | __GFP_ZERO);
1219 	if (!async->pdu)
1220 		return -ENOMEM;
1221 
1222 	async->queue = &ctrl->queues[0];
1223 	return 0;
1224 }
1225 
1226 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1227 {
1228 	struct page *page;
1229 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1230 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1231 
1232 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1233 		return;
1234 
1235 	if (queue->hdr_digest || queue->data_digest)
1236 		nvme_tcp_free_crypto(queue);
1237 
1238 	if (queue->pf_cache.va) {
1239 		page = virt_to_head_page(queue->pf_cache.va);
1240 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1241 		queue->pf_cache.va = NULL;
1242 	}
1243 	sock_release(queue->sock);
1244 	kfree(queue->pdu);
1245 	mutex_destroy(&queue->send_mutex);
1246 	mutex_destroy(&queue->queue_lock);
1247 }
1248 
1249 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1250 {
1251 	struct nvme_tcp_icreq_pdu *icreq;
1252 	struct nvme_tcp_icresp_pdu *icresp;
1253 	struct msghdr msg = {};
1254 	struct kvec iov;
1255 	bool ctrl_hdgst, ctrl_ddgst;
1256 	int ret;
1257 
1258 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1259 	if (!icreq)
1260 		return -ENOMEM;
1261 
1262 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1263 	if (!icresp) {
1264 		ret = -ENOMEM;
1265 		goto free_icreq;
1266 	}
1267 
1268 	icreq->hdr.type = nvme_tcp_icreq;
1269 	icreq->hdr.hlen = sizeof(*icreq);
1270 	icreq->hdr.pdo = 0;
1271 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1272 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1273 	icreq->maxr2t = 0; /* single inflight r2t supported */
1274 	icreq->hpda = 0; /* no alignment constraint */
1275 	if (queue->hdr_digest)
1276 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1277 	if (queue->data_digest)
1278 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1279 
1280 	iov.iov_base = icreq;
1281 	iov.iov_len = sizeof(*icreq);
1282 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1283 	if (ret < 0)
1284 		goto free_icresp;
1285 
1286 	memset(&msg, 0, sizeof(msg));
1287 	iov.iov_base = icresp;
1288 	iov.iov_len = sizeof(*icresp);
1289 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1290 			iov.iov_len, msg.msg_flags);
1291 	if (ret < 0)
1292 		goto free_icresp;
1293 
1294 	ret = -EINVAL;
1295 	if (icresp->hdr.type != nvme_tcp_icresp) {
1296 		pr_err("queue %d: bad type returned %d\n",
1297 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1298 		goto free_icresp;
1299 	}
1300 
1301 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1302 		pr_err("queue %d: bad pdu length returned %d\n",
1303 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1304 		goto free_icresp;
1305 	}
1306 
1307 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1308 		pr_err("queue %d: bad pfv returned %d\n",
1309 			nvme_tcp_queue_id(queue), icresp->pfv);
1310 		goto free_icresp;
1311 	}
1312 
1313 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1314 	if ((queue->data_digest && !ctrl_ddgst) ||
1315 	    (!queue->data_digest && ctrl_ddgst)) {
1316 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1317 			nvme_tcp_queue_id(queue),
1318 			queue->data_digest ? "enabled" : "disabled",
1319 			ctrl_ddgst ? "enabled" : "disabled");
1320 		goto free_icresp;
1321 	}
1322 
1323 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1324 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1325 	    (!queue->hdr_digest && ctrl_hdgst)) {
1326 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1327 			nvme_tcp_queue_id(queue),
1328 			queue->hdr_digest ? "enabled" : "disabled",
1329 			ctrl_hdgst ? "enabled" : "disabled");
1330 		goto free_icresp;
1331 	}
1332 
1333 	if (icresp->cpda != 0) {
1334 		pr_err("queue %d: unsupported cpda returned %d\n",
1335 			nvme_tcp_queue_id(queue), icresp->cpda);
1336 		goto free_icresp;
1337 	}
1338 
1339 	ret = 0;
1340 free_icresp:
1341 	kfree(icresp);
1342 free_icreq:
1343 	kfree(icreq);
1344 	return ret;
1345 }
1346 
1347 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1348 {
1349 	return nvme_tcp_queue_id(queue) == 0;
1350 }
1351 
1352 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1353 {
1354 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1355 	int qid = nvme_tcp_queue_id(queue);
1356 
1357 	return !nvme_tcp_admin_queue(queue) &&
1358 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1359 }
1360 
1361 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1362 {
1363 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1364 	int qid = nvme_tcp_queue_id(queue);
1365 
1366 	return !nvme_tcp_admin_queue(queue) &&
1367 		!nvme_tcp_default_queue(queue) &&
1368 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1369 			  ctrl->io_queues[HCTX_TYPE_READ];
1370 }
1371 
1372 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1373 {
1374 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1375 	int qid = nvme_tcp_queue_id(queue);
1376 
1377 	return !nvme_tcp_admin_queue(queue) &&
1378 		!nvme_tcp_default_queue(queue) &&
1379 		!nvme_tcp_read_queue(queue) &&
1380 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1381 			  ctrl->io_queues[HCTX_TYPE_READ] +
1382 			  ctrl->io_queues[HCTX_TYPE_POLL];
1383 }
1384 
1385 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1386 {
1387 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1388 	int qid = nvme_tcp_queue_id(queue);
1389 	int n = 0;
1390 
1391 	if (nvme_tcp_default_queue(queue))
1392 		n = qid - 1;
1393 	else if (nvme_tcp_read_queue(queue))
1394 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1395 	else if (nvme_tcp_poll_queue(queue))
1396 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1397 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1398 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1399 }
1400 
1401 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1402 		int qid, size_t queue_size)
1403 {
1404 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1405 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1406 	int ret, rcv_pdu_size;
1407 
1408 	mutex_init(&queue->queue_lock);
1409 	queue->ctrl = ctrl;
1410 	init_llist_head(&queue->req_list);
1411 	INIT_LIST_HEAD(&queue->send_list);
1412 	mutex_init(&queue->send_mutex);
1413 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1414 	queue->queue_size = queue_size;
1415 
1416 	if (qid > 0)
1417 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1418 	else
1419 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1420 						NVME_TCP_ADMIN_CCSZ;
1421 
1422 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1423 			IPPROTO_TCP, &queue->sock);
1424 	if (ret) {
1425 		dev_err(nctrl->device,
1426 			"failed to create socket: %d\n", ret);
1427 		goto err_destroy_mutex;
1428 	}
1429 
1430 	/* Single syn retry */
1431 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1432 
1433 	/* Set TCP no delay */
1434 	tcp_sock_set_nodelay(queue->sock->sk);
1435 
1436 	/*
1437 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1438 	 * close. This is done to prevent stale data from being sent should
1439 	 * the network connection be restored before TCP times out.
1440 	 */
1441 	sock_no_linger(queue->sock->sk);
1442 
1443 	if (so_priority > 0)
1444 		sock_set_priority(queue->sock->sk, so_priority);
1445 
1446 	/* Set socket type of service */
1447 	if (nctrl->opts->tos >= 0)
1448 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1449 
1450 	/* Set 10 seconds timeout for icresp recvmsg */
1451 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1452 
1453 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1454 	nvme_tcp_set_queue_io_cpu(queue);
1455 	queue->request = NULL;
1456 	queue->data_remaining = 0;
1457 	queue->ddgst_remaining = 0;
1458 	queue->pdu_remaining = 0;
1459 	queue->pdu_offset = 0;
1460 	sk_set_memalloc(queue->sock->sk);
1461 
1462 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1463 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1464 			sizeof(ctrl->src_addr));
1465 		if (ret) {
1466 			dev_err(nctrl->device,
1467 				"failed to bind queue %d socket %d\n",
1468 				qid, ret);
1469 			goto err_sock;
1470 		}
1471 	}
1472 
1473 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1474 		char *iface = nctrl->opts->host_iface;
1475 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1476 
1477 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1478 				      optval, strlen(iface));
1479 		if (ret) {
1480 			dev_err(nctrl->device,
1481 			  "failed to bind to interface %s queue %d err %d\n",
1482 			  iface, qid, ret);
1483 			goto err_sock;
1484 		}
1485 	}
1486 
1487 	queue->hdr_digest = nctrl->opts->hdr_digest;
1488 	queue->data_digest = nctrl->opts->data_digest;
1489 	if (queue->hdr_digest || queue->data_digest) {
1490 		ret = nvme_tcp_alloc_crypto(queue);
1491 		if (ret) {
1492 			dev_err(nctrl->device,
1493 				"failed to allocate queue %d crypto\n", qid);
1494 			goto err_sock;
1495 		}
1496 	}
1497 
1498 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1499 			nvme_tcp_hdgst_len(queue);
1500 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1501 	if (!queue->pdu) {
1502 		ret = -ENOMEM;
1503 		goto err_crypto;
1504 	}
1505 
1506 	dev_dbg(nctrl->device, "connecting queue %d\n",
1507 			nvme_tcp_queue_id(queue));
1508 
1509 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1510 		sizeof(ctrl->addr), 0);
1511 	if (ret) {
1512 		dev_err(nctrl->device,
1513 			"failed to connect socket: %d\n", ret);
1514 		goto err_rcv_pdu;
1515 	}
1516 
1517 	ret = nvme_tcp_init_connection(queue);
1518 	if (ret)
1519 		goto err_init_connect;
1520 
1521 	queue->rd_enabled = true;
1522 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1523 	nvme_tcp_init_recv_ctx(queue);
1524 
1525 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1526 	queue->sock->sk->sk_user_data = queue;
1527 	queue->state_change = queue->sock->sk->sk_state_change;
1528 	queue->data_ready = queue->sock->sk->sk_data_ready;
1529 	queue->write_space = queue->sock->sk->sk_write_space;
1530 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1531 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1532 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1533 #ifdef CONFIG_NET_RX_BUSY_POLL
1534 	queue->sock->sk->sk_ll_usec = 1;
1535 #endif
1536 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1537 
1538 	return 0;
1539 
1540 err_init_connect:
1541 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1542 err_rcv_pdu:
1543 	kfree(queue->pdu);
1544 err_crypto:
1545 	if (queue->hdr_digest || queue->data_digest)
1546 		nvme_tcp_free_crypto(queue);
1547 err_sock:
1548 	sock_release(queue->sock);
1549 	queue->sock = NULL;
1550 err_destroy_mutex:
1551 	mutex_destroy(&queue->send_mutex);
1552 	mutex_destroy(&queue->queue_lock);
1553 	return ret;
1554 }
1555 
1556 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1557 {
1558 	struct socket *sock = queue->sock;
1559 
1560 	write_lock_bh(&sock->sk->sk_callback_lock);
1561 	sock->sk->sk_user_data  = NULL;
1562 	sock->sk->sk_data_ready = queue->data_ready;
1563 	sock->sk->sk_state_change = queue->state_change;
1564 	sock->sk->sk_write_space  = queue->write_space;
1565 	write_unlock_bh(&sock->sk->sk_callback_lock);
1566 }
1567 
1568 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1569 {
1570 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1571 	nvme_tcp_restore_sock_calls(queue);
1572 	cancel_work_sync(&queue->io_work);
1573 }
1574 
1575 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1576 {
1577 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1578 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1579 
1580 	mutex_lock(&queue->queue_lock);
1581 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1582 		__nvme_tcp_stop_queue(queue);
1583 	mutex_unlock(&queue->queue_lock);
1584 }
1585 
1586 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1587 {
1588 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1589 	int ret;
1590 
1591 	if (idx)
1592 		ret = nvmf_connect_io_queue(nctrl, idx);
1593 	else
1594 		ret = nvmf_connect_admin_queue(nctrl);
1595 
1596 	if (!ret) {
1597 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1598 	} else {
1599 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1600 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1601 		dev_err(nctrl->device,
1602 			"failed to connect queue: %d ret=%d\n", idx, ret);
1603 	}
1604 	return ret;
1605 }
1606 
1607 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1608 		bool admin)
1609 {
1610 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1611 	struct blk_mq_tag_set *set;
1612 	int ret;
1613 
1614 	if (admin) {
1615 		set = &ctrl->admin_tag_set;
1616 		memset(set, 0, sizeof(*set));
1617 		set->ops = &nvme_tcp_admin_mq_ops;
1618 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1619 		set->reserved_tags = NVMF_RESERVED_TAGS;
1620 		set->numa_node = nctrl->numa_node;
1621 		set->flags = BLK_MQ_F_BLOCKING;
1622 		set->cmd_size = sizeof(struct nvme_tcp_request);
1623 		set->driver_data = ctrl;
1624 		set->nr_hw_queues = 1;
1625 		set->timeout = NVME_ADMIN_TIMEOUT;
1626 	} else {
1627 		set = &ctrl->tag_set;
1628 		memset(set, 0, sizeof(*set));
1629 		set->ops = &nvme_tcp_mq_ops;
1630 		set->queue_depth = nctrl->sqsize + 1;
1631 		set->reserved_tags = NVMF_RESERVED_TAGS;
1632 		set->numa_node = nctrl->numa_node;
1633 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1634 		set->cmd_size = sizeof(struct nvme_tcp_request);
1635 		set->driver_data = ctrl;
1636 		set->nr_hw_queues = nctrl->queue_count - 1;
1637 		set->timeout = NVME_IO_TIMEOUT;
1638 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1639 	}
1640 
1641 	ret = blk_mq_alloc_tag_set(set);
1642 	if (ret)
1643 		return ERR_PTR(ret);
1644 
1645 	return set;
1646 }
1647 
1648 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1649 {
1650 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1651 		cancel_work_sync(&ctrl->async_event_work);
1652 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1653 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1654 	}
1655 
1656 	nvme_tcp_free_queue(ctrl, 0);
1657 }
1658 
1659 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1660 {
1661 	int i;
1662 
1663 	for (i = 1; i < ctrl->queue_count; i++)
1664 		nvme_tcp_free_queue(ctrl, i);
1665 }
1666 
1667 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1668 {
1669 	int i;
1670 
1671 	for (i = 1; i < ctrl->queue_count; i++)
1672 		nvme_tcp_stop_queue(ctrl, i);
1673 }
1674 
1675 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1676 {
1677 	int i, ret = 0;
1678 
1679 	for (i = 1; i < ctrl->queue_count; i++) {
1680 		ret = nvme_tcp_start_queue(ctrl, i);
1681 		if (ret)
1682 			goto out_stop_queues;
1683 	}
1684 
1685 	return 0;
1686 
1687 out_stop_queues:
1688 	for (i--; i >= 1; i--)
1689 		nvme_tcp_stop_queue(ctrl, i);
1690 	return ret;
1691 }
1692 
1693 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1694 {
1695 	int ret;
1696 
1697 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1698 	if (ret)
1699 		return ret;
1700 
1701 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1702 	if (ret)
1703 		goto out_free_queue;
1704 
1705 	return 0;
1706 
1707 out_free_queue:
1708 	nvme_tcp_free_queue(ctrl, 0);
1709 	return ret;
1710 }
1711 
1712 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1713 {
1714 	int i, ret;
1715 
1716 	for (i = 1; i < ctrl->queue_count; i++) {
1717 		ret = nvme_tcp_alloc_queue(ctrl, i,
1718 				ctrl->sqsize + 1);
1719 		if (ret)
1720 			goto out_free_queues;
1721 	}
1722 
1723 	return 0;
1724 
1725 out_free_queues:
1726 	for (i--; i >= 1; i--)
1727 		nvme_tcp_free_queue(ctrl, i);
1728 
1729 	return ret;
1730 }
1731 
1732 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1733 {
1734 	unsigned int nr_io_queues;
1735 
1736 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1737 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1738 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1739 
1740 	return nr_io_queues;
1741 }
1742 
1743 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1744 		unsigned int nr_io_queues)
1745 {
1746 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1747 	struct nvmf_ctrl_options *opts = nctrl->opts;
1748 
1749 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1750 		/*
1751 		 * separate read/write queues
1752 		 * hand out dedicated default queues only after we have
1753 		 * sufficient read queues.
1754 		 */
1755 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1756 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1757 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1758 			min(opts->nr_write_queues, nr_io_queues);
1759 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1760 	} else {
1761 		/*
1762 		 * shared read/write queues
1763 		 * either no write queues were requested, or we don't have
1764 		 * sufficient queue count to have dedicated default queues.
1765 		 */
1766 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1767 			min(opts->nr_io_queues, nr_io_queues);
1768 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1769 	}
1770 
1771 	if (opts->nr_poll_queues && nr_io_queues) {
1772 		/* map dedicated poll queues only if we have queues left */
1773 		ctrl->io_queues[HCTX_TYPE_POLL] =
1774 			min(opts->nr_poll_queues, nr_io_queues);
1775 	}
1776 }
1777 
1778 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1779 {
1780 	unsigned int nr_io_queues;
1781 	int ret;
1782 
1783 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1784 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1785 	if (ret)
1786 		return ret;
1787 
1788 	if (nr_io_queues == 0) {
1789 		dev_err(ctrl->device,
1790 			"unable to set any I/O queues\n");
1791 		return -ENOMEM;
1792 	}
1793 
1794 	ctrl->queue_count = nr_io_queues + 1;
1795 	dev_info(ctrl->device,
1796 		"creating %d I/O queues.\n", nr_io_queues);
1797 
1798 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1799 
1800 	return __nvme_tcp_alloc_io_queues(ctrl);
1801 }
1802 
1803 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1804 {
1805 	nvme_tcp_stop_io_queues(ctrl);
1806 	if (remove) {
1807 		blk_cleanup_queue(ctrl->connect_q);
1808 		blk_mq_free_tag_set(ctrl->tagset);
1809 	}
1810 	nvme_tcp_free_io_queues(ctrl);
1811 }
1812 
1813 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1814 {
1815 	int ret;
1816 
1817 	ret = nvme_tcp_alloc_io_queues(ctrl);
1818 	if (ret)
1819 		return ret;
1820 
1821 	if (new) {
1822 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1823 		if (IS_ERR(ctrl->tagset)) {
1824 			ret = PTR_ERR(ctrl->tagset);
1825 			goto out_free_io_queues;
1826 		}
1827 
1828 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1829 		if (IS_ERR(ctrl->connect_q)) {
1830 			ret = PTR_ERR(ctrl->connect_q);
1831 			goto out_free_tag_set;
1832 		}
1833 	}
1834 
1835 	ret = nvme_tcp_start_io_queues(ctrl);
1836 	if (ret)
1837 		goto out_cleanup_connect_q;
1838 
1839 	if (!new) {
1840 		nvme_start_queues(ctrl);
1841 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1842 			/*
1843 			 * If we timed out waiting for freeze we are likely to
1844 			 * be stuck.  Fail the controller initialization just
1845 			 * to be safe.
1846 			 */
1847 			ret = -ENODEV;
1848 			goto out_wait_freeze_timed_out;
1849 		}
1850 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1851 			ctrl->queue_count - 1);
1852 		nvme_unfreeze(ctrl);
1853 	}
1854 
1855 	return 0;
1856 
1857 out_wait_freeze_timed_out:
1858 	nvme_stop_queues(ctrl);
1859 	nvme_sync_io_queues(ctrl);
1860 	nvme_tcp_stop_io_queues(ctrl);
1861 out_cleanup_connect_q:
1862 	nvme_cancel_tagset(ctrl);
1863 	if (new)
1864 		blk_cleanup_queue(ctrl->connect_q);
1865 out_free_tag_set:
1866 	if (new)
1867 		blk_mq_free_tag_set(ctrl->tagset);
1868 out_free_io_queues:
1869 	nvme_tcp_free_io_queues(ctrl);
1870 	return ret;
1871 }
1872 
1873 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1874 {
1875 	nvme_tcp_stop_queue(ctrl, 0);
1876 	if (remove) {
1877 		blk_cleanup_queue(ctrl->admin_q);
1878 		blk_cleanup_queue(ctrl->fabrics_q);
1879 		blk_mq_free_tag_set(ctrl->admin_tagset);
1880 	}
1881 	nvme_tcp_free_admin_queue(ctrl);
1882 }
1883 
1884 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1885 {
1886 	int error;
1887 
1888 	error = nvme_tcp_alloc_admin_queue(ctrl);
1889 	if (error)
1890 		return error;
1891 
1892 	if (new) {
1893 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1894 		if (IS_ERR(ctrl->admin_tagset)) {
1895 			error = PTR_ERR(ctrl->admin_tagset);
1896 			goto out_free_queue;
1897 		}
1898 
1899 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1900 		if (IS_ERR(ctrl->fabrics_q)) {
1901 			error = PTR_ERR(ctrl->fabrics_q);
1902 			goto out_free_tagset;
1903 		}
1904 
1905 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1906 		if (IS_ERR(ctrl->admin_q)) {
1907 			error = PTR_ERR(ctrl->admin_q);
1908 			goto out_cleanup_fabrics_q;
1909 		}
1910 	}
1911 
1912 	error = nvme_tcp_start_queue(ctrl, 0);
1913 	if (error)
1914 		goto out_cleanup_queue;
1915 
1916 	error = nvme_enable_ctrl(ctrl);
1917 	if (error)
1918 		goto out_stop_queue;
1919 
1920 	nvme_start_admin_queue(ctrl);
1921 
1922 	error = nvme_init_ctrl_finish(ctrl);
1923 	if (error)
1924 		goto out_quiesce_queue;
1925 
1926 	return 0;
1927 
1928 out_quiesce_queue:
1929 	nvme_stop_admin_queue(ctrl);
1930 	blk_sync_queue(ctrl->admin_q);
1931 out_stop_queue:
1932 	nvme_tcp_stop_queue(ctrl, 0);
1933 	nvme_cancel_admin_tagset(ctrl);
1934 out_cleanup_queue:
1935 	if (new)
1936 		blk_cleanup_queue(ctrl->admin_q);
1937 out_cleanup_fabrics_q:
1938 	if (new)
1939 		blk_cleanup_queue(ctrl->fabrics_q);
1940 out_free_tagset:
1941 	if (new)
1942 		blk_mq_free_tag_set(ctrl->admin_tagset);
1943 out_free_queue:
1944 	nvme_tcp_free_admin_queue(ctrl);
1945 	return error;
1946 }
1947 
1948 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1949 		bool remove)
1950 {
1951 	nvme_stop_admin_queue(ctrl);
1952 	blk_sync_queue(ctrl->admin_q);
1953 	nvme_tcp_stop_queue(ctrl, 0);
1954 	nvme_cancel_admin_tagset(ctrl);
1955 	if (remove)
1956 		nvme_start_admin_queue(ctrl);
1957 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1958 }
1959 
1960 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1961 		bool remove)
1962 {
1963 	if (ctrl->queue_count <= 1)
1964 		return;
1965 	nvme_stop_admin_queue(ctrl);
1966 	nvme_start_freeze(ctrl);
1967 	nvme_stop_queues(ctrl);
1968 	nvme_sync_io_queues(ctrl);
1969 	nvme_tcp_stop_io_queues(ctrl);
1970 	nvme_cancel_tagset(ctrl);
1971 	if (remove)
1972 		nvme_start_queues(ctrl);
1973 	nvme_tcp_destroy_io_queues(ctrl, remove);
1974 }
1975 
1976 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1977 {
1978 	/* If we are resetting/deleting then do nothing */
1979 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1980 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1981 			ctrl->state == NVME_CTRL_LIVE);
1982 		return;
1983 	}
1984 
1985 	if (nvmf_should_reconnect(ctrl)) {
1986 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1987 			ctrl->opts->reconnect_delay);
1988 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1989 				ctrl->opts->reconnect_delay * HZ);
1990 	} else {
1991 		dev_info(ctrl->device, "Removing controller...\n");
1992 		nvme_delete_ctrl(ctrl);
1993 	}
1994 }
1995 
1996 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1997 {
1998 	struct nvmf_ctrl_options *opts = ctrl->opts;
1999 	int ret;
2000 
2001 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2002 	if (ret)
2003 		return ret;
2004 
2005 	if (ctrl->icdoff) {
2006 		ret = -EOPNOTSUPP;
2007 		dev_err(ctrl->device, "icdoff is not supported!\n");
2008 		goto destroy_admin;
2009 	}
2010 
2011 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2012 		ret = -EOPNOTSUPP;
2013 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2014 		goto destroy_admin;
2015 	}
2016 
2017 	if (opts->queue_size > ctrl->sqsize + 1)
2018 		dev_warn(ctrl->device,
2019 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2020 			opts->queue_size, ctrl->sqsize + 1);
2021 
2022 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2023 		dev_warn(ctrl->device,
2024 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2025 			ctrl->sqsize + 1, ctrl->maxcmd);
2026 		ctrl->sqsize = ctrl->maxcmd - 1;
2027 	}
2028 
2029 	if (ctrl->queue_count > 1) {
2030 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2031 		if (ret)
2032 			goto destroy_admin;
2033 	}
2034 
2035 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2036 		/*
2037 		 * state change failure is ok if we started ctrl delete,
2038 		 * unless we're during creation of a new controller to
2039 		 * avoid races with teardown flow.
2040 		 */
2041 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2042 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2043 		WARN_ON_ONCE(new);
2044 		ret = -EINVAL;
2045 		goto destroy_io;
2046 	}
2047 
2048 	nvme_start_ctrl(ctrl);
2049 	return 0;
2050 
2051 destroy_io:
2052 	if (ctrl->queue_count > 1) {
2053 		nvme_stop_queues(ctrl);
2054 		nvme_sync_io_queues(ctrl);
2055 		nvme_tcp_stop_io_queues(ctrl);
2056 		nvme_cancel_tagset(ctrl);
2057 		nvme_tcp_destroy_io_queues(ctrl, new);
2058 	}
2059 destroy_admin:
2060 	nvme_stop_admin_queue(ctrl);
2061 	blk_sync_queue(ctrl->admin_q);
2062 	nvme_tcp_stop_queue(ctrl, 0);
2063 	nvme_cancel_admin_tagset(ctrl);
2064 	nvme_tcp_destroy_admin_queue(ctrl, new);
2065 	return ret;
2066 }
2067 
2068 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2069 {
2070 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2071 			struct nvme_tcp_ctrl, connect_work);
2072 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2073 
2074 	++ctrl->nr_reconnects;
2075 
2076 	if (nvme_tcp_setup_ctrl(ctrl, false))
2077 		goto requeue;
2078 
2079 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2080 			ctrl->nr_reconnects);
2081 
2082 	ctrl->nr_reconnects = 0;
2083 
2084 	return;
2085 
2086 requeue:
2087 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2088 			ctrl->nr_reconnects);
2089 	nvme_tcp_reconnect_or_remove(ctrl);
2090 }
2091 
2092 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2093 {
2094 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2095 				struct nvme_tcp_ctrl, err_work);
2096 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2097 
2098 	nvme_stop_keep_alive(ctrl);
2099 	nvme_tcp_teardown_io_queues(ctrl, false);
2100 	/* unquiesce to fail fast pending requests */
2101 	nvme_start_queues(ctrl);
2102 	nvme_tcp_teardown_admin_queue(ctrl, false);
2103 	nvme_start_admin_queue(ctrl);
2104 
2105 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2106 		/* state change failure is ok if we started ctrl delete */
2107 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2108 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2109 		return;
2110 	}
2111 
2112 	nvme_tcp_reconnect_or_remove(ctrl);
2113 }
2114 
2115 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2116 {
2117 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2118 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2119 
2120 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2121 	nvme_stop_admin_queue(ctrl);
2122 	if (shutdown)
2123 		nvme_shutdown_ctrl(ctrl);
2124 	else
2125 		nvme_disable_ctrl(ctrl);
2126 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2127 }
2128 
2129 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2130 {
2131 	nvme_tcp_teardown_ctrl(ctrl, true);
2132 }
2133 
2134 static void nvme_reset_ctrl_work(struct work_struct *work)
2135 {
2136 	struct nvme_ctrl *ctrl =
2137 		container_of(work, struct nvme_ctrl, reset_work);
2138 
2139 	nvme_stop_ctrl(ctrl);
2140 	nvme_tcp_teardown_ctrl(ctrl, false);
2141 
2142 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2143 		/* state change failure is ok if we started ctrl delete */
2144 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2145 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2146 		return;
2147 	}
2148 
2149 	if (nvme_tcp_setup_ctrl(ctrl, false))
2150 		goto out_fail;
2151 
2152 	return;
2153 
2154 out_fail:
2155 	++ctrl->nr_reconnects;
2156 	nvme_tcp_reconnect_or_remove(ctrl);
2157 }
2158 
2159 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2160 {
2161 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2162 
2163 	if (list_empty(&ctrl->list))
2164 		goto free_ctrl;
2165 
2166 	mutex_lock(&nvme_tcp_ctrl_mutex);
2167 	list_del(&ctrl->list);
2168 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2169 
2170 	nvmf_free_options(nctrl->opts);
2171 free_ctrl:
2172 	kfree(ctrl->queues);
2173 	kfree(ctrl);
2174 }
2175 
2176 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2177 {
2178 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2179 
2180 	sg->addr = 0;
2181 	sg->length = 0;
2182 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2183 			NVME_SGL_FMT_TRANSPORT_A;
2184 }
2185 
2186 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2187 		struct nvme_command *c, u32 data_len)
2188 {
2189 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2190 
2191 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2192 	sg->length = cpu_to_le32(data_len);
2193 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2194 }
2195 
2196 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2197 		u32 data_len)
2198 {
2199 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2200 
2201 	sg->addr = 0;
2202 	sg->length = cpu_to_le32(data_len);
2203 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2204 			NVME_SGL_FMT_TRANSPORT_A;
2205 }
2206 
2207 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2208 {
2209 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2210 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2211 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2212 	struct nvme_command *cmd = &pdu->cmd;
2213 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2214 
2215 	memset(pdu, 0, sizeof(*pdu));
2216 	pdu->hdr.type = nvme_tcp_cmd;
2217 	if (queue->hdr_digest)
2218 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2219 	pdu->hdr.hlen = sizeof(*pdu);
2220 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2221 
2222 	cmd->common.opcode = nvme_admin_async_event;
2223 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2224 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2225 	nvme_tcp_set_sg_null(cmd);
2226 
2227 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2228 	ctrl->async_req.offset = 0;
2229 	ctrl->async_req.curr_bio = NULL;
2230 	ctrl->async_req.data_len = 0;
2231 
2232 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2233 }
2234 
2235 static void nvme_tcp_complete_timed_out(struct request *rq)
2236 {
2237 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2238 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2239 
2240 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2241 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2242 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2243 		blk_mq_complete_request(rq);
2244 	}
2245 }
2246 
2247 static enum blk_eh_timer_return
2248 nvme_tcp_timeout(struct request *rq, bool reserved)
2249 {
2250 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2251 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2252 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2253 
2254 	dev_warn(ctrl->device,
2255 		"queue %d: timeout request %#x type %d\n",
2256 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2257 
2258 	if (ctrl->state != NVME_CTRL_LIVE) {
2259 		/*
2260 		 * If we are resetting, connecting or deleting we should
2261 		 * complete immediately because we may block controller
2262 		 * teardown or setup sequence
2263 		 * - ctrl disable/shutdown fabrics requests
2264 		 * - connect requests
2265 		 * - initialization admin requests
2266 		 * - I/O requests that entered after unquiescing and
2267 		 *   the controller stopped responding
2268 		 *
2269 		 * All other requests should be cancelled by the error
2270 		 * recovery work, so it's fine that we fail it here.
2271 		 */
2272 		nvme_tcp_complete_timed_out(rq);
2273 		return BLK_EH_DONE;
2274 	}
2275 
2276 	/*
2277 	 * LIVE state should trigger the normal error recovery which will
2278 	 * handle completing this request.
2279 	 */
2280 	nvme_tcp_error_recovery(ctrl);
2281 	return BLK_EH_RESET_TIMER;
2282 }
2283 
2284 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2285 			struct request *rq)
2286 {
2287 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2288 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2289 	struct nvme_command *c = &pdu->cmd;
2290 
2291 	c->common.flags |= NVME_CMD_SGL_METABUF;
2292 
2293 	if (!blk_rq_nr_phys_segments(rq))
2294 		nvme_tcp_set_sg_null(c);
2295 	else if (rq_data_dir(rq) == WRITE &&
2296 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2297 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2298 	else
2299 		nvme_tcp_set_sg_host_data(c, req->data_len);
2300 
2301 	return 0;
2302 }
2303 
2304 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2305 		struct request *rq)
2306 {
2307 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2308 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2309 	struct nvme_tcp_queue *queue = req->queue;
2310 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2311 	blk_status_t ret;
2312 
2313 	ret = nvme_setup_cmd(ns, rq);
2314 	if (ret)
2315 		return ret;
2316 
2317 	req->state = NVME_TCP_SEND_CMD_PDU;
2318 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2319 	req->offset = 0;
2320 	req->data_sent = 0;
2321 	req->pdu_len = 0;
2322 	req->pdu_sent = 0;
2323 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2324 				blk_rq_payload_bytes(rq) : 0;
2325 	req->curr_bio = rq->bio;
2326 	if (req->curr_bio && req->data_len)
2327 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2328 
2329 	if (rq_data_dir(rq) == WRITE &&
2330 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2331 		req->pdu_len = req->data_len;
2332 
2333 	pdu->hdr.type = nvme_tcp_cmd;
2334 	pdu->hdr.flags = 0;
2335 	if (queue->hdr_digest)
2336 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2337 	if (queue->data_digest && req->pdu_len) {
2338 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2339 		ddgst = nvme_tcp_ddgst_len(queue);
2340 	}
2341 	pdu->hdr.hlen = sizeof(*pdu);
2342 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2343 	pdu->hdr.plen =
2344 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2345 
2346 	ret = nvme_tcp_map_data(queue, rq);
2347 	if (unlikely(ret)) {
2348 		nvme_cleanup_cmd(rq);
2349 		dev_err(queue->ctrl->ctrl.device,
2350 			"Failed to map data (%d)\n", ret);
2351 		return ret;
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2358 {
2359 	struct nvme_tcp_queue *queue = hctx->driver_data;
2360 
2361 	if (!llist_empty(&queue->req_list))
2362 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2363 }
2364 
2365 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2366 		const struct blk_mq_queue_data *bd)
2367 {
2368 	struct nvme_ns *ns = hctx->queue->queuedata;
2369 	struct nvme_tcp_queue *queue = hctx->driver_data;
2370 	struct request *rq = bd->rq;
2371 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2372 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2373 	blk_status_t ret;
2374 
2375 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2376 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2377 
2378 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2379 	if (unlikely(ret))
2380 		return ret;
2381 
2382 	blk_mq_start_request(rq);
2383 
2384 	nvme_tcp_queue_request(req, true, bd->last);
2385 
2386 	return BLK_STS_OK;
2387 }
2388 
2389 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2390 {
2391 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2392 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2393 
2394 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2395 		/* separate read/write queues */
2396 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2397 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2398 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2399 		set->map[HCTX_TYPE_READ].nr_queues =
2400 			ctrl->io_queues[HCTX_TYPE_READ];
2401 		set->map[HCTX_TYPE_READ].queue_offset =
2402 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2403 	} else {
2404 		/* shared read/write queues */
2405 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2406 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2407 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2408 		set->map[HCTX_TYPE_READ].nr_queues =
2409 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2410 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2411 	}
2412 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2413 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2414 
2415 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2416 		/* map dedicated poll queues only if we have queues left */
2417 		set->map[HCTX_TYPE_POLL].nr_queues =
2418 				ctrl->io_queues[HCTX_TYPE_POLL];
2419 		set->map[HCTX_TYPE_POLL].queue_offset =
2420 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2421 			ctrl->io_queues[HCTX_TYPE_READ];
2422 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2423 	}
2424 
2425 	dev_info(ctrl->ctrl.device,
2426 		"mapped %d/%d/%d default/read/poll queues.\n",
2427 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2428 		ctrl->io_queues[HCTX_TYPE_READ],
2429 		ctrl->io_queues[HCTX_TYPE_POLL]);
2430 
2431 	return 0;
2432 }
2433 
2434 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2435 {
2436 	struct nvme_tcp_queue *queue = hctx->driver_data;
2437 	struct sock *sk = queue->sock->sk;
2438 
2439 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2440 		return 0;
2441 
2442 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2443 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2444 		sk_busy_loop(sk, true);
2445 	nvme_tcp_try_recv(queue);
2446 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2447 	return queue->nr_cqe;
2448 }
2449 
2450 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2451 	.queue_rq	= nvme_tcp_queue_rq,
2452 	.commit_rqs	= nvme_tcp_commit_rqs,
2453 	.complete	= nvme_complete_rq,
2454 	.init_request	= nvme_tcp_init_request,
2455 	.exit_request	= nvme_tcp_exit_request,
2456 	.init_hctx	= nvme_tcp_init_hctx,
2457 	.timeout	= nvme_tcp_timeout,
2458 	.map_queues	= nvme_tcp_map_queues,
2459 	.poll		= nvme_tcp_poll,
2460 };
2461 
2462 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2463 	.queue_rq	= nvme_tcp_queue_rq,
2464 	.complete	= nvme_complete_rq,
2465 	.init_request	= nvme_tcp_init_request,
2466 	.exit_request	= nvme_tcp_exit_request,
2467 	.init_hctx	= nvme_tcp_init_admin_hctx,
2468 	.timeout	= nvme_tcp_timeout,
2469 };
2470 
2471 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2472 	.name			= "tcp",
2473 	.module			= THIS_MODULE,
2474 	.flags			= NVME_F_FABRICS,
2475 	.reg_read32		= nvmf_reg_read32,
2476 	.reg_read64		= nvmf_reg_read64,
2477 	.reg_write32		= nvmf_reg_write32,
2478 	.free_ctrl		= nvme_tcp_free_ctrl,
2479 	.submit_async_event	= nvme_tcp_submit_async_event,
2480 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2481 	.get_address		= nvmf_get_address,
2482 };
2483 
2484 static bool
2485 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2486 {
2487 	struct nvme_tcp_ctrl *ctrl;
2488 	bool found = false;
2489 
2490 	mutex_lock(&nvme_tcp_ctrl_mutex);
2491 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2492 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2493 		if (found)
2494 			break;
2495 	}
2496 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2497 
2498 	return found;
2499 }
2500 
2501 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2502 		struct nvmf_ctrl_options *opts)
2503 {
2504 	struct nvme_tcp_ctrl *ctrl;
2505 	int ret;
2506 
2507 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2508 	if (!ctrl)
2509 		return ERR_PTR(-ENOMEM);
2510 
2511 	INIT_LIST_HEAD(&ctrl->list);
2512 	ctrl->ctrl.opts = opts;
2513 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2514 				opts->nr_poll_queues + 1;
2515 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2516 	ctrl->ctrl.kato = opts->kato;
2517 
2518 	INIT_DELAYED_WORK(&ctrl->connect_work,
2519 			nvme_tcp_reconnect_ctrl_work);
2520 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2521 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2522 
2523 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2524 		opts->trsvcid =
2525 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2526 		if (!opts->trsvcid) {
2527 			ret = -ENOMEM;
2528 			goto out_free_ctrl;
2529 		}
2530 		opts->mask |= NVMF_OPT_TRSVCID;
2531 	}
2532 
2533 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2534 			opts->traddr, opts->trsvcid, &ctrl->addr);
2535 	if (ret) {
2536 		pr_err("malformed address passed: %s:%s\n",
2537 			opts->traddr, opts->trsvcid);
2538 		goto out_free_ctrl;
2539 	}
2540 
2541 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2542 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2543 			opts->host_traddr, NULL, &ctrl->src_addr);
2544 		if (ret) {
2545 			pr_err("malformed src address passed: %s\n",
2546 			       opts->host_traddr);
2547 			goto out_free_ctrl;
2548 		}
2549 	}
2550 
2551 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2552 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2553 			pr_err("invalid interface passed: %s\n",
2554 			       opts->host_iface);
2555 			ret = -ENODEV;
2556 			goto out_free_ctrl;
2557 		}
2558 	}
2559 
2560 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2561 		ret = -EALREADY;
2562 		goto out_free_ctrl;
2563 	}
2564 
2565 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2566 				GFP_KERNEL);
2567 	if (!ctrl->queues) {
2568 		ret = -ENOMEM;
2569 		goto out_free_ctrl;
2570 	}
2571 
2572 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2573 	if (ret)
2574 		goto out_kfree_queues;
2575 
2576 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2577 		WARN_ON_ONCE(1);
2578 		ret = -EINTR;
2579 		goto out_uninit_ctrl;
2580 	}
2581 
2582 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2583 	if (ret)
2584 		goto out_uninit_ctrl;
2585 
2586 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2587 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2588 
2589 	mutex_lock(&nvme_tcp_ctrl_mutex);
2590 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2591 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2592 
2593 	return &ctrl->ctrl;
2594 
2595 out_uninit_ctrl:
2596 	nvme_uninit_ctrl(&ctrl->ctrl);
2597 	nvme_put_ctrl(&ctrl->ctrl);
2598 	if (ret > 0)
2599 		ret = -EIO;
2600 	return ERR_PTR(ret);
2601 out_kfree_queues:
2602 	kfree(ctrl->queues);
2603 out_free_ctrl:
2604 	kfree(ctrl);
2605 	return ERR_PTR(ret);
2606 }
2607 
2608 static struct nvmf_transport_ops nvme_tcp_transport = {
2609 	.name		= "tcp",
2610 	.module		= THIS_MODULE,
2611 	.required_opts	= NVMF_OPT_TRADDR,
2612 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2613 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2614 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2615 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2616 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2617 	.create_ctrl	= nvme_tcp_create_ctrl,
2618 };
2619 
2620 static int __init nvme_tcp_init_module(void)
2621 {
2622 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2623 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2624 	if (!nvme_tcp_wq)
2625 		return -ENOMEM;
2626 
2627 	nvmf_register_transport(&nvme_tcp_transport);
2628 	return 0;
2629 }
2630 
2631 static void __exit nvme_tcp_cleanup_module(void)
2632 {
2633 	struct nvme_tcp_ctrl *ctrl;
2634 
2635 	nvmf_unregister_transport(&nvme_tcp_transport);
2636 
2637 	mutex_lock(&nvme_tcp_ctrl_mutex);
2638 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2639 		nvme_delete_ctrl(&ctrl->ctrl);
2640 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2641 	flush_workqueue(nvme_delete_wq);
2642 
2643 	destroy_workqueue(nvme_tcp_wq);
2644 }
2645 
2646 module_init(nvme_tcp_init_module);
2647 module_exit(nvme_tcp_cleanup_module);
2648 
2649 MODULE_LICENSE("GPL v2");
2650