1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 17 #include "nvme.h" 18 #include "fabrics.h" 19 20 struct nvme_tcp_queue; 21 22 enum nvme_tcp_send_state { 23 NVME_TCP_SEND_CMD_PDU = 0, 24 NVME_TCP_SEND_H2C_PDU, 25 NVME_TCP_SEND_DATA, 26 NVME_TCP_SEND_DDGST, 27 }; 28 29 struct nvme_tcp_request { 30 struct nvme_request req; 31 void *pdu; 32 struct nvme_tcp_queue *queue; 33 u32 data_len; 34 u32 pdu_len; 35 u32 pdu_sent; 36 u16 ttag; 37 struct list_head entry; 38 __le32 ddgst; 39 40 struct bio *curr_bio; 41 struct iov_iter iter; 42 43 /* send state */ 44 size_t offset; 45 size_t data_sent; 46 enum nvme_tcp_send_state state; 47 }; 48 49 enum nvme_tcp_queue_flags { 50 NVME_TCP_Q_ALLOCATED = 0, 51 NVME_TCP_Q_LIVE = 1, 52 }; 53 54 enum nvme_tcp_recv_state { 55 NVME_TCP_RECV_PDU = 0, 56 NVME_TCP_RECV_DATA, 57 NVME_TCP_RECV_DDGST, 58 }; 59 60 struct nvme_tcp_ctrl; 61 struct nvme_tcp_queue { 62 struct socket *sock; 63 struct work_struct io_work; 64 int io_cpu; 65 66 spinlock_t lock; 67 struct list_head send_list; 68 69 /* recv state */ 70 void *pdu; 71 int pdu_remaining; 72 int pdu_offset; 73 size_t data_remaining; 74 size_t ddgst_remaining; 75 76 /* send state */ 77 struct nvme_tcp_request *request; 78 79 int queue_size; 80 size_t cmnd_capsule_len; 81 struct nvme_tcp_ctrl *ctrl; 82 unsigned long flags; 83 bool rd_enabled; 84 85 bool hdr_digest; 86 bool data_digest; 87 struct ahash_request *rcv_hash; 88 struct ahash_request *snd_hash; 89 __le32 exp_ddgst; 90 __le32 recv_ddgst; 91 92 struct page_frag_cache pf_cache; 93 94 void (*state_change)(struct sock *); 95 void (*data_ready)(struct sock *); 96 void (*write_space)(struct sock *); 97 }; 98 99 struct nvme_tcp_ctrl { 100 /* read only in the hot path */ 101 struct nvme_tcp_queue *queues; 102 struct blk_mq_tag_set tag_set; 103 104 /* other member variables */ 105 struct list_head list; 106 struct blk_mq_tag_set admin_tag_set; 107 struct sockaddr_storage addr; 108 struct sockaddr_storage src_addr; 109 struct nvme_ctrl ctrl; 110 111 struct work_struct err_work; 112 struct delayed_work connect_work; 113 struct nvme_tcp_request async_req; 114 }; 115 116 static LIST_HEAD(nvme_tcp_ctrl_list); 117 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 118 static struct workqueue_struct *nvme_tcp_wq; 119 static struct blk_mq_ops nvme_tcp_mq_ops; 120 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 121 122 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 123 { 124 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 125 } 126 127 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 128 { 129 return queue - queue->ctrl->queues; 130 } 131 132 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 133 { 134 u32 queue_idx = nvme_tcp_queue_id(queue); 135 136 if (queue_idx == 0) 137 return queue->ctrl->admin_tag_set.tags[queue_idx]; 138 return queue->ctrl->tag_set.tags[queue_idx - 1]; 139 } 140 141 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 142 { 143 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 144 } 145 146 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 147 { 148 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 149 } 150 151 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 152 { 153 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 154 } 155 156 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 157 { 158 return req == &req->queue->ctrl->async_req; 159 } 160 161 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 162 { 163 struct request *rq; 164 unsigned int bytes; 165 166 if (unlikely(nvme_tcp_async_req(req))) 167 return false; /* async events don't have a request */ 168 169 rq = blk_mq_rq_from_pdu(req); 170 bytes = blk_rq_payload_bytes(rq); 171 172 return rq_data_dir(rq) == WRITE && bytes && 173 bytes <= nvme_tcp_inline_data_size(req->queue); 174 } 175 176 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 177 { 178 return req->iter.bvec->bv_page; 179 } 180 181 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 182 { 183 return req->iter.bvec->bv_offset + req->iter.iov_offset; 184 } 185 186 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 187 { 188 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 189 req->pdu_len - req->pdu_sent); 190 } 191 192 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 193 { 194 return req->iter.iov_offset; 195 } 196 197 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 198 { 199 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 200 req->pdu_len - req->pdu_sent : 0; 201 } 202 203 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 204 int len) 205 { 206 return nvme_tcp_pdu_data_left(req) <= len; 207 } 208 209 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 210 unsigned int dir) 211 { 212 struct request *rq = blk_mq_rq_from_pdu(req); 213 struct bio_vec *vec; 214 unsigned int size; 215 int nsegs; 216 size_t offset; 217 218 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 219 vec = &rq->special_vec; 220 nsegs = 1; 221 size = blk_rq_payload_bytes(rq); 222 offset = 0; 223 } else { 224 struct bio *bio = req->curr_bio; 225 226 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 227 nsegs = bio_segments(bio); 228 size = bio->bi_iter.bi_size; 229 offset = bio->bi_iter.bi_bvec_done; 230 } 231 232 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 233 req->iter.iov_offset = offset; 234 } 235 236 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 237 int len) 238 { 239 req->data_sent += len; 240 req->pdu_sent += len; 241 iov_iter_advance(&req->iter, len); 242 if (!iov_iter_count(&req->iter) && 243 req->data_sent < req->data_len) { 244 req->curr_bio = req->curr_bio->bi_next; 245 nvme_tcp_init_iter(req, WRITE); 246 } 247 } 248 249 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 250 { 251 struct nvme_tcp_queue *queue = req->queue; 252 253 spin_lock(&queue->lock); 254 list_add_tail(&req->entry, &queue->send_list); 255 spin_unlock(&queue->lock); 256 257 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 258 } 259 260 static inline struct nvme_tcp_request * 261 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 262 { 263 struct nvme_tcp_request *req; 264 265 spin_lock(&queue->lock); 266 req = list_first_entry_or_null(&queue->send_list, 267 struct nvme_tcp_request, entry); 268 if (req) 269 list_del(&req->entry); 270 spin_unlock(&queue->lock); 271 272 return req; 273 } 274 275 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 276 __le32 *dgst) 277 { 278 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 279 crypto_ahash_final(hash); 280 } 281 282 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 283 struct page *page, off_t off, size_t len) 284 { 285 struct scatterlist sg; 286 287 sg_init_marker(&sg, 1); 288 sg_set_page(&sg, page, len, off); 289 ahash_request_set_crypt(hash, &sg, NULL, len); 290 crypto_ahash_update(hash); 291 } 292 293 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 294 void *pdu, size_t len) 295 { 296 struct scatterlist sg; 297 298 sg_init_one(&sg, pdu, len); 299 ahash_request_set_crypt(hash, &sg, pdu + len, len); 300 crypto_ahash_digest(hash); 301 } 302 303 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 304 void *pdu, size_t pdu_len) 305 { 306 struct nvme_tcp_hdr *hdr = pdu; 307 __le32 recv_digest; 308 __le32 exp_digest; 309 310 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 311 dev_err(queue->ctrl->ctrl.device, 312 "queue %d: header digest flag is cleared\n", 313 nvme_tcp_queue_id(queue)); 314 return -EPROTO; 315 } 316 317 recv_digest = *(__le32 *)(pdu + hdr->hlen); 318 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 319 exp_digest = *(__le32 *)(pdu + hdr->hlen); 320 if (recv_digest != exp_digest) { 321 dev_err(queue->ctrl->ctrl.device, 322 "header digest error: recv %#x expected %#x\n", 323 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 324 return -EIO; 325 } 326 327 return 0; 328 } 329 330 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 331 { 332 struct nvme_tcp_hdr *hdr = pdu; 333 u8 digest_len = nvme_tcp_hdgst_len(queue); 334 u32 len; 335 336 len = le32_to_cpu(hdr->plen) - hdr->hlen - 337 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 338 339 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 340 dev_err(queue->ctrl->ctrl.device, 341 "queue %d: data digest flag is cleared\n", 342 nvme_tcp_queue_id(queue)); 343 return -EPROTO; 344 } 345 crypto_ahash_init(queue->rcv_hash); 346 347 return 0; 348 } 349 350 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 351 struct request *rq, unsigned int hctx_idx) 352 { 353 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 354 355 page_frag_free(req->pdu); 356 } 357 358 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 359 struct request *rq, unsigned int hctx_idx, 360 unsigned int numa_node) 361 { 362 struct nvme_tcp_ctrl *ctrl = set->driver_data; 363 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 364 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 365 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 366 u8 hdgst = nvme_tcp_hdgst_len(queue); 367 368 req->pdu = page_frag_alloc(&queue->pf_cache, 369 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 370 GFP_KERNEL | __GFP_ZERO); 371 if (!req->pdu) 372 return -ENOMEM; 373 374 req->queue = queue; 375 nvme_req(rq)->ctrl = &ctrl->ctrl; 376 377 return 0; 378 } 379 380 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 381 unsigned int hctx_idx) 382 { 383 struct nvme_tcp_ctrl *ctrl = data; 384 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 385 386 hctx->driver_data = queue; 387 return 0; 388 } 389 390 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 391 unsigned int hctx_idx) 392 { 393 struct nvme_tcp_ctrl *ctrl = data; 394 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 395 396 hctx->driver_data = queue; 397 return 0; 398 } 399 400 static enum nvme_tcp_recv_state 401 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 402 { 403 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 404 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 405 NVME_TCP_RECV_DATA; 406 } 407 408 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 409 { 410 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 411 nvme_tcp_hdgst_len(queue); 412 queue->pdu_offset = 0; 413 queue->data_remaining = -1; 414 queue->ddgst_remaining = 0; 415 } 416 417 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 418 { 419 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 420 return; 421 422 queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work); 423 } 424 425 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 426 struct nvme_completion *cqe) 427 { 428 struct request *rq; 429 430 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 431 if (!rq) { 432 dev_err(queue->ctrl->ctrl.device, 433 "queue %d tag 0x%x not found\n", 434 nvme_tcp_queue_id(queue), cqe->command_id); 435 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 436 return -EINVAL; 437 } 438 439 nvme_end_request(rq, cqe->status, cqe->result); 440 441 return 0; 442 } 443 444 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 445 struct nvme_tcp_data_pdu *pdu) 446 { 447 struct request *rq; 448 449 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 450 if (!rq) { 451 dev_err(queue->ctrl->ctrl.device, 452 "queue %d tag %#x not found\n", 453 nvme_tcp_queue_id(queue), pdu->command_id); 454 return -ENOENT; 455 } 456 457 if (!blk_rq_payload_bytes(rq)) { 458 dev_err(queue->ctrl->ctrl.device, 459 "queue %d tag %#x unexpected data\n", 460 nvme_tcp_queue_id(queue), rq->tag); 461 return -EIO; 462 } 463 464 queue->data_remaining = le32_to_cpu(pdu->data_length); 465 466 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 467 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 468 dev_err(queue->ctrl->ctrl.device, 469 "queue %d tag %#x SUCCESS set but not last PDU\n", 470 nvme_tcp_queue_id(queue), rq->tag); 471 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 472 return -EPROTO; 473 } 474 475 return 0; 476 } 477 478 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 479 struct nvme_tcp_rsp_pdu *pdu) 480 { 481 struct nvme_completion *cqe = &pdu->cqe; 482 int ret = 0; 483 484 /* 485 * AEN requests are special as they don't time out and can 486 * survive any kind of queue freeze and often don't respond to 487 * aborts. We don't even bother to allocate a struct request 488 * for them but rather special case them here. 489 */ 490 if (unlikely(nvme_tcp_queue_id(queue) == 0 && 491 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 492 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 493 &cqe->result); 494 else 495 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 496 497 return ret; 498 } 499 500 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 501 struct nvme_tcp_r2t_pdu *pdu) 502 { 503 struct nvme_tcp_data_pdu *data = req->pdu; 504 struct nvme_tcp_queue *queue = req->queue; 505 struct request *rq = blk_mq_rq_from_pdu(req); 506 u8 hdgst = nvme_tcp_hdgst_len(queue); 507 u8 ddgst = nvme_tcp_ddgst_len(queue); 508 509 req->pdu_len = le32_to_cpu(pdu->r2t_length); 510 req->pdu_sent = 0; 511 512 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 513 dev_err(queue->ctrl->ctrl.device, 514 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 515 rq->tag, req->pdu_len, req->data_len, 516 req->data_sent); 517 return -EPROTO; 518 } 519 520 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 521 dev_err(queue->ctrl->ctrl.device, 522 "req %d unexpected r2t offset %u (expected %zu)\n", 523 rq->tag, le32_to_cpu(pdu->r2t_offset), 524 req->data_sent); 525 return -EPROTO; 526 } 527 528 memset(data, 0, sizeof(*data)); 529 data->hdr.type = nvme_tcp_h2c_data; 530 data->hdr.flags = NVME_TCP_F_DATA_LAST; 531 if (queue->hdr_digest) 532 data->hdr.flags |= NVME_TCP_F_HDGST; 533 if (queue->data_digest) 534 data->hdr.flags |= NVME_TCP_F_DDGST; 535 data->hdr.hlen = sizeof(*data); 536 data->hdr.pdo = data->hdr.hlen + hdgst; 537 data->hdr.plen = 538 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 539 data->ttag = pdu->ttag; 540 data->command_id = rq->tag; 541 data->data_offset = cpu_to_le32(req->data_sent); 542 data->data_length = cpu_to_le32(req->pdu_len); 543 return 0; 544 } 545 546 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 547 struct nvme_tcp_r2t_pdu *pdu) 548 { 549 struct nvme_tcp_request *req; 550 struct request *rq; 551 int ret; 552 553 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 554 if (!rq) { 555 dev_err(queue->ctrl->ctrl.device, 556 "queue %d tag %#x not found\n", 557 nvme_tcp_queue_id(queue), pdu->command_id); 558 return -ENOENT; 559 } 560 req = blk_mq_rq_to_pdu(rq); 561 562 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 563 if (unlikely(ret)) 564 return ret; 565 566 req->state = NVME_TCP_SEND_H2C_PDU; 567 req->offset = 0; 568 569 nvme_tcp_queue_request(req); 570 571 return 0; 572 } 573 574 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 575 unsigned int *offset, size_t *len) 576 { 577 struct nvme_tcp_hdr *hdr; 578 char *pdu = queue->pdu; 579 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 580 int ret; 581 582 ret = skb_copy_bits(skb, *offset, 583 &pdu[queue->pdu_offset], rcv_len); 584 if (unlikely(ret)) 585 return ret; 586 587 queue->pdu_remaining -= rcv_len; 588 queue->pdu_offset += rcv_len; 589 *offset += rcv_len; 590 *len -= rcv_len; 591 if (queue->pdu_remaining) 592 return 0; 593 594 hdr = queue->pdu; 595 if (queue->hdr_digest) { 596 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 597 if (unlikely(ret)) 598 return ret; 599 } 600 601 602 if (queue->data_digest) { 603 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 604 if (unlikely(ret)) 605 return ret; 606 } 607 608 switch (hdr->type) { 609 case nvme_tcp_c2h_data: 610 ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 611 break; 612 case nvme_tcp_rsp: 613 nvme_tcp_init_recv_ctx(queue); 614 ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu); 615 break; 616 case nvme_tcp_r2t: 617 nvme_tcp_init_recv_ctx(queue); 618 ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 619 break; 620 default: 621 dev_err(queue->ctrl->ctrl.device, 622 "unsupported pdu type (%d)\n", hdr->type); 623 return -EINVAL; 624 } 625 626 return ret; 627 } 628 629 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 630 { 631 union nvme_result res = {}; 632 633 nvme_end_request(rq, cpu_to_le16(status << 1), res); 634 } 635 636 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 637 unsigned int *offset, size_t *len) 638 { 639 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 640 struct nvme_tcp_request *req; 641 struct request *rq; 642 643 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 644 if (!rq) { 645 dev_err(queue->ctrl->ctrl.device, 646 "queue %d tag %#x not found\n", 647 nvme_tcp_queue_id(queue), pdu->command_id); 648 return -ENOENT; 649 } 650 req = blk_mq_rq_to_pdu(rq); 651 652 while (true) { 653 int recv_len, ret; 654 655 recv_len = min_t(size_t, *len, queue->data_remaining); 656 if (!recv_len) 657 break; 658 659 if (!iov_iter_count(&req->iter)) { 660 req->curr_bio = req->curr_bio->bi_next; 661 662 /* 663 * If we don`t have any bios it means that controller 664 * sent more data than we requested, hence error 665 */ 666 if (!req->curr_bio) { 667 dev_err(queue->ctrl->ctrl.device, 668 "queue %d no space in request %#x", 669 nvme_tcp_queue_id(queue), rq->tag); 670 nvme_tcp_init_recv_ctx(queue); 671 return -EIO; 672 } 673 nvme_tcp_init_iter(req, READ); 674 } 675 676 /* we can read only from what is left in this bio */ 677 recv_len = min_t(size_t, recv_len, 678 iov_iter_count(&req->iter)); 679 680 if (queue->data_digest) 681 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 682 &req->iter, recv_len, queue->rcv_hash); 683 else 684 ret = skb_copy_datagram_iter(skb, *offset, 685 &req->iter, recv_len); 686 if (ret) { 687 dev_err(queue->ctrl->ctrl.device, 688 "queue %d failed to copy request %#x data", 689 nvme_tcp_queue_id(queue), rq->tag); 690 return ret; 691 } 692 693 *len -= recv_len; 694 *offset += recv_len; 695 queue->data_remaining -= recv_len; 696 } 697 698 if (!queue->data_remaining) { 699 if (queue->data_digest) { 700 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 701 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 702 } else { 703 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) 704 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 705 nvme_tcp_init_recv_ctx(queue); 706 } 707 } 708 709 return 0; 710 } 711 712 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 713 struct sk_buff *skb, unsigned int *offset, size_t *len) 714 { 715 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 716 char *ddgst = (char *)&queue->recv_ddgst; 717 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 718 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 719 int ret; 720 721 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 722 if (unlikely(ret)) 723 return ret; 724 725 queue->ddgst_remaining -= recv_len; 726 *offset += recv_len; 727 *len -= recv_len; 728 if (queue->ddgst_remaining) 729 return 0; 730 731 if (queue->recv_ddgst != queue->exp_ddgst) { 732 dev_err(queue->ctrl->ctrl.device, 733 "data digest error: recv %#x expected %#x\n", 734 le32_to_cpu(queue->recv_ddgst), 735 le32_to_cpu(queue->exp_ddgst)); 736 return -EIO; 737 } 738 739 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 740 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 741 pdu->command_id); 742 743 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 744 } 745 746 nvme_tcp_init_recv_ctx(queue); 747 return 0; 748 } 749 750 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 751 unsigned int offset, size_t len) 752 { 753 struct nvme_tcp_queue *queue = desc->arg.data; 754 size_t consumed = len; 755 int result; 756 757 while (len) { 758 switch (nvme_tcp_recv_state(queue)) { 759 case NVME_TCP_RECV_PDU: 760 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 761 break; 762 case NVME_TCP_RECV_DATA: 763 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 764 break; 765 case NVME_TCP_RECV_DDGST: 766 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 767 break; 768 default: 769 result = -EFAULT; 770 } 771 if (result) { 772 dev_err(queue->ctrl->ctrl.device, 773 "receive failed: %d\n", result); 774 queue->rd_enabled = false; 775 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 776 return result; 777 } 778 } 779 780 return consumed; 781 } 782 783 static void nvme_tcp_data_ready(struct sock *sk) 784 { 785 struct nvme_tcp_queue *queue; 786 787 read_lock(&sk->sk_callback_lock); 788 queue = sk->sk_user_data; 789 if (likely(queue && queue->rd_enabled)) 790 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 791 read_unlock(&sk->sk_callback_lock); 792 } 793 794 static void nvme_tcp_write_space(struct sock *sk) 795 { 796 struct nvme_tcp_queue *queue; 797 798 read_lock_bh(&sk->sk_callback_lock); 799 queue = sk->sk_user_data; 800 if (likely(queue && sk_stream_is_writeable(sk))) { 801 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 802 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 803 } 804 read_unlock_bh(&sk->sk_callback_lock); 805 } 806 807 static void nvme_tcp_state_change(struct sock *sk) 808 { 809 struct nvme_tcp_queue *queue; 810 811 read_lock(&sk->sk_callback_lock); 812 queue = sk->sk_user_data; 813 if (!queue) 814 goto done; 815 816 switch (sk->sk_state) { 817 case TCP_CLOSE: 818 case TCP_CLOSE_WAIT: 819 case TCP_LAST_ACK: 820 case TCP_FIN_WAIT1: 821 case TCP_FIN_WAIT2: 822 /* fallthrough */ 823 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 824 break; 825 default: 826 dev_info(queue->ctrl->ctrl.device, 827 "queue %d socket state %d\n", 828 nvme_tcp_queue_id(queue), sk->sk_state); 829 } 830 831 queue->state_change(sk); 832 done: 833 read_unlock(&sk->sk_callback_lock); 834 } 835 836 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 837 { 838 queue->request = NULL; 839 } 840 841 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 842 { 843 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR); 844 } 845 846 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 847 { 848 struct nvme_tcp_queue *queue = req->queue; 849 850 while (true) { 851 struct page *page = nvme_tcp_req_cur_page(req); 852 size_t offset = nvme_tcp_req_cur_offset(req); 853 size_t len = nvme_tcp_req_cur_length(req); 854 bool last = nvme_tcp_pdu_last_send(req, len); 855 int ret, flags = MSG_DONTWAIT; 856 857 if (last && !queue->data_digest) 858 flags |= MSG_EOR; 859 else 860 flags |= MSG_MORE; 861 862 ret = kernel_sendpage(queue->sock, page, offset, len, flags); 863 if (ret <= 0) 864 return ret; 865 866 nvme_tcp_advance_req(req, ret); 867 if (queue->data_digest) 868 nvme_tcp_ddgst_update(queue->snd_hash, page, 869 offset, ret); 870 871 /* fully successful last write*/ 872 if (last && ret == len) { 873 if (queue->data_digest) { 874 nvme_tcp_ddgst_final(queue->snd_hash, 875 &req->ddgst); 876 req->state = NVME_TCP_SEND_DDGST; 877 req->offset = 0; 878 } else { 879 nvme_tcp_done_send_req(queue); 880 } 881 return 1; 882 } 883 } 884 return -EAGAIN; 885 } 886 887 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 888 { 889 struct nvme_tcp_queue *queue = req->queue; 890 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 891 bool inline_data = nvme_tcp_has_inline_data(req); 892 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 893 u8 hdgst = nvme_tcp_hdgst_len(queue); 894 int len = sizeof(*pdu) + hdgst - req->offset; 895 int ret; 896 897 if (queue->hdr_digest && !req->offset) 898 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 899 900 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 901 offset_in_page(pdu) + req->offset, len, flags); 902 if (unlikely(ret <= 0)) 903 return ret; 904 905 len -= ret; 906 if (!len) { 907 if (inline_data) { 908 req->state = NVME_TCP_SEND_DATA; 909 if (queue->data_digest) 910 crypto_ahash_init(queue->snd_hash); 911 nvme_tcp_init_iter(req, WRITE); 912 } else { 913 nvme_tcp_done_send_req(queue); 914 } 915 return 1; 916 } 917 req->offset += ret; 918 919 return -EAGAIN; 920 } 921 922 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 923 { 924 struct nvme_tcp_queue *queue = req->queue; 925 struct nvme_tcp_data_pdu *pdu = req->pdu; 926 u8 hdgst = nvme_tcp_hdgst_len(queue); 927 int len = sizeof(*pdu) - req->offset + hdgst; 928 int ret; 929 930 if (queue->hdr_digest && !req->offset) 931 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 932 933 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 934 offset_in_page(pdu) + req->offset, len, 935 MSG_DONTWAIT | MSG_MORE); 936 if (unlikely(ret <= 0)) 937 return ret; 938 939 len -= ret; 940 if (!len) { 941 req->state = NVME_TCP_SEND_DATA; 942 if (queue->data_digest) 943 crypto_ahash_init(queue->snd_hash); 944 if (!req->data_sent) 945 nvme_tcp_init_iter(req, WRITE); 946 return 1; 947 } 948 req->offset += ret; 949 950 return -EAGAIN; 951 } 952 953 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 954 { 955 struct nvme_tcp_queue *queue = req->queue; 956 int ret; 957 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 958 struct kvec iov = { 959 .iov_base = &req->ddgst + req->offset, 960 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 961 }; 962 963 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 964 if (unlikely(ret <= 0)) 965 return ret; 966 967 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 968 nvme_tcp_done_send_req(queue); 969 return 1; 970 } 971 972 req->offset += ret; 973 return -EAGAIN; 974 } 975 976 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 977 { 978 struct nvme_tcp_request *req; 979 int ret = 1; 980 981 if (!queue->request) { 982 queue->request = nvme_tcp_fetch_request(queue); 983 if (!queue->request) 984 return 0; 985 } 986 req = queue->request; 987 988 if (req->state == NVME_TCP_SEND_CMD_PDU) { 989 ret = nvme_tcp_try_send_cmd_pdu(req); 990 if (ret <= 0) 991 goto done; 992 if (!nvme_tcp_has_inline_data(req)) 993 return ret; 994 } 995 996 if (req->state == NVME_TCP_SEND_H2C_PDU) { 997 ret = nvme_tcp_try_send_data_pdu(req); 998 if (ret <= 0) 999 goto done; 1000 } 1001 1002 if (req->state == NVME_TCP_SEND_DATA) { 1003 ret = nvme_tcp_try_send_data(req); 1004 if (ret <= 0) 1005 goto done; 1006 } 1007 1008 if (req->state == NVME_TCP_SEND_DDGST) 1009 ret = nvme_tcp_try_send_ddgst(req); 1010 done: 1011 if (ret == -EAGAIN) 1012 ret = 0; 1013 return ret; 1014 } 1015 1016 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1017 { 1018 struct sock *sk = queue->sock->sk; 1019 read_descriptor_t rd_desc; 1020 int consumed; 1021 1022 rd_desc.arg.data = queue; 1023 rd_desc.count = 1; 1024 lock_sock(sk); 1025 consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1026 release_sock(sk); 1027 return consumed; 1028 } 1029 1030 static void nvme_tcp_io_work(struct work_struct *w) 1031 { 1032 struct nvme_tcp_queue *queue = 1033 container_of(w, struct nvme_tcp_queue, io_work); 1034 unsigned long start = jiffies + msecs_to_jiffies(1); 1035 1036 do { 1037 bool pending = false; 1038 int result; 1039 1040 result = nvme_tcp_try_send(queue); 1041 if (result > 0) { 1042 pending = true; 1043 } else if (unlikely(result < 0)) { 1044 dev_err(queue->ctrl->ctrl.device, 1045 "failed to send request %d\n", result); 1046 if (result != -EPIPE) 1047 nvme_tcp_fail_request(queue->request); 1048 nvme_tcp_done_send_req(queue); 1049 return; 1050 } 1051 1052 result = nvme_tcp_try_recv(queue); 1053 if (result > 0) 1054 pending = true; 1055 1056 if (!pending) 1057 return; 1058 1059 } while (time_after(jiffies, start)); /* quota is exhausted */ 1060 1061 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1062 } 1063 1064 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1065 { 1066 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1067 1068 ahash_request_free(queue->rcv_hash); 1069 ahash_request_free(queue->snd_hash); 1070 crypto_free_ahash(tfm); 1071 } 1072 1073 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1074 { 1075 struct crypto_ahash *tfm; 1076 1077 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1078 if (IS_ERR(tfm)) 1079 return PTR_ERR(tfm); 1080 1081 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1082 if (!queue->snd_hash) 1083 goto free_tfm; 1084 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1085 1086 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1087 if (!queue->rcv_hash) 1088 goto free_snd_hash; 1089 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1090 1091 return 0; 1092 free_snd_hash: 1093 ahash_request_free(queue->snd_hash); 1094 free_tfm: 1095 crypto_free_ahash(tfm); 1096 return -ENOMEM; 1097 } 1098 1099 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1100 { 1101 struct nvme_tcp_request *async = &ctrl->async_req; 1102 1103 page_frag_free(async->pdu); 1104 } 1105 1106 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1107 { 1108 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1109 struct nvme_tcp_request *async = &ctrl->async_req; 1110 u8 hdgst = nvme_tcp_hdgst_len(queue); 1111 1112 async->pdu = page_frag_alloc(&queue->pf_cache, 1113 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1114 GFP_KERNEL | __GFP_ZERO); 1115 if (!async->pdu) 1116 return -ENOMEM; 1117 1118 async->queue = &ctrl->queues[0]; 1119 return 0; 1120 } 1121 1122 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1123 { 1124 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1125 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1126 1127 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1128 return; 1129 1130 if (queue->hdr_digest || queue->data_digest) 1131 nvme_tcp_free_crypto(queue); 1132 1133 sock_release(queue->sock); 1134 kfree(queue->pdu); 1135 } 1136 1137 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1138 { 1139 struct nvme_tcp_icreq_pdu *icreq; 1140 struct nvme_tcp_icresp_pdu *icresp; 1141 struct msghdr msg = {}; 1142 struct kvec iov; 1143 bool ctrl_hdgst, ctrl_ddgst; 1144 int ret; 1145 1146 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1147 if (!icreq) 1148 return -ENOMEM; 1149 1150 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1151 if (!icresp) { 1152 ret = -ENOMEM; 1153 goto free_icreq; 1154 } 1155 1156 icreq->hdr.type = nvme_tcp_icreq; 1157 icreq->hdr.hlen = sizeof(*icreq); 1158 icreq->hdr.pdo = 0; 1159 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1160 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1161 icreq->maxr2t = 0; /* single inflight r2t supported */ 1162 icreq->hpda = 0; /* no alignment constraint */ 1163 if (queue->hdr_digest) 1164 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1165 if (queue->data_digest) 1166 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1167 1168 iov.iov_base = icreq; 1169 iov.iov_len = sizeof(*icreq); 1170 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1171 if (ret < 0) 1172 goto free_icresp; 1173 1174 memset(&msg, 0, sizeof(msg)); 1175 iov.iov_base = icresp; 1176 iov.iov_len = sizeof(*icresp); 1177 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1178 iov.iov_len, msg.msg_flags); 1179 if (ret < 0) 1180 goto free_icresp; 1181 1182 ret = -EINVAL; 1183 if (icresp->hdr.type != nvme_tcp_icresp) { 1184 pr_err("queue %d: bad type returned %d\n", 1185 nvme_tcp_queue_id(queue), icresp->hdr.type); 1186 goto free_icresp; 1187 } 1188 1189 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1190 pr_err("queue %d: bad pdu length returned %d\n", 1191 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1192 goto free_icresp; 1193 } 1194 1195 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1196 pr_err("queue %d: bad pfv returned %d\n", 1197 nvme_tcp_queue_id(queue), icresp->pfv); 1198 goto free_icresp; 1199 } 1200 1201 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1202 if ((queue->data_digest && !ctrl_ddgst) || 1203 (!queue->data_digest && ctrl_ddgst)) { 1204 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1205 nvme_tcp_queue_id(queue), 1206 queue->data_digest ? "enabled" : "disabled", 1207 ctrl_ddgst ? "enabled" : "disabled"); 1208 goto free_icresp; 1209 } 1210 1211 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1212 if ((queue->hdr_digest && !ctrl_hdgst) || 1213 (!queue->hdr_digest && ctrl_hdgst)) { 1214 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1215 nvme_tcp_queue_id(queue), 1216 queue->hdr_digest ? "enabled" : "disabled", 1217 ctrl_hdgst ? "enabled" : "disabled"); 1218 goto free_icresp; 1219 } 1220 1221 if (icresp->cpda != 0) { 1222 pr_err("queue %d: unsupported cpda returned %d\n", 1223 nvme_tcp_queue_id(queue), icresp->cpda); 1224 goto free_icresp; 1225 } 1226 1227 ret = 0; 1228 free_icresp: 1229 kfree(icresp); 1230 free_icreq: 1231 kfree(icreq); 1232 return ret; 1233 } 1234 1235 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1236 int qid, size_t queue_size) 1237 { 1238 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1239 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1240 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1241 int ret, opt, rcv_pdu_size, n; 1242 1243 queue->ctrl = ctrl; 1244 INIT_LIST_HEAD(&queue->send_list); 1245 spin_lock_init(&queue->lock); 1246 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1247 queue->queue_size = queue_size; 1248 1249 if (qid > 0) 1250 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1251 else 1252 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1253 NVME_TCP_ADMIN_CCSZ; 1254 1255 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1256 IPPROTO_TCP, &queue->sock); 1257 if (ret) { 1258 dev_err(ctrl->ctrl.device, 1259 "failed to create socket: %d\n", ret); 1260 return ret; 1261 } 1262 1263 /* Single syn retry */ 1264 opt = 1; 1265 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1266 (char *)&opt, sizeof(opt)); 1267 if (ret) { 1268 dev_err(ctrl->ctrl.device, 1269 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1270 goto err_sock; 1271 } 1272 1273 /* Set TCP no delay */ 1274 opt = 1; 1275 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1276 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1277 if (ret) { 1278 dev_err(ctrl->ctrl.device, 1279 "failed to set TCP_NODELAY sock opt %d\n", ret); 1280 goto err_sock; 1281 } 1282 1283 /* 1284 * Cleanup whatever is sitting in the TCP transmit queue on socket 1285 * close. This is done to prevent stale data from being sent should 1286 * the network connection be restored before TCP times out. 1287 */ 1288 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1289 (char *)&sol, sizeof(sol)); 1290 if (ret) { 1291 dev_err(ctrl->ctrl.device, 1292 "failed to set SO_LINGER sock opt %d\n", ret); 1293 goto err_sock; 1294 } 1295 1296 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1297 if (!qid) 1298 n = 0; 1299 else 1300 n = (qid - 1) % num_online_cpus(); 1301 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1302 queue->request = NULL; 1303 queue->data_remaining = 0; 1304 queue->ddgst_remaining = 0; 1305 queue->pdu_remaining = 0; 1306 queue->pdu_offset = 0; 1307 sk_set_memalloc(queue->sock->sk); 1308 1309 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1310 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1311 sizeof(ctrl->src_addr)); 1312 if (ret) { 1313 dev_err(ctrl->ctrl.device, 1314 "failed to bind queue %d socket %d\n", 1315 qid, ret); 1316 goto err_sock; 1317 } 1318 } 1319 1320 queue->hdr_digest = nctrl->opts->hdr_digest; 1321 queue->data_digest = nctrl->opts->data_digest; 1322 if (queue->hdr_digest || queue->data_digest) { 1323 ret = nvme_tcp_alloc_crypto(queue); 1324 if (ret) { 1325 dev_err(ctrl->ctrl.device, 1326 "failed to allocate queue %d crypto\n", qid); 1327 goto err_sock; 1328 } 1329 } 1330 1331 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1332 nvme_tcp_hdgst_len(queue); 1333 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1334 if (!queue->pdu) { 1335 ret = -ENOMEM; 1336 goto err_crypto; 1337 } 1338 1339 dev_dbg(ctrl->ctrl.device, "connecting queue %d\n", 1340 nvme_tcp_queue_id(queue)); 1341 1342 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1343 sizeof(ctrl->addr), 0); 1344 if (ret) { 1345 dev_err(ctrl->ctrl.device, 1346 "failed to connect socket: %d\n", ret); 1347 goto err_rcv_pdu; 1348 } 1349 1350 ret = nvme_tcp_init_connection(queue); 1351 if (ret) 1352 goto err_init_connect; 1353 1354 queue->rd_enabled = true; 1355 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1356 nvme_tcp_init_recv_ctx(queue); 1357 1358 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1359 queue->sock->sk->sk_user_data = queue; 1360 queue->state_change = queue->sock->sk->sk_state_change; 1361 queue->data_ready = queue->sock->sk->sk_data_ready; 1362 queue->write_space = queue->sock->sk->sk_write_space; 1363 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1364 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1365 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1366 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1367 1368 return 0; 1369 1370 err_init_connect: 1371 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1372 err_rcv_pdu: 1373 kfree(queue->pdu); 1374 err_crypto: 1375 if (queue->hdr_digest || queue->data_digest) 1376 nvme_tcp_free_crypto(queue); 1377 err_sock: 1378 sock_release(queue->sock); 1379 queue->sock = NULL; 1380 return ret; 1381 } 1382 1383 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1384 { 1385 struct socket *sock = queue->sock; 1386 1387 write_lock_bh(&sock->sk->sk_callback_lock); 1388 sock->sk->sk_user_data = NULL; 1389 sock->sk->sk_data_ready = queue->data_ready; 1390 sock->sk->sk_state_change = queue->state_change; 1391 sock->sk->sk_write_space = queue->write_space; 1392 write_unlock_bh(&sock->sk->sk_callback_lock); 1393 } 1394 1395 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1396 { 1397 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1398 nvme_tcp_restore_sock_calls(queue); 1399 cancel_work_sync(&queue->io_work); 1400 } 1401 1402 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1403 { 1404 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1405 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1406 1407 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1408 return; 1409 1410 __nvme_tcp_stop_queue(queue); 1411 } 1412 1413 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1414 { 1415 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1416 int ret; 1417 1418 if (idx) 1419 ret = nvmf_connect_io_queue(nctrl, idx, false); 1420 else 1421 ret = nvmf_connect_admin_queue(nctrl); 1422 1423 if (!ret) { 1424 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1425 } else { 1426 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1427 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1428 dev_err(nctrl->device, 1429 "failed to connect queue: %d ret=%d\n", idx, ret); 1430 } 1431 return ret; 1432 } 1433 1434 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1435 bool admin) 1436 { 1437 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1438 struct blk_mq_tag_set *set; 1439 int ret; 1440 1441 if (admin) { 1442 set = &ctrl->admin_tag_set; 1443 memset(set, 0, sizeof(*set)); 1444 set->ops = &nvme_tcp_admin_mq_ops; 1445 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1446 set->reserved_tags = 2; /* connect + keep-alive */ 1447 set->numa_node = NUMA_NO_NODE; 1448 set->cmd_size = sizeof(struct nvme_tcp_request); 1449 set->driver_data = ctrl; 1450 set->nr_hw_queues = 1; 1451 set->timeout = ADMIN_TIMEOUT; 1452 } else { 1453 set = &ctrl->tag_set; 1454 memset(set, 0, sizeof(*set)); 1455 set->ops = &nvme_tcp_mq_ops; 1456 set->queue_depth = nctrl->sqsize + 1; 1457 set->reserved_tags = 1; /* fabric connect */ 1458 set->numa_node = NUMA_NO_NODE; 1459 set->flags = BLK_MQ_F_SHOULD_MERGE; 1460 set->cmd_size = sizeof(struct nvme_tcp_request); 1461 set->driver_data = ctrl; 1462 set->nr_hw_queues = nctrl->queue_count - 1; 1463 set->timeout = NVME_IO_TIMEOUT; 1464 set->nr_maps = 2 /* default + read */; 1465 } 1466 1467 ret = blk_mq_alloc_tag_set(set); 1468 if (ret) 1469 return ERR_PTR(ret); 1470 1471 return set; 1472 } 1473 1474 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1475 { 1476 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1477 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1478 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1479 } 1480 1481 nvme_tcp_free_queue(ctrl, 0); 1482 } 1483 1484 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1485 { 1486 int i; 1487 1488 for (i = 1; i < ctrl->queue_count; i++) 1489 nvme_tcp_free_queue(ctrl, i); 1490 } 1491 1492 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1493 { 1494 int i; 1495 1496 for (i = 1; i < ctrl->queue_count; i++) 1497 nvme_tcp_stop_queue(ctrl, i); 1498 } 1499 1500 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1501 { 1502 int i, ret = 0; 1503 1504 for (i = 1; i < ctrl->queue_count; i++) { 1505 ret = nvme_tcp_start_queue(ctrl, i); 1506 if (ret) 1507 goto out_stop_queues; 1508 } 1509 1510 return 0; 1511 1512 out_stop_queues: 1513 for (i--; i >= 1; i--) 1514 nvme_tcp_stop_queue(ctrl, i); 1515 return ret; 1516 } 1517 1518 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1519 { 1520 int ret; 1521 1522 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1523 if (ret) 1524 return ret; 1525 1526 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1527 if (ret) 1528 goto out_free_queue; 1529 1530 return 0; 1531 1532 out_free_queue: 1533 nvme_tcp_free_queue(ctrl, 0); 1534 return ret; 1535 } 1536 1537 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1538 { 1539 int i, ret; 1540 1541 for (i = 1; i < ctrl->queue_count; i++) { 1542 ret = nvme_tcp_alloc_queue(ctrl, i, 1543 ctrl->sqsize + 1); 1544 if (ret) 1545 goto out_free_queues; 1546 } 1547 1548 return 0; 1549 1550 out_free_queues: 1551 for (i--; i >= 1; i--) 1552 nvme_tcp_free_queue(ctrl, i); 1553 1554 return ret; 1555 } 1556 1557 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1558 { 1559 unsigned int nr_io_queues; 1560 1561 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1562 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1563 1564 return nr_io_queues; 1565 } 1566 1567 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1568 { 1569 unsigned int nr_io_queues; 1570 int ret; 1571 1572 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1573 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1574 if (ret) 1575 return ret; 1576 1577 ctrl->queue_count = nr_io_queues + 1; 1578 if (ctrl->queue_count < 2) 1579 return 0; 1580 1581 dev_info(ctrl->device, 1582 "creating %d I/O queues.\n", nr_io_queues); 1583 1584 return __nvme_tcp_alloc_io_queues(ctrl); 1585 } 1586 1587 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1588 { 1589 nvme_tcp_stop_io_queues(ctrl); 1590 if (remove) { 1591 blk_cleanup_queue(ctrl->connect_q); 1592 blk_mq_free_tag_set(ctrl->tagset); 1593 } 1594 nvme_tcp_free_io_queues(ctrl); 1595 } 1596 1597 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1598 { 1599 int ret; 1600 1601 ret = nvme_tcp_alloc_io_queues(ctrl); 1602 if (ret) 1603 return ret; 1604 1605 if (new) { 1606 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1607 if (IS_ERR(ctrl->tagset)) { 1608 ret = PTR_ERR(ctrl->tagset); 1609 goto out_free_io_queues; 1610 } 1611 1612 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1613 if (IS_ERR(ctrl->connect_q)) { 1614 ret = PTR_ERR(ctrl->connect_q); 1615 goto out_free_tag_set; 1616 } 1617 } else { 1618 blk_mq_update_nr_hw_queues(ctrl->tagset, 1619 ctrl->queue_count - 1); 1620 } 1621 1622 ret = nvme_tcp_start_io_queues(ctrl); 1623 if (ret) 1624 goto out_cleanup_connect_q; 1625 1626 return 0; 1627 1628 out_cleanup_connect_q: 1629 if (new) 1630 blk_cleanup_queue(ctrl->connect_q); 1631 out_free_tag_set: 1632 if (new) 1633 blk_mq_free_tag_set(ctrl->tagset); 1634 out_free_io_queues: 1635 nvme_tcp_free_io_queues(ctrl); 1636 return ret; 1637 } 1638 1639 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1640 { 1641 nvme_tcp_stop_queue(ctrl, 0); 1642 if (remove) { 1643 blk_cleanup_queue(ctrl->admin_q); 1644 blk_mq_free_tag_set(ctrl->admin_tagset); 1645 } 1646 nvme_tcp_free_admin_queue(ctrl); 1647 } 1648 1649 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1650 { 1651 int error; 1652 1653 error = nvme_tcp_alloc_admin_queue(ctrl); 1654 if (error) 1655 return error; 1656 1657 if (new) { 1658 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1659 if (IS_ERR(ctrl->admin_tagset)) { 1660 error = PTR_ERR(ctrl->admin_tagset); 1661 goto out_free_queue; 1662 } 1663 1664 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1665 if (IS_ERR(ctrl->admin_q)) { 1666 error = PTR_ERR(ctrl->admin_q); 1667 goto out_free_tagset; 1668 } 1669 } 1670 1671 error = nvme_tcp_start_queue(ctrl, 0); 1672 if (error) 1673 goto out_cleanup_queue; 1674 1675 error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 1676 if (error) { 1677 dev_err(ctrl->device, 1678 "prop_get NVME_REG_CAP failed\n"); 1679 goto out_stop_queue; 1680 } 1681 1682 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 1683 1684 error = nvme_enable_ctrl(ctrl, ctrl->cap); 1685 if (error) 1686 goto out_stop_queue; 1687 1688 error = nvme_init_identify(ctrl); 1689 if (error) 1690 goto out_stop_queue; 1691 1692 return 0; 1693 1694 out_stop_queue: 1695 nvme_tcp_stop_queue(ctrl, 0); 1696 out_cleanup_queue: 1697 if (new) 1698 blk_cleanup_queue(ctrl->admin_q); 1699 out_free_tagset: 1700 if (new) 1701 blk_mq_free_tag_set(ctrl->admin_tagset); 1702 out_free_queue: 1703 nvme_tcp_free_admin_queue(ctrl); 1704 return error; 1705 } 1706 1707 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1708 bool remove) 1709 { 1710 blk_mq_quiesce_queue(ctrl->admin_q); 1711 nvme_tcp_stop_queue(ctrl, 0); 1712 if (ctrl->admin_tagset) 1713 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1714 nvme_cancel_request, ctrl); 1715 blk_mq_unquiesce_queue(ctrl->admin_q); 1716 nvme_tcp_destroy_admin_queue(ctrl, remove); 1717 } 1718 1719 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1720 bool remove) 1721 { 1722 if (ctrl->queue_count <= 1) 1723 return; 1724 nvme_stop_queues(ctrl); 1725 nvme_tcp_stop_io_queues(ctrl); 1726 if (ctrl->tagset) 1727 blk_mq_tagset_busy_iter(ctrl->tagset, 1728 nvme_cancel_request, ctrl); 1729 if (remove) 1730 nvme_start_queues(ctrl); 1731 nvme_tcp_destroy_io_queues(ctrl, remove); 1732 } 1733 1734 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1735 { 1736 /* If we are resetting/deleting then do nothing */ 1737 if (ctrl->state != NVME_CTRL_CONNECTING) { 1738 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1739 ctrl->state == NVME_CTRL_LIVE); 1740 return; 1741 } 1742 1743 if (nvmf_should_reconnect(ctrl)) { 1744 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1745 ctrl->opts->reconnect_delay); 1746 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1747 ctrl->opts->reconnect_delay * HZ); 1748 } else { 1749 dev_info(ctrl->device, "Removing controller...\n"); 1750 nvme_delete_ctrl(ctrl); 1751 } 1752 } 1753 1754 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1755 { 1756 struct nvmf_ctrl_options *opts = ctrl->opts; 1757 int ret = -EINVAL; 1758 1759 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1760 if (ret) 1761 return ret; 1762 1763 if (ctrl->icdoff) { 1764 dev_err(ctrl->device, "icdoff is not supported!\n"); 1765 goto destroy_admin; 1766 } 1767 1768 if (opts->queue_size > ctrl->sqsize + 1) 1769 dev_warn(ctrl->device, 1770 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1771 opts->queue_size, ctrl->sqsize + 1); 1772 1773 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1774 dev_warn(ctrl->device, 1775 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1776 ctrl->sqsize + 1, ctrl->maxcmd); 1777 ctrl->sqsize = ctrl->maxcmd - 1; 1778 } 1779 1780 if (ctrl->queue_count > 1) { 1781 ret = nvme_tcp_configure_io_queues(ctrl, new); 1782 if (ret) 1783 goto destroy_admin; 1784 } 1785 1786 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1787 /* state change failure is ok if we're in DELETING state */ 1788 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1789 ret = -EINVAL; 1790 goto destroy_io; 1791 } 1792 1793 nvme_start_ctrl(ctrl); 1794 return 0; 1795 1796 destroy_io: 1797 if (ctrl->queue_count > 1) 1798 nvme_tcp_destroy_io_queues(ctrl, new); 1799 destroy_admin: 1800 nvme_tcp_stop_queue(ctrl, 0); 1801 nvme_tcp_destroy_admin_queue(ctrl, new); 1802 return ret; 1803 } 1804 1805 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1806 { 1807 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1808 struct nvme_tcp_ctrl, connect_work); 1809 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1810 1811 ++ctrl->nr_reconnects; 1812 1813 if (nvme_tcp_setup_ctrl(ctrl, false)) 1814 goto requeue; 1815 1816 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1817 ctrl->nr_reconnects); 1818 1819 ctrl->nr_reconnects = 0; 1820 1821 return; 1822 1823 requeue: 1824 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1825 ctrl->nr_reconnects); 1826 nvme_tcp_reconnect_or_remove(ctrl); 1827 } 1828 1829 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1830 { 1831 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1832 struct nvme_tcp_ctrl, err_work); 1833 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1834 1835 nvme_stop_keep_alive(ctrl); 1836 nvme_tcp_teardown_io_queues(ctrl, false); 1837 /* unquiesce to fail fast pending requests */ 1838 nvme_start_queues(ctrl); 1839 nvme_tcp_teardown_admin_queue(ctrl, false); 1840 1841 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1842 /* state change failure is ok if we're in DELETING state */ 1843 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1844 return; 1845 } 1846 1847 nvme_tcp_reconnect_or_remove(ctrl); 1848 } 1849 1850 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1851 { 1852 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1853 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1854 1855 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1856 if (shutdown) 1857 nvme_shutdown_ctrl(ctrl); 1858 else 1859 nvme_disable_ctrl(ctrl, ctrl->cap); 1860 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 1861 } 1862 1863 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 1864 { 1865 nvme_tcp_teardown_ctrl(ctrl, true); 1866 } 1867 1868 static void nvme_reset_ctrl_work(struct work_struct *work) 1869 { 1870 struct nvme_ctrl *ctrl = 1871 container_of(work, struct nvme_ctrl, reset_work); 1872 1873 nvme_stop_ctrl(ctrl); 1874 nvme_tcp_teardown_ctrl(ctrl, false); 1875 1876 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1877 /* state change failure is ok if we're in DELETING state */ 1878 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1879 return; 1880 } 1881 1882 if (nvme_tcp_setup_ctrl(ctrl, false)) 1883 goto out_fail; 1884 1885 return; 1886 1887 out_fail: 1888 ++ctrl->nr_reconnects; 1889 nvme_tcp_reconnect_or_remove(ctrl); 1890 } 1891 1892 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 1893 { 1894 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1895 1896 if (list_empty(&ctrl->list)) 1897 goto free_ctrl; 1898 1899 mutex_lock(&nvme_tcp_ctrl_mutex); 1900 list_del(&ctrl->list); 1901 mutex_unlock(&nvme_tcp_ctrl_mutex); 1902 1903 nvmf_free_options(nctrl->opts); 1904 free_ctrl: 1905 kfree(ctrl->queues); 1906 kfree(ctrl); 1907 } 1908 1909 static void nvme_tcp_set_sg_null(struct nvme_command *c) 1910 { 1911 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1912 1913 sg->addr = 0; 1914 sg->length = 0; 1915 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1916 NVME_SGL_FMT_TRANSPORT_A; 1917 } 1918 1919 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 1920 struct nvme_command *c, u32 data_len) 1921 { 1922 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1923 1924 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1925 sg->length = cpu_to_le32(data_len); 1926 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1927 } 1928 1929 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 1930 u32 data_len) 1931 { 1932 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1933 1934 sg->addr = 0; 1935 sg->length = cpu_to_le32(data_len); 1936 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1937 NVME_SGL_FMT_TRANSPORT_A; 1938 } 1939 1940 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 1941 { 1942 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 1943 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1944 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 1945 struct nvme_command *cmd = &pdu->cmd; 1946 u8 hdgst = nvme_tcp_hdgst_len(queue); 1947 1948 memset(pdu, 0, sizeof(*pdu)); 1949 pdu->hdr.type = nvme_tcp_cmd; 1950 if (queue->hdr_digest) 1951 pdu->hdr.flags |= NVME_TCP_F_HDGST; 1952 pdu->hdr.hlen = sizeof(*pdu); 1953 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 1954 1955 cmd->common.opcode = nvme_admin_async_event; 1956 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1957 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1958 nvme_tcp_set_sg_null(cmd); 1959 1960 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 1961 ctrl->async_req.offset = 0; 1962 ctrl->async_req.curr_bio = NULL; 1963 ctrl->async_req.data_len = 0; 1964 1965 nvme_tcp_queue_request(&ctrl->async_req); 1966 } 1967 1968 static enum blk_eh_timer_return 1969 nvme_tcp_timeout(struct request *rq, bool reserved) 1970 { 1971 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1972 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 1973 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 1974 1975 dev_warn(ctrl->ctrl.device, 1976 "queue %d: timeout request %#x type %d\n", 1977 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 1978 1979 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1980 /* 1981 * Teardown immediately if controller times out while starting 1982 * or we are already started error recovery. all outstanding 1983 * requests are completed on shutdown, so we return BLK_EH_DONE. 1984 */ 1985 flush_work(&ctrl->err_work); 1986 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 1987 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 1988 return BLK_EH_DONE; 1989 } 1990 1991 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1992 nvme_tcp_error_recovery(&ctrl->ctrl); 1993 1994 return BLK_EH_RESET_TIMER; 1995 } 1996 1997 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 1998 struct request *rq) 1999 { 2000 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2001 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2002 struct nvme_command *c = &pdu->cmd; 2003 2004 c->common.flags |= NVME_CMD_SGL_METABUF; 2005 2006 if (rq_data_dir(rq) == WRITE && req->data_len && 2007 req->data_len <= nvme_tcp_inline_data_size(queue)) 2008 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2009 else 2010 nvme_tcp_set_sg_host_data(c, req->data_len); 2011 2012 return 0; 2013 } 2014 2015 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2016 struct request *rq) 2017 { 2018 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2019 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2020 struct nvme_tcp_queue *queue = req->queue; 2021 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2022 blk_status_t ret; 2023 2024 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2025 if (ret) 2026 return ret; 2027 2028 req->state = NVME_TCP_SEND_CMD_PDU; 2029 req->offset = 0; 2030 req->data_sent = 0; 2031 req->pdu_len = 0; 2032 req->pdu_sent = 0; 2033 req->data_len = blk_rq_payload_bytes(rq); 2034 req->curr_bio = rq->bio; 2035 2036 if (rq_data_dir(rq) == WRITE && 2037 req->data_len <= nvme_tcp_inline_data_size(queue)) 2038 req->pdu_len = req->data_len; 2039 else if (req->curr_bio) 2040 nvme_tcp_init_iter(req, READ); 2041 2042 pdu->hdr.type = nvme_tcp_cmd; 2043 pdu->hdr.flags = 0; 2044 if (queue->hdr_digest) 2045 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2046 if (queue->data_digest && req->pdu_len) { 2047 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2048 ddgst = nvme_tcp_ddgst_len(queue); 2049 } 2050 pdu->hdr.hlen = sizeof(*pdu); 2051 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2052 pdu->hdr.plen = 2053 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2054 2055 ret = nvme_tcp_map_data(queue, rq); 2056 if (unlikely(ret)) { 2057 dev_err(queue->ctrl->ctrl.device, 2058 "Failed to map data (%d)\n", ret); 2059 return ret; 2060 } 2061 2062 return 0; 2063 } 2064 2065 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2066 const struct blk_mq_queue_data *bd) 2067 { 2068 struct nvme_ns *ns = hctx->queue->queuedata; 2069 struct nvme_tcp_queue *queue = hctx->driver_data; 2070 struct request *rq = bd->rq; 2071 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2072 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2073 blk_status_t ret; 2074 2075 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2076 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2077 2078 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2079 if (unlikely(ret)) 2080 return ret; 2081 2082 blk_mq_start_request(rq); 2083 2084 nvme_tcp_queue_request(req); 2085 2086 return BLK_STS_OK; 2087 } 2088 2089 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2090 { 2091 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2092 2093 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2094 set->map[HCTX_TYPE_READ].nr_queues = ctrl->ctrl.opts->nr_io_queues; 2095 if (ctrl->ctrl.opts->nr_write_queues) { 2096 /* separate read/write queues */ 2097 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2098 ctrl->ctrl.opts->nr_write_queues; 2099 set->map[HCTX_TYPE_READ].queue_offset = 2100 ctrl->ctrl.opts->nr_write_queues; 2101 } else { 2102 /* mixed read/write queues */ 2103 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2104 ctrl->ctrl.opts->nr_io_queues; 2105 set->map[HCTX_TYPE_READ].queue_offset = 0; 2106 } 2107 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2108 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2109 return 0; 2110 } 2111 2112 static struct blk_mq_ops nvme_tcp_mq_ops = { 2113 .queue_rq = nvme_tcp_queue_rq, 2114 .complete = nvme_complete_rq, 2115 .init_request = nvme_tcp_init_request, 2116 .exit_request = nvme_tcp_exit_request, 2117 .init_hctx = nvme_tcp_init_hctx, 2118 .timeout = nvme_tcp_timeout, 2119 .map_queues = nvme_tcp_map_queues, 2120 }; 2121 2122 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2123 .queue_rq = nvme_tcp_queue_rq, 2124 .complete = nvme_complete_rq, 2125 .init_request = nvme_tcp_init_request, 2126 .exit_request = nvme_tcp_exit_request, 2127 .init_hctx = nvme_tcp_init_admin_hctx, 2128 .timeout = nvme_tcp_timeout, 2129 }; 2130 2131 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2132 .name = "tcp", 2133 .module = THIS_MODULE, 2134 .flags = NVME_F_FABRICS, 2135 .reg_read32 = nvmf_reg_read32, 2136 .reg_read64 = nvmf_reg_read64, 2137 .reg_write32 = nvmf_reg_write32, 2138 .free_ctrl = nvme_tcp_free_ctrl, 2139 .submit_async_event = nvme_tcp_submit_async_event, 2140 .delete_ctrl = nvme_tcp_delete_ctrl, 2141 .get_address = nvmf_get_address, 2142 }; 2143 2144 static bool 2145 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2146 { 2147 struct nvme_tcp_ctrl *ctrl; 2148 bool found = false; 2149 2150 mutex_lock(&nvme_tcp_ctrl_mutex); 2151 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2152 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2153 if (found) 2154 break; 2155 } 2156 mutex_unlock(&nvme_tcp_ctrl_mutex); 2157 2158 return found; 2159 } 2160 2161 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2162 struct nvmf_ctrl_options *opts) 2163 { 2164 struct nvme_tcp_ctrl *ctrl; 2165 int ret; 2166 2167 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2168 if (!ctrl) 2169 return ERR_PTR(-ENOMEM); 2170 2171 INIT_LIST_HEAD(&ctrl->list); 2172 ctrl->ctrl.opts = opts; 2173 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1; 2174 ctrl->ctrl.sqsize = opts->queue_size - 1; 2175 ctrl->ctrl.kato = opts->kato; 2176 2177 INIT_DELAYED_WORK(&ctrl->connect_work, 2178 nvme_tcp_reconnect_ctrl_work); 2179 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2180 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2181 2182 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2183 opts->trsvcid = 2184 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2185 if (!opts->trsvcid) { 2186 ret = -ENOMEM; 2187 goto out_free_ctrl; 2188 } 2189 opts->mask |= NVMF_OPT_TRSVCID; 2190 } 2191 2192 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2193 opts->traddr, opts->trsvcid, &ctrl->addr); 2194 if (ret) { 2195 pr_err("malformed address passed: %s:%s\n", 2196 opts->traddr, opts->trsvcid); 2197 goto out_free_ctrl; 2198 } 2199 2200 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2201 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2202 opts->host_traddr, NULL, &ctrl->src_addr); 2203 if (ret) { 2204 pr_err("malformed src address passed: %s\n", 2205 opts->host_traddr); 2206 goto out_free_ctrl; 2207 } 2208 } 2209 2210 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2211 ret = -EALREADY; 2212 goto out_free_ctrl; 2213 } 2214 2215 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2216 GFP_KERNEL); 2217 if (!ctrl->queues) { 2218 ret = -ENOMEM; 2219 goto out_free_ctrl; 2220 } 2221 2222 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2223 if (ret) 2224 goto out_kfree_queues; 2225 2226 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2227 WARN_ON_ONCE(1); 2228 ret = -EINTR; 2229 goto out_uninit_ctrl; 2230 } 2231 2232 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2233 if (ret) 2234 goto out_uninit_ctrl; 2235 2236 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2237 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2238 2239 nvme_get_ctrl(&ctrl->ctrl); 2240 2241 mutex_lock(&nvme_tcp_ctrl_mutex); 2242 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2243 mutex_unlock(&nvme_tcp_ctrl_mutex); 2244 2245 return &ctrl->ctrl; 2246 2247 out_uninit_ctrl: 2248 nvme_uninit_ctrl(&ctrl->ctrl); 2249 nvme_put_ctrl(&ctrl->ctrl); 2250 if (ret > 0) 2251 ret = -EIO; 2252 return ERR_PTR(ret); 2253 out_kfree_queues: 2254 kfree(ctrl->queues); 2255 out_free_ctrl: 2256 kfree(ctrl); 2257 return ERR_PTR(ret); 2258 } 2259 2260 static struct nvmf_transport_ops nvme_tcp_transport = { 2261 .name = "tcp", 2262 .module = THIS_MODULE, 2263 .required_opts = NVMF_OPT_TRADDR, 2264 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2265 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2266 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2267 NVMF_OPT_NR_WRITE_QUEUES, 2268 .create_ctrl = nvme_tcp_create_ctrl, 2269 }; 2270 2271 static int __init nvme_tcp_init_module(void) 2272 { 2273 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2274 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2275 if (!nvme_tcp_wq) 2276 return -ENOMEM; 2277 2278 nvmf_register_transport(&nvme_tcp_transport); 2279 return 0; 2280 } 2281 2282 static void __exit nvme_tcp_cleanup_module(void) 2283 { 2284 struct nvme_tcp_ctrl *ctrl; 2285 2286 nvmf_unregister_transport(&nvme_tcp_transport); 2287 2288 mutex_lock(&nvme_tcp_ctrl_mutex); 2289 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2290 nvme_delete_ctrl(&ctrl->ctrl); 2291 mutex_unlock(&nvme_tcp_ctrl_mutex); 2292 flush_workqueue(nvme_delete_wq); 2293 2294 destroy_workqueue(nvme_tcp_wq); 2295 } 2296 2297 module_init(nvme_tcp_init_module); 2298 module_exit(nvme_tcp_cleanup_module); 2299 2300 MODULE_LICENSE("GPL v2"); 2301