1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 #include <trace/events/sock.h> 18 19 #include "nvme.h" 20 #include "fabrics.h" 21 22 struct nvme_tcp_queue; 23 24 /* Define the socket priority to use for connections were it is desirable 25 * that the NIC consider performing optimized packet processing or filtering. 26 * A non-zero value being sufficient to indicate general consideration of any 27 * possible optimization. Making it a module param allows for alternative 28 * values that may be unique for some NIC implementations. 29 */ 30 static int so_priority; 31 module_param(so_priority, int, 0644); 32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 33 34 #ifdef CONFIG_DEBUG_LOCK_ALLOC 35 /* lockdep can detect a circular dependency of the form 36 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 37 * because dependencies are tracked for both nvme-tcp and user contexts. Using 38 * a separate class prevents lockdep from conflating nvme-tcp socket use with 39 * user-space socket API use. 40 */ 41 static struct lock_class_key nvme_tcp_sk_key[2]; 42 static struct lock_class_key nvme_tcp_slock_key[2]; 43 44 static void nvme_tcp_reclassify_socket(struct socket *sock) 45 { 46 struct sock *sk = sock->sk; 47 48 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 49 return; 50 51 switch (sk->sk_family) { 52 case AF_INET: 53 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 54 &nvme_tcp_slock_key[0], 55 "sk_lock-AF_INET-NVME", 56 &nvme_tcp_sk_key[0]); 57 break; 58 case AF_INET6: 59 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 60 &nvme_tcp_slock_key[1], 61 "sk_lock-AF_INET6-NVME", 62 &nvme_tcp_sk_key[1]); 63 break; 64 default: 65 WARN_ON_ONCE(1); 66 } 67 } 68 #else 69 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 70 #endif 71 72 enum nvme_tcp_send_state { 73 NVME_TCP_SEND_CMD_PDU = 0, 74 NVME_TCP_SEND_H2C_PDU, 75 NVME_TCP_SEND_DATA, 76 NVME_TCP_SEND_DDGST, 77 }; 78 79 struct nvme_tcp_request { 80 struct nvme_request req; 81 void *pdu; 82 struct nvme_tcp_queue *queue; 83 u32 data_len; 84 u32 pdu_len; 85 u32 pdu_sent; 86 u32 h2cdata_left; 87 u32 h2cdata_offset; 88 u16 ttag; 89 __le16 status; 90 struct list_head entry; 91 struct llist_node lentry; 92 __le32 ddgst; 93 94 struct bio *curr_bio; 95 struct iov_iter iter; 96 97 /* send state */ 98 size_t offset; 99 size_t data_sent; 100 enum nvme_tcp_send_state state; 101 }; 102 103 enum nvme_tcp_queue_flags { 104 NVME_TCP_Q_ALLOCATED = 0, 105 NVME_TCP_Q_LIVE = 1, 106 NVME_TCP_Q_POLLING = 2, 107 }; 108 109 enum nvme_tcp_recv_state { 110 NVME_TCP_RECV_PDU = 0, 111 NVME_TCP_RECV_DATA, 112 NVME_TCP_RECV_DDGST, 113 }; 114 115 struct nvme_tcp_ctrl; 116 struct nvme_tcp_queue { 117 struct socket *sock; 118 struct work_struct io_work; 119 int io_cpu; 120 121 struct mutex queue_lock; 122 struct mutex send_mutex; 123 struct llist_head req_list; 124 struct list_head send_list; 125 126 /* recv state */ 127 void *pdu; 128 int pdu_remaining; 129 int pdu_offset; 130 size_t data_remaining; 131 size_t ddgst_remaining; 132 unsigned int nr_cqe; 133 134 /* send state */ 135 struct nvme_tcp_request *request; 136 137 u32 maxh2cdata; 138 size_t cmnd_capsule_len; 139 struct nvme_tcp_ctrl *ctrl; 140 unsigned long flags; 141 bool rd_enabled; 142 143 bool hdr_digest; 144 bool data_digest; 145 struct ahash_request *rcv_hash; 146 struct ahash_request *snd_hash; 147 __le32 exp_ddgst; 148 __le32 recv_ddgst; 149 150 struct page_frag_cache pf_cache; 151 152 void (*state_change)(struct sock *); 153 void (*data_ready)(struct sock *); 154 void (*write_space)(struct sock *); 155 }; 156 157 struct nvme_tcp_ctrl { 158 /* read only in the hot path */ 159 struct nvme_tcp_queue *queues; 160 struct blk_mq_tag_set tag_set; 161 162 /* other member variables */ 163 struct list_head list; 164 struct blk_mq_tag_set admin_tag_set; 165 struct sockaddr_storage addr; 166 struct sockaddr_storage src_addr; 167 struct nvme_ctrl ctrl; 168 169 struct work_struct err_work; 170 struct delayed_work connect_work; 171 struct nvme_tcp_request async_req; 172 u32 io_queues[HCTX_MAX_TYPES]; 173 }; 174 175 static LIST_HEAD(nvme_tcp_ctrl_list); 176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 177 static struct workqueue_struct *nvme_tcp_wq; 178 static const struct blk_mq_ops nvme_tcp_mq_ops; 179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 181 182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 183 { 184 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 185 } 186 187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 188 { 189 return queue - queue->ctrl->queues; 190 } 191 192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 193 { 194 u32 queue_idx = nvme_tcp_queue_id(queue); 195 196 if (queue_idx == 0) 197 return queue->ctrl->admin_tag_set.tags[queue_idx]; 198 return queue->ctrl->tag_set.tags[queue_idx - 1]; 199 } 200 201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 202 { 203 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 204 } 205 206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 207 { 208 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 209 } 210 211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 212 { 213 return req->pdu; 214 } 215 216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 217 { 218 /* use the pdu space in the back for the data pdu */ 219 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 220 sizeof(struct nvme_tcp_data_pdu); 221 } 222 223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 224 { 225 if (nvme_is_fabrics(req->req.cmd)) 226 return NVME_TCP_ADMIN_CCSZ; 227 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 228 } 229 230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 231 { 232 return req == &req->queue->ctrl->async_req; 233 } 234 235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 236 { 237 struct request *rq; 238 239 if (unlikely(nvme_tcp_async_req(req))) 240 return false; /* async events don't have a request */ 241 242 rq = blk_mq_rq_from_pdu(req); 243 244 return rq_data_dir(rq) == WRITE && req->data_len && 245 req->data_len <= nvme_tcp_inline_data_size(req); 246 } 247 248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 249 { 250 return req->iter.bvec->bv_page; 251 } 252 253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 254 { 255 return req->iter.bvec->bv_offset + req->iter.iov_offset; 256 } 257 258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 259 { 260 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 261 req->pdu_len - req->pdu_sent); 262 } 263 264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 265 { 266 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 267 req->pdu_len - req->pdu_sent : 0; 268 } 269 270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 271 int len) 272 { 273 return nvme_tcp_pdu_data_left(req) <= len; 274 } 275 276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 277 unsigned int dir) 278 { 279 struct request *rq = blk_mq_rq_from_pdu(req); 280 struct bio_vec *vec; 281 unsigned int size; 282 int nr_bvec; 283 size_t offset; 284 285 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 286 vec = &rq->special_vec; 287 nr_bvec = 1; 288 size = blk_rq_payload_bytes(rq); 289 offset = 0; 290 } else { 291 struct bio *bio = req->curr_bio; 292 struct bvec_iter bi; 293 struct bio_vec bv; 294 295 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 296 nr_bvec = 0; 297 bio_for_each_bvec(bv, bio, bi) { 298 nr_bvec++; 299 } 300 size = bio->bi_iter.bi_size; 301 offset = bio->bi_iter.bi_bvec_done; 302 } 303 304 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 305 req->iter.iov_offset = offset; 306 } 307 308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 309 int len) 310 { 311 req->data_sent += len; 312 req->pdu_sent += len; 313 iov_iter_advance(&req->iter, len); 314 if (!iov_iter_count(&req->iter) && 315 req->data_sent < req->data_len) { 316 req->curr_bio = req->curr_bio->bi_next; 317 nvme_tcp_init_iter(req, ITER_SOURCE); 318 } 319 } 320 321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 322 { 323 int ret; 324 325 /* drain the send queue as much as we can... */ 326 do { 327 ret = nvme_tcp_try_send(queue); 328 } while (ret > 0); 329 } 330 331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 332 { 333 return !list_empty(&queue->send_list) || 334 !llist_empty(&queue->req_list); 335 } 336 337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 338 bool sync, bool last) 339 { 340 struct nvme_tcp_queue *queue = req->queue; 341 bool empty; 342 343 empty = llist_add(&req->lentry, &queue->req_list) && 344 list_empty(&queue->send_list) && !queue->request; 345 346 /* 347 * if we're the first on the send_list and we can try to send 348 * directly, otherwise queue io_work. Also, only do that if we 349 * are on the same cpu, so we don't introduce contention. 350 */ 351 if (queue->io_cpu == raw_smp_processor_id() && 352 sync && empty && mutex_trylock(&queue->send_mutex)) { 353 nvme_tcp_send_all(queue); 354 mutex_unlock(&queue->send_mutex); 355 } 356 357 if (last && nvme_tcp_queue_more(queue)) 358 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 359 } 360 361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 362 { 363 struct nvme_tcp_request *req; 364 struct llist_node *node; 365 366 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 367 req = llist_entry(node, struct nvme_tcp_request, lentry); 368 list_add(&req->entry, &queue->send_list); 369 } 370 } 371 372 static inline struct nvme_tcp_request * 373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 374 { 375 struct nvme_tcp_request *req; 376 377 req = list_first_entry_or_null(&queue->send_list, 378 struct nvme_tcp_request, entry); 379 if (!req) { 380 nvme_tcp_process_req_list(queue); 381 req = list_first_entry_or_null(&queue->send_list, 382 struct nvme_tcp_request, entry); 383 if (unlikely(!req)) 384 return NULL; 385 } 386 387 list_del(&req->entry); 388 return req; 389 } 390 391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 392 __le32 *dgst) 393 { 394 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 395 crypto_ahash_final(hash); 396 } 397 398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 399 struct page *page, off_t off, size_t len) 400 { 401 struct scatterlist sg; 402 403 sg_init_table(&sg, 1); 404 sg_set_page(&sg, page, len, off); 405 ahash_request_set_crypt(hash, &sg, NULL, len); 406 crypto_ahash_update(hash); 407 } 408 409 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 410 void *pdu, size_t len) 411 { 412 struct scatterlist sg; 413 414 sg_init_one(&sg, pdu, len); 415 ahash_request_set_crypt(hash, &sg, pdu + len, len); 416 crypto_ahash_digest(hash); 417 } 418 419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 420 void *pdu, size_t pdu_len) 421 { 422 struct nvme_tcp_hdr *hdr = pdu; 423 __le32 recv_digest; 424 __le32 exp_digest; 425 426 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 427 dev_err(queue->ctrl->ctrl.device, 428 "queue %d: header digest flag is cleared\n", 429 nvme_tcp_queue_id(queue)); 430 return -EPROTO; 431 } 432 433 recv_digest = *(__le32 *)(pdu + hdr->hlen); 434 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 435 exp_digest = *(__le32 *)(pdu + hdr->hlen); 436 if (recv_digest != exp_digest) { 437 dev_err(queue->ctrl->ctrl.device, 438 "header digest error: recv %#x expected %#x\n", 439 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 440 return -EIO; 441 } 442 443 return 0; 444 } 445 446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 447 { 448 struct nvme_tcp_hdr *hdr = pdu; 449 u8 digest_len = nvme_tcp_hdgst_len(queue); 450 u32 len; 451 452 len = le32_to_cpu(hdr->plen) - hdr->hlen - 453 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 454 455 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 456 dev_err(queue->ctrl->ctrl.device, 457 "queue %d: data digest flag is cleared\n", 458 nvme_tcp_queue_id(queue)); 459 return -EPROTO; 460 } 461 crypto_ahash_init(queue->rcv_hash); 462 463 return 0; 464 } 465 466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 467 struct request *rq, unsigned int hctx_idx) 468 { 469 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 470 471 page_frag_free(req->pdu); 472 } 473 474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 475 struct request *rq, unsigned int hctx_idx, 476 unsigned int numa_node) 477 { 478 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 479 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 480 struct nvme_tcp_cmd_pdu *pdu; 481 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 482 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 483 u8 hdgst = nvme_tcp_hdgst_len(queue); 484 485 req->pdu = page_frag_alloc(&queue->pf_cache, 486 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 487 GFP_KERNEL | __GFP_ZERO); 488 if (!req->pdu) 489 return -ENOMEM; 490 491 pdu = req->pdu; 492 req->queue = queue; 493 nvme_req(rq)->ctrl = &ctrl->ctrl; 494 nvme_req(rq)->cmd = &pdu->cmd; 495 496 return 0; 497 } 498 499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 500 unsigned int hctx_idx) 501 { 502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 503 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 504 505 hctx->driver_data = queue; 506 return 0; 507 } 508 509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 510 unsigned int hctx_idx) 511 { 512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 513 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 514 515 hctx->driver_data = queue; 516 return 0; 517 } 518 519 static enum nvme_tcp_recv_state 520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 521 { 522 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 523 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 524 NVME_TCP_RECV_DATA; 525 } 526 527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 528 { 529 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 530 nvme_tcp_hdgst_len(queue); 531 queue->pdu_offset = 0; 532 queue->data_remaining = -1; 533 queue->ddgst_remaining = 0; 534 } 535 536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 537 { 538 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 539 return; 540 541 dev_warn(ctrl->device, "starting error recovery\n"); 542 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 543 } 544 545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 546 struct nvme_completion *cqe) 547 { 548 struct nvme_tcp_request *req; 549 struct request *rq; 550 551 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 552 if (!rq) { 553 dev_err(queue->ctrl->ctrl.device, 554 "got bad cqe.command_id %#x on queue %d\n", 555 cqe->command_id, nvme_tcp_queue_id(queue)); 556 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 557 return -EINVAL; 558 } 559 560 req = blk_mq_rq_to_pdu(rq); 561 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 562 req->status = cqe->status; 563 564 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 565 nvme_complete_rq(rq); 566 queue->nr_cqe++; 567 568 return 0; 569 } 570 571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 572 struct nvme_tcp_data_pdu *pdu) 573 { 574 struct request *rq; 575 576 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 577 if (!rq) { 578 dev_err(queue->ctrl->ctrl.device, 579 "got bad c2hdata.command_id %#x on queue %d\n", 580 pdu->command_id, nvme_tcp_queue_id(queue)); 581 return -ENOENT; 582 } 583 584 if (!blk_rq_payload_bytes(rq)) { 585 dev_err(queue->ctrl->ctrl.device, 586 "queue %d tag %#x unexpected data\n", 587 nvme_tcp_queue_id(queue), rq->tag); 588 return -EIO; 589 } 590 591 queue->data_remaining = le32_to_cpu(pdu->data_length); 592 593 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 594 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 595 dev_err(queue->ctrl->ctrl.device, 596 "queue %d tag %#x SUCCESS set but not last PDU\n", 597 nvme_tcp_queue_id(queue), rq->tag); 598 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 599 return -EPROTO; 600 } 601 602 return 0; 603 } 604 605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 606 struct nvme_tcp_rsp_pdu *pdu) 607 { 608 struct nvme_completion *cqe = &pdu->cqe; 609 int ret = 0; 610 611 /* 612 * AEN requests are special as they don't time out and can 613 * survive any kind of queue freeze and often don't respond to 614 * aborts. We don't even bother to allocate a struct request 615 * for them but rather special case them here. 616 */ 617 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 618 cqe->command_id))) 619 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 620 &cqe->result); 621 else 622 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 623 624 return ret; 625 } 626 627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 628 { 629 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 630 struct nvme_tcp_queue *queue = req->queue; 631 struct request *rq = blk_mq_rq_from_pdu(req); 632 u32 h2cdata_sent = req->pdu_len; 633 u8 hdgst = nvme_tcp_hdgst_len(queue); 634 u8 ddgst = nvme_tcp_ddgst_len(queue); 635 636 req->state = NVME_TCP_SEND_H2C_PDU; 637 req->offset = 0; 638 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 639 req->pdu_sent = 0; 640 req->h2cdata_left -= req->pdu_len; 641 req->h2cdata_offset += h2cdata_sent; 642 643 memset(data, 0, sizeof(*data)); 644 data->hdr.type = nvme_tcp_h2c_data; 645 if (!req->h2cdata_left) 646 data->hdr.flags = NVME_TCP_F_DATA_LAST; 647 if (queue->hdr_digest) 648 data->hdr.flags |= NVME_TCP_F_HDGST; 649 if (queue->data_digest) 650 data->hdr.flags |= NVME_TCP_F_DDGST; 651 data->hdr.hlen = sizeof(*data); 652 data->hdr.pdo = data->hdr.hlen + hdgst; 653 data->hdr.plen = 654 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 655 data->ttag = req->ttag; 656 data->command_id = nvme_cid(rq); 657 data->data_offset = cpu_to_le32(req->h2cdata_offset); 658 data->data_length = cpu_to_le32(req->pdu_len); 659 } 660 661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 662 struct nvme_tcp_r2t_pdu *pdu) 663 { 664 struct nvme_tcp_request *req; 665 struct request *rq; 666 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 667 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 668 669 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 670 if (!rq) { 671 dev_err(queue->ctrl->ctrl.device, 672 "got bad r2t.command_id %#x on queue %d\n", 673 pdu->command_id, nvme_tcp_queue_id(queue)); 674 return -ENOENT; 675 } 676 req = blk_mq_rq_to_pdu(rq); 677 678 if (unlikely(!r2t_length)) { 679 dev_err(queue->ctrl->ctrl.device, 680 "req %d r2t len is %u, probably a bug...\n", 681 rq->tag, r2t_length); 682 return -EPROTO; 683 } 684 685 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 686 dev_err(queue->ctrl->ctrl.device, 687 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 688 rq->tag, r2t_length, req->data_len, req->data_sent); 689 return -EPROTO; 690 } 691 692 if (unlikely(r2t_offset < req->data_sent)) { 693 dev_err(queue->ctrl->ctrl.device, 694 "req %d unexpected r2t offset %u (expected %zu)\n", 695 rq->tag, r2t_offset, req->data_sent); 696 return -EPROTO; 697 } 698 699 req->pdu_len = 0; 700 req->h2cdata_left = r2t_length; 701 req->h2cdata_offset = r2t_offset; 702 req->ttag = pdu->ttag; 703 704 nvme_tcp_setup_h2c_data_pdu(req); 705 nvme_tcp_queue_request(req, false, true); 706 707 return 0; 708 } 709 710 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 711 unsigned int *offset, size_t *len) 712 { 713 struct nvme_tcp_hdr *hdr; 714 char *pdu = queue->pdu; 715 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 716 int ret; 717 718 ret = skb_copy_bits(skb, *offset, 719 &pdu[queue->pdu_offset], rcv_len); 720 if (unlikely(ret)) 721 return ret; 722 723 queue->pdu_remaining -= rcv_len; 724 queue->pdu_offset += rcv_len; 725 *offset += rcv_len; 726 *len -= rcv_len; 727 if (queue->pdu_remaining) 728 return 0; 729 730 hdr = queue->pdu; 731 if (queue->hdr_digest) { 732 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 733 if (unlikely(ret)) 734 return ret; 735 } 736 737 738 if (queue->data_digest) { 739 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 740 if (unlikely(ret)) 741 return ret; 742 } 743 744 switch (hdr->type) { 745 case nvme_tcp_c2h_data: 746 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 747 case nvme_tcp_rsp: 748 nvme_tcp_init_recv_ctx(queue); 749 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 750 case nvme_tcp_r2t: 751 nvme_tcp_init_recv_ctx(queue); 752 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 753 default: 754 dev_err(queue->ctrl->ctrl.device, 755 "unsupported pdu type (%d)\n", hdr->type); 756 return -EINVAL; 757 } 758 } 759 760 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 761 { 762 union nvme_result res = {}; 763 764 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 765 nvme_complete_rq(rq); 766 } 767 768 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 769 unsigned int *offset, size_t *len) 770 { 771 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 772 struct request *rq = 773 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 774 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 775 776 while (true) { 777 int recv_len, ret; 778 779 recv_len = min_t(size_t, *len, queue->data_remaining); 780 if (!recv_len) 781 break; 782 783 if (!iov_iter_count(&req->iter)) { 784 req->curr_bio = req->curr_bio->bi_next; 785 786 /* 787 * If we don`t have any bios it means that controller 788 * sent more data than we requested, hence error 789 */ 790 if (!req->curr_bio) { 791 dev_err(queue->ctrl->ctrl.device, 792 "queue %d no space in request %#x", 793 nvme_tcp_queue_id(queue), rq->tag); 794 nvme_tcp_init_recv_ctx(queue); 795 return -EIO; 796 } 797 nvme_tcp_init_iter(req, ITER_DEST); 798 } 799 800 /* we can read only from what is left in this bio */ 801 recv_len = min_t(size_t, recv_len, 802 iov_iter_count(&req->iter)); 803 804 if (queue->data_digest) 805 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 806 &req->iter, recv_len, queue->rcv_hash); 807 else 808 ret = skb_copy_datagram_iter(skb, *offset, 809 &req->iter, recv_len); 810 if (ret) { 811 dev_err(queue->ctrl->ctrl.device, 812 "queue %d failed to copy request %#x data", 813 nvme_tcp_queue_id(queue), rq->tag); 814 return ret; 815 } 816 817 *len -= recv_len; 818 *offset += recv_len; 819 queue->data_remaining -= recv_len; 820 } 821 822 if (!queue->data_remaining) { 823 if (queue->data_digest) { 824 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 825 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 826 } else { 827 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 828 nvme_tcp_end_request(rq, 829 le16_to_cpu(req->status)); 830 queue->nr_cqe++; 831 } 832 nvme_tcp_init_recv_ctx(queue); 833 } 834 } 835 836 return 0; 837 } 838 839 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 840 struct sk_buff *skb, unsigned int *offset, size_t *len) 841 { 842 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 843 char *ddgst = (char *)&queue->recv_ddgst; 844 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 845 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 846 int ret; 847 848 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 849 if (unlikely(ret)) 850 return ret; 851 852 queue->ddgst_remaining -= recv_len; 853 *offset += recv_len; 854 *len -= recv_len; 855 if (queue->ddgst_remaining) 856 return 0; 857 858 if (queue->recv_ddgst != queue->exp_ddgst) { 859 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 860 pdu->command_id); 861 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 862 863 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 864 865 dev_err(queue->ctrl->ctrl.device, 866 "data digest error: recv %#x expected %#x\n", 867 le32_to_cpu(queue->recv_ddgst), 868 le32_to_cpu(queue->exp_ddgst)); 869 } 870 871 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 872 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 873 pdu->command_id); 874 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 875 876 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 877 queue->nr_cqe++; 878 } 879 880 nvme_tcp_init_recv_ctx(queue); 881 return 0; 882 } 883 884 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 885 unsigned int offset, size_t len) 886 { 887 struct nvme_tcp_queue *queue = desc->arg.data; 888 size_t consumed = len; 889 int result; 890 891 if (unlikely(!queue->rd_enabled)) 892 return -EFAULT; 893 894 while (len) { 895 switch (nvme_tcp_recv_state(queue)) { 896 case NVME_TCP_RECV_PDU: 897 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 898 break; 899 case NVME_TCP_RECV_DATA: 900 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 901 break; 902 case NVME_TCP_RECV_DDGST: 903 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 904 break; 905 default: 906 result = -EFAULT; 907 } 908 if (result) { 909 dev_err(queue->ctrl->ctrl.device, 910 "receive failed: %d\n", result); 911 queue->rd_enabled = false; 912 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 913 return result; 914 } 915 } 916 917 return consumed; 918 } 919 920 static void nvme_tcp_data_ready(struct sock *sk) 921 { 922 struct nvme_tcp_queue *queue; 923 924 trace_sk_data_ready(sk); 925 926 read_lock_bh(&sk->sk_callback_lock); 927 queue = sk->sk_user_data; 928 if (likely(queue && queue->rd_enabled) && 929 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 930 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 931 read_unlock_bh(&sk->sk_callback_lock); 932 } 933 934 static void nvme_tcp_write_space(struct sock *sk) 935 { 936 struct nvme_tcp_queue *queue; 937 938 read_lock_bh(&sk->sk_callback_lock); 939 queue = sk->sk_user_data; 940 if (likely(queue && sk_stream_is_writeable(sk))) { 941 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 942 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 943 } 944 read_unlock_bh(&sk->sk_callback_lock); 945 } 946 947 static void nvme_tcp_state_change(struct sock *sk) 948 { 949 struct nvme_tcp_queue *queue; 950 951 read_lock_bh(&sk->sk_callback_lock); 952 queue = sk->sk_user_data; 953 if (!queue) 954 goto done; 955 956 switch (sk->sk_state) { 957 case TCP_CLOSE: 958 case TCP_CLOSE_WAIT: 959 case TCP_LAST_ACK: 960 case TCP_FIN_WAIT1: 961 case TCP_FIN_WAIT2: 962 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 963 break; 964 default: 965 dev_info(queue->ctrl->ctrl.device, 966 "queue %d socket state %d\n", 967 nvme_tcp_queue_id(queue), sk->sk_state); 968 } 969 970 queue->state_change(sk); 971 done: 972 read_unlock_bh(&sk->sk_callback_lock); 973 } 974 975 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 976 { 977 queue->request = NULL; 978 } 979 980 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 981 { 982 if (nvme_tcp_async_req(req)) { 983 union nvme_result res = {}; 984 985 nvme_complete_async_event(&req->queue->ctrl->ctrl, 986 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 987 } else { 988 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 989 NVME_SC_HOST_PATH_ERROR); 990 } 991 } 992 993 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 994 { 995 struct nvme_tcp_queue *queue = req->queue; 996 int req_data_len = req->data_len; 997 u32 h2cdata_left = req->h2cdata_left; 998 999 while (true) { 1000 struct page *page = nvme_tcp_req_cur_page(req); 1001 size_t offset = nvme_tcp_req_cur_offset(req); 1002 size_t len = nvme_tcp_req_cur_length(req); 1003 bool last = nvme_tcp_pdu_last_send(req, len); 1004 int req_data_sent = req->data_sent; 1005 int ret, flags = MSG_DONTWAIT; 1006 1007 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1008 flags |= MSG_EOR; 1009 else 1010 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 1011 1012 if (sendpage_ok(page)) { 1013 ret = kernel_sendpage(queue->sock, page, offset, len, 1014 flags); 1015 } else { 1016 ret = sock_no_sendpage(queue->sock, page, offset, len, 1017 flags); 1018 } 1019 if (ret <= 0) 1020 return ret; 1021 1022 if (queue->data_digest) 1023 nvme_tcp_ddgst_update(queue->snd_hash, page, 1024 offset, ret); 1025 1026 /* 1027 * update the request iterator except for the last payload send 1028 * in the request where we don't want to modify it as we may 1029 * compete with the RX path completing the request. 1030 */ 1031 if (req_data_sent + ret < req_data_len) 1032 nvme_tcp_advance_req(req, ret); 1033 1034 /* fully successful last send in current PDU */ 1035 if (last && ret == len) { 1036 if (queue->data_digest) { 1037 nvme_tcp_ddgst_final(queue->snd_hash, 1038 &req->ddgst); 1039 req->state = NVME_TCP_SEND_DDGST; 1040 req->offset = 0; 1041 } else { 1042 if (h2cdata_left) 1043 nvme_tcp_setup_h2c_data_pdu(req); 1044 else 1045 nvme_tcp_done_send_req(queue); 1046 } 1047 return 1; 1048 } 1049 } 1050 return -EAGAIN; 1051 } 1052 1053 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1054 { 1055 struct nvme_tcp_queue *queue = req->queue; 1056 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1057 bool inline_data = nvme_tcp_has_inline_data(req); 1058 u8 hdgst = nvme_tcp_hdgst_len(queue); 1059 int len = sizeof(*pdu) + hdgst - req->offset; 1060 int flags = MSG_DONTWAIT; 1061 int ret; 1062 1063 if (inline_data || nvme_tcp_queue_more(queue)) 1064 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 1065 else 1066 flags |= MSG_EOR; 1067 1068 if (queue->hdr_digest && !req->offset) 1069 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1070 1071 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1072 offset_in_page(pdu) + req->offset, len, flags); 1073 if (unlikely(ret <= 0)) 1074 return ret; 1075 1076 len -= ret; 1077 if (!len) { 1078 if (inline_data) { 1079 req->state = NVME_TCP_SEND_DATA; 1080 if (queue->data_digest) 1081 crypto_ahash_init(queue->snd_hash); 1082 } else { 1083 nvme_tcp_done_send_req(queue); 1084 } 1085 return 1; 1086 } 1087 req->offset += ret; 1088 1089 return -EAGAIN; 1090 } 1091 1092 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1093 { 1094 struct nvme_tcp_queue *queue = req->queue; 1095 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1096 u8 hdgst = nvme_tcp_hdgst_len(queue); 1097 int len = sizeof(*pdu) - req->offset + hdgst; 1098 int ret; 1099 1100 if (queue->hdr_digest && !req->offset) 1101 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1102 1103 if (!req->h2cdata_left) 1104 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1105 offset_in_page(pdu) + req->offset, len, 1106 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1107 else 1108 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu), 1109 offset_in_page(pdu) + req->offset, len, 1110 MSG_DONTWAIT | MSG_MORE); 1111 if (unlikely(ret <= 0)) 1112 return ret; 1113 1114 len -= ret; 1115 if (!len) { 1116 req->state = NVME_TCP_SEND_DATA; 1117 if (queue->data_digest) 1118 crypto_ahash_init(queue->snd_hash); 1119 return 1; 1120 } 1121 req->offset += ret; 1122 1123 return -EAGAIN; 1124 } 1125 1126 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1127 { 1128 struct nvme_tcp_queue *queue = req->queue; 1129 size_t offset = req->offset; 1130 u32 h2cdata_left = req->h2cdata_left; 1131 int ret; 1132 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1133 struct kvec iov = { 1134 .iov_base = (u8 *)&req->ddgst + req->offset, 1135 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1136 }; 1137 1138 if (nvme_tcp_queue_more(queue)) 1139 msg.msg_flags |= MSG_MORE; 1140 else 1141 msg.msg_flags |= MSG_EOR; 1142 1143 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1144 if (unlikely(ret <= 0)) 1145 return ret; 1146 1147 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1148 if (h2cdata_left) 1149 nvme_tcp_setup_h2c_data_pdu(req); 1150 else 1151 nvme_tcp_done_send_req(queue); 1152 return 1; 1153 } 1154 1155 req->offset += ret; 1156 return -EAGAIN; 1157 } 1158 1159 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1160 { 1161 struct nvme_tcp_request *req; 1162 unsigned int noreclaim_flag; 1163 int ret = 1; 1164 1165 if (!queue->request) { 1166 queue->request = nvme_tcp_fetch_request(queue); 1167 if (!queue->request) 1168 return 0; 1169 } 1170 req = queue->request; 1171 1172 noreclaim_flag = memalloc_noreclaim_save(); 1173 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1174 ret = nvme_tcp_try_send_cmd_pdu(req); 1175 if (ret <= 0) 1176 goto done; 1177 if (!nvme_tcp_has_inline_data(req)) 1178 goto out; 1179 } 1180 1181 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1182 ret = nvme_tcp_try_send_data_pdu(req); 1183 if (ret <= 0) 1184 goto done; 1185 } 1186 1187 if (req->state == NVME_TCP_SEND_DATA) { 1188 ret = nvme_tcp_try_send_data(req); 1189 if (ret <= 0) 1190 goto done; 1191 } 1192 1193 if (req->state == NVME_TCP_SEND_DDGST) 1194 ret = nvme_tcp_try_send_ddgst(req); 1195 done: 1196 if (ret == -EAGAIN) { 1197 ret = 0; 1198 } else if (ret < 0) { 1199 dev_err(queue->ctrl->ctrl.device, 1200 "failed to send request %d\n", ret); 1201 nvme_tcp_fail_request(queue->request); 1202 nvme_tcp_done_send_req(queue); 1203 } 1204 out: 1205 memalloc_noreclaim_restore(noreclaim_flag); 1206 return ret; 1207 } 1208 1209 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1210 { 1211 struct socket *sock = queue->sock; 1212 struct sock *sk = sock->sk; 1213 read_descriptor_t rd_desc; 1214 int consumed; 1215 1216 rd_desc.arg.data = queue; 1217 rd_desc.count = 1; 1218 lock_sock(sk); 1219 queue->nr_cqe = 0; 1220 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1221 release_sock(sk); 1222 return consumed; 1223 } 1224 1225 static void nvme_tcp_io_work(struct work_struct *w) 1226 { 1227 struct nvme_tcp_queue *queue = 1228 container_of(w, struct nvme_tcp_queue, io_work); 1229 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1230 1231 do { 1232 bool pending = false; 1233 int result; 1234 1235 if (mutex_trylock(&queue->send_mutex)) { 1236 result = nvme_tcp_try_send(queue); 1237 mutex_unlock(&queue->send_mutex); 1238 if (result > 0) 1239 pending = true; 1240 else if (unlikely(result < 0)) 1241 break; 1242 } 1243 1244 result = nvme_tcp_try_recv(queue); 1245 if (result > 0) 1246 pending = true; 1247 else if (unlikely(result < 0)) 1248 return; 1249 1250 if (!pending || !queue->rd_enabled) 1251 return; 1252 1253 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1254 1255 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1256 } 1257 1258 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1259 { 1260 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1261 1262 ahash_request_free(queue->rcv_hash); 1263 ahash_request_free(queue->snd_hash); 1264 crypto_free_ahash(tfm); 1265 } 1266 1267 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1268 { 1269 struct crypto_ahash *tfm; 1270 1271 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1272 if (IS_ERR(tfm)) 1273 return PTR_ERR(tfm); 1274 1275 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1276 if (!queue->snd_hash) 1277 goto free_tfm; 1278 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1279 1280 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1281 if (!queue->rcv_hash) 1282 goto free_snd_hash; 1283 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1284 1285 return 0; 1286 free_snd_hash: 1287 ahash_request_free(queue->snd_hash); 1288 free_tfm: 1289 crypto_free_ahash(tfm); 1290 return -ENOMEM; 1291 } 1292 1293 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1294 { 1295 struct nvme_tcp_request *async = &ctrl->async_req; 1296 1297 page_frag_free(async->pdu); 1298 } 1299 1300 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1301 { 1302 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1303 struct nvme_tcp_request *async = &ctrl->async_req; 1304 u8 hdgst = nvme_tcp_hdgst_len(queue); 1305 1306 async->pdu = page_frag_alloc(&queue->pf_cache, 1307 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1308 GFP_KERNEL | __GFP_ZERO); 1309 if (!async->pdu) 1310 return -ENOMEM; 1311 1312 async->queue = &ctrl->queues[0]; 1313 return 0; 1314 } 1315 1316 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1317 { 1318 struct page *page; 1319 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1320 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1321 unsigned int noreclaim_flag; 1322 1323 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1324 return; 1325 1326 if (queue->hdr_digest || queue->data_digest) 1327 nvme_tcp_free_crypto(queue); 1328 1329 if (queue->pf_cache.va) { 1330 page = virt_to_head_page(queue->pf_cache.va); 1331 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1332 queue->pf_cache.va = NULL; 1333 } 1334 1335 noreclaim_flag = memalloc_noreclaim_save(); 1336 sock_release(queue->sock); 1337 memalloc_noreclaim_restore(noreclaim_flag); 1338 1339 kfree(queue->pdu); 1340 mutex_destroy(&queue->send_mutex); 1341 mutex_destroy(&queue->queue_lock); 1342 } 1343 1344 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1345 { 1346 struct nvme_tcp_icreq_pdu *icreq; 1347 struct nvme_tcp_icresp_pdu *icresp; 1348 struct msghdr msg = {}; 1349 struct kvec iov; 1350 bool ctrl_hdgst, ctrl_ddgst; 1351 u32 maxh2cdata; 1352 int ret; 1353 1354 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1355 if (!icreq) 1356 return -ENOMEM; 1357 1358 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1359 if (!icresp) { 1360 ret = -ENOMEM; 1361 goto free_icreq; 1362 } 1363 1364 icreq->hdr.type = nvme_tcp_icreq; 1365 icreq->hdr.hlen = sizeof(*icreq); 1366 icreq->hdr.pdo = 0; 1367 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1368 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1369 icreq->maxr2t = 0; /* single inflight r2t supported */ 1370 icreq->hpda = 0; /* no alignment constraint */ 1371 if (queue->hdr_digest) 1372 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1373 if (queue->data_digest) 1374 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1375 1376 iov.iov_base = icreq; 1377 iov.iov_len = sizeof(*icreq); 1378 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1379 if (ret < 0) 1380 goto free_icresp; 1381 1382 memset(&msg, 0, sizeof(msg)); 1383 iov.iov_base = icresp; 1384 iov.iov_len = sizeof(*icresp); 1385 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1386 iov.iov_len, msg.msg_flags); 1387 if (ret < 0) 1388 goto free_icresp; 1389 1390 ret = -EINVAL; 1391 if (icresp->hdr.type != nvme_tcp_icresp) { 1392 pr_err("queue %d: bad type returned %d\n", 1393 nvme_tcp_queue_id(queue), icresp->hdr.type); 1394 goto free_icresp; 1395 } 1396 1397 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1398 pr_err("queue %d: bad pdu length returned %d\n", 1399 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1400 goto free_icresp; 1401 } 1402 1403 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1404 pr_err("queue %d: bad pfv returned %d\n", 1405 nvme_tcp_queue_id(queue), icresp->pfv); 1406 goto free_icresp; 1407 } 1408 1409 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1410 if ((queue->data_digest && !ctrl_ddgst) || 1411 (!queue->data_digest && ctrl_ddgst)) { 1412 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1413 nvme_tcp_queue_id(queue), 1414 queue->data_digest ? "enabled" : "disabled", 1415 ctrl_ddgst ? "enabled" : "disabled"); 1416 goto free_icresp; 1417 } 1418 1419 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1420 if ((queue->hdr_digest && !ctrl_hdgst) || 1421 (!queue->hdr_digest && ctrl_hdgst)) { 1422 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1423 nvme_tcp_queue_id(queue), 1424 queue->hdr_digest ? "enabled" : "disabled", 1425 ctrl_hdgst ? "enabled" : "disabled"); 1426 goto free_icresp; 1427 } 1428 1429 if (icresp->cpda != 0) { 1430 pr_err("queue %d: unsupported cpda returned %d\n", 1431 nvme_tcp_queue_id(queue), icresp->cpda); 1432 goto free_icresp; 1433 } 1434 1435 maxh2cdata = le32_to_cpu(icresp->maxdata); 1436 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1437 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1438 nvme_tcp_queue_id(queue), maxh2cdata); 1439 goto free_icresp; 1440 } 1441 queue->maxh2cdata = maxh2cdata; 1442 1443 ret = 0; 1444 free_icresp: 1445 kfree(icresp); 1446 free_icreq: 1447 kfree(icreq); 1448 return ret; 1449 } 1450 1451 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1452 { 1453 return nvme_tcp_queue_id(queue) == 0; 1454 } 1455 1456 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1457 { 1458 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1459 int qid = nvme_tcp_queue_id(queue); 1460 1461 return !nvme_tcp_admin_queue(queue) && 1462 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1463 } 1464 1465 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1466 { 1467 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1468 int qid = nvme_tcp_queue_id(queue); 1469 1470 return !nvme_tcp_admin_queue(queue) && 1471 !nvme_tcp_default_queue(queue) && 1472 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1473 ctrl->io_queues[HCTX_TYPE_READ]; 1474 } 1475 1476 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1477 { 1478 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1479 int qid = nvme_tcp_queue_id(queue); 1480 1481 return !nvme_tcp_admin_queue(queue) && 1482 !nvme_tcp_default_queue(queue) && 1483 !nvme_tcp_read_queue(queue) && 1484 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1485 ctrl->io_queues[HCTX_TYPE_READ] + 1486 ctrl->io_queues[HCTX_TYPE_POLL]; 1487 } 1488 1489 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1490 { 1491 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1492 int qid = nvme_tcp_queue_id(queue); 1493 int n = 0; 1494 1495 if (nvme_tcp_default_queue(queue)) 1496 n = qid - 1; 1497 else if (nvme_tcp_read_queue(queue)) 1498 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1499 else if (nvme_tcp_poll_queue(queue)) 1500 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1501 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1502 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1503 } 1504 1505 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid) 1506 { 1507 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1508 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1509 int ret, rcv_pdu_size; 1510 1511 mutex_init(&queue->queue_lock); 1512 queue->ctrl = ctrl; 1513 init_llist_head(&queue->req_list); 1514 INIT_LIST_HEAD(&queue->send_list); 1515 mutex_init(&queue->send_mutex); 1516 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1517 1518 if (qid > 0) 1519 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1520 else 1521 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1522 NVME_TCP_ADMIN_CCSZ; 1523 1524 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1525 IPPROTO_TCP, &queue->sock); 1526 if (ret) { 1527 dev_err(nctrl->device, 1528 "failed to create socket: %d\n", ret); 1529 goto err_destroy_mutex; 1530 } 1531 1532 nvme_tcp_reclassify_socket(queue->sock); 1533 1534 /* Single syn retry */ 1535 tcp_sock_set_syncnt(queue->sock->sk, 1); 1536 1537 /* Set TCP no delay */ 1538 tcp_sock_set_nodelay(queue->sock->sk); 1539 1540 /* 1541 * Cleanup whatever is sitting in the TCP transmit queue on socket 1542 * close. This is done to prevent stale data from being sent should 1543 * the network connection be restored before TCP times out. 1544 */ 1545 sock_no_linger(queue->sock->sk); 1546 1547 if (so_priority > 0) 1548 sock_set_priority(queue->sock->sk, so_priority); 1549 1550 /* Set socket type of service */ 1551 if (nctrl->opts->tos >= 0) 1552 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1553 1554 /* Set 10 seconds timeout for icresp recvmsg */ 1555 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1556 1557 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1558 queue->sock->sk->sk_use_task_frag = false; 1559 nvme_tcp_set_queue_io_cpu(queue); 1560 queue->request = NULL; 1561 queue->data_remaining = 0; 1562 queue->ddgst_remaining = 0; 1563 queue->pdu_remaining = 0; 1564 queue->pdu_offset = 0; 1565 sk_set_memalloc(queue->sock->sk); 1566 1567 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1568 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1569 sizeof(ctrl->src_addr)); 1570 if (ret) { 1571 dev_err(nctrl->device, 1572 "failed to bind queue %d socket %d\n", 1573 qid, ret); 1574 goto err_sock; 1575 } 1576 } 1577 1578 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1579 char *iface = nctrl->opts->host_iface; 1580 sockptr_t optval = KERNEL_SOCKPTR(iface); 1581 1582 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1583 optval, strlen(iface)); 1584 if (ret) { 1585 dev_err(nctrl->device, 1586 "failed to bind to interface %s queue %d err %d\n", 1587 iface, qid, ret); 1588 goto err_sock; 1589 } 1590 } 1591 1592 queue->hdr_digest = nctrl->opts->hdr_digest; 1593 queue->data_digest = nctrl->opts->data_digest; 1594 if (queue->hdr_digest || queue->data_digest) { 1595 ret = nvme_tcp_alloc_crypto(queue); 1596 if (ret) { 1597 dev_err(nctrl->device, 1598 "failed to allocate queue %d crypto\n", qid); 1599 goto err_sock; 1600 } 1601 } 1602 1603 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1604 nvme_tcp_hdgst_len(queue); 1605 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1606 if (!queue->pdu) { 1607 ret = -ENOMEM; 1608 goto err_crypto; 1609 } 1610 1611 dev_dbg(nctrl->device, "connecting queue %d\n", 1612 nvme_tcp_queue_id(queue)); 1613 1614 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1615 sizeof(ctrl->addr), 0); 1616 if (ret) { 1617 dev_err(nctrl->device, 1618 "failed to connect socket: %d\n", ret); 1619 goto err_rcv_pdu; 1620 } 1621 1622 ret = nvme_tcp_init_connection(queue); 1623 if (ret) 1624 goto err_init_connect; 1625 1626 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1627 1628 return 0; 1629 1630 err_init_connect: 1631 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1632 err_rcv_pdu: 1633 kfree(queue->pdu); 1634 err_crypto: 1635 if (queue->hdr_digest || queue->data_digest) 1636 nvme_tcp_free_crypto(queue); 1637 err_sock: 1638 sock_release(queue->sock); 1639 queue->sock = NULL; 1640 err_destroy_mutex: 1641 mutex_destroy(&queue->send_mutex); 1642 mutex_destroy(&queue->queue_lock); 1643 return ret; 1644 } 1645 1646 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1647 { 1648 struct socket *sock = queue->sock; 1649 1650 write_lock_bh(&sock->sk->sk_callback_lock); 1651 sock->sk->sk_user_data = NULL; 1652 sock->sk->sk_data_ready = queue->data_ready; 1653 sock->sk->sk_state_change = queue->state_change; 1654 sock->sk->sk_write_space = queue->write_space; 1655 write_unlock_bh(&sock->sk->sk_callback_lock); 1656 } 1657 1658 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1659 { 1660 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1661 nvme_tcp_restore_sock_ops(queue); 1662 cancel_work_sync(&queue->io_work); 1663 } 1664 1665 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1666 { 1667 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1668 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1669 1670 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1671 return; 1672 1673 mutex_lock(&queue->queue_lock); 1674 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1675 __nvme_tcp_stop_queue(queue); 1676 mutex_unlock(&queue->queue_lock); 1677 } 1678 1679 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1680 { 1681 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1682 queue->sock->sk->sk_user_data = queue; 1683 queue->state_change = queue->sock->sk->sk_state_change; 1684 queue->data_ready = queue->sock->sk->sk_data_ready; 1685 queue->write_space = queue->sock->sk->sk_write_space; 1686 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1687 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1688 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1689 #ifdef CONFIG_NET_RX_BUSY_POLL 1690 queue->sock->sk->sk_ll_usec = 1; 1691 #endif 1692 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1693 } 1694 1695 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1696 { 1697 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1698 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1699 int ret; 1700 1701 queue->rd_enabled = true; 1702 nvme_tcp_init_recv_ctx(queue); 1703 nvme_tcp_setup_sock_ops(queue); 1704 1705 if (idx) 1706 ret = nvmf_connect_io_queue(nctrl, idx); 1707 else 1708 ret = nvmf_connect_admin_queue(nctrl); 1709 1710 if (!ret) { 1711 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 1712 } else { 1713 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1714 __nvme_tcp_stop_queue(queue); 1715 dev_err(nctrl->device, 1716 "failed to connect queue: %d ret=%d\n", idx, ret); 1717 } 1718 return ret; 1719 } 1720 1721 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1722 { 1723 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1724 cancel_work_sync(&ctrl->async_event_work); 1725 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1726 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1727 } 1728 1729 nvme_tcp_free_queue(ctrl, 0); 1730 } 1731 1732 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1733 { 1734 int i; 1735 1736 for (i = 1; i < ctrl->queue_count; i++) 1737 nvme_tcp_free_queue(ctrl, i); 1738 } 1739 1740 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1741 { 1742 int i; 1743 1744 for (i = 1; i < ctrl->queue_count; i++) 1745 nvme_tcp_stop_queue(ctrl, i); 1746 } 1747 1748 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 1749 int first, int last) 1750 { 1751 int i, ret; 1752 1753 for (i = first; i < last; i++) { 1754 ret = nvme_tcp_start_queue(ctrl, i); 1755 if (ret) 1756 goto out_stop_queues; 1757 } 1758 1759 return 0; 1760 1761 out_stop_queues: 1762 for (i--; i >= first; i--) 1763 nvme_tcp_stop_queue(ctrl, i); 1764 return ret; 1765 } 1766 1767 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1768 { 1769 int ret; 1770 1771 ret = nvme_tcp_alloc_queue(ctrl, 0); 1772 if (ret) 1773 return ret; 1774 1775 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1776 if (ret) 1777 goto out_free_queue; 1778 1779 return 0; 1780 1781 out_free_queue: 1782 nvme_tcp_free_queue(ctrl, 0); 1783 return ret; 1784 } 1785 1786 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1787 { 1788 int i, ret; 1789 1790 for (i = 1; i < ctrl->queue_count; i++) { 1791 ret = nvme_tcp_alloc_queue(ctrl, i); 1792 if (ret) 1793 goto out_free_queues; 1794 } 1795 1796 return 0; 1797 1798 out_free_queues: 1799 for (i--; i >= 1; i--) 1800 nvme_tcp_free_queue(ctrl, i); 1801 1802 return ret; 1803 } 1804 1805 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1806 { 1807 unsigned int nr_io_queues; 1808 int ret; 1809 1810 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 1811 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1812 if (ret) 1813 return ret; 1814 1815 if (nr_io_queues == 0) { 1816 dev_err(ctrl->device, 1817 "unable to set any I/O queues\n"); 1818 return -ENOMEM; 1819 } 1820 1821 ctrl->queue_count = nr_io_queues + 1; 1822 dev_info(ctrl->device, 1823 "creating %d I/O queues.\n", nr_io_queues); 1824 1825 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 1826 to_tcp_ctrl(ctrl)->io_queues); 1827 return __nvme_tcp_alloc_io_queues(ctrl); 1828 } 1829 1830 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1831 { 1832 nvme_tcp_stop_io_queues(ctrl); 1833 if (remove) 1834 nvme_remove_io_tag_set(ctrl); 1835 nvme_tcp_free_io_queues(ctrl); 1836 } 1837 1838 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1839 { 1840 int ret, nr_queues; 1841 1842 ret = nvme_tcp_alloc_io_queues(ctrl); 1843 if (ret) 1844 return ret; 1845 1846 if (new) { 1847 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 1848 &nvme_tcp_mq_ops, 1849 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 1850 sizeof(struct nvme_tcp_request)); 1851 if (ret) 1852 goto out_free_io_queues; 1853 } 1854 1855 /* 1856 * Only start IO queues for which we have allocated the tagset 1857 * and limitted it to the available queues. On reconnects, the 1858 * queue number might have changed. 1859 */ 1860 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 1861 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 1862 if (ret) 1863 goto out_cleanup_connect_q; 1864 1865 if (!new) { 1866 nvme_unquiesce_io_queues(ctrl); 1867 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1868 /* 1869 * If we timed out waiting for freeze we are likely to 1870 * be stuck. Fail the controller initialization just 1871 * to be safe. 1872 */ 1873 ret = -ENODEV; 1874 goto out_wait_freeze_timed_out; 1875 } 1876 blk_mq_update_nr_hw_queues(ctrl->tagset, 1877 ctrl->queue_count - 1); 1878 nvme_unfreeze(ctrl); 1879 } 1880 1881 /* 1882 * If the number of queues has increased (reconnect case) 1883 * start all new queues now. 1884 */ 1885 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 1886 ctrl->tagset->nr_hw_queues + 1); 1887 if (ret) 1888 goto out_wait_freeze_timed_out; 1889 1890 return 0; 1891 1892 out_wait_freeze_timed_out: 1893 nvme_quiesce_io_queues(ctrl); 1894 nvme_sync_io_queues(ctrl); 1895 nvme_tcp_stop_io_queues(ctrl); 1896 out_cleanup_connect_q: 1897 nvme_cancel_tagset(ctrl); 1898 if (new) 1899 nvme_remove_io_tag_set(ctrl); 1900 out_free_io_queues: 1901 nvme_tcp_free_io_queues(ctrl); 1902 return ret; 1903 } 1904 1905 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1906 { 1907 nvme_tcp_stop_queue(ctrl, 0); 1908 if (remove) 1909 nvme_remove_admin_tag_set(ctrl); 1910 nvme_tcp_free_admin_queue(ctrl); 1911 } 1912 1913 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1914 { 1915 int error; 1916 1917 error = nvme_tcp_alloc_admin_queue(ctrl); 1918 if (error) 1919 return error; 1920 1921 if (new) { 1922 error = nvme_alloc_admin_tag_set(ctrl, 1923 &to_tcp_ctrl(ctrl)->admin_tag_set, 1924 &nvme_tcp_admin_mq_ops, 1925 sizeof(struct nvme_tcp_request)); 1926 if (error) 1927 goto out_free_queue; 1928 } 1929 1930 error = nvme_tcp_start_queue(ctrl, 0); 1931 if (error) 1932 goto out_cleanup_tagset; 1933 1934 error = nvme_enable_ctrl(ctrl); 1935 if (error) 1936 goto out_stop_queue; 1937 1938 nvme_unquiesce_admin_queue(ctrl); 1939 1940 error = nvme_init_ctrl_finish(ctrl, false); 1941 if (error) 1942 goto out_quiesce_queue; 1943 1944 return 0; 1945 1946 out_quiesce_queue: 1947 nvme_quiesce_admin_queue(ctrl); 1948 blk_sync_queue(ctrl->admin_q); 1949 out_stop_queue: 1950 nvme_tcp_stop_queue(ctrl, 0); 1951 nvme_cancel_admin_tagset(ctrl); 1952 out_cleanup_tagset: 1953 if (new) 1954 nvme_remove_admin_tag_set(ctrl); 1955 out_free_queue: 1956 nvme_tcp_free_admin_queue(ctrl); 1957 return error; 1958 } 1959 1960 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1961 bool remove) 1962 { 1963 nvme_quiesce_admin_queue(ctrl); 1964 blk_sync_queue(ctrl->admin_q); 1965 nvme_tcp_stop_queue(ctrl, 0); 1966 nvme_cancel_admin_tagset(ctrl); 1967 if (remove) 1968 nvme_unquiesce_admin_queue(ctrl); 1969 nvme_tcp_destroy_admin_queue(ctrl, remove); 1970 } 1971 1972 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1973 bool remove) 1974 { 1975 if (ctrl->queue_count <= 1) 1976 return; 1977 nvme_quiesce_admin_queue(ctrl); 1978 nvme_start_freeze(ctrl); 1979 nvme_quiesce_io_queues(ctrl); 1980 nvme_sync_io_queues(ctrl); 1981 nvme_tcp_stop_io_queues(ctrl); 1982 nvme_cancel_tagset(ctrl); 1983 if (remove) 1984 nvme_unquiesce_io_queues(ctrl); 1985 nvme_tcp_destroy_io_queues(ctrl, remove); 1986 } 1987 1988 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1989 { 1990 /* If we are resetting/deleting then do nothing */ 1991 if (ctrl->state != NVME_CTRL_CONNECTING) { 1992 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1993 ctrl->state == NVME_CTRL_LIVE); 1994 return; 1995 } 1996 1997 if (nvmf_should_reconnect(ctrl)) { 1998 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1999 ctrl->opts->reconnect_delay); 2000 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2001 ctrl->opts->reconnect_delay * HZ); 2002 } else { 2003 dev_info(ctrl->device, "Removing controller...\n"); 2004 nvme_delete_ctrl(ctrl); 2005 } 2006 } 2007 2008 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2009 { 2010 struct nvmf_ctrl_options *opts = ctrl->opts; 2011 int ret; 2012 2013 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2014 if (ret) 2015 return ret; 2016 2017 if (ctrl->icdoff) { 2018 ret = -EOPNOTSUPP; 2019 dev_err(ctrl->device, "icdoff is not supported!\n"); 2020 goto destroy_admin; 2021 } 2022 2023 if (!nvme_ctrl_sgl_supported(ctrl)) { 2024 ret = -EOPNOTSUPP; 2025 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2026 goto destroy_admin; 2027 } 2028 2029 if (opts->queue_size > ctrl->sqsize + 1) 2030 dev_warn(ctrl->device, 2031 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2032 opts->queue_size, ctrl->sqsize + 1); 2033 2034 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2035 dev_warn(ctrl->device, 2036 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2037 ctrl->sqsize + 1, ctrl->maxcmd); 2038 ctrl->sqsize = ctrl->maxcmd - 1; 2039 } 2040 2041 if (ctrl->queue_count > 1) { 2042 ret = nvme_tcp_configure_io_queues(ctrl, new); 2043 if (ret) 2044 goto destroy_admin; 2045 } 2046 2047 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2048 /* 2049 * state change failure is ok if we started ctrl delete, 2050 * unless we're during creation of a new controller to 2051 * avoid races with teardown flow. 2052 */ 2053 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2054 ctrl->state != NVME_CTRL_DELETING_NOIO); 2055 WARN_ON_ONCE(new); 2056 ret = -EINVAL; 2057 goto destroy_io; 2058 } 2059 2060 nvme_start_ctrl(ctrl); 2061 return 0; 2062 2063 destroy_io: 2064 if (ctrl->queue_count > 1) { 2065 nvme_quiesce_io_queues(ctrl); 2066 nvme_sync_io_queues(ctrl); 2067 nvme_tcp_stop_io_queues(ctrl); 2068 nvme_cancel_tagset(ctrl); 2069 nvme_tcp_destroy_io_queues(ctrl, new); 2070 } 2071 destroy_admin: 2072 nvme_quiesce_admin_queue(ctrl); 2073 blk_sync_queue(ctrl->admin_q); 2074 nvme_tcp_stop_queue(ctrl, 0); 2075 nvme_cancel_admin_tagset(ctrl); 2076 nvme_tcp_destroy_admin_queue(ctrl, new); 2077 return ret; 2078 } 2079 2080 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2081 { 2082 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2083 struct nvme_tcp_ctrl, connect_work); 2084 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2085 2086 ++ctrl->nr_reconnects; 2087 2088 if (nvme_tcp_setup_ctrl(ctrl, false)) 2089 goto requeue; 2090 2091 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2092 ctrl->nr_reconnects); 2093 2094 ctrl->nr_reconnects = 0; 2095 2096 return; 2097 2098 requeue: 2099 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2100 ctrl->nr_reconnects); 2101 nvme_tcp_reconnect_or_remove(ctrl); 2102 } 2103 2104 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2105 { 2106 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2107 struct nvme_tcp_ctrl, err_work); 2108 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2109 2110 nvme_stop_keep_alive(ctrl); 2111 flush_work(&ctrl->async_event_work); 2112 nvme_tcp_teardown_io_queues(ctrl, false); 2113 /* unquiesce to fail fast pending requests */ 2114 nvme_unquiesce_io_queues(ctrl); 2115 nvme_tcp_teardown_admin_queue(ctrl, false); 2116 nvme_unquiesce_admin_queue(ctrl); 2117 nvme_auth_stop(ctrl); 2118 2119 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2120 /* state change failure is ok if we started ctrl delete */ 2121 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2122 ctrl->state != NVME_CTRL_DELETING_NOIO); 2123 return; 2124 } 2125 2126 nvme_tcp_reconnect_or_remove(ctrl); 2127 } 2128 2129 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2130 { 2131 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2132 nvme_quiesce_admin_queue(ctrl); 2133 nvme_disable_ctrl(ctrl, shutdown); 2134 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2135 } 2136 2137 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2138 { 2139 nvme_tcp_teardown_ctrl(ctrl, true); 2140 } 2141 2142 static void nvme_reset_ctrl_work(struct work_struct *work) 2143 { 2144 struct nvme_ctrl *ctrl = 2145 container_of(work, struct nvme_ctrl, reset_work); 2146 2147 nvme_stop_ctrl(ctrl); 2148 nvme_tcp_teardown_ctrl(ctrl, false); 2149 2150 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2151 /* state change failure is ok if we started ctrl delete */ 2152 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2153 ctrl->state != NVME_CTRL_DELETING_NOIO); 2154 return; 2155 } 2156 2157 if (nvme_tcp_setup_ctrl(ctrl, false)) 2158 goto out_fail; 2159 2160 return; 2161 2162 out_fail: 2163 ++ctrl->nr_reconnects; 2164 nvme_tcp_reconnect_or_remove(ctrl); 2165 } 2166 2167 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2168 { 2169 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2170 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2171 } 2172 2173 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2174 { 2175 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2176 2177 if (list_empty(&ctrl->list)) 2178 goto free_ctrl; 2179 2180 mutex_lock(&nvme_tcp_ctrl_mutex); 2181 list_del(&ctrl->list); 2182 mutex_unlock(&nvme_tcp_ctrl_mutex); 2183 2184 nvmf_free_options(nctrl->opts); 2185 free_ctrl: 2186 kfree(ctrl->queues); 2187 kfree(ctrl); 2188 } 2189 2190 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2191 { 2192 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2193 2194 sg->addr = 0; 2195 sg->length = 0; 2196 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2197 NVME_SGL_FMT_TRANSPORT_A; 2198 } 2199 2200 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2201 struct nvme_command *c, u32 data_len) 2202 { 2203 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2204 2205 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2206 sg->length = cpu_to_le32(data_len); 2207 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2208 } 2209 2210 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2211 u32 data_len) 2212 { 2213 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2214 2215 sg->addr = 0; 2216 sg->length = cpu_to_le32(data_len); 2217 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2218 NVME_SGL_FMT_TRANSPORT_A; 2219 } 2220 2221 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2222 { 2223 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2224 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2225 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2226 struct nvme_command *cmd = &pdu->cmd; 2227 u8 hdgst = nvme_tcp_hdgst_len(queue); 2228 2229 memset(pdu, 0, sizeof(*pdu)); 2230 pdu->hdr.type = nvme_tcp_cmd; 2231 if (queue->hdr_digest) 2232 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2233 pdu->hdr.hlen = sizeof(*pdu); 2234 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2235 2236 cmd->common.opcode = nvme_admin_async_event; 2237 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2238 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2239 nvme_tcp_set_sg_null(cmd); 2240 2241 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2242 ctrl->async_req.offset = 0; 2243 ctrl->async_req.curr_bio = NULL; 2244 ctrl->async_req.data_len = 0; 2245 2246 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2247 } 2248 2249 static void nvme_tcp_complete_timed_out(struct request *rq) 2250 { 2251 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2252 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2253 2254 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2255 nvmf_complete_timed_out_request(rq); 2256 } 2257 2258 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2259 { 2260 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2261 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2262 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2263 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype; 2264 int qid = nvme_tcp_queue_id(req->queue); 2265 2266 dev_warn(ctrl->device, 2267 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n", 2268 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type, 2269 opc, nvme_opcode_str(qid, opc, fctype)); 2270 2271 if (ctrl->state != NVME_CTRL_LIVE) { 2272 /* 2273 * If we are resetting, connecting or deleting we should 2274 * complete immediately because we may block controller 2275 * teardown or setup sequence 2276 * - ctrl disable/shutdown fabrics requests 2277 * - connect requests 2278 * - initialization admin requests 2279 * - I/O requests that entered after unquiescing and 2280 * the controller stopped responding 2281 * 2282 * All other requests should be cancelled by the error 2283 * recovery work, so it's fine that we fail it here. 2284 */ 2285 nvme_tcp_complete_timed_out(rq); 2286 return BLK_EH_DONE; 2287 } 2288 2289 /* 2290 * LIVE state should trigger the normal error recovery which will 2291 * handle completing this request. 2292 */ 2293 nvme_tcp_error_recovery(ctrl); 2294 return BLK_EH_RESET_TIMER; 2295 } 2296 2297 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2298 struct request *rq) 2299 { 2300 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2301 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2302 struct nvme_command *c = &pdu->cmd; 2303 2304 c->common.flags |= NVME_CMD_SGL_METABUF; 2305 2306 if (!blk_rq_nr_phys_segments(rq)) 2307 nvme_tcp_set_sg_null(c); 2308 else if (rq_data_dir(rq) == WRITE && 2309 req->data_len <= nvme_tcp_inline_data_size(req)) 2310 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2311 else 2312 nvme_tcp_set_sg_host_data(c, req->data_len); 2313 2314 return 0; 2315 } 2316 2317 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2318 struct request *rq) 2319 { 2320 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2321 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2322 struct nvme_tcp_queue *queue = req->queue; 2323 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2324 blk_status_t ret; 2325 2326 ret = nvme_setup_cmd(ns, rq); 2327 if (ret) 2328 return ret; 2329 2330 req->state = NVME_TCP_SEND_CMD_PDU; 2331 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2332 req->offset = 0; 2333 req->data_sent = 0; 2334 req->pdu_len = 0; 2335 req->pdu_sent = 0; 2336 req->h2cdata_left = 0; 2337 req->data_len = blk_rq_nr_phys_segments(rq) ? 2338 blk_rq_payload_bytes(rq) : 0; 2339 req->curr_bio = rq->bio; 2340 if (req->curr_bio && req->data_len) 2341 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2342 2343 if (rq_data_dir(rq) == WRITE && 2344 req->data_len <= nvme_tcp_inline_data_size(req)) 2345 req->pdu_len = req->data_len; 2346 2347 pdu->hdr.type = nvme_tcp_cmd; 2348 pdu->hdr.flags = 0; 2349 if (queue->hdr_digest) 2350 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2351 if (queue->data_digest && req->pdu_len) { 2352 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2353 ddgst = nvme_tcp_ddgst_len(queue); 2354 } 2355 pdu->hdr.hlen = sizeof(*pdu); 2356 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2357 pdu->hdr.plen = 2358 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2359 2360 ret = nvme_tcp_map_data(queue, rq); 2361 if (unlikely(ret)) { 2362 nvme_cleanup_cmd(rq); 2363 dev_err(queue->ctrl->ctrl.device, 2364 "Failed to map data (%d)\n", ret); 2365 return ret; 2366 } 2367 2368 return 0; 2369 } 2370 2371 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2372 { 2373 struct nvme_tcp_queue *queue = hctx->driver_data; 2374 2375 if (!llist_empty(&queue->req_list)) 2376 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2377 } 2378 2379 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2380 const struct blk_mq_queue_data *bd) 2381 { 2382 struct nvme_ns *ns = hctx->queue->queuedata; 2383 struct nvme_tcp_queue *queue = hctx->driver_data; 2384 struct request *rq = bd->rq; 2385 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2386 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2387 blk_status_t ret; 2388 2389 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2390 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2391 2392 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2393 if (unlikely(ret)) 2394 return ret; 2395 2396 nvme_start_request(rq); 2397 2398 nvme_tcp_queue_request(req, true, bd->last); 2399 2400 return BLK_STS_OK; 2401 } 2402 2403 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2404 { 2405 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2406 2407 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2408 } 2409 2410 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2411 { 2412 struct nvme_tcp_queue *queue = hctx->driver_data; 2413 struct sock *sk = queue->sock->sk; 2414 2415 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2416 return 0; 2417 2418 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2419 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2420 sk_busy_loop(sk, true); 2421 nvme_tcp_try_recv(queue); 2422 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2423 return queue->nr_cqe; 2424 } 2425 2426 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2427 { 2428 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2429 struct sockaddr_storage src_addr; 2430 int ret, len; 2431 2432 len = nvmf_get_address(ctrl, buf, size); 2433 2434 mutex_lock(&queue->queue_lock); 2435 2436 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2437 goto done; 2438 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2439 if (ret > 0) { 2440 if (len > 0) 2441 len--; /* strip trailing newline */ 2442 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2443 (len) ? "," : "", &src_addr); 2444 } 2445 done: 2446 mutex_unlock(&queue->queue_lock); 2447 2448 return len; 2449 } 2450 2451 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2452 .queue_rq = nvme_tcp_queue_rq, 2453 .commit_rqs = nvme_tcp_commit_rqs, 2454 .complete = nvme_complete_rq, 2455 .init_request = nvme_tcp_init_request, 2456 .exit_request = nvme_tcp_exit_request, 2457 .init_hctx = nvme_tcp_init_hctx, 2458 .timeout = nvme_tcp_timeout, 2459 .map_queues = nvme_tcp_map_queues, 2460 .poll = nvme_tcp_poll, 2461 }; 2462 2463 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2464 .queue_rq = nvme_tcp_queue_rq, 2465 .complete = nvme_complete_rq, 2466 .init_request = nvme_tcp_init_request, 2467 .exit_request = nvme_tcp_exit_request, 2468 .init_hctx = nvme_tcp_init_admin_hctx, 2469 .timeout = nvme_tcp_timeout, 2470 }; 2471 2472 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2473 .name = "tcp", 2474 .module = THIS_MODULE, 2475 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2476 .reg_read32 = nvmf_reg_read32, 2477 .reg_read64 = nvmf_reg_read64, 2478 .reg_write32 = nvmf_reg_write32, 2479 .free_ctrl = nvme_tcp_free_ctrl, 2480 .submit_async_event = nvme_tcp_submit_async_event, 2481 .delete_ctrl = nvme_tcp_delete_ctrl, 2482 .get_address = nvme_tcp_get_address, 2483 .stop_ctrl = nvme_tcp_stop_ctrl, 2484 }; 2485 2486 static bool 2487 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2488 { 2489 struct nvme_tcp_ctrl *ctrl; 2490 bool found = false; 2491 2492 mutex_lock(&nvme_tcp_ctrl_mutex); 2493 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2494 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2495 if (found) 2496 break; 2497 } 2498 mutex_unlock(&nvme_tcp_ctrl_mutex); 2499 2500 return found; 2501 } 2502 2503 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2504 struct nvmf_ctrl_options *opts) 2505 { 2506 struct nvme_tcp_ctrl *ctrl; 2507 int ret; 2508 2509 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2510 if (!ctrl) 2511 return ERR_PTR(-ENOMEM); 2512 2513 INIT_LIST_HEAD(&ctrl->list); 2514 ctrl->ctrl.opts = opts; 2515 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2516 opts->nr_poll_queues + 1; 2517 ctrl->ctrl.sqsize = opts->queue_size - 1; 2518 ctrl->ctrl.kato = opts->kato; 2519 2520 INIT_DELAYED_WORK(&ctrl->connect_work, 2521 nvme_tcp_reconnect_ctrl_work); 2522 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2523 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2524 2525 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2526 opts->trsvcid = 2527 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2528 if (!opts->trsvcid) { 2529 ret = -ENOMEM; 2530 goto out_free_ctrl; 2531 } 2532 opts->mask |= NVMF_OPT_TRSVCID; 2533 } 2534 2535 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2536 opts->traddr, opts->trsvcid, &ctrl->addr); 2537 if (ret) { 2538 pr_err("malformed address passed: %s:%s\n", 2539 opts->traddr, opts->trsvcid); 2540 goto out_free_ctrl; 2541 } 2542 2543 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2544 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2545 opts->host_traddr, NULL, &ctrl->src_addr); 2546 if (ret) { 2547 pr_err("malformed src address passed: %s\n", 2548 opts->host_traddr); 2549 goto out_free_ctrl; 2550 } 2551 } 2552 2553 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2554 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2555 pr_err("invalid interface passed: %s\n", 2556 opts->host_iface); 2557 ret = -ENODEV; 2558 goto out_free_ctrl; 2559 } 2560 } 2561 2562 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2563 ret = -EALREADY; 2564 goto out_free_ctrl; 2565 } 2566 2567 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2568 GFP_KERNEL); 2569 if (!ctrl->queues) { 2570 ret = -ENOMEM; 2571 goto out_free_ctrl; 2572 } 2573 2574 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2575 if (ret) 2576 goto out_kfree_queues; 2577 2578 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2579 WARN_ON_ONCE(1); 2580 ret = -EINTR; 2581 goto out_uninit_ctrl; 2582 } 2583 2584 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2585 if (ret) 2586 goto out_uninit_ctrl; 2587 2588 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2589 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2590 2591 mutex_lock(&nvme_tcp_ctrl_mutex); 2592 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2593 mutex_unlock(&nvme_tcp_ctrl_mutex); 2594 2595 return &ctrl->ctrl; 2596 2597 out_uninit_ctrl: 2598 nvme_uninit_ctrl(&ctrl->ctrl); 2599 nvme_put_ctrl(&ctrl->ctrl); 2600 if (ret > 0) 2601 ret = -EIO; 2602 return ERR_PTR(ret); 2603 out_kfree_queues: 2604 kfree(ctrl->queues); 2605 out_free_ctrl: 2606 kfree(ctrl); 2607 return ERR_PTR(ret); 2608 } 2609 2610 static struct nvmf_transport_ops nvme_tcp_transport = { 2611 .name = "tcp", 2612 .module = THIS_MODULE, 2613 .required_opts = NVMF_OPT_TRADDR, 2614 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2615 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2616 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2617 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2618 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2619 .create_ctrl = nvme_tcp_create_ctrl, 2620 }; 2621 2622 static int __init nvme_tcp_init_module(void) 2623 { 2624 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 2625 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 2626 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 2627 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 2628 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 2629 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 2630 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 2631 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 2632 2633 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2634 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2635 if (!nvme_tcp_wq) 2636 return -ENOMEM; 2637 2638 nvmf_register_transport(&nvme_tcp_transport); 2639 return 0; 2640 } 2641 2642 static void __exit nvme_tcp_cleanup_module(void) 2643 { 2644 struct nvme_tcp_ctrl *ctrl; 2645 2646 nvmf_unregister_transport(&nvme_tcp_transport); 2647 2648 mutex_lock(&nvme_tcp_ctrl_mutex); 2649 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2650 nvme_delete_ctrl(&ctrl->ctrl); 2651 mutex_unlock(&nvme_tcp_ctrl_mutex); 2652 flush_workqueue(nvme_delete_wq); 2653 2654 destroy_workqueue(nvme_tcp_wq); 2655 } 2656 2657 module_init(nvme_tcp_init_module); 2658 module_exit(nvme_tcp_cleanup_module); 2659 2660 MODULE_LICENSE("GPL v2"); 2661