1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex queue_lock; 80 struct mutex send_mutex; 81 struct llist_head req_list; 82 struct list_head send_list; 83 bool more_requests; 84 85 /* recv state */ 86 void *pdu; 87 int pdu_remaining; 88 int pdu_offset; 89 size_t data_remaining; 90 size_t ddgst_remaining; 91 unsigned int nr_cqe; 92 93 /* send state */ 94 struct nvme_tcp_request *request; 95 96 int queue_size; 97 size_t cmnd_capsule_len; 98 struct nvme_tcp_ctrl *ctrl; 99 unsigned long flags; 100 bool rd_enabled; 101 102 bool hdr_digest; 103 bool data_digest; 104 struct ahash_request *rcv_hash; 105 struct ahash_request *snd_hash; 106 __le32 exp_ddgst; 107 __le32 recv_ddgst; 108 109 struct page_frag_cache pf_cache; 110 111 void (*state_change)(struct sock *); 112 void (*data_ready)(struct sock *); 113 void (*write_space)(struct sock *); 114 }; 115 116 struct nvme_tcp_ctrl { 117 /* read only in the hot path */ 118 struct nvme_tcp_queue *queues; 119 struct blk_mq_tag_set tag_set; 120 121 /* other member variables */ 122 struct list_head list; 123 struct blk_mq_tag_set admin_tag_set; 124 struct sockaddr_storage addr; 125 struct sockaddr_storage src_addr; 126 struct nvme_ctrl ctrl; 127 128 struct work_struct err_work; 129 struct delayed_work connect_work; 130 struct nvme_tcp_request async_req; 131 u32 io_queues[HCTX_MAX_TYPES]; 132 }; 133 134 static LIST_HEAD(nvme_tcp_ctrl_list); 135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 136 static struct workqueue_struct *nvme_tcp_wq; 137 static const struct blk_mq_ops nvme_tcp_mq_ops; 138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 140 141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 142 { 143 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 144 } 145 146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 147 { 148 return queue - queue->ctrl->queues; 149 } 150 151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 152 { 153 u32 queue_idx = nvme_tcp_queue_id(queue); 154 155 if (queue_idx == 0) 156 return queue->ctrl->admin_tag_set.tags[queue_idx]; 157 return queue->ctrl->tag_set.tags[queue_idx - 1]; 158 } 159 160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 161 { 162 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 163 } 164 165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 166 { 167 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 168 } 169 170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 171 { 172 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 173 } 174 175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 176 { 177 return req == &req->queue->ctrl->async_req; 178 } 179 180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 181 { 182 struct request *rq; 183 184 if (unlikely(nvme_tcp_async_req(req))) 185 return false; /* async events don't have a request */ 186 187 rq = blk_mq_rq_from_pdu(req); 188 189 return rq_data_dir(rq) == WRITE && req->data_len && 190 req->data_len <= nvme_tcp_inline_data_size(req->queue); 191 } 192 193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 194 { 195 return req->iter.bvec->bv_page; 196 } 197 198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 199 { 200 return req->iter.bvec->bv_offset + req->iter.iov_offset; 201 } 202 203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 204 { 205 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 206 req->pdu_len - req->pdu_sent); 207 } 208 209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 210 { 211 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 212 req->pdu_len - req->pdu_sent : 0; 213 } 214 215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 216 int len) 217 { 218 return nvme_tcp_pdu_data_left(req) <= len; 219 } 220 221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 222 unsigned int dir) 223 { 224 struct request *rq = blk_mq_rq_from_pdu(req); 225 struct bio_vec *vec; 226 unsigned int size; 227 int nr_bvec; 228 size_t offset; 229 230 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 231 vec = &rq->special_vec; 232 nr_bvec = 1; 233 size = blk_rq_payload_bytes(rq); 234 offset = 0; 235 } else { 236 struct bio *bio = req->curr_bio; 237 struct bvec_iter bi; 238 struct bio_vec bv; 239 240 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 241 nr_bvec = 0; 242 bio_for_each_bvec(bv, bio, bi) { 243 nr_bvec++; 244 } 245 size = bio->bi_iter.bi_size; 246 offset = bio->bi_iter.bi_bvec_done; 247 } 248 249 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 250 req->iter.iov_offset = offset; 251 } 252 253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 254 int len) 255 { 256 req->data_sent += len; 257 req->pdu_sent += len; 258 iov_iter_advance(&req->iter, len); 259 if (!iov_iter_count(&req->iter) && 260 req->data_sent < req->data_len) { 261 req->curr_bio = req->curr_bio->bi_next; 262 nvme_tcp_init_iter(req, WRITE); 263 } 264 } 265 266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 267 { 268 int ret; 269 270 /* drain the send queue as much as we can... */ 271 do { 272 ret = nvme_tcp_try_send(queue); 273 } while (ret > 0); 274 } 275 276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 277 bool sync, bool last) 278 { 279 struct nvme_tcp_queue *queue = req->queue; 280 bool empty; 281 282 empty = llist_add(&req->lentry, &queue->req_list) && 283 list_empty(&queue->send_list) && !queue->request; 284 285 /* 286 * if we're the first on the send_list and we can try to send 287 * directly, otherwise queue io_work. Also, only do that if we 288 * are on the same cpu, so we don't introduce contention. 289 */ 290 if (queue->io_cpu == raw_smp_processor_id() && 291 sync && empty && mutex_trylock(&queue->send_mutex)) { 292 queue->more_requests = !last; 293 nvme_tcp_send_all(queue); 294 queue->more_requests = false; 295 mutex_unlock(&queue->send_mutex); 296 } else if (last) { 297 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 298 } 299 } 300 301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 302 { 303 struct nvme_tcp_request *req; 304 struct llist_node *node; 305 306 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 307 req = llist_entry(node, struct nvme_tcp_request, lentry); 308 list_add(&req->entry, &queue->send_list); 309 } 310 } 311 312 static inline struct nvme_tcp_request * 313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 314 { 315 struct nvme_tcp_request *req; 316 317 req = list_first_entry_or_null(&queue->send_list, 318 struct nvme_tcp_request, entry); 319 if (!req) { 320 nvme_tcp_process_req_list(queue); 321 req = list_first_entry_or_null(&queue->send_list, 322 struct nvme_tcp_request, entry); 323 if (unlikely(!req)) 324 return NULL; 325 } 326 327 list_del(&req->entry); 328 return req; 329 } 330 331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 332 __le32 *dgst) 333 { 334 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 335 crypto_ahash_final(hash); 336 } 337 338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 339 struct page *page, off_t off, size_t len) 340 { 341 struct scatterlist sg; 342 343 sg_init_marker(&sg, 1); 344 sg_set_page(&sg, page, len, off); 345 ahash_request_set_crypt(hash, &sg, NULL, len); 346 crypto_ahash_update(hash); 347 } 348 349 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 350 void *pdu, size_t len) 351 { 352 struct scatterlist sg; 353 354 sg_init_one(&sg, pdu, len); 355 ahash_request_set_crypt(hash, &sg, pdu + len, len); 356 crypto_ahash_digest(hash); 357 } 358 359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 360 void *pdu, size_t pdu_len) 361 { 362 struct nvme_tcp_hdr *hdr = pdu; 363 __le32 recv_digest; 364 __le32 exp_digest; 365 366 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 367 dev_err(queue->ctrl->ctrl.device, 368 "queue %d: header digest flag is cleared\n", 369 nvme_tcp_queue_id(queue)); 370 return -EPROTO; 371 } 372 373 recv_digest = *(__le32 *)(pdu + hdr->hlen); 374 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 375 exp_digest = *(__le32 *)(pdu + hdr->hlen); 376 if (recv_digest != exp_digest) { 377 dev_err(queue->ctrl->ctrl.device, 378 "header digest error: recv %#x expected %#x\n", 379 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 380 return -EIO; 381 } 382 383 return 0; 384 } 385 386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 387 { 388 struct nvme_tcp_hdr *hdr = pdu; 389 u8 digest_len = nvme_tcp_hdgst_len(queue); 390 u32 len; 391 392 len = le32_to_cpu(hdr->plen) - hdr->hlen - 393 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 394 395 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 396 dev_err(queue->ctrl->ctrl.device, 397 "queue %d: data digest flag is cleared\n", 398 nvme_tcp_queue_id(queue)); 399 return -EPROTO; 400 } 401 crypto_ahash_init(queue->rcv_hash); 402 403 return 0; 404 } 405 406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 407 struct request *rq, unsigned int hctx_idx) 408 { 409 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 410 411 page_frag_free(req->pdu); 412 } 413 414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 415 struct request *rq, unsigned int hctx_idx, 416 unsigned int numa_node) 417 { 418 struct nvme_tcp_ctrl *ctrl = set->driver_data; 419 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 420 struct nvme_tcp_cmd_pdu *pdu; 421 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 422 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 423 u8 hdgst = nvme_tcp_hdgst_len(queue); 424 425 req->pdu = page_frag_alloc(&queue->pf_cache, 426 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 427 GFP_KERNEL | __GFP_ZERO); 428 if (!req->pdu) 429 return -ENOMEM; 430 431 pdu = req->pdu; 432 req->queue = queue; 433 nvme_req(rq)->ctrl = &ctrl->ctrl; 434 nvme_req(rq)->cmd = &pdu->cmd; 435 436 return 0; 437 } 438 439 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 440 unsigned int hctx_idx) 441 { 442 struct nvme_tcp_ctrl *ctrl = data; 443 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 444 445 hctx->driver_data = queue; 446 return 0; 447 } 448 449 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 450 unsigned int hctx_idx) 451 { 452 struct nvme_tcp_ctrl *ctrl = data; 453 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 454 455 hctx->driver_data = queue; 456 return 0; 457 } 458 459 static enum nvme_tcp_recv_state 460 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 461 { 462 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 463 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 464 NVME_TCP_RECV_DATA; 465 } 466 467 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 468 { 469 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 470 nvme_tcp_hdgst_len(queue); 471 queue->pdu_offset = 0; 472 queue->data_remaining = -1; 473 queue->ddgst_remaining = 0; 474 } 475 476 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 477 { 478 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 479 return; 480 481 dev_warn(ctrl->device, "starting error recovery\n"); 482 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 483 } 484 485 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 486 struct nvme_completion *cqe) 487 { 488 struct request *rq; 489 490 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 491 if (!rq) { 492 dev_err(queue->ctrl->ctrl.device, 493 "queue %d tag 0x%x not found\n", 494 nvme_tcp_queue_id(queue), cqe->command_id); 495 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 496 return -EINVAL; 497 } 498 499 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 500 nvme_complete_rq(rq); 501 queue->nr_cqe++; 502 503 return 0; 504 } 505 506 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 507 struct nvme_tcp_data_pdu *pdu) 508 { 509 struct request *rq; 510 511 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 512 if (!rq) { 513 dev_err(queue->ctrl->ctrl.device, 514 "queue %d tag %#x not found\n", 515 nvme_tcp_queue_id(queue), pdu->command_id); 516 return -ENOENT; 517 } 518 519 if (!blk_rq_payload_bytes(rq)) { 520 dev_err(queue->ctrl->ctrl.device, 521 "queue %d tag %#x unexpected data\n", 522 nvme_tcp_queue_id(queue), rq->tag); 523 return -EIO; 524 } 525 526 queue->data_remaining = le32_to_cpu(pdu->data_length); 527 528 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 529 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 530 dev_err(queue->ctrl->ctrl.device, 531 "queue %d tag %#x SUCCESS set but not last PDU\n", 532 nvme_tcp_queue_id(queue), rq->tag); 533 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 534 return -EPROTO; 535 } 536 537 return 0; 538 } 539 540 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 541 struct nvme_tcp_rsp_pdu *pdu) 542 { 543 struct nvme_completion *cqe = &pdu->cqe; 544 int ret = 0; 545 546 /* 547 * AEN requests are special as they don't time out and can 548 * survive any kind of queue freeze and often don't respond to 549 * aborts. We don't even bother to allocate a struct request 550 * for them but rather special case them here. 551 */ 552 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 553 cqe->command_id))) 554 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 555 &cqe->result); 556 else 557 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 558 559 return ret; 560 } 561 562 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 563 struct nvme_tcp_r2t_pdu *pdu) 564 { 565 struct nvme_tcp_data_pdu *data = req->pdu; 566 struct nvme_tcp_queue *queue = req->queue; 567 struct request *rq = blk_mq_rq_from_pdu(req); 568 u8 hdgst = nvme_tcp_hdgst_len(queue); 569 u8 ddgst = nvme_tcp_ddgst_len(queue); 570 571 req->pdu_len = le32_to_cpu(pdu->r2t_length); 572 req->pdu_sent = 0; 573 574 if (unlikely(!req->pdu_len)) { 575 dev_err(queue->ctrl->ctrl.device, 576 "req %d r2t len is %u, probably a bug...\n", 577 rq->tag, req->pdu_len); 578 return -EPROTO; 579 } 580 581 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 582 dev_err(queue->ctrl->ctrl.device, 583 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 584 rq->tag, req->pdu_len, req->data_len, 585 req->data_sent); 586 return -EPROTO; 587 } 588 589 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 590 dev_err(queue->ctrl->ctrl.device, 591 "req %d unexpected r2t offset %u (expected %zu)\n", 592 rq->tag, le32_to_cpu(pdu->r2t_offset), 593 req->data_sent); 594 return -EPROTO; 595 } 596 597 memset(data, 0, sizeof(*data)); 598 data->hdr.type = nvme_tcp_h2c_data; 599 data->hdr.flags = NVME_TCP_F_DATA_LAST; 600 if (queue->hdr_digest) 601 data->hdr.flags |= NVME_TCP_F_HDGST; 602 if (queue->data_digest) 603 data->hdr.flags |= NVME_TCP_F_DDGST; 604 data->hdr.hlen = sizeof(*data); 605 data->hdr.pdo = data->hdr.hlen + hdgst; 606 data->hdr.plen = 607 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 608 data->ttag = pdu->ttag; 609 data->command_id = rq->tag; 610 data->data_offset = cpu_to_le32(req->data_sent); 611 data->data_length = cpu_to_le32(req->pdu_len); 612 return 0; 613 } 614 615 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 616 struct nvme_tcp_r2t_pdu *pdu) 617 { 618 struct nvme_tcp_request *req; 619 struct request *rq; 620 int ret; 621 622 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 623 if (!rq) { 624 dev_err(queue->ctrl->ctrl.device, 625 "queue %d tag %#x not found\n", 626 nvme_tcp_queue_id(queue), pdu->command_id); 627 return -ENOENT; 628 } 629 req = blk_mq_rq_to_pdu(rq); 630 631 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 632 if (unlikely(ret)) 633 return ret; 634 635 req->state = NVME_TCP_SEND_H2C_PDU; 636 req->offset = 0; 637 638 nvme_tcp_queue_request(req, false, true); 639 640 return 0; 641 } 642 643 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 644 unsigned int *offset, size_t *len) 645 { 646 struct nvme_tcp_hdr *hdr; 647 char *pdu = queue->pdu; 648 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 649 int ret; 650 651 ret = skb_copy_bits(skb, *offset, 652 &pdu[queue->pdu_offset], rcv_len); 653 if (unlikely(ret)) 654 return ret; 655 656 queue->pdu_remaining -= rcv_len; 657 queue->pdu_offset += rcv_len; 658 *offset += rcv_len; 659 *len -= rcv_len; 660 if (queue->pdu_remaining) 661 return 0; 662 663 hdr = queue->pdu; 664 if (queue->hdr_digest) { 665 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 666 if (unlikely(ret)) 667 return ret; 668 } 669 670 671 if (queue->data_digest) { 672 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 673 if (unlikely(ret)) 674 return ret; 675 } 676 677 switch (hdr->type) { 678 case nvme_tcp_c2h_data: 679 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 680 case nvme_tcp_rsp: 681 nvme_tcp_init_recv_ctx(queue); 682 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 683 case nvme_tcp_r2t: 684 nvme_tcp_init_recv_ctx(queue); 685 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 686 default: 687 dev_err(queue->ctrl->ctrl.device, 688 "unsupported pdu type (%d)\n", hdr->type); 689 return -EINVAL; 690 } 691 } 692 693 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 694 { 695 union nvme_result res = {}; 696 697 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 698 nvme_complete_rq(rq); 699 } 700 701 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 702 unsigned int *offset, size_t *len) 703 { 704 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 705 struct nvme_tcp_request *req; 706 struct request *rq; 707 708 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 709 if (!rq) { 710 dev_err(queue->ctrl->ctrl.device, 711 "queue %d tag %#x not found\n", 712 nvme_tcp_queue_id(queue), pdu->command_id); 713 return -ENOENT; 714 } 715 req = blk_mq_rq_to_pdu(rq); 716 717 while (true) { 718 int recv_len, ret; 719 720 recv_len = min_t(size_t, *len, queue->data_remaining); 721 if (!recv_len) 722 break; 723 724 if (!iov_iter_count(&req->iter)) { 725 req->curr_bio = req->curr_bio->bi_next; 726 727 /* 728 * If we don`t have any bios it means that controller 729 * sent more data than we requested, hence error 730 */ 731 if (!req->curr_bio) { 732 dev_err(queue->ctrl->ctrl.device, 733 "queue %d no space in request %#x", 734 nvme_tcp_queue_id(queue), rq->tag); 735 nvme_tcp_init_recv_ctx(queue); 736 return -EIO; 737 } 738 nvme_tcp_init_iter(req, READ); 739 } 740 741 /* we can read only from what is left in this bio */ 742 recv_len = min_t(size_t, recv_len, 743 iov_iter_count(&req->iter)); 744 745 if (queue->data_digest) 746 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 747 &req->iter, recv_len, queue->rcv_hash); 748 else 749 ret = skb_copy_datagram_iter(skb, *offset, 750 &req->iter, recv_len); 751 if (ret) { 752 dev_err(queue->ctrl->ctrl.device, 753 "queue %d failed to copy request %#x data", 754 nvme_tcp_queue_id(queue), rq->tag); 755 return ret; 756 } 757 758 *len -= recv_len; 759 *offset += recv_len; 760 queue->data_remaining -= recv_len; 761 } 762 763 if (!queue->data_remaining) { 764 if (queue->data_digest) { 765 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 766 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 767 } else { 768 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 769 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 770 queue->nr_cqe++; 771 } 772 nvme_tcp_init_recv_ctx(queue); 773 } 774 } 775 776 return 0; 777 } 778 779 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 780 struct sk_buff *skb, unsigned int *offset, size_t *len) 781 { 782 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 783 char *ddgst = (char *)&queue->recv_ddgst; 784 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 785 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 786 int ret; 787 788 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 789 if (unlikely(ret)) 790 return ret; 791 792 queue->ddgst_remaining -= recv_len; 793 *offset += recv_len; 794 *len -= recv_len; 795 if (queue->ddgst_remaining) 796 return 0; 797 798 if (queue->recv_ddgst != queue->exp_ddgst) { 799 dev_err(queue->ctrl->ctrl.device, 800 "data digest error: recv %#x expected %#x\n", 801 le32_to_cpu(queue->recv_ddgst), 802 le32_to_cpu(queue->exp_ddgst)); 803 return -EIO; 804 } 805 806 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 807 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 808 pdu->command_id); 809 810 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 811 queue->nr_cqe++; 812 } 813 814 nvme_tcp_init_recv_ctx(queue); 815 return 0; 816 } 817 818 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 819 unsigned int offset, size_t len) 820 { 821 struct nvme_tcp_queue *queue = desc->arg.data; 822 size_t consumed = len; 823 int result; 824 825 while (len) { 826 switch (nvme_tcp_recv_state(queue)) { 827 case NVME_TCP_RECV_PDU: 828 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 829 break; 830 case NVME_TCP_RECV_DATA: 831 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 832 break; 833 case NVME_TCP_RECV_DDGST: 834 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 835 break; 836 default: 837 result = -EFAULT; 838 } 839 if (result) { 840 dev_err(queue->ctrl->ctrl.device, 841 "receive failed: %d\n", result); 842 queue->rd_enabled = false; 843 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 844 return result; 845 } 846 } 847 848 return consumed; 849 } 850 851 static void nvme_tcp_data_ready(struct sock *sk) 852 { 853 struct nvme_tcp_queue *queue; 854 855 read_lock_bh(&sk->sk_callback_lock); 856 queue = sk->sk_user_data; 857 if (likely(queue && queue->rd_enabled) && 858 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 859 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 860 read_unlock_bh(&sk->sk_callback_lock); 861 } 862 863 static void nvme_tcp_write_space(struct sock *sk) 864 { 865 struct nvme_tcp_queue *queue; 866 867 read_lock_bh(&sk->sk_callback_lock); 868 queue = sk->sk_user_data; 869 if (likely(queue && sk_stream_is_writeable(sk))) { 870 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 871 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 872 } 873 read_unlock_bh(&sk->sk_callback_lock); 874 } 875 876 static void nvme_tcp_state_change(struct sock *sk) 877 { 878 struct nvme_tcp_queue *queue; 879 880 read_lock_bh(&sk->sk_callback_lock); 881 queue = sk->sk_user_data; 882 if (!queue) 883 goto done; 884 885 switch (sk->sk_state) { 886 case TCP_CLOSE: 887 case TCP_CLOSE_WAIT: 888 case TCP_LAST_ACK: 889 case TCP_FIN_WAIT1: 890 case TCP_FIN_WAIT2: 891 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 892 break; 893 default: 894 dev_info(queue->ctrl->ctrl.device, 895 "queue %d socket state %d\n", 896 nvme_tcp_queue_id(queue), sk->sk_state); 897 } 898 899 queue->state_change(sk); 900 done: 901 read_unlock_bh(&sk->sk_callback_lock); 902 } 903 904 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 905 { 906 return !list_empty(&queue->send_list) || 907 !llist_empty(&queue->req_list) || queue->more_requests; 908 } 909 910 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 911 { 912 queue->request = NULL; 913 } 914 915 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 916 { 917 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 918 } 919 920 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 921 { 922 struct nvme_tcp_queue *queue = req->queue; 923 924 while (true) { 925 struct page *page = nvme_tcp_req_cur_page(req); 926 size_t offset = nvme_tcp_req_cur_offset(req); 927 size_t len = nvme_tcp_req_cur_length(req); 928 bool last = nvme_tcp_pdu_last_send(req, len); 929 int ret, flags = MSG_DONTWAIT; 930 931 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 932 flags |= MSG_EOR; 933 else 934 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 935 936 if (sendpage_ok(page)) { 937 ret = kernel_sendpage(queue->sock, page, offset, len, 938 flags); 939 } else { 940 ret = sock_no_sendpage(queue->sock, page, offset, len, 941 flags); 942 } 943 if (ret <= 0) 944 return ret; 945 946 if (queue->data_digest) 947 nvme_tcp_ddgst_update(queue->snd_hash, page, 948 offset, ret); 949 950 /* fully successful last write*/ 951 if (last && ret == len) { 952 if (queue->data_digest) { 953 nvme_tcp_ddgst_final(queue->snd_hash, 954 &req->ddgst); 955 req->state = NVME_TCP_SEND_DDGST; 956 req->offset = 0; 957 } else { 958 nvme_tcp_done_send_req(queue); 959 } 960 return 1; 961 } 962 nvme_tcp_advance_req(req, ret); 963 } 964 return -EAGAIN; 965 } 966 967 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 968 { 969 struct nvme_tcp_queue *queue = req->queue; 970 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 971 bool inline_data = nvme_tcp_has_inline_data(req); 972 u8 hdgst = nvme_tcp_hdgst_len(queue); 973 int len = sizeof(*pdu) + hdgst - req->offset; 974 int flags = MSG_DONTWAIT; 975 int ret; 976 977 if (inline_data || nvme_tcp_queue_more(queue)) 978 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 979 else 980 flags |= MSG_EOR; 981 982 if (queue->hdr_digest && !req->offset) 983 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 984 985 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 986 offset_in_page(pdu) + req->offset, len, flags); 987 if (unlikely(ret <= 0)) 988 return ret; 989 990 len -= ret; 991 if (!len) { 992 if (inline_data) { 993 req->state = NVME_TCP_SEND_DATA; 994 if (queue->data_digest) 995 crypto_ahash_init(queue->snd_hash); 996 } else { 997 nvme_tcp_done_send_req(queue); 998 } 999 return 1; 1000 } 1001 req->offset += ret; 1002 1003 return -EAGAIN; 1004 } 1005 1006 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1007 { 1008 struct nvme_tcp_queue *queue = req->queue; 1009 struct nvme_tcp_data_pdu *pdu = req->pdu; 1010 u8 hdgst = nvme_tcp_hdgst_len(queue); 1011 int len = sizeof(*pdu) - req->offset + hdgst; 1012 int ret; 1013 1014 if (queue->hdr_digest && !req->offset) 1015 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1016 1017 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1018 offset_in_page(pdu) + req->offset, len, 1019 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1020 if (unlikely(ret <= 0)) 1021 return ret; 1022 1023 len -= ret; 1024 if (!len) { 1025 req->state = NVME_TCP_SEND_DATA; 1026 if (queue->data_digest) 1027 crypto_ahash_init(queue->snd_hash); 1028 return 1; 1029 } 1030 req->offset += ret; 1031 1032 return -EAGAIN; 1033 } 1034 1035 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1036 { 1037 struct nvme_tcp_queue *queue = req->queue; 1038 int ret; 1039 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1040 struct kvec iov = { 1041 .iov_base = &req->ddgst + req->offset, 1042 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1043 }; 1044 1045 if (nvme_tcp_queue_more(queue)) 1046 msg.msg_flags |= MSG_MORE; 1047 else 1048 msg.msg_flags |= MSG_EOR; 1049 1050 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1051 if (unlikely(ret <= 0)) 1052 return ret; 1053 1054 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1055 nvme_tcp_done_send_req(queue); 1056 return 1; 1057 } 1058 1059 req->offset += ret; 1060 return -EAGAIN; 1061 } 1062 1063 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1064 { 1065 struct nvme_tcp_request *req; 1066 int ret = 1; 1067 1068 if (!queue->request) { 1069 queue->request = nvme_tcp_fetch_request(queue); 1070 if (!queue->request) 1071 return 0; 1072 } 1073 req = queue->request; 1074 1075 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1076 ret = nvme_tcp_try_send_cmd_pdu(req); 1077 if (ret <= 0) 1078 goto done; 1079 if (!nvme_tcp_has_inline_data(req)) 1080 return ret; 1081 } 1082 1083 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1084 ret = nvme_tcp_try_send_data_pdu(req); 1085 if (ret <= 0) 1086 goto done; 1087 } 1088 1089 if (req->state == NVME_TCP_SEND_DATA) { 1090 ret = nvme_tcp_try_send_data(req); 1091 if (ret <= 0) 1092 goto done; 1093 } 1094 1095 if (req->state == NVME_TCP_SEND_DDGST) 1096 ret = nvme_tcp_try_send_ddgst(req); 1097 done: 1098 if (ret == -EAGAIN) { 1099 ret = 0; 1100 } else if (ret < 0) { 1101 dev_err(queue->ctrl->ctrl.device, 1102 "failed to send request %d\n", ret); 1103 if (ret != -EPIPE && ret != -ECONNRESET) 1104 nvme_tcp_fail_request(queue->request); 1105 nvme_tcp_done_send_req(queue); 1106 } 1107 return ret; 1108 } 1109 1110 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1111 { 1112 struct socket *sock = queue->sock; 1113 struct sock *sk = sock->sk; 1114 read_descriptor_t rd_desc; 1115 int consumed; 1116 1117 rd_desc.arg.data = queue; 1118 rd_desc.count = 1; 1119 lock_sock(sk); 1120 queue->nr_cqe = 0; 1121 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1122 release_sock(sk); 1123 return consumed; 1124 } 1125 1126 static void nvme_tcp_io_work(struct work_struct *w) 1127 { 1128 struct nvme_tcp_queue *queue = 1129 container_of(w, struct nvme_tcp_queue, io_work); 1130 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1131 1132 do { 1133 bool pending = false; 1134 int result; 1135 1136 if (mutex_trylock(&queue->send_mutex)) { 1137 result = nvme_tcp_try_send(queue); 1138 mutex_unlock(&queue->send_mutex); 1139 if (result > 0) 1140 pending = true; 1141 else if (unlikely(result < 0)) 1142 break; 1143 } else 1144 pending = !llist_empty(&queue->req_list); 1145 1146 result = nvme_tcp_try_recv(queue); 1147 if (result > 0) 1148 pending = true; 1149 else if (unlikely(result < 0)) 1150 return; 1151 1152 if (!pending) 1153 return; 1154 1155 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1156 1157 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1158 } 1159 1160 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1161 { 1162 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1163 1164 ahash_request_free(queue->rcv_hash); 1165 ahash_request_free(queue->snd_hash); 1166 crypto_free_ahash(tfm); 1167 } 1168 1169 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1170 { 1171 struct crypto_ahash *tfm; 1172 1173 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1174 if (IS_ERR(tfm)) 1175 return PTR_ERR(tfm); 1176 1177 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1178 if (!queue->snd_hash) 1179 goto free_tfm; 1180 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1181 1182 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1183 if (!queue->rcv_hash) 1184 goto free_snd_hash; 1185 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1186 1187 return 0; 1188 free_snd_hash: 1189 ahash_request_free(queue->snd_hash); 1190 free_tfm: 1191 crypto_free_ahash(tfm); 1192 return -ENOMEM; 1193 } 1194 1195 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1196 { 1197 struct nvme_tcp_request *async = &ctrl->async_req; 1198 1199 page_frag_free(async->pdu); 1200 } 1201 1202 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1203 { 1204 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1205 struct nvme_tcp_request *async = &ctrl->async_req; 1206 u8 hdgst = nvme_tcp_hdgst_len(queue); 1207 1208 async->pdu = page_frag_alloc(&queue->pf_cache, 1209 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1210 GFP_KERNEL | __GFP_ZERO); 1211 if (!async->pdu) 1212 return -ENOMEM; 1213 1214 async->queue = &ctrl->queues[0]; 1215 return 0; 1216 } 1217 1218 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1219 { 1220 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1221 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1222 1223 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1224 return; 1225 1226 if (queue->hdr_digest || queue->data_digest) 1227 nvme_tcp_free_crypto(queue); 1228 1229 sock_release(queue->sock); 1230 kfree(queue->pdu); 1231 mutex_destroy(&queue->queue_lock); 1232 } 1233 1234 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1235 { 1236 struct nvme_tcp_icreq_pdu *icreq; 1237 struct nvme_tcp_icresp_pdu *icresp; 1238 struct msghdr msg = {}; 1239 struct kvec iov; 1240 bool ctrl_hdgst, ctrl_ddgst; 1241 int ret; 1242 1243 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1244 if (!icreq) 1245 return -ENOMEM; 1246 1247 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1248 if (!icresp) { 1249 ret = -ENOMEM; 1250 goto free_icreq; 1251 } 1252 1253 icreq->hdr.type = nvme_tcp_icreq; 1254 icreq->hdr.hlen = sizeof(*icreq); 1255 icreq->hdr.pdo = 0; 1256 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1257 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1258 icreq->maxr2t = 0; /* single inflight r2t supported */ 1259 icreq->hpda = 0; /* no alignment constraint */ 1260 if (queue->hdr_digest) 1261 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1262 if (queue->data_digest) 1263 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1264 1265 iov.iov_base = icreq; 1266 iov.iov_len = sizeof(*icreq); 1267 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1268 if (ret < 0) 1269 goto free_icresp; 1270 1271 memset(&msg, 0, sizeof(msg)); 1272 iov.iov_base = icresp; 1273 iov.iov_len = sizeof(*icresp); 1274 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1275 iov.iov_len, msg.msg_flags); 1276 if (ret < 0) 1277 goto free_icresp; 1278 1279 ret = -EINVAL; 1280 if (icresp->hdr.type != nvme_tcp_icresp) { 1281 pr_err("queue %d: bad type returned %d\n", 1282 nvme_tcp_queue_id(queue), icresp->hdr.type); 1283 goto free_icresp; 1284 } 1285 1286 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1287 pr_err("queue %d: bad pdu length returned %d\n", 1288 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1289 goto free_icresp; 1290 } 1291 1292 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1293 pr_err("queue %d: bad pfv returned %d\n", 1294 nvme_tcp_queue_id(queue), icresp->pfv); 1295 goto free_icresp; 1296 } 1297 1298 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1299 if ((queue->data_digest && !ctrl_ddgst) || 1300 (!queue->data_digest && ctrl_ddgst)) { 1301 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1302 nvme_tcp_queue_id(queue), 1303 queue->data_digest ? "enabled" : "disabled", 1304 ctrl_ddgst ? "enabled" : "disabled"); 1305 goto free_icresp; 1306 } 1307 1308 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1309 if ((queue->hdr_digest && !ctrl_hdgst) || 1310 (!queue->hdr_digest && ctrl_hdgst)) { 1311 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1312 nvme_tcp_queue_id(queue), 1313 queue->hdr_digest ? "enabled" : "disabled", 1314 ctrl_hdgst ? "enabled" : "disabled"); 1315 goto free_icresp; 1316 } 1317 1318 if (icresp->cpda != 0) { 1319 pr_err("queue %d: unsupported cpda returned %d\n", 1320 nvme_tcp_queue_id(queue), icresp->cpda); 1321 goto free_icresp; 1322 } 1323 1324 ret = 0; 1325 free_icresp: 1326 kfree(icresp); 1327 free_icreq: 1328 kfree(icreq); 1329 return ret; 1330 } 1331 1332 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1333 { 1334 return nvme_tcp_queue_id(queue) == 0; 1335 } 1336 1337 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1338 { 1339 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1340 int qid = nvme_tcp_queue_id(queue); 1341 1342 return !nvme_tcp_admin_queue(queue) && 1343 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1344 } 1345 1346 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1347 { 1348 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1349 int qid = nvme_tcp_queue_id(queue); 1350 1351 return !nvme_tcp_admin_queue(queue) && 1352 !nvme_tcp_default_queue(queue) && 1353 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1354 ctrl->io_queues[HCTX_TYPE_READ]; 1355 } 1356 1357 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1358 { 1359 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1360 int qid = nvme_tcp_queue_id(queue); 1361 1362 return !nvme_tcp_admin_queue(queue) && 1363 !nvme_tcp_default_queue(queue) && 1364 !nvme_tcp_read_queue(queue) && 1365 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1366 ctrl->io_queues[HCTX_TYPE_READ] + 1367 ctrl->io_queues[HCTX_TYPE_POLL]; 1368 } 1369 1370 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1371 { 1372 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1373 int qid = nvme_tcp_queue_id(queue); 1374 int n = 0; 1375 1376 if (nvme_tcp_default_queue(queue)) 1377 n = qid - 1; 1378 else if (nvme_tcp_read_queue(queue)) 1379 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1380 else if (nvme_tcp_poll_queue(queue)) 1381 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1382 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1383 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1384 } 1385 1386 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1387 int qid, size_t queue_size) 1388 { 1389 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1390 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1391 int ret, rcv_pdu_size; 1392 1393 mutex_init(&queue->queue_lock); 1394 queue->ctrl = ctrl; 1395 init_llist_head(&queue->req_list); 1396 INIT_LIST_HEAD(&queue->send_list); 1397 mutex_init(&queue->send_mutex); 1398 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1399 queue->queue_size = queue_size; 1400 1401 if (qid > 0) 1402 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1403 else 1404 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1405 NVME_TCP_ADMIN_CCSZ; 1406 1407 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1408 IPPROTO_TCP, &queue->sock); 1409 if (ret) { 1410 dev_err(nctrl->device, 1411 "failed to create socket: %d\n", ret); 1412 goto err_destroy_mutex; 1413 } 1414 1415 /* Single syn retry */ 1416 tcp_sock_set_syncnt(queue->sock->sk, 1); 1417 1418 /* Set TCP no delay */ 1419 tcp_sock_set_nodelay(queue->sock->sk); 1420 1421 /* 1422 * Cleanup whatever is sitting in the TCP transmit queue on socket 1423 * close. This is done to prevent stale data from being sent should 1424 * the network connection be restored before TCP times out. 1425 */ 1426 sock_no_linger(queue->sock->sk); 1427 1428 if (so_priority > 0) 1429 sock_set_priority(queue->sock->sk, so_priority); 1430 1431 /* Set socket type of service */ 1432 if (nctrl->opts->tos >= 0) 1433 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1434 1435 /* Set 10 seconds timeout for icresp recvmsg */ 1436 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1437 1438 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1439 nvme_tcp_set_queue_io_cpu(queue); 1440 queue->request = NULL; 1441 queue->data_remaining = 0; 1442 queue->ddgst_remaining = 0; 1443 queue->pdu_remaining = 0; 1444 queue->pdu_offset = 0; 1445 sk_set_memalloc(queue->sock->sk); 1446 1447 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1448 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1449 sizeof(ctrl->src_addr)); 1450 if (ret) { 1451 dev_err(nctrl->device, 1452 "failed to bind queue %d socket %d\n", 1453 qid, ret); 1454 goto err_sock; 1455 } 1456 } 1457 1458 queue->hdr_digest = nctrl->opts->hdr_digest; 1459 queue->data_digest = nctrl->opts->data_digest; 1460 if (queue->hdr_digest || queue->data_digest) { 1461 ret = nvme_tcp_alloc_crypto(queue); 1462 if (ret) { 1463 dev_err(nctrl->device, 1464 "failed to allocate queue %d crypto\n", qid); 1465 goto err_sock; 1466 } 1467 } 1468 1469 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1470 nvme_tcp_hdgst_len(queue); 1471 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1472 if (!queue->pdu) { 1473 ret = -ENOMEM; 1474 goto err_crypto; 1475 } 1476 1477 dev_dbg(nctrl->device, "connecting queue %d\n", 1478 nvme_tcp_queue_id(queue)); 1479 1480 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1481 sizeof(ctrl->addr), 0); 1482 if (ret) { 1483 dev_err(nctrl->device, 1484 "failed to connect socket: %d\n", ret); 1485 goto err_rcv_pdu; 1486 } 1487 1488 ret = nvme_tcp_init_connection(queue); 1489 if (ret) 1490 goto err_init_connect; 1491 1492 queue->rd_enabled = true; 1493 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1494 nvme_tcp_init_recv_ctx(queue); 1495 1496 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1497 queue->sock->sk->sk_user_data = queue; 1498 queue->state_change = queue->sock->sk->sk_state_change; 1499 queue->data_ready = queue->sock->sk->sk_data_ready; 1500 queue->write_space = queue->sock->sk->sk_write_space; 1501 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1502 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1503 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1504 #ifdef CONFIG_NET_RX_BUSY_POLL 1505 queue->sock->sk->sk_ll_usec = 1; 1506 #endif 1507 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1508 1509 return 0; 1510 1511 err_init_connect: 1512 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1513 err_rcv_pdu: 1514 kfree(queue->pdu); 1515 err_crypto: 1516 if (queue->hdr_digest || queue->data_digest) 1517 nvme_tcp_free_crypto(queue); 1518 err_sock: 1519 sock_release(queue->sock); 1520 queue->sock = NULL; 1521 err_destroy_mutex: 1522 mutex_destroy(&queue->queue_lock); 1523 return ret; 1524 } 1525 1526 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1527 { 1528 struct socket *sock = queue->sock; 1529 1530 write_lock_bh(&sock->sk->sk_callback_lock); 1531 sock->sk->sk_user_data = NULL; 1532 sock->sk->sk_data_ready = queue->data_ready; 1533 sock->sk->sk_state_change = queue->state_change; 1534 sock->sk->sk_write_space = queue->write_space; 1535 write_unlock_bh(&sock->sk->sk_callback_lock); 1536 } 1537 1538 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1539 { 1540 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1541 nvme_tcp_restore_sock_calls(queue); 1542 cancel_work_sync(&queue->io_work); 1543 } 1544 1545 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1546 { 1547 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1548 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1549 1550 mutex_lock(&queue->queue_lock); 1551 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1552 __nvme_tcp_stop_queue(queue); 1553 mutex_unlock(&queue->queue_lock); 1554 } 1555 1556 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1557 { 1558 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1559 int ret; 1560 1561 if (idx) 1562 ret = nvmf_connect_io_queue(nctrl, idx, false); 1563 else 1564 ret = nvmf_connect_admin_queue(nctrl); 1565 1566 if (!ret) { 1567 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1568 } else { 1569 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1570 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1571 dev_err(nctrl->device, 1572 "failed to connect queue: %d ret=%d\n", idx, ret); 1573 } 1574 return ret; 1575 } 1576 1577 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1578 bool admin) 1579 { 1580 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1581 struct blk_mq_tag_set *set; 1582 int ret; 1583 1584 if (admin) { 1585 set = &ctrl->admin_tag_set; 1586 memset(set, 0, sizeof(*set)); 1587 set->ops = &nvme_tcp_admin_mq_ops; 1588 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1589 set->reserved_tags = NVMF_RESERVED_TAGS; 1590 set->numa_node = nctrl->numa_node; 1591 set->flags = BLK_MQ_F_BLOCKING; 1592 set->cmd_size = sizeof(struct nvme_tcp_request); 1593 set->driver_data = ctrl; 1594 set->nr_hw_queues = 1; 1595 set->timeout = NVME_ADMIN_TIMEOUT; 1596 } else { 1597 set = &ctrl->tag_set; 1598 memset(set, 0, sizeof(*set)); 1599 set->ops = &nvme_tcp_mq_ops; 1600 set->queue_depth = nctrl->sqsize + 1; 1601 set->reserved_tags = NVMF_RESERVED_TAGS; 1602 set->numa_node = nctrl->numa_node; 1603 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1604 set->cmd_size = sizeof(struct nvme_tcp_request); 1605 set->driver_data = ctrl; 1606 set->nr_hw_queues = nctrl->queue_count - 1; 1607 set->timeout = NVME_IO_TIMEOUT; 1608 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1609 } 1610 1611 ret = blk_mq_alloc_tag_set(set); 1612 if (ret) 1613 return ERR_PTR(ret); 1614 1615 return set; 1616 } 1617 1618 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1619 { 1620 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1621 cancel_work_sync(&ctrl->async_event_work); 1622 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1623 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1624 } 1625 1626 nvme_tcp_free_queue(ctrl, 0); 1627 } 1628 1629 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1630 { 1631 int i; 1632 1633 for (i = 1; i < ctrl->queue_count; i++) 1634 nvme_tcp_free_queue(ctrl, i); 1635 } 1636 1637 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1638 { 1639 int i; 1640 1641 for (i = 1; i < ctrl->queue_count; i++) 1642 nvme_tcp_stop_queue(ctrl, i); 1643 } 1644 1645 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1646 { 1647 int i, ret = 0; 1648 1649 for (i = 1; i < ctrl->queue_count; i++) { 1650 ret = nvme_tcp_start_queue(ctrl, i); 1651 if (ret) 1652 goto out_stop_queues; 1653 } 1654 1655 return 0; 1656 1657 out_stop_queues: 1658 for (i--; i >= 1; i--) 1659 nvme_tcp_stop_queue(ctrl, i); 1660 return ret; 1661 } 1662 1663 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1664 { 1665 int ret; 1666 1667 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1668 if (ret) 1669 return ret; 1670 1671 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1672 if (ret) 1673 goto out_free_queue; 1674 1675 return 0; 1676 1677 out_free_queue: 1678 nvme_tcp_free_queue(ctrl, 0); 1679 return ret; 1680 } 1681 1682 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1683 { 1684 int i, ret; 1685 1686 for (i = 1; i < ctrl->queue_count; i++) { 1687 ret = nvme_tcp_alloc_queue(ctrl, i, 1688 ctrl->sqsize + 1); 1689 if (ret) 1690 goto out_free_queues; 1691 } 1692 1693 return 0; 1694 1695 out_free_queues: 1696 for (i--; i >= 1; i--) 1697 nvme_tcp_free_queue(ctrl, i); 1698 1699 return ret; 1700 } 1701 1702 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1703 { 1704 unsigned int nr_io_queues; 1705 1706 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1707 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1708 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1709 1710 return nr_io_queues; 1711 } 1712 1713 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1714 unsigned int nr_io_queues) 1715 { 1716 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1717 struct nvmf_ctrl_options *opts = nctrl->opts; 1718 1719 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1720 /* 1721 * separate read/write queues 1722 * hand out dedicated default queues only after we have 1723 * sufficient read queues. 1724 */ 1725 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1726 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1727 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1728 min(opts->nr_write_queues, nr_io_queues); 1729 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1730 } else { 1731 /* 1732 * shared read/write queues 1733 * either no write queues were requested, or we don't have 1734 * sufficient queue count to have dedicated default queues. 1735 */ 1736 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1737 min(opts->nr_io_queues, nr_io_queues); 1738 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1739 } 1740 1741 if (opts->nr_poll_queues && nr_io_queues) { 1742 /* map dedicated poll queues only if we have queues left */ 1743 ctrl->io_queues[HCTX_TYPE_POLL] = 1744 min(opts->nr_poll_queues, nr_io_queues); 1745 } 1746 } 1747 1748 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1749 { 1750 unsigned int nr_io_queues; 1751 int ret; 1752 1753 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1754 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1755 if (ret) 1756 return ret; 1757 1758 ctrl->queue_count = nr_io_queues + 1; 1759 if (ctrl->queue_count < 2) { 1760 dev_err(ctrl->device, 1761 "unable to set any I/O queues\n"); 1762 return -ENOMEM; 1763 } 1764 1765 dev_info(ctrl->device, 1766 "creating %d I/O queues.\n", nr_io_queues); 1767 1768 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1769 1770 return __nvme_tcp_alloc_io_queues(ctrl); 1771 } 1772 1773 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1774 { 1775 nvme_tcp_stop_io_queues(ctrl); 1776 if (remove) { 1777 blk_cleanup_queue(ctrl->connect_q); 1778 blk_mq_free_tag_set(ctrl->tagset); 1779 } 1780 nvme_tcp_free_io_queues(ctrl); 1781 } 1782 1783 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1784 { 1785 int ret; 1786 1787 ret = nvme_tcp_alloc_io_queues(ctrl); 1788 if (ret) 1789 return ret; 1790 1791 if (new) { 1792 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1793 if (IS_ERR(ctrl->tagset)) { 1794 ret = PTR_ERR(ctrl->tagset); 1795 goto out_free_io_queues; 1796 } 1797 1798 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1799 if (IS_ERR(ctrl->connect_q)) { 1800 ret = PTR_ERR(ctrl->connect_q); 1801 goto out_free_tag_set; 1802 } 1803 } 1804 1805 ret = nvme_tcp_start_io_queues(ctrl); 1806 if (ret) 1807 goto out_cleanup_connect_q; 1808 1809 if (!new) { 1810 nvme_start_queues(ctrl); 1811 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1812 /* 1813 * If we timed out waiting for freeze we are likely to 1814 * be stuck. Fail the controller initialization just 1815 * to be safe. 1816 */ 1817 ret = -ENODEV; 1818 goto out_wait_freeze_timed_out; 1819 } 1820 blk_mq_update_nr_hw_queues(ctrl->tagset, 1821 ctrl->queue_count - 1); 1822 nvme_unfreeze(ctrl); 1823 } 1824 1825 return 0; 1826 1827 out_wait_freeze_timed_out: 1828 nvme_stop_queues(ctrl); 1829 nvme_sync_io_queues(ctrl); 1830 nvme_tcp_stop_io_queues(ctrl); 1831 out_cleanup_connect_q: 1832 nvme_cancel_tagset(ctrl); 1833 if (new) 1834 blk_cleanup_queue(ctrl->connect_q); 1835 out_free_tag_set: 1836 if (new) 1837 blk_mq_free_tag_set(ctrl->tagset); 1838 out_free_io_queues: 1839 nvme_tcp_free_io_queues(ctrl); 1840 return ret; 1841 } 1842 1843 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1844 { 1845 nvme_tcp_stop_queue(ctrl, 0); 1846 if (remove) { 1847 blk_cleanup_queue(ctrl->admin_q); 1848 blk_cleanup_queue(ctrl->fabrics_q); 1849 blk_mq_free_tag_set(ctrl->admin_tagset); 1850 } 1851 nvme_tcp_free_admin_queue(ctrl); 1852 } 1853 1854 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1855 { 1856 int error; 1857 1858 error = nvme_tcp_alloc_admin_queue(ctrl); 1859 if (error) 1860 return error; 1861 1862 if (new) { 1863 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1864 if (IS_ERR(ctrl->admin_tagset)) { 1865 error = PTR_ERR(ctrl->admin_tagset); 1866 goto out_free_queue; 1867 } 1868 1869 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1870 if (IS_ERR(ctrl->fabrics_q)) { 1871 error = PTR_ERR(ctrl->fabrics_q); 1872 goto out_free_tagset; 1873 } 1874 1875 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1876 if (IS_ERR(ctrl->admin_q)) { 1877 error = PTR_ERR(ctrl->admin_q); 1878 goto out_cleanup_fabrics_q; 1879 } 1880 } 1881 1882 error = nvme_tcp_start_queue(ctrl, 0); 1883 if (error) 1884 goto out_cleanup_queue; 1885 1886 error = nvme_enable_ctrl(ctrl); 1887 if (error) 1888 goto out_stop_queue; 1889 1890 blk_mq_unquiesce_queue(ctrl->admin_q); 1891 1892 error = nvme_init_ctrl_finish(ctrl); 1893 if (error) 1894 goto out_quiesce_queue; 1895 1896 return 0; 1897 1898 out_quiesce_queue: 1899 blk_mq_quiesce_queue(ctrl->admin_q); 1900 blk_sync_queue(ctrl->admin_q); 1901 out_stop_queue: 1902 nvme_tcp_stop_queue(ctrl, 0); 1903 nvme_cancel_admin_tagset(ctrl); 1904 out_cleanup_queue: 1905 if (new) 1906 blk_cleanup_queue(ctrl->admin_q); 1907 out_cleanup_fabrics_q: 1908 if (new) 1909 blk_cleanup_queue(ctrl->fabrics_q); 1910 out_free_tagset: 1911 if (new) 1912 blk_mq_free_tag_set(ctrl->admin_tagset); 1913 out_free_queue: 1914 nvme_tcp_free_admin_queue(ctrl); 1915 return error; 1916 } 1917 1918 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1919 bool remove) 1920 { 1921 blk_mq_quiesce_queue(ctrl->admin_q); 1922 blk_sync_queue(ctrl->admin_q); 1923 nvme_tcp_stop_queue(ctrl, 0); 1924 nvme_cancel_admin_tagset(ctrl); 1925 if (remove) 1926 blk_mq_unquiesce_queue(ctrl->admin_q); 1927 nvme_tcp_destroy_admin_queue(ctrl, remove); 1928 } 1929 1930 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1931 bool remove) 1932 { 1933 if (ctrl->queue_count <= 1) 1934 return; 1935 blk_mq_quiesce_queue(ctrl->admin_q); 1936 nvme_start_freeze(ctrl); 1937 nvme_stop_queues(ctrl); 1938 nvme_sync_io_queues(ctrl); 1939 nvme_tcp_stop_io_queues(ctrl); 1940 nvme_cancel_tagset(ctrl); 1941 if (remove) 1942 nvme_start_queues(ctrl); 1943 nvme_tcp_destroy_io_queues(ctrl, remove); 1944 } 1945 1946 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1947 { 1948 /* If we are resetting/deleting then do nothing */ 1949 if (ctrl->state != NVME_CTRL_CONNECTING) { 1950 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1951 ctrl->state == NVME_CTRL_LIVE); 1952 return; 1953 } 1954 1955 if (nvmf_should_reconnect(ctrl)) { 1956 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1957 ctrl->opts->reconnect_delay); 1958 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1959 ctrl->opts->reconnect_delay * HZ); 1960 } else { 1961 dev_info(ctrl->device, "Removing controller...\n"); 1962 nvme_delete_ctrl(ctrl); 1963 } 1964 } 1965 1966 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1967 { 1968 struct nvmf_ctrl_options *opts = ctrl->opts; 1969 int ret; 1970 1971 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1972 if (ret) 1973 return ret; 1974 1975 if (ctrl->icdoff) { 1976 dev_err(ctrl->device, "icdoff is not supported!\n"); 1977 goto destroy_admin; 1978 } 1979 1980 if (!(ctrl->sgls & ((1 << 0) | (1 << 1)))) { 1981 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 1982 goto destroy_admin; 1983 } 1984 1985 if (opts->queue_size > ctrl->sqsize + 1) 1986 dev_warn(ctrl->device, 1987 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1988 opts->queue_size, ctrl->sqsize + 1); 1989 1990 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1991 dev_warn(ctrl->device, 1992 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1993 ctrl->sqsize + 1, ctrl->maxcmd); 1994 ctrl->sqsize = ctrl->maxcmd - 1; 1995 } 1996 1997 if (ctrl->queue_count > 1) { 1998 ret = nvme_tcp_configure_io_queues(ctrl, new); 1999 if (ret) 2000 goto destroy_admin; 2001 } 2002 2003 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2004 /* 2005 * state change failure is ok if we started ctrl delete, 2006 * unless we're during creation of a new controller to 2007 * avoid races with teardown flow. 2008 */ 2009 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2010 ctrl->state != NVME_CTRL_DELETING_NOIO); 2011 WARN_ON_ONCE(new); 2012 ret = -EINVAL; 2013 goto destroy_io; 2014 } 2015 2016 nvme_start_ctrl(ctrl); 2017 return 0; 2018 2019 destroy_io: 2020 if (ctrl->queue_count > 1) { 2021 nvme_stop_queues(ctrl); 2022 nvme_sync_io_queues(ctrl); 2023 nvme_tcp_stop_io_queues(ctrl); 2024 nvme_cancel_tagset(ctrl); 2025 nvme_tcp_destroy_io_queues(ctrl, new); 2026 } 2027 destroy_admin: 2028 blk_mq_quiesce_queue(ctrl->admin_q); 2029 blk_sync_queue(ctrl->admin_q); 2030 nvme_tcp_stop_queue(ctrl, 0); 2031 nvme_cancel_admin_tagset(ctrl); 2032 nvme_tcp_destroy_admin_queue(ctrl, new); 2033 return ret; 2034 } 2035 2036 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2037 { 2038 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2039 struct nvme_tcp_ctrl, connect_work); 2040 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2041 2042 ++ctrl->nr_reconnects; 2043 2044 if (nvme_tcp_setup_ctrl(ctrl, false)) 2045 goto requeue; 2046 2047 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2048 ctrl->nr_reconnects); 2049 2050 ctrl->nr_reconnects = 0; 2051 2052 return; 2053 2054 requeue: 2055 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2056 ctrl->nr_reconnects); 2057 nvme_tcp_reconnect_or_remove(ctrl); 2058 } 2059 2060 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2061 { 2062 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2063 struct nvme_tcp_ctrl, err_work); 2064 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2065 2066 nvme_stop_keep_alive(ctrl); 2067 nvme_tcp_teardown_io_queues(ctrl, false); 2068 /* unquiesce to fail fast pending requests */ 2069 nvme_start_queues(ctrl); 2070 nvme_tcp_teardown_admin_queue(ctrl, false); 2071 blk_mq_unquiesce_queue(ctrl->admin_q); 2072 2073 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2074 /* state change failure is ok if we started ctrl delete */ 2075 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2076 ctrl->state != NVME_CTRL_DELETING_NOIO); 2077 return; 2078 } 2079 2080 nvme_tcp_reconnect_or_remove(ctrl); 2081 } 2082 2083 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2084 { 2085 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2086 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2087 2088 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2089 blk_mq_quiesce_queue(ctrl->admin_q); 2090 if (shutdown) 2091 nvme_shutdown_ctrl(ctrl); 2092 else 2093 nvme_disable_ctrl(ctrl); 2094 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2095 } 2096 2097 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2098 { 2099 nvme_tcp_teardown_ctrl(ctrl, true); 2100 } 2101 2102 static void nvme_reset_ctrl_work(struct work_struct *work) 2103 { 2104 struct nvme_ctrl *ctrl = 2105 container_of(work, struct nvme_ctrl, reset_work); 2106 2107 nvme_stop_ctrl(ctrl); 2108 nvme_tcp_teardown_ctrl(ctrl, false); 2109 2110 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2111 /* state change failure is ok if we started ctrl delete */ 2112 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2113 ctrl->state != NVME_CTRL_DELETING_NOIO); 2114 return; 2115 } 2116 2117 if (nvme_tcp_setup_ctrl(ctrl, false)) 2118 goto out_fail; 2119 2120 return; 2121 2122 out_fail: 2123 ++ctrl->nr_reconnects; 2124 nvme_tcp_reconnect_or_remove(ctrl); 2125 } 2126 2127 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2128 { 2129 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2130 2131 if (list_empty(&ctrl->list)) 2132 goto free_ctrl; 2133 2134 mutex_lock(&nvme_tcp_ctrl_mutex); 2135 list_del(&ctrl->list); 2136 mutex_unlock(&nvme_tcp_ctrl_mutex); 2137 2138 nvmf_free_options(nctrl->opts); 2139 free_ctrl: 2140 kfree(ctrl->queues); 2141 kfree(ctrl); 2142 } 2143 2144 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2145 { 2146 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2147 2148 sg->addr = 0; 2149 sg->length = 0; 2150 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2151 NVME_SGL_FMT_TRANSPORT_A; 2152 } 2153 2154 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2155 struct nvme_command *c, u32 data_len) 2156 { 2157 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2158 2159 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2160 sg->length = cpu_to_le32(data_len); 2161 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2162 } 2163 2164 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2165 u32 data_len) 2166 { 2167 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2168 2169 sg->addr = 0; 2170 sg->length = cpu_to_le32(data_len); 2171 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2172 NVME_SGL_FMT_TRANSPORT_A; 2173 } 2174 2175 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2176 { 2177 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2178 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2179 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2180 struct nvme_command *cmd = &pdu->cmd; 2181 u8 hdgst = nvme_tcp_hdgst_len(queue); 2182 2183 memset(pdu, 0, sizeof(*pdu)); 2184 pdu->hdr.type = nvme_tcp_cmd; 2185 if (queue->hdr_digest) 2186 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2187 pdu->hdr.hlen = sizeof(*pdu); 2188 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2189 2190 cmd->common.opcode = nvme_admin_async_event; 2191 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2192 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2193 nvme_tcp_set_sg_null(cmd); 2194 2195 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2196 ctrl->async_req.offset = 0; 2197 ctrl->async_req.curr_bio = NULL; 2198 ctrl->async_req.data_len = 0; 2199 2200 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2201 } 2202 2203 static void nvme_tcp_complete_timed_out(struct request *rq) 2204 { 2205 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2206 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2207 2208 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2209 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2210 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2211 blk_mq_complete_request(rq); 2212 } 2213 } 2214 2215 static enum blk_eh_timer_return 2216 nvme_tcp_timeout(struct request *rq, bool reserved) 2217 { 2218 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2219 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2220 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2221 2222 dev_warn(ctrl->device, 2223 "queue %d: timeout request %#x type %d\n", 2224 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2225 2226 if (ctrl->state != NVME_CTRL_LIVE) { 2227 /* 2228 * If we are resetting, connecting or deleting we should 2229 * complete immediately because we may block controller 2230 * teardown or setup sequence 2231 * - ctrl disable/shutdown fabrics requests 2232 * - connect requests 2233 * - initialization admin requests 2234 * - I/O requests that entered after unquiescing and 2235 * the controller stopped responding 2236 * 2237 * All other requests should be cancelled by the error 2238 * recovery work, so it's fine that we fail it here. 2239 */ 2240 nvme_tcp_complete_timed_out(rq); 2241 return BLK_EH_DONE; 2242 } 2243 2244 /* 2245 * LIVE state should trigger the normal error recovery which will 2246 * handle completing this request. 2247 */ 2248 nvme_tcp_error_recovery(ctrl); 2249 return BLK_EH_RESET_TIMER; 2250 } 2251 2252 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2253 struct request *rq) 2254 { 2255 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2256 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2257 struct nvme_command *c = &pdu->cmd; 2258 2259 c->common.flags |= NVME_CMD_SGL_METABUF; 2260 2261 if (!blk_rq_nr_phys_segments(rq)) 2262 nvme_tcp_set_sg_null(c); 2263 else if (rq_data_dir(rq) == WRITE && 2264 req->data_len <= nvme_tcp_inline_data_size(queue)) 2265 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2266 else 2267 nvme_tcp_set_sg_host_data(c, req->data_len); 2268 2269 return 0; 2270 } 2271 2272 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2273 struct request *rq) 2274 { 2275 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2276 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2277 struct nvme_tcp_queue *queue = req->queue; 2278 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2279 blk_status_t ret; 2280 2281 ret = nvme_setup_cmd(ns, rq); 2282 if (ret) 2283 return ret; 2284 2285 req->state = NVME_TCP_SEND_CMD_PDU; 2286 req->offset = 0; 2287 req->data_sent = 0; 2288 req->pdu_len = 0; 2289 req->pdu_sent = 0; 2290 req->data_len = blk_rq_nr_phys_segments(rq) ? 2291 blk_rq_payload_bytes(rq) : 0; 2292 req->curr_bio = rq->bio; 2293 if (req->curr_bio && req->data_len) 2294 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2295 2296 if (rq_data_dir(rq) == WRITE && 2297 req->data_len <= nvme_tcp_inline_data_size(queue)) 2298 req->pdu_len = req->data_len; 2299 2300 pdu->hdr.type = nvme_tcp_cmd; 2301 pdu->hdr.flags = 0; 2302 if (queue->hdr_digest) 2303 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2304 if (queue->data_digest && req->pdu_len) { 2305 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2306 ddgst = nvme_tcp_ddgst_len(queue); 2307 } 2308 pdu->hdr.hlen = sizeof(*pdu); 2309 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2310 pdu->hdr.plen = 2311 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2312 2313 ret = nvme_tcp_map_data(queue, rq); 2314 if (unlikely(ret)) { 2315 nvme_cleanup_cmd(rq); 2316 dev_err(queue->ctrl->ctrl.device, 2317 "Failed to map data (%d)\n", ret); 2318 return ret; 2319 } 2320 2321 return 0; 2322 } 2323 2324 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2325 { 2326 struct nvme_tcp_queue *queue = hctx->driver_data; 2327 2328 if (!llist_empty(&queue->req_list)) 2329 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2330 } 2331 2332 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2333 const struct blk_mq_queue_data *bd) 2334 { 2335 struct nvme_ns *ns = hctx->queue->queuedata; 2336 struct nvme_tcp_queue *queue = hctx->driver_data; 2337 struct request *rq = bd->rq; 2338 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2339 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2340 blk_status_t ret; 2341 2342 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2343 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2344 2345 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2346 if (unlikely(ret)) 2347 return ret; 2348 2349 blk_mq_start_request(rq); 2350 2351 nvme_tcp_queue_request(req, true, bd->last); 2352 2353 return BLK_STS_OK; 2354 } 2355 2356 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2357 { 2358 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2359 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2360 2361 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2362 /* separate read/write queues */ 2363 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2364 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2365 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2366 set->map[HCTX_TYPE_READ].nr_queues = 2367 ctrl->io_queues[HCTX_TYPE_READ]; 2368 set->map[HCTX_TYPE_READ].queue_offset = 2369 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2370 } else { 2371 /* shared read/write queues */ 2372 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2373 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2374 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2375 set->map[HCTX_TYPE_READ].nr_queues = 2376 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2377 set->map[HCTX_TYPE_READ].queue_offset = 0; 2378 } 2379 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2380 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2381 2382 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2383 /* map dedicated poll queues only if we have queues left */ 2384 set->map[HCTX_TYPE_POLL].nr_queues = 2385 ctrl->io_queues[HCTX_TYPE_POLL]; 2386 set->map[HCTX_TYPE_POLL].queue_offset = 2387 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2388 ctrl->io_queues[HCTX_TYPE_READ]; 2389 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2390 } 2391 2392 dev_info(ctrl->ctrl.device, 2393 "mapped %d/%d/%d default/read/poll queues.\n", 2394 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2395 ctrl->io_queues[HCTX_TYPE_READ], 2396 ctrl->io_queues[HCTX_TYPE_POLL]); 2397 2398 return 0; 2399 } 2400 2401 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2402 { 2403 struct nvme_tcp_queue *queue = hctx->driver_data; 2404 struct sock *sk = queue->sock->sk; 2405 2406 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2407 return 0; 2408 2409 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2410 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2411 sk_busy_loop(sk, true); 2412 nvme_tcp_try_recv(queue); 2413 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2414 return queue->nr_cqe; 2415 } 2416 2417 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2418 .queue_rq = nvme_tcp_queue_rq, 2419 .commit_rqs = nvme_tcp_commit_rqs, 2420 .complete = nvme_complete_rq, 2421 .init_request = nvme_tcp_init_request, 2422 .exit_request = nvme_tcp_exit_request, 2423 .init_hctx = nvme_tcp_init_hctx, 2424 .timeout = nvme_tcp_timeout, 2425 .map_queues = nvme_tcp_map_queues, 2426 .poll = nvme_tcp_poll, 2427 }; 2428 2429 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2430 .queue_rq = nvme_tcp_queue_rq, 2431 .complete = nvme_complete_rq, 2432 .init_request = nvme_tcp_init_request, 2433 .exit_request = nvme_tcp_exit_request, 2434 .init_hctx = nvme_tcp_init_admin_hctx, 2435 .timeout = nvme_tcp_timeout, 2436 }; 2437 2438 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2439 .name = "tcp", 2440 .module = THIS_MODULE, 2441 .flags = NVME_F_FABRICS, 2442 .reg_read32 = nvmf_reg_read32, 2443 .reg_read64 = nvmf_reg_read64, 2444 .reg_write32 = nvmf_reg_write32, 2445 .free_ctrl = nvme_tcp_free_ctrl, 2446 .submit_async_event = nvme_tcp_submit_async_event, 2447 .delete_ctrl = nvme_tcp_delete_ctrl, 2448 .get_address = nvmf_get_address, 2449 }; 2450 2451 static bool 2452 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2453 { 2454 struct nvme_tcp_ctrl *ctrl; 2455 bool found = false; 2456 2457 mutex_lock(&nvme_tcp_ctrl_mutex); 2458 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2459 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2460 if (found) 2461 break; 2462 } 2463 mutex_unlock(&nvme_tcp_ctrl_mutex); 2464 2465 return found; 2466 } 2467 2468 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2469 struct nvmf_ctrl_options *opts) 2470 { 2471 struct nvme_tcp_ctrl *ctrl; 2472 int ret; 2473 2474 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2475 if (!ctrl) 2476 return ERR_PTR(-ENOMEM); 2477 2478 INIT_LIST_HEAD(&ctrl->list); 2479 ctrl->ctrl.opts = opts; 2480 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2481 opts->nr_poll_queues + 1; 2482 ctrl->ctrl.sqsize = opts->queue_size - 1; 2483 ctrl->ctrl.kato = opts->kato; 2484 2485 INIT_DELAYED_WORK(&ctrl->connect_work, 2486 nvme_tcp_reconnect_ctrl_work); 2487 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2488 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2489 2490 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2491 opts->trsvcid = 2492 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2493 if (!opts->trsvcid) { 2494 ret = -ENOMEM; 2495 goto out_free_ctrl; 2496 } 2497 opts->mask |= NVMF_OPT_TRSVCID; 2498 } 2499 2500 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2501 opts->traddr, opts->trsvcid, &ctrl->addr); 2502 if (ret) { 2503 pr_err("malformed address passed: %s:%s\n", 2504 opts->traddr, opts->trsvcid); 2505 goto out_free_ctrl; 2506 } 2507 2508 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2509 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2510 opts->host_traddr, NULL, &ctrl->src_addr); 2511 if (ret) { 2512 pr_err("malformed src address passed: %s\n", 2513 opts->host_traddr); 2514 goto out_free_ctrl; 2515 } 2516 } 2517 2518 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2519 ret = -EALREADY; 2520 goto out_free_ctrl; 2521 } 2522 2523 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2524 GFP_KERNEL); 2525 if (!ctrl->queues) { 2526 ret = -ENOMEM; 2527 goto out_free_ctrl; 2528 } 2529 2530 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2531 if (ret) 2532 goto out_kfree_queues; 2533 2534 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2535 WARN_ON_ONCE(1); 2536 ret = -EINTR; 2537 goto out_uninit_ctrl; 2538 } 2539 2540 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2541 if (ret) 2542 goto out_uninit_ctrl; 2543 2544 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2545 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2546 2547 mutex_lock(&nvme_tcp_ctrl_mutex); 2548 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2549 mutex_unlock(&nvme_tcp_ctrl_mutex); 2550 2551 return &ctrl->ctrl; 2552 2553 out_uninit_ctrl: 2554 nvme_uninit_ctrl(&ctrl->ctrl); 2555 nvme_put_ctrl(&ctrl->ctrl); 2556 if (ret > 0) 2557 ret = -EIO; 2558 return ERR_PTR(ret); 2559 out_kfree_queues: 2560 kfree(ctrl->queues); 2561 out_free_ctrl: 2562 kfree(ctrl); 2563 return ERR_PTR(ret); 2564 } 2565 2566 static struct nvmf_transport_ops nvme_tcp_transport = { 2567 .name = "tcp", 2568 .module = THIS_MODULE, 2569 .required_opts = NVMF_OPT_TRADDR, 2570 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2571 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2572 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2573 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2574 NVMF_OPT_TOS, 2575 .create_ctrl = nvme_tcp_create_ctrl, 2576 }; 2577 2578 static int __init nvme_tcp_init_module(void) 2579 { 2580 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2581 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2582 if (!nvme_tcp_wq) 2583 return -ENOMEM; 2584 2585 nvmf_register_transport(&nvme_tcp_transport); 2586 return 0; 2587 } 2588 2589 static void __exit nvme_tcp_cleanup_module(void) 2590 { 2591 struct nvme_tcp_ctrl *ctrl; 2592 2593 nvmf_unregister_transport(&nvme_tcp_transport); 2594 2595 mutex_lock(&nvme_tcp_ctrl_mutex); 2596 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2597 nvme_delete_ctrl(&ctrl->ctrl); 2598 mutex_unlock(&nvme_tcp_ctrl_mutex); 2599 flush_workqueue(nvme_delete_wq); 2600 2601 destroy_workqueue(nvme_tcp_wq); 2602 } 2603 2604 module_init(nvme_tcp_init_module); 2605 module_exit(nvme_tcp_cleanup_module); 2606 2607 MODULE_LICENSE("GPL v2"); 2608