xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42 
43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 	struct sock *sk = sock->sk;
46 
47 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 		return;
49 
50 	switch (sk->sk_family) {
51 	case AF_INET:
52 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 					      &nvme_tcp_slock_key[0],
54 					      "sk_lock-AF_INET-NVME",
55 					      &nvme_tcp_sk_key[0]);
56 		break;
57 	case AF_INET6:
58 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 					      &nvme_tcp_slock_key[1],
60 					      "sk_lock-AF_INET6-NVME",
61 					      &nvme_tcp_sk_key[1]);
62 		break;
63 	default:
64 		WARN_ON_ONCE(1);
65 	}
66 }
67 #else
68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70 
71 enum nvme_tcp_send_state {
72 	NVME_TCP_SEND_CMD_PDU = 0,
73 	NVME_TCP_SEND_H2C_PDU,
74 	NVME_TCP_SEND_DATA,
75 	NVME_TCP_SEND_DDGST,
76 };
77 
78 struct nvme_tcp_request {
79 	struct nvme_request	req;
80 	void			*pdu;
81 	struct nvme_tcp_queue	*queue;
82 	u32			data_len;
83 	u32			pdu_len;
84 	u32			pdu_sent;
85 	u32			h2cdata_left;
86 	u32			h2cdata_offset;
87 	u16			ttag;
88 	__le16			status;
89 	struct list_head	entry;
90 	struct llist_node	lentry;
91 	__le32			ddgst;
92 
93 	struct bio		*curr_bio;
94 	struct iov_iter		iter;
95 
96 	/* send state */
97 	size_t			offset;
98 	size_t			data_sent;
99 	enum nvme_tcp_send_state state;
100 };
101 
102 enum nvme_tcp_queue_flags {
103 	NVME_TCP_Q_ALLOCATED	= 0,
104 	NVME_TCP_Q_LIVE		= 1,
105 	NVME_TCP_Q_POLLING	= 2,
106 };
107 
108 enum nvme_tcp_recv_state {
109 	NVME_TCP_RECV_PDU = 0,
110 	NVME_TCP_RECV_DATA,
111 	NVME_TCP_RECV_DDGST,
112 };
113 
114 struct nvme_tcp_ctrl;
115 struct nvme_tcp_queue {
116 	struct socket		*sock;
117 	struct work_struct	io_work;
118 	int			io_cpu;
119 
120 	struct mutex		queue_lock;
121 	struct mutex		send_mutex;
122 	struct llist_head	req_list;
123 	struct list_head	send_list;
124 	bool			more_requests;
125 
126 	/* recv state */
127 	void			*pdu;
128 	int			pdu_remaining;
129 	int			pdu_offset;
130 	size_t			data_remaining;
131 	size_t			ddgst_remaining;
132 	unsigned int		nr_cqe;
133 
134 	/* send state */
135 	struct nvme_tcp_request *request;
136 
137 	int			queue_size;
138 	u32			maxh2cdata;
139 	size_t			cmnd_capsule_len;
140 	struct nvme_tcp_ctrl	*ctrl;
141 	unsigned long		flags;
142 	bool			rd_enabled;
143 
144 	bool			hdr_digest;
145 	bool			data_digest;
146 	struct ahash_request	*rcv_hash;
147 	struct ahash_request	*snd_hash;
148 	__le32			exp_ddgst;
149 	__le32			recv_ddgst;
150 
151 	struct page_frag_cache	pf_cache;
152 
153 	void (*state_change)(struct sock *);
154 	void (*data_ready)(struct sock *);
155 	void (*write_space)(struct sock *);
156 };
157 
158 struct nvme_tcp_ctrl {
159 	/* read only in the hot path */
160 	struct nvme_tcp_queue	*queues;
161 	struct blk_mq_tag_set	tag_set;
162 
163 	/* other member variables */
164 	struct list_head	list;
165 	struct blk_mq_tag_set	admin_tag_set;
166 	struct sockaddr_storage addr;
167 	struct sockaddr_storage src_addr;
168 	struct nvme_ctrl	ctrl;
169 
170 	struct work_struct	err_work;
171 	struct delayed_work	connect_work;
172 	struct nvme_tcp_request async_req;
173 	u32			io_queues[HCTX_MAX_TYPES];
174 };
175 
176 static LIST_HEAD(nvme_tcp_ctrl_list);
177 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
178 static struct workqueue_struct *nvme_tcp_wq;
179 static const struct blk_mq_ops nvme_tcp_mq_ops;
180 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
181 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
182 
183 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
184 {
185 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
186 }
187 
188 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
189 {
190 	return queue - queue->ctrl->queues;
191 }
192 
193 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
194 {
195 	u32 queue_idx = nvme_tcp_queue_id(queue);
196 
197 	if (queue_idx == 0)
198 		return queue->ctrl->admin_tag_set.tags[queue_idx];
199 	return queue->ctrl->tag_set.tags[queue_idx - 1];
200 }
201 
202 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
203 {
204 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
205 }
206 
207 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
208 {
209 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
210 }
211 
212 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
213 {
214 	if (nvme_is_fabrics(req->req.cmd))
215 		return NVME_TCP_ADMIN_CCSZ;
216 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
217 }
218 
219 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
220 {
221 	return req == &req->queue->ctrl->async_req;
222 }
223 
224 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
225 {
226 	struct request *rq;
227 
228 	if (unlikely(nvme_tcp_async_req(req)))
229 		return false; /* async events don't have a request */
230 
231 	rq = blk_mq_rq_from_pdu(req);
232 
233 	return rq_data_dir(rq) == WRITE && req->data_len &&
234 		req->data_len <= nvme_tcp_inline_data_size(req);
235 }
236 
237 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
238 {
239 	return req->iter.bvec->bv_page;
240 }
241 
242 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
243 {
244 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
245 }
246 
247 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
248 {
249 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
250 			req->pdu_len - req->pdu_sent);
251 }
252 
253 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
254 {
255 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
256 			req->pdu_len - req->pdu_sent : 0;
257 }
258 
259 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
260 		int len)
261 {
262 	return nvme_tcp_pdu_data_left(req) <= len;
263 }
264 
265 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
266 		unsigned int dir)
267 {
268 	struct request *rq = blk_mq_rq_from_pdu(req);
269 	struct bio_vec *vec;
270 	unsigned int size;
271 	int nr_bvec;
272 	size_t offset;
273 
274 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
275 		vec = &rq->special_vec;
276 		nr_bvec = 1;
277 		size = blk_rq_payload_bytes(rq);
278 		offset = 0;
279 	} else {
280 		struct bio *bio = req->curr_bio;
281 		struct bvec_iter bi;
282 		struct bio_vec bv;
283 
284 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
285 		nr_bvec = 0;
286 		bio_for_each_bvec(bv, bio, bi) {
287 			nr_bvec++;
288 		}
289 		size = bio->bi_iter.bi_size;
290 		offset = bio->bi_iter.bi_bvec_done;
291 	}
292 
293 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
294 	req->iter.iov_offset = offset;
295 }
296 
297 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
298 		int len)
299 {
300 	req->data_sent += len;
301 	req->pdu_sent += len;
302 	iov_iter_advance(&req->iter, len);
303 	if (!iov_iter_count(&req->iter) &&
304 	    req->data_sent < req->data_len) {
305 		req->curr_bio = req->curr_bio->bi_next;
306 		nvme_tcp_init_iter(req, WRITE);
307 	}
308 }
309 
310 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
311 {
312 	int ret;
313 
314 	/* drain the send queue as much as we can... */
315 	do {
316 		ret = nvme_tcp_try_send(queue);
317 	} while (ret > 0);
318 }
319 
320 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
321 {
322 	return !list_empty(&queue->send_list) ||
323 		!llist_empty(&queue->req_list) || queue->more_requests;
324 }
325 
326 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
327 		bool sync, bool last)
328 {
329 	struct nvme_tcp_queue *queue = req->queue;
330 	bool empty;
331 
332 	empty = llist_add(&req->lentry, &queue->req_list) &&
333 		list_empty(&queue->send_list) && !queue->request;
334 
335 	/*
336 	 * if we're the first on the send_list and we can try to send
337 	 * directly, otherwise queue io_work. Also, only do that if we
338 	 * are on the same cpu, so we don't introduce contention.
339 	 */
340 	if (queue->io_cpu == raw_smp_processor_id() &&
341 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
342 		queue->more_requests = !last;
343 		nvme_tcp_send_all(queue);
344 		queue->more_requests = false;
345 		mutex_unlock(&queue->send_mutex);
346 	}
347 
348 	if (last && nvme_tcp_queue_more(queue))
349 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
350 }
351 
352 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
353 {
354 	struct nvme_tcp_request *req;
355 	struct llist_node *node;
356 
357 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
358 		req = llist_entry(node, struct nvme_tcp_request, lentry);
359 		list_add(&req->entry, &queue->send_list);
360 	}
361 }
362 
363 static inline struct nvme_tcp_request *
364 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
365 {
366 	struct nvme_tcp_request *req;
367 
368 	req = list_first_entry_or_null(&queue->send_list,
369 			struct nvme_tcp_request, entry);
370 	if (!req) {
371 		nvme_tcp_process_req_list(queue);
372 		req = list_first_entry_or_null(&queue->send_list,
373 				struct nvme_tcp_request, entry);
374 		if (unlikely(!req))
375 			return NULL;
376 	}
377 
378 	list_del(&req->entry);
379 	return req;
380 }
381 
382 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
383 		__le32 *dgst)
384 {
385 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
386 	crypto_ahash_final(hash);
387 }
388 
389 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
390 		struct page *page, off_t off, size_t len)
391 {
392 	struct scatterlist sg;
393 
394 	sg_init_marker(&sg, 1);
395 	sg_set_page(&sg, page, len, off);
396 	ahash_request_set_crypt(hash, &sg, NULL, len);
397 	crypto_ahash_update(hash);
398 }
399 
400 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
401 		void *pdu, size_t len)
402 {
403 	struct scatterlist sg;
404 
405 	sg_init_one(&sg, pdu, len);
406 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
407 	crypto_ahash_digest(hash);
408 }
409 
410 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
411 		void *pdu, size_t pdu_len)
412 {
413 	struct nvme_tcp_hdr *hdr = pdu;
414 	__le32 recv_digest;
415 	__le32 exp_digest;
416 
417 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
418 		dev_err(queue->ctrl->ctrl.device,
419 			"queue %d: header digest flag is cleared\n",
420 			nvme_tcp_queue_id(queue));
421 		return -EPROTO;
422 	}
423 
424 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
425 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
426 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
427 	if (recv_digest != exp_digest) {
428 		dev_err(queue->ctrl->ctrl.device,
429 			"header digest error: recv %#x expected %#x\n",
430 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
431 		return -EIO;
432 	}
433 
434 	return 0;
435 }
436 
437 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
438 {
439 	struct nvme_tcp_hdr *hdr = pdu;
440 	u8 digest_len = nvme_tcp_hdgst_len(queue);
441 	u32 len;
442 
443 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
444 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
445 
446 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
447 		dev_err(queue->ctrl->ctrl.device,
448 			"queue %d: data digest flag is cleared\n",
449 		nvme_tcp_queue_id(queue));
450 		return -EPROTO;
451 	}
452 	crypto_ahash_init(queue->rcv_hash);
453 
454 	return 0;
455 }
456 
457 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
458 		struct request *rq, unsigned int hctx_idx)
459 {
460 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
461 
462 	page_frag_free(req->pdu);
463 }
464 
465 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
466 		struct request *rq, unsigned int hctx_idx,
467 		unsigned int numa_node)
468 {
469 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
470 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
471 	struct nvme_tcp_cmd_pdu *pdu;
472 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
473 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
474 	u8 hdgst = nvme_tcp_hdgst_len(queue);
475 
476 	req->pdu = page_frag_alloc(&queue->pf_cache,
477 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
478 		GFP_KERNEL | __GFP_ZERO);
479 	if (!req->pdu)
480 		return -ENOMEM;
481 
482 	pdu = req->pdu;
483 	req->queue = queue;
484 	nvme_req(rq)->ctrl = &ctrl->ctrl;
485 	nvme_req(rq)->cmd = &pdu->cmd;
486 
487 	return 0;
488 }
489 
490 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
491 		unsigned int hctx_idx)
492 {
493 	struct nvme_tcp_ctrl *ctrl = data;
494 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
495 
496 	hctx->driver_data = queue;
497 	return 0;
498 }
499 
500 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
501 		unsigned int hctx_idx)
502 {
503 	struct nvme_tcp_ctrl *ctrl = data;
504 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
505 
506 	hctx->driver_data = queue;
507 	return 0;
508 }
509 
510 static enum nvme_tcp_recv_state
511 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
512 {
513 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
514 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
515 		NVME_TCP_RECV_DATA;
516 }
517 
518 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
519 {
520 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
521 				nvme_tcp_hdgst_len(queue);
522 	queue->pdu_offset = 0;
523 	queue->data_remaining = -1;
524 	queue->ddgst_remaining = 0;
525 }
526 
527 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
528 {
529 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
530 		return;
531 
532 	dev_warn(ctrl->device, "starting error recovery\n");
533 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
534 }
535 
536 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
537 		struct nvme_completion *cqe)
538 {
539 	struct nvme_tcp_request *req;
540 	struct request *rq;
541 
542 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
543 	if (!rq) {
544 		dev_err(queue->ctrl->ctrl.device,
545 			"got bad cqe.command_id %#x on queue %d\n",
546 			cqe->command_id, nvme_tcp_queue_id(queue));
547 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
548 		return -EINVAL;
549 	}
550 
551 	req = blk_mq_rq_to_pdu(rq);
552 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
553 		req->status = cqe->status;
554 
555 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
556 		nvme_complete_rq(rq);
557 	queue->nr_cqe++;
558 
559 	return 0;
560 }
561 
562 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
563 		struct nvme_tcp_data_pdu *pdu)
564 {
565 	struct request *rq;
566 
567 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
568 	if (!rq) {
569 		dev_err(queue->ctrl->ctrl.device,
570 			"got bad c2hdata.command_id %#x on queue %d\n",
571 			pdu->command_id, nvme_tcp_queue_id(queue));
572 		return -ENOENT;
573 	}
574 
575 	if (!blk_rq_payload_bytes(rq)) {
576 		dev_err(queue->ctrl->ctrl.device,
577 			"queue %d tag %#x unexpected data\n",
578 			nvme_tcp_queue_id(queue), rq->tag);
579 		return -EIO;
580 	}
581 
582 	queue->data_remaining = le32_to_cpu(pdu->data_length);
583 
584 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
585 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
586 		dev_err(queue->ctrl->ctrl.device,
587 			"queue %d tag %#x SUCCESS set but not last PDU\n",
588 			nvme_tcp_queue_id(queue), rq->tag);
589 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
590 		return -EPROTO;
591 	}
592 
593 	return 0;
594 }
595 
596 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
597 		struct nvme_tcp_rsp_pdu *pdu)
598 {
599 	struct nvme_completion *cqe = &pdu->cqe;
600 	int ret = 0;
601 
602 	/*
603 	 * AEN requests are special as they don't time out and can
604 	 * survive any kind of queue freeze and often don't respond to
605 	 * aborts.  We don't even bother to allocate a struct request
606 	 * for them but rather special case them here.
607 	 */
608 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
609 				     cqe->command_id)))
610 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
611 				&cqe->result);
612 	else
613 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
614 
615 	return ret;
616 }
617 
618 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
619 {
620 	struct nvme_tcp_data_pdu *data = req->pdu;
621 	struct nvme_tcp_queue *queue = req->queue;
622 	struct request *rq = blk_mq_rq_from_pdu(req);
623 	u32 h2cdata_sent = req->pdu_len;
624 	u8 hdgst = nvme_tcp_hdgst_len(queue);
625 	u8 ddgst = nvme_tcp_ddgst_len(queue);
626 
627 	req->state = NVME_TCP_SEND_H2C_PDU;
628 	req->offset = 0;
629 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
630 	req->pdu_sent = 0;
631 	req->h2cdata_left -= req->pdu_len;
632 	req->h2cdata_offset += h2cdata_sent;
633 
634 	memset(data, 0, sizeof(*data));
635 	data->hdr.type = nvme_tcp_h2c_data;
636 	if (!req->h2cdata_left)
637 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
638 	if (queue->hdr_digest)
639 		data->hdr.flags |= NVME_TCP_F_HDGST;
640 	if (queue->data_digest)
641 		data->hdr.flags |= NVME_TCP_F_DDGST;
642 	data->hdr.hlen = sizeof(*data);
643 	data->hdr.pdo = data->hdr.hlen + hdgst;
644 	data->hdr.plen =
645 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
646 	data->ttag = req->ttag;
647 	data->command_id = nvme_cid(rq);
648 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
649 	data->data_length = cpu_to_le32(req->pdu_len);
650 }
651 
652 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
653 		struct nvme_tcp_r2t_pdu *pdu)
654 {
655 	struct nvme_tcp_request *req;
656 	struct request *rq;
657 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
658 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
659 
660 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
661 	if (!rq) {
662 		dev_err(queue->ctrl->ctrl.device,
663 			"got bad r2t.command_id %#x on queue %d\n",
664 			pdu->command_id, nvme_tcp_queue_id(queue));
665 		return -ENOENT;
666 	}
667 	req = blk_mq_rq_to_pdu(rq);
668 
669 	if (unlikely(!r2t_length)) {
670 		dev_err(queue->ctrl->ctrl.device,
671 			"req %d r2t len is %u, probably a bug...\n",
672 			rq->tag, r2t_length);
673 		return -EPROTO;
674 	}
675 
676 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
677 		dev_err(queue->ctrl->ctrl.device,
678 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
679 			rq->tag, r2t_length, req->data_len, req->data_sent);
680 		return -EPROTO;
681 	}
682 
683 	if (unlikely(r2t_offset < req->data_sent)) {
684 		dev_err(queue->ctrl->ctrl.device,
685 			"req %d unexpected r2t offset %u (expected %zu)\n",
686 			rq->tag, r2t_offset, req->data_sent);
687 		return -EPROTO;
688 	}
689 
690 	req->pdu_len = 0;
691 	req->h2cdata_left = r2t_length;
692 	req->h2cdata_offset = r2t_offset;
693 	req->ttag = pdu->ttag;
694 
695 	nvme_tcp_setup_h2c_data_pdu(req);
696 	nvme_tcp_queue_request(req, false, true);
697 
698 	return 0;
699 }
700 
701 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
702 		unsigned int *offset, size_t *len)
703 {
704 	struct nvme_tcp_hdr *hdr;
705 	char *pdu = queue->pdu;
706 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
707 	int ret;
708 
709 	ret = skb_copy_bits(skb, *offset,
710 		&pdu[queue->pdu_offset], rcv_len);
711 	if (unlikely(ret))
712 		return ret;
713 
714 	queue->pdu_remaining -= rcv_len;
715 	queue->pdu_offset += rcv_len;
716 	*offset += rcv_len;
717 	*len -= rcv_len;
718 	if (queue->pdu_remaining)
719 		return 0;
720 
721 	hdr = queue->pdu;
722 	if (queue->hdr_digest) {
723 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
724 		if (unlikely(ret))
725 			return ret;
726 	}
727 
728 
729 	if (queue->data_digest) {
730 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
731 		if (unlikely(ret))
732 			return ret;
733 	}
734 
735 	switch (hdr->type) {
736 	case nvme_tcp_c2h_data:
737 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
738 	case nvme_tcp_rsp:
739 		nvme_tcp_init_recv_ctx(queue);
740 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
741 	case nvme_tcp_r2t:
742 		nvme_tcp_init_recv_ctx(queue);
743 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
744 	default:
745 		dev_err(queue->ctrl->ctrl.device,
746 			"unsupported pdu type (%d)\n", hdr->type);
747 		return -EINVAL;
748 	}
749 }
750 
751 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
752 {
753 	union nvme_result res = {};
754 
755 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
756 		nvme_complete_rq(rq);
757 }
758 
759 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
760 			      unsigned int *offset, size_t *len)
761 {
762 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
763 	struct request *rq =
764 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
765 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
766 
767 	while (true) {
768 		int recv_len, ret;
769 
770 		recv_len = min_t(size_t, *len, queue->data_remaining);
771 		if (!recv_len)
772 			break;
773 
774 		if (!iov_iter_count(&req->iter)) {
775 			req->curr_bio = req->curr_bio->bi_next;
776 
777 			/*
778 			 * If we don`t have any bios it means that controller
779 			 * sent more data than we requested, hence error
780 			 */
781 			if (!req->curr_bio) {
782 				dev_err(queue->ctrl->ctrl.device,
783 					"queue %d no space in request %#x",
784 					nvme_tcp_queue_id(queue), rq->tag);
785 				nvme_tcp_init_recv_ctx(queue);
786 				return -EIO;
787 			}
788 			nvme_tcp_init_iter(req, READ);
789 		}
790 
791 		/* we can read only from what is left in this bio */
792 		recv_len = min_t(size_t, recv_len,
793 				iov_iter_count(&req->iter));
794 
795 		if (queue->data_digest)
796 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
797 				&req->iter, recv_len, queue->rcv_hash);
798 		else
799 			ret = skb_copy_datagram_iter(skb, *offset,
800 					&req->iter, recv_len);
801 		if (ret) {
802 			dev_err(queue->ctrl->ctrl.device,
803 				"queue %d failed to copy request %#x data",
804 				nvme_tcp_queue_id(queue), rq->tag);
805 			return ret;
806 		}
807 
808 		*len -= recv_len;
809 		*offset += recv_len;
810 		queue->data_remaining -= recv_len;
811 	}
812 
813 	if (!queue->data_remaining) {
814 		if (queue->data_digest) {
815 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
816 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
817 		} else {
818 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
819 				nvme_tcp_end_request(rq,
820 						le16_to_cpu(req->status));
821 				queue->nr_cqe++;
822 			}
823 			nvme_tcp_init_recv_ctx(queue);
824 		}
825 	}
826 
827 	return 0;
828 }
829 
830 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
831 		struct sk_buff *skb, unsigned int *offset, size_t *len)
832 {
833 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
834 	char *ddgst = (char *)&queue->recv_ddgst;
835 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
836 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
837 	int ret;
838 
839 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
840 	if (unlikely(ret))
841 		return ret;
842 
843 	queue->ddgst_remaining -= recv_len;
844 	*offset += recv_len;
845 	*len -= recv_len;
846 	if (queue->ddgst_remaining)
847 		return 0;
848 
849 	if (queue->recv_ddgst != queue->exp_ddgst) {
850 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
851 					pdu->command_id);
852 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
853 
854 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
855 
856 		dev_err(queue->ctrl->ctrl.device,
857 			"data digest error: recv %#x expected %#x\n",
858 			le32_to_cpu(queue->recv_ddgst),
859 			le32_to_cpu(queue->exp_ddgst));
860 	}
861 
862 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
863 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
864 					pdu->command_id);
865 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
866 
867 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
868 		queue->nr_cqe++;
869 	}
870 
871 	nvme_tcp_init_recv_ctx(queue);
872 	return 0;
873 }
874 
875 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
876 			     unsigned int offset, size_t len)
877 {
878 	struct nvme_tcp_queue *queue = desc->arg.data;
879 	size_t consumed = len;
880 	int result;
881 
882 	while (len) {
883 		switch (nvme_tcp_recv_state(queue)) {
884 		case NVME_TCP_RECV_PDU:
885 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
886 			break;
887 		case NVME_TCP_RECV_DATA:
888 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
889 			break;
890 		case NVME_TCP_RECV_DDGST:
891 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
892 			break;
893 		default:
894 			result = -EFAULT;
895 		}
896 		if (result) {
897 			dev_err(queue->ctrl->ctrl.device,
898 				"receive failed:  %d\n", result);
899 			queue->rd_enabled = false;
900 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
901 			return result;
902 		}
903 	}
904 
905 	return consumed;
906 }
907 
908 static void nvme_tcp_data_ready(struct sock *sk)
909 {
910 	struct nvme_tcp_queue *queue;
911 
912 	read_lock_bh(&sk->sk_callback_lock);
913 	queue = sk->sk_user_data;
914 	if (likely(queue && queue->rd_enabled) &&
915 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
916 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
917 	read_unlock_bh(&sk->sk_callback_lock);
918 }
919 
920 static void nvme_tcp_write_space(struct sock *sk)
921 {
922 	struct nvme_tcp_queue *queue;
923 
924 	read_lock_bh(&sk->sk_callback_lock);
925 	queue = sk->sk_user_data;
926 	if (likely(queue && sk_stream_is_writeable(sk))) {
927 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
928 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
929 	}
930 	read_unlock_bh(&sk->sk_callback_lock);
931 }
932 
933 static void nvme_tcp_state_change(struct sock *sk)
934 {
935 	struct nvme_tcp_queue *queue;
936 
937 	read_lock_bh(&sk->sk_callback_lock);
938 	queue = sk->sk_user_data;
939 	if (!queue)
940 		goto done;
941 
942 	switch (sk->sk_state) {
943 	case TCP_CLOSE:
944 	case TCP_CLOSE_WAIT:
945 	case TCP_LAST_ACK:
946 	case TCP_FIN_WAIT1:
947 	case TCP_FIN_WAIT2:
948 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
949 		break;
950 	default:
951 		dev_info(queue->ctrl->ctrl.device,
952 			"queue %d socket state %d\n",
953 			nvme_tcp_queue_id(queue), sk->sk_state);
954 	}
955 
956 	queue->state_change(sk);
957 done:
958 	read_unlock_bh(&sk->sk_callback_lock);
959 }
960 
961 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
962 {
963 	queue->request = NULL;
964 }
965 
966 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
967 {
968 	if (nvme_tcp_async_req(req)) {
969 		union nvme_result res = {};
970 
971 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
972 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
973 	} else {
974 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
975 				NVME_SC_HOST_PATH_ERROR);
976 	}
977 }
978 
979 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
980 {
981 	struct nvme_tcp_queue *queue = req->queue;
982 	int req_data_len = req->data_len;
983 	u32 h2cdata_left = req->h2cdata_left;
984 
985 	while (true) {
986 		struct page *page = nvme_tcp_req_cur_page(req);
987 		size_t offset = nvme_tcp_req_cur_offset(req);
988 		size_t len = nvme_tcp_req_cur_length(req);
989 		bool last = nvme_tcp_pdu_last_send(req, len);
990 		int req_data_sent = req->data_sent;
991 		int ret, flags = MSG_DONTWAIT;
992 
993 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
994 			flags |= MSG_EOR;
995 		else
996 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
997 
998 		if (sendpage_ok(page)) {
999 			ret = kernel_sendpage(queue->sock, page, offset, len,
1000 					flags);
1001 		} else {
1002 			ret = sock_no_sendpage(queue->sock, page, offset, len,
1003 					flags);
1004 		}
1005 		if (ret <= 0)
1006 			return ret;
1007 
1008 		if (queue->data_digest)
1009 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1010 					offset, ret);
1011 
1012 		/*
1013 		 * update the request iterator except for the last payload send
1014 		 * in the request where we don't want to modify it as we may
1015 		 * compete with the RX path completing the request.
1016 		 */
1017 		if (req_data_sent + ret < req_data_len)
1018 			nvme_tcp_advance_req(req, ret);
1019 
1020 		/* fully successful last send in current PDU */
1021 		if (last && ret == len) {
1022 			if (queue->data_digest) {
1023 				nvme_tcp_ddgst_final(queue->snd_hash,
1024 					&req->ddgst);
1025 				req->state = NVME_TCP_SEND_DDGST;
1026 				req->offset = 0;
1027 			} else {
1028 				if (h2cdata_left)
1029 					nvme_tcp_setup_h2c_data_pdu(req);
1030 				else
1031 					nvme_tcp_done_send_req(queue);
1032 			}
1033 			return 1;
1034 		}
1035 	}
1036 	return -EAGAIN;
1037 }
1038 
1039 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1040 {
1041 	struct nvme_tcp_queue *queue = req->queue;
1042 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1043 	bool inline_data = nvme_tcp_has_inline_data(req);
1044 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1045 	int len = sizeof(*pdu) + hdgst - req->offset;
1046 	int flags = MSG_DONTWAIT;
1047 	int ret;
1048 
1049 	if (inline_data || nvme_tcp_queue_more(queue))
1050 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1051 	else
1052 		flags |= MSG_EOR;
1053 
1054 	if (queue->hdr_digest && !req->offset)
1055 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1056 
1057 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1058 			offset_in_page(pdu) + req->offset, len,  flags);
1059 	if (unlikely(ret <= 0))
1060 		return ret;
1061 
1062 	len -= ret;
1063 	if (!len) {
1064 		if (inline_data) {
1065 			req->state = NVME_TCP_SEND_DATA;
1066 			if (queue->data_digest)
1067 				crypto_ahash_init(queue->snd_hash);
1068 		} else {
1069 			nvme_tcp_done_send_req(queue);
1070 		}
1071 		return 1;
1072 	}
1073 	req->offset += ret;
1074 
1075 	return -EAGAIN;
1076 }
1077 
1078 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1079 {
1080 	struct nvme_tcp_queue *queue = req->queue;
1081 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1082 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1083 	int len = sizeof(*pdu) - req->offset + hdgst;
1084 	int ret;
1085 
1086 	if (queue->hdr_digest && !req->offset)
1087 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1088 
1089 	if (!req->h2cdata_left)
1090 		ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1091 				offset_in_page(pdu) + req->offset, len,
1092 				MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1093 	else
1094 		ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1095 				offset_in_page(pdu) + req->offset, len,
1096 				MSG_DONTWAIT | MSG_MORE);
1097 	if (unlikely(ret <= 0))
1098 		return ret;
1099 
1100 	len -= ret;
1101 	if (!len) {
1102 		req->state = NVME_TCP_SEND_DATA;
1103 		if (queue->data_digest)
1104 			crypto_ahash_init(queue->snd_hash);
1105 		return 1;
1106 	}
1107 	req->offset += ret;
1108 
1109 	return -EAGAIN;
1110 }
1111 
1112 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1113 {
1114 	struct nvme_tcp_queue *queue = req->queue;
1115 	size_t offset = req->offset;
1116 	u32 h2cdata_left = req->h2cdata_left;
1117 	int ret;
1118 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1119 	struct kvec iov = {
1120 		.iov_base = (u8 *)&req->ddgst + req->offset,
1121 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1122 	};
1123 
1124 	if (nvme_tcp_queue_more(queue))
1125 		msg.msg_flags |= MSG_MORE;
1126 	else
1127 		msg.msg_flags |= MSG_EOR;
1128 
1129 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1130 	if (unlikely(ret <= 0))
1131 		return ret;
1132 
1133 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1134 		if (h2cdata_left)
1135 			nvme_tcp_setup_h2c_data_pdu(req);
1136 		else
1137 			nvme_tcp_done_send_req(queue);
1138 		return 1;
1139 	}
1140 
1141 	req->offset += ret;
1142 	return -EAGAIN;
1143 }
1144 
1145 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1146 {
1147 	struct nvme_tcp_request *req;
1148 	int ret = 1;
1149 
1150 	if (!queue->request) {
1151 		queue->request = nvme_tcp_fetch_request(queue);
1152 		if (!queue->request)
1153 			return 0;
1154 	}
1155 	req = queue->request;
1156 
1157 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1158 		ret = nvme_tcp_try_send_cmd_pdu(req);
1159 		if (ret <= 0)
1160 			goto done;
1161 		if (!nvme_tcp_has_inline_data(req))
1162 			return ret;
1163 	}
1164 
1165 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1166 		ret = nvme_tcp_try_send_data_pdu(req);
1167 		if (ret <= 0)
1168 			goto done;
1169 	}
1170 
1171 	if (req->state == NVME_TCP_SEND_DATA) {
1172 		ret = nvme_tcp_try_send_data(req);
1173 		if (ret <= 0)
1174 			goto done;
1175 	}
1176 
1177 	if (req->state == NVME_TCP_SEND_DDGST)
1178 		ret = nvme_tcp_try_send_ddgst(req);
1179 done:
1180 	if (ret == -EAGAIN) {
1181 		ret = 0;
1182 	} else if (ret < 0) {
1183 		dev_err(queue->ctrl->ctrl.device,
1184 			"failed to send request %d\n", ret);
1185 		nvme_tcp_fail_request(queue->request);
1186 		nvme_tcp_done_send_req(queue);
1187 	}
1188 	return ret;
1189 }
1190 
1191 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1192 {
1193 	struct socket *sock = queue->sock;
1194 	struct sock *sk = sock->sk;
1195 	read_descriptor_t rd_desc;
1196 	int consumed;
1197 
1198 	rd_desc.arg.data = queue;
1199 	rd_desc.count = 1;
1200 	lock_sock(sk);
1201 	queue->nr_cqe = 0;
1202 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1203 	release_sock(sk);
1204 	return consumed;
1205 }
1206 
1207 static void nvme_tcp_io_work(struct work_struct *w)
1208 {
1209 	struct nvme_tcp_queue *queue =
1210 		container_of(w, struct nvme_tcp_queue, io_work);
1211 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1212 
1213 	do {
1214 		bool pending = false;
1215 		int result;
1216 
1217 		if (mutex_trylock(&queue->send_mutex)) {
1218 			result = nvme_tcp_try_send(queue);
1219 			mutex_unlock(&queue->send_mutex);
1220 			if (result > 0)
1221 				pending = true;
1222 			else if (unlikely(result < 0))
1223 				break;
1224 		}
1225 
1226 		result = nvme_tcp_try_recv(queue);
1227 		if (result > 0)
1228 			pending = true;
1229 		else if (unlikely(result < 0))
1230 			return;
1231 
1232 		if (!pending)
1233 			return;
1234 
1235 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1236 
1237 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1238 }
1239 
1240 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1241 {
1242 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1243 
1244 	ahash_request_free(queue->rcv_hash);
1245 	ahash_request_free(queue->snd_hash);
1246 	crypto_free_ahash(tfm);
1247 }
1248 
1249 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1250 {
1251 	struct crypto_ahash *tfm;
1252 
1253 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1254 	if (IS_ERR(tfm))
1255 		return PTR_ERR(tfm);
1256 
1257 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1258 	if (!queue->snd_hash)
1259 		goto free_tfm;
1260 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1261 
1262 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1263 	if (!queue->rcv_hash)
1264 		goto free_snd_hash;
1265 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1266 
1267 	return 0;
1268 free_snd_hash:
1269 	ahash_request_free(queue->snd_hash);
1270 free_tfm:
1271 	crypto_free_ahash(tfm);
1272 	return -ENOMEM;
1273 }
1274 
1275 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1276 {
1277 	struct nvme_tcp_request *async = &ctrl->async_req;
1278 
1279 	page_frag_free(async->pdu);
1280 }
1281 
1282 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1283 {
1284 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1285 	struct nvme_tcp_request *async = &ctrl->async_req;
1286 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1287 
1288 	async->pdu = page_frag_alloc(&queue->pf_cache,
1289 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1290 		GFP_KERNEL | __GFP_ZERO);
1291 	if (!async->pdu)
1292 		return -ENOMEM;
1293 
1294 	async->queue = &ctrl->queues[0];
1295 	return 0;
1296 }
1297 
1298 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1299 {
1300 	struct page *page;
1301 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1302 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1303 
1304 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1305 		return;
1306 
1307 	if (queue->hdr_digest || queue->data_digest)
1308 		nvme_tcp_free_crypto(queue);
1309 
1310 	if (queue->pf_cache.va) {
1311 		page = virt_to_head_page(queue->pf_cache.va);
1312 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1313 		queue->pf_cache.va = NULL;
1314 	}
1315 	sock_release(queue->sock);
1316 	kfree(queue->pdu);
1317 	mutex_destroy(&queue->send_mutex);
1318 	mutex_destroy(&queue->queue_lock);
1319 }
1320 
1321 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1322 {
1323 	struct nvme_tcp_icreq_pdu *icreq;
1324 	struct nvme_tcp_icresp_pdu *icresp;
1325 	struct msghdr msg = {};
1326 	struct kvec iov;
1327 	bool ctrl_hdgst, ctrl_ddgst;
1328 	u32 maxh2cdata;
1329 	int ret;
1330 
1331 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1332 	if (!icreq)
1333 		return -ENOMEM;
1334 
1335 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1336 	if (!icresp) {
1337 		ret = -ENOMEM;
1338 		goto free_icreq;
1339 	}
1340 
1341 	icreq->hdr.type = nvme_tcp_icreq;
1342 	icreq->hdr.hlen = sizeof(*icreq);
1343 	icreq->hdr.pdo = 0;
1344 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1345 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1346 	icreq->maxr2t = 0; /* single inflight r2t supported */
1347 	icreq->hpda = 0; /* no alignment constraint */
1348 	if (queue->hdr_digest)
1349 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1350 	if (queue->data_digest)
1351 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1352 
1353 	iov.iov_base = icreq;
1354 	iov.iov_len = sizeof(*icreq);
1355 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1356 	if (ret < 0)
1357 		goto free_icresp;
1358 
1359 	memset(&msg, 0, sizeof(msg));
1360 	iov.iov_base = icresp;
1361 	iov.iov_len = sizeof(*icresp);
1362 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1363 			iov.iov_len, msg.msg_flags);
1364 	if (ret < 0)
1365 		goto free_icresp;
1366 
1367 	ret = -EINVAL;
1368 	if (icresp->hdr.type != nvme_tcp_icresp) {
1369 		pr_err("queue %d: bad type returned %d\n",
1370 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1371 		goto free_icresp;
1372 	}
1373 
1374 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1375 		pr_err("queue %d: bad pdu length returned %d\n",
1376 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1377 		goto free_icresp;
1378 	}
1379 
1380 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1381 		pr_err("queue %d: bad pfv returned %d\n",
1382 			nvme_tcp_queue_id(queue), icresp->pfv);
1383 		goto free_icresp;
1384 	}
1385 
1386 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1387 	if ((queue->data_digest && !ctrl_ddgst) ||
1388 	    (!queue->data_digest && ctrl_ddgst)) {
1389 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1390 			nvme_tcp_queue_id(queue),
1391 			queue->data_digest ? "enabled" : "disabled",
1392 			ctrl_ddgst ? "enabled" : "disabled");
1393 		goto free_icresp;
1394 	}
1395 
1396 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1397 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1398 	    (!queue->hdr_digest && ctrl_hdgst)) {
1399 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1400 			nvme_tcp_queue_id(queue),
1401 			queue->hdr_digest ? "enabled" : "disabled",
1402 			ctrl_hdgst ? "enabled" : "disabled");
1403 		goto free_icresp;
1404 	}
1405 
1406 	if (icresp->cpda != 0) {
1407 		pr_err("queue %d: unsupported cpda returned %d\n",
1408 			nvme_tcp_queue_id(queue), icresp->cpda);
1409 		goto free_icresp;
1410 	}
1411 
1412 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1413 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1414 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1415 		       nvme_tcp_queue_id(queue), maxh2cdata);
1416 		goto free_icresp;
1417 	}
1418 	queue->maxh2cdata = maxh2cdata;
1419 
1420 	ret = 0;
1421 free_icresp:
1422 	kfree(icresp);
1423 free_icreq:
1424 	kfree(icreq);
1425 	return ret;
1426 }
1427 
1428 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1429 {
1430 	return nvme_tcp_queue_id(queue) == 0;
1431 }
1432 
1433 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1434 {
1435 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1436 	int qid = nvme_tcp_queue_id(queue);
1437 
1438 	return !nvme_tcp_admin_queue(queue) &&
1439 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1440 }
1441 
1442 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1443 {
1444 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1445 	int qid = nvme_tcp_queue_id(queue);
1446 
1447 	return !nvme_tcp_admin_queue(queue) &&
1448 		!nvme_tcp_default_queue(queue) &&
1449 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1450 			  ctrl->io_queues[HCTX_TYPE_READ];
1451 }
1452 
1453 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1454 {
1455 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1456 	int qid = nvme_tcp_queue_id(queue);
1457 
1458 	return !nvme_tcp_admin_queue(queue) &&
1459 		!nvme_tcp_default_queue(queue) &&
1460 		!nvme_tcp_read_queue(queue) &&
1461 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1462 			  ctrl->io_queues[HCTX_TYPE_READ] +
1463 			  ctrl->io_queues[HCTX_TYPE_POLL];
1464 }
1465 
1466 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1467 {
1468 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1469 	int qid = nvme_tcp_queue_id(queue);
1470 	int n = 0;
1471 
1472 	if (nvme_tcp_default_queue(queue))
1473 		n = qid - 1;
1474 	else if (nvme_tcp_read_queue(queue))
1475 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1476 	else if (nvme_tcp_poll_queue(queue))
1477 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1478 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1479 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1480 }
1481 
1482 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1483 		int qid, size_t queue_size)
1484 {
1485 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1486 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1487 	int ret, rcv_pdu_size;
1488 
1489 	mutex_init(&queue->queue_lock);
1490 	queue->ctrl = ctrl;
1491 	init_llist_head(&queue->req_list);
1492 	INIT_LIST_HEAD(&queue->send_list);
1493 	mutex_init(&queue->send_mutex);
1494 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1495 	queue->queue_size = queue_size;
1496 
1497 	if (qid > 0)
1498 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1499 	else
1500 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1501 						NVME_TCP_ADMIN_CCSZ;
1502 
1503 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1504 			IPPROTO_TCP, &queue->sock);
1505 	if (ret) {
1506 		dev_err(nctrl->device,
1507 			"failed to create socket: %d\n", ret);
1508 		goto err_destroy_mutex;
1509 	}
1510 
1511 	nvme_tcp_reclassify_socket(queue->sock);
1512 
1513 	/* Single syn retry */
1514 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1515 
1516 	/* Set TCP no delay */
1517 	tcp_sock_set_nodelay(queue->sock->sk);
1518 
1519 	/*
1520 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1521 	 * close. This is done to prevent stale data from being sent should
1522 	 * the network connection be restored before TCP times out.
1523 	 */
1524 	sock_no_linger(queue->sock->sk);
1525 
1526 	if (so_priority > 0)
1527 		sock_set_priority(queue->sock->sk, so_priority);
1528 
1529 	/* Set socket type of service */
1530 	if (nctrl->opts->tos >= 0)
1531 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1532 
1533 	/* Set 10 seconds timeout for icresp recvmsg */
1534 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1535 
1536 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1537 	nvme_tcp_set_queue_io_cpu(queue);
1538 	queue->request = NULL;
1539 	queue->data_remaining = 0;
1540 	queue->ddgst_remaining = 0;
1541 	queue->pdu_remaining = 0;
1542 	queue->pdu_offset = 0;
1543 	sk_set_memalloc(queue->sock->sk);
1544 
1545 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1546 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1547 			sizeof(ctrl->src_addr));
1548 		if (ret) {
1549 			dev_err(nctrl->device,
1550 				"failed to bind queue %d socket %d\n",
1551 				qid, ret);
1552 			goto err_sock;
1553 		}
1554 	}
1555 
1556 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1557 		char *iface = nctrl->opts->host_iface;
1558 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1559 
1560 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1561 				      optval, strlen(iface));
1562 		if (ret) {
1563 			dev_err(nctrl->device,
1564 			  "failed to bind to interface %s queue %d err %d\n",
1565 			  iface, qid, ret);
1566 			goto err_sock;
1567 		}
1568 	}
1569 
1570 	queue->hdr_digest = nctrl->opts->hdr_digest;
1571 	queue->data_digest = nctrl->opts->data_digest;
1572 	if (queue->hdr_digest || queue->data_digest) {
1573 		ret = nvme_tcp_alloc_crypto(queue);
1574 		if (ret) {
1575 			dev_err(nctrl->device,
1576 				"failed to allocate queue %d crypto\n", qid);
1577 			goto err_sock;
1578 		}
1579 	}
1580 
1581 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1582 			nvme_tcp_hdgst_len(queue);
1583 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1584 	if (!queue->pdu) {
1585 		ret = -ENOMEM;
1586 		goto err_crypto;
1587 	}
1588 
1589 	dev_dbg(nctrl->device, "connecting queue %d\n",
1590 			nvme_tcp_queue_id(queue));
1591 
1592 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1593 		sizeof(ctrl->addr), 0);
1594 	if (ret) {
1595 		dev_err(nctrl->device,
1596 			"failed to connect socket: %d\n", ret);
1597 		goto err_rcv_pdu;
1598 	}
1599 
1600 	ret = nvme_tcp_init_connection(queue);
1601 	if (ret)
1602 		goto err_init_connect;
1603 
1604 	queue->rd_enabled = true;
1605 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1606 	nvme_tcp_init_recv_ctx(queue);
1607 
1608 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1609 	queue->sock->sk->sk_user_data = queue;
1610 	queue->state_change = queue->sock->sk->sk_state_change;
1611 	queue->data_ready = queue->sock->sk->sk_data_ready;
1612 	queue->write_space = queue->sock->sk->sk_write_space;
1613 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1614 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1615 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1616 #ifdef CONFIG_NET_RX_BUSY_POLL
1617 	queue->sock->sk->sk_ll_usec = 1;
1618 #endif
1619 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1620 
1621 	return 0;
1622 
1623 err_init_connect:
1624 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1625 err_rcv_pdu:
1626 	kfree(queue->pdu);
1627 err_crypto:
1628 	if (queue->hdr_digest || queue->data_digest)
1629 		nvme_tcp_free_crypto(queue);
1630 err_sock:
1631 	sock_release(queue->sock);
1632 	queue->sock = NULL;
1633 err_destroy_mutex:
1634 	mutex_destroy(&queue->send_mutex);
1635 	mutex_destroy(&queue->queue_lock);
1636 	return ret;
1637 }
1638 
1639 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1640 {
1641 	struct socket *sock = queue->sock;
1642 
1643 	write_lock_bh(&sock->sk->sk_callback_lock);
1644 	sock->sk->sk_user_data  = NULL;
1645 	sock->sk->sk_data_ready = queue->data_ready;
1646 	sock->sk->sk_state_change = queue->state_change;
1647 	sock->sk->sk_write_space  = queue->write_space;
1648 	write_unlock_bh(&sock->sk->sk_callback_lock);
1649 }
1650 
1651 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1652 {
1653 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1654 	nvme_tcp_restore_sock_calls(queue);
1655 	cancel_work_sync(&queue->io_work);
1656 }
1657 
1658 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1659 {
1660 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1661 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1662 
1663 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1664 		return;
1665 
1666 	mutex_lock(&queue->queue_lock);
1667 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1668 		__nvme_tcp_stop_queue(queue);
1669 	mutex_unlock(&queue->queue_lock);
1670 }
1671 
1672 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1673 {
1674 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1675 	int ret;
1676 
1677 	if (idx)
1678 		ret = nvmf_connect_io_queue(nctrl, idx);
1679 	else
1680 		ret = nvmf_connect_admin_queue(nctrl);
1681 
1682 	if (!ret) {
1683 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1684 	} else {
1685 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1686 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1687 		dev_err(nctrl->device,
1688 			"failed to connect queue: %d ret=%d\n", idx, ret);
1689 	}
1690 	return ret;
1691 }
1692 
1693 static int nvme_tcp_alloc_admin_tag_set(struct nvme_ctrl *nctrl)
1694 {
1695 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1696 	struct blk_mq_tag_set *set = &ctrl->admin_tag_set;
1697 	int ret;
1698 
1699 	memset(set, 0, sizeof(*set));
1700 	set->ops = &nvme_tcp_admin_mq_ops;
1701 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1702 	set->reserved_tags = NVMF_RESERVED_TAGS;
1703 	set->numa_node = nctrl->numa_node;
1704 	set->flags = BLK_MQ_F_BLOCKING;
1705 	set->cmd_size = sizeof(struct nvme_tcp_request);
1706 	set->driver_data = ctrl;
1707 	set->nr_hw_queues = 1;
1708 	set->timeout = NVME_ADMIN_TIMEOUT;
1709 	ret = blk_mq_alloc_tag_set(set);
1710 	if (!ret)
1711 		nctrl->admin_tagset = set;
1712 	return ret;
1713 }
1714 
1715 static int nvme_tcp_alloc_tag_set(struct nvme_ctrl *nctrl)
1716 {
1717 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1718 	struct blk_mq_tag_set *set = &ctrl->tag_set;
1719 	int ret;
1720 
1721 	memset(set, 0, sizeof(*set));
1722 	set->ops = &nvme_tcp_mq_ops;
1723 	set->queue_depth = nctrl->sqsize + 1;
1724 	set->reserved_tags = NVMF_RESERVED_TAGS;
1725 	set->numa_node = nctrl->numa_node;
1726 	set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1727 	set->cmd_size = sizeof(struct nvme_tcp_request);
1728 	set->driver_data = ctrl;
1729 	set->nr_hw_queues = nctrl->queue_count - 1;
1730 	set->timeout = NVME_IO_TIMEOUT;
1731 	set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1732 	ret = blk_mq_alloc_tag_set(set);
1733 	if (!ret)
1734 		nctrl->tagset = set;
1735 	return ret;
1736 }
1737 
1738 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1739 {
1740 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1741 		cancel_work_sync(&ctrl->async_event_work);
1742 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1743 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1744 	}
1745 
1746 	nvme_tcp_free_queue(ctrl, 0);
1747 }
1748 
1749 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1750 {
1751 	int i;
1752 
1753 	for (i = 1; i < ctrl->queue_count; i++)
1754 		nvme_tcp_free_queue(ctrl, i);
1755 }
1756 
1757 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1758 {
1759 	int i;
1760 
1761 	for (i = 1; i < ctrl->queue_count; i++)
1762 		nvme_tcp_stop_queue(ctrl, i);
1763 }
1764 
1765 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1766 {
1767 	int i, ret;
1768 
1769 	for (i = 1; i < ctrl->queue_count; i++) {
1770 		ret = nvme_tcp_start_queue(ctrl, i);
1771 		if (ret)
1772 			goto out_stop_queues;
1773 	}
1774 
1775 	return 0;
1776 
1777 out_stop_queues:
1778 	for (i--; i >= 1; i--)
1779 		nvme_tcp_stop_queue(ctrl, i);
1780 	return ret;
1781 }
1782 
1783 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1784 {
1785 	int ret;
1786 
1787 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1788 	if (ret)
1789 		return ret;
1790 
1791 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1792 	if (ret)
1793 		goto out_free_queue;
1794 
1795 	return 0;
1796 
1797 out_free_queue:
1798 	nvme_tcp_free_queue(ctrl, 0);
1799 	return ret;
1800 }
1801 
1802 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1803 {
1804 	int i, ret;
1805 
1806 	for (i = 1; i < ctrl->queue_count; i++) {
1807 		ret = nvme_tcp_alloc_queue(ctrl, i, ctrl->sqsize + 1);
1808 		if (ret)
1809 			goto out_free_queues;
1810 	}
1811 
1812 	return 0;
1813 
1814 out_free_queues:
1815 	for (i--; i >= 1; i--)
1816 		nvme_tcp_free_queue(ctrl, i);
1817 
1818 	return ret;
1819 }
1820 
1821 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1822 {
1823 	unsigned int nr_io_queues;
1824 
1825 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1826 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1827 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1828 
1829 	return nr_io_queues;
1830 }
1831 
1832 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1833 		unsigned int nr_io_queues)
1834 {
1835 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1836 	struct nvmf_ctrl_options *opts = nctrl->opts;
1837 
1838 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1839 		/*
1840 		 * separate read/write queues
1841 		 * hand out dedicated default queues only after we have
1842 		 * sufficient read queues.
1843 		 */
1844 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1845 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1846 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1847 			min(opts->nr_write_queues, nr_io_queues);
1848 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1849 	} else {
1850 		/*
1851 		 * shared read/write queues
1852 		 * either no write queues were requested, or we don't have
1853 		 * sufficient queue count to have dedicated default queues.
1854 		 */
1855 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1856 			min(opts->nr_io_queues, nr_io_queues);
1857 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1858 	}
1859 
1860 	if (opts->nr_poll_queues && nr_io_queues) {
1861 		/* map dedicated poll queues only if we have queues left */
1862 		ctrl->io_queues[HCTX_TYPE_POLL] =
1863 			min(opts->nr_poll_queues, nr_io_queues);
1864 	}
1865 }
1866 
1867 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1868 {
1869 	unsigned int nr_io_queues;
1870 	int ret;
1871 
1872 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1873 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1874 	if (ret)
1875 		return ret;
1876 
1877 	if (nr_io_queues == 0) {
1878 		dev_err(ctrl->device,
1879 			"unable to set any I/O queues\n");
1880 		return -ENOMEM;
1881 	}
1882 
1883 	ctrl->queue_count = nr_io_queues + 1;
1884 	dev_info(ctrl->device,
1885 		"creating %d I/O queues.\n", nr_io_queues);
1886 
1887 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1888 
1889 	return __nvme_tcp_alloc_io_queues(ctrl);
1890 }
1891 
1892 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1893 {
1894 	nvme_tcp_stop_io_queues(ctrl);
1895 	if (remove) {
1896 		blk_mq_destroy_queue(ctrl->connect_q);
1897 		blk_mq_free_tag_set(ctrl->tagset);
1898 	}
1899 	nvme_tcp_free_io_queues(ctrl);
1900 }
1901 
1902 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1903 {
1904 	int ret;
1905 
1906 	ret = nvme_tcp_alloc_io_queues(ctrl);
1907 	if (ret)
1908 		return ret;
1909 
1910 	if (new) {
1911 		ret = nvme_tcp_alloc_tag_set(ctrl);
1912 		if (ret)
1913 			goto out_free_io_queues;
1914 
1915 		ret = nvme_ctrl_init_connect_q(ctrl);
1916 		if (ret)
1917 			goto out_free_tag_set;
1918 	}
1919 
1920 	ret = nvme_tcp_start_io_queues(ctrl);
1921 	if (ret)
1922 		goto out_cleanup_connect_q;
1923 
1924 	if (!new) {
1925 		nvme_start_queues(ctrl);
1926 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1927 			/*
1928 			 * If we timed out waiting for freeze we are likely to
1929 			 * be stuck.  Fail the controller initialization just
1930 			 * to be safe.
1931 			 */
1932 			ret = -ENODEV;
1933 			goto out_wait_freeze_timed_out;
1934 		}
1935 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1936 			ctrl->queue_count - 1);
1937 		nvme_unfreeze(ctrl);
1938 	}
1939 
1940 	return 0;
1941 
1942 out_wait_freeze_timed_out:
1943 	nvme_stop_queues(ctrl);
1944 	nvme_sync_io_queues(ctrl);
1945 	nvme_tcp_stop_io_queues(ctrl);
1946 out_cleanup_connect_q:
1947 	nvme_cancel_tagset(ctrl);
1948 	if (new)
1949 		blk_mq_destroy_queue(ctrl->connect_q);
1950 out_free_tag_set:
1951 	if (new)
1952 		blk_mq_free_tag_set(ctrl->tagset);
1953 out_free_io_queues:
1954 	nvme_tcp_free_io_queues(ctrl);
1955 	return ret;
1956 }
1957 
1958 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1959 {
1960 	nvme_tcp_stop_queue(ctrl, 0);
1961 	if (remove) {
1962 		blk_mq_destroy_queue(ctrl->admin_q);
1963 		blk_mq_destroy_queue(ctrl->fabrics_q);
1964 		blk_mq_free_tag_set(ctrl->admin_tagset);
1965 	}
1966 	nvme_tcp_free_admin_queue(ctrl);
1967 }
1968 
1969 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1970 {
1971 	int error;
1972 
1973 	error = nvme_tcp_alloc_admin_queue(ctrl);
1974 	if (error)
1975 		return error;
1976 
1977 	if (new) {
1978 		error = nvme_tcp_alloc_admin_tag_set(ctrl);
1979 		if (error)
1980 			goto out_free_queue;
1981 
1982 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1983 		if (IS_ERR(ctrl->fabrics_q)) {
1984 			error = PTR_ERR(ctrl->fabrics_q);
1985 			goto out_free_tagset;
1986 		}
1987 
1988 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1989 		if (IS_ERR(ctrl->admin_q)) {
1990 			error = PTR_ERR(ctrl->admin_q);
1991 			goto out_cleanup_fabrics_q;
1992 		}
1993 	}
1994 
1995 	error = nvme_tcp_start_queue(ctrl, 0);
1996 	if (error)
1997 		goto out_cleanup_queue;
1998 
1999 	error = nvme_enable_ctrl(ctrl);
2000 	if (error)
2001 		goto out_stop_queue;
2002 
2003 	nvme_start_admin_queue(ctrl);
2004 
2005 	error = nvme_init_ctrl_finish(ctrl);
2006 	if (error)
2007 		goto out_quiesce_queue;
2008 
2009 	return 0;
2010 
2011 out_quiesce_queue:
2012 	nvme_stop_admin_queue(ctrl);
2013 	blk_sync_queue(ctrl->admin_q);
2014 out_stop_queue:
2015 	nvme_tcp_stop_queue(ctrl, 0);
2016 	nvme_cancel_admin_tagset(ctrl);
2017 out_cleanup_queue:
2018 	if (new)
2019 		blk_mq_destroy_queue(ctrl->admin_q);
2020 out_cleanup_fabrics_q:
2021 	if (new)
2022 		blk_mq_destroy_queue(ctrl->fabrics_q);
2023 out_free_tagset:
2024 	if (new)
2025 		blk_mq_free_tag_set(ctrl->admin_tagset);
2026 out_free_queue:
2027 	nvme_tcp_free_admin_queue(ctrl);
2028 	return error;
2029 }
2030 
2031 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2032 		bool remove)
2033 {
2034 	nvme_stop_admin_queue(ctrl);
2035 	blk_sync_queue(ctrl->admin_q);
2036 	nvme_tcp_stop_queue(ctrl, 0);
2037 	nvme_cancel_admin_tagset(ctrl);
2038 	if (remove)
2039 		nvme_start_admin_queue(ctrl);
2040 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2041 }
2042 
2043 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2044 		bool remove)
2045 {
2046 	if (ctrl->queue_count <= 1)
2047 		return;
2048 	nvme_stop_admin_queue(ctrl);
2049 	nvme_start_freeze(ctrl);
2050 	nvme_stop_queues(ctrl);
2051 	nvme_sync_io_queues(ctrl);
2052 	nvme_tcp_stop_io_queues(ctrl);
2053 	nvme_cancel_tagset(ctrl);
2054 	if (remove)
2055 		nvme_start_queues(ctrl);
2056 	nvme_tcp_destroy_io_queues(ctrl, remove);
2057 }
2058 
2059 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2060 {
2061 	/* If we are resetting/deleting then do nothing */
2062 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2063 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2064 			ctrl->state == NVME_CTRL_LIVE);
2065 		return;
2066 	}
2067 
2068 	if (nvmf_should_reconnect(ctrl)) {
2069 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2070 			ctrl->opts->reconnect_delay);
2071 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2072 				ctrl->opts->reconnect_delay * HZ);
2073 	} else {
2074 		dev_info(ctrl->device, "Removing controller...\n");
2075 		nvme_delete_ctrl(ctrl);
2076 	}
2077 }
2078 
2079 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2080 {
2081 	struct nvmf_ctrl_options *opts = ctrl->opts;
2082 	int ret;
2083 
2084 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2085 	if (ret)
2086 		return ret;
2087 
2088 	if (ctrl->icdoff) {
2089 		ret = -EOPNOTSUPP;
2090 		dev_err(ctrl->device, "icdoff is not supported!\n");
2091 		goto destroy_admin;
2092 	}
2093 
2094 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2095 		ret = -EOPNOTSUPP;
2096 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2097 		goto destroy_admin;
2098 	}
2099 
2100 	if (opts->queue_size > ctrl->sqsize + 1)
2101 		dev_warn(ctrl->device,
2102 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2103 			opts->queue_size, ctrl->sqsize + 1);
2104 
2105 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2106 		dev_warn(ctrl->device,
2107 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2108 			ctrl->sqsize + 1, ctrl->maxcmd);
2109 		ctrl->sqsize = ctrl->maxcmd - 1;
2110 	}
2111 
2112 	if (ctrl->queue_count > 1) {
2113 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2114 		if (ret)
2115 			goto destroy_admin;
2116 	}
2117 
2118 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2119 		/*
2120 		 * state change failure is ok if we started ctrl delete,
2121 		 * unless we're during creation of a new controller to
2122 		 * avoid races with teardown flow.
2123 		 */
2124 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2125 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2126 		WARN_ON_ONCE(new);
2127 		ret = -EINVAL;
2128 		goto destroy_io;
2129 	}
2130 
2131 	nvme_start_ctrl(ctrl);
2132 	return 0;
2133 
2134 destroy_io:
2135 	if (ctrl->queue_count > 1) {
2136 		nvme_stop_queues(ctrl);
2137 		nvme_sync_io_queues(ctrl);
2138 		nvme_tcp_stop_io_queues(ctrl);
2139 		nvme_cancel_tagset(ctrl);
2140 		nvme_tcp_destroy_io_queues(ctrl, new);
2141 	}
2142 destroy_admin:
2143 	nvme_stop_admin_queue(ctrl);
2144 	blk_sync_queue(ctrl->admin_q);
2145 	nvme_tcp_stop_queue(ctrl, 0);
2146 	nvme_cancel_admin_tagset(ctrl);
2147 	nvme_tcp_destroy_admin_queue(ctrl, new);
2148 	return ret;
2149 }
2150 
2151 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2152 {
2153 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2154 			struct nvme_tcp_ctrl, connect_work);
2155 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2156 
2157 	++ctrl->nr_reconnects;
2158 
2159 	if (nvme_tcp_setup_ctrl(ctrl, false))
2160 		goto requeue;
2161 
2162 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2163 			ctrl->nr_reconnects);
2164 
2165 	ctrl->nr_reconnects = 0;
2166 
2167 	return;
2168 
2169 requeue:
2170 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2171 			ctrl->nr_reconnects);
2172 	nvme_tcp_reconnect_or_remove(ctrl);
2173 }
2174 
2175 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2176 {
2177 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2178 				struct nvme_tcp_ctrl, err_work);
2179 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2180 
2181 	nvme_auth_stop(ctrl);
2182 	nvme_stop_keep_alive(ctrl);
2183 	flush_work(&ctrl->async_event_work);
2184 	nvme_tcp_teardown_io_queues(ctrl, false);
2185 	/* unquiesce to fail fast pending requests */
2186 	nvme_start_queues(ctrl);
2187 	nvme_tcp_teardown_admin_queue(ctrl, false);
2188 	nvme_start_admin_queue(ctrl);
2189 
2190 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2191 		/* state change failure is ok if we started ctrl delete */
2192 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2193 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2194 		return;
2195 	}
2196 
2197 	nvme_tcp_reconnect_or_remove(ctrl);
2198 }
2199 
2200 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2201 {
2202 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2203 	nvme_stop_admin_queue(ctrl);
2204 	if (shutdown)
2205 		nvme_shutdown_ctrl(ctrl);
2206 	else
2207 		nvme_disable_ctrl(ctrl);
2208 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2209 }
2210 
2211 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2212 {
2213 	nvme_tcp_teardown_ctrl(ctrl, true);
2214 }
2215 
2216 static void nvme_reset_ctrl_work(struct work_struct *work)
2217 {
2218 	struct nvme_ctrl *ctrl =
2219 		container_of(work, struct nvme_ctrl, reset_work);
2220 
2221 	nvme_stop_ctrl(ctrl);
2222 	nvme_tcp_teardown_ctrl(ctrl, false);
2223 
2224 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2225 		/* state change failure is ok if we started ctrl delete */
2226 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2227 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2228 		return;
2229 	}
2230 
2231 	if (nvme_tcp_setup_ctrl(ctrl, false))
2232 		goto out_fail;
2233 
2234 	return;
2235 
2236 out_fail:
2237 	++ctrl->nr_reconnects;
2238 	nvme_tcp_reconnect_or_remove(ctrl);
2239 }
2240 
2241 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2242 {
2243 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2244 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2245 }
2246 
2247 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2248 {
2249 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2250 
2251 	if (list_empty(&ctrl->list))
2252 		goto free_ctrl;
2253 
2254 	mutex_lock(&nvme_tcp_ctrl_mutex);
2255 	list_del(&ctrl->list);
2256 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2257 
2258 	nvmf_free_options(nctrl->opts);
2259 free_ctrl:
2260 	kfree(ctrl->queues);
2261 	kfree(ctrl);
2262 }
2263 
2264 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2265 {
2266 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2267 
2268 	sg->addr = 0;
2269 	sg->length = 0;
2270 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2271 			NVME_SGL_FMT_TRANSPORT_A;
2272 }
2273 
2274 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2275 		struct nvme_command *c, u32 data_len)
2276 {
2277 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2278 
2279 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2280 	sg->length = cpu_to_le32(data_len);
2281 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2282 }
2283 
2284 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2285 		u32 data_len)
2286 {
2287 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2288 
2289 	sg->addr = 0;
2290 	sg->length = cpu_to_le32(data_len);
2291 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2292 			NVME_SGL_FMT_TRANSPORT_A;
2293 }
2294 
2295 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2296 {
2297 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2298 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2299 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2300 	struct nvme_command *cmd = &pdu->cmd;
2301 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2302 
2303 	memset(pdu, 0, sizeof(*pdu));
2304 	pdu->hdr.type = nvme_tcp_cmd;
2305 	if (queue->hdr_digest)
2306 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2307 	pdu->hdr.hlen = sizeof(*pdu);
2308 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2309 
2310 	cmd->common.opcode = nvme_admin_async_event;
2311 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2312 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2313 	nvme_tcp_set_sg_null(cmd);
2314 
2315 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2316 	ctrl->async_req.offset = 0;
2317 	ctrl->async_req.curr_bio = NULL;
2318 	ctrl->async_req.data_len = 0;
2319 
2320 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2321 }
2322 
2323 static void nvme_tcp_complete_timed_out(struct request *rq)
2324 {
2325 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2326 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2327 
2328 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2329 	nvmf_complete_timed_out_request(rq);
2330 }
2331 
2332 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2333 {
2334 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2335 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2336 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2337 
2338 	dev_warn(ctrl->device,
2339 		"queue %d: timeout request %#x type %d\n",
2340 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2341 
2342 	if (ctrl->state != NVME_CTRL_LIVE) {
2343 		/*
2344 		 * If we are resetting, connecting or deleting we should
2345 		 * complete immediately because we may block controller
2346 		 * teardown or setup sequence
2347 		 * - ctrl disable/shutdown fabrics requests
2348 		 * - connect requests
2349 		 * - initialization admin requests
2350 		 * - I/O requests that entered after unquiescing and
2351 		 *   the controller stopped responding
2352 		 *
2353 		 * All other requests should be cancelled by the error
2354 		 * recovery work, so it's fine that we fail it here.
2355 		 */
2356 		nvme_tcp_complete_timed_out(rq);
2357 		return BLK_EH_DONE;
2358 	}
2359 
2360 	/*
2361 	 * LIVE state should trigger the normal error recovery which will
2362 	 * handle completing this request.
2363 	 */
2364 	nvme_tcp_error_recovery(ctrl);
2365 	return BLK_EH_RESET_TIMER;
2366 }
2367 
2368 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2369 			struct request *rq)
2370 {
2371 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2372 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2373 	struct nvme_command *c = &pdu->cmd;
2374 
2375 	c->common.flags |= NVME_CMD_SGL_METABUF;
2376 
2377 	if (!blk_rq_nr_phys_segments(rq))
2378 		nvme_tcp_set_sg_null(c);
2379 	else if (rq_data_dir(rq) == WRITE &&
2380 	    req->data_len <= nvme_tcp_inline_data_size(req))
2381 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2382 	else
2383 		nvme_tcp_set_sg_host_data(c, req->data_len);
2384 
2385 	return 0;
2386 }
2387 
2388 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2389 		struct request *rq)
2390 {
2391 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2392 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2393 	struct nvme_tcp_queue *queue = req->queue;
2394 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2395 	blk_status_t ret;
2396 
2397 	ret = nvme_setup_cmd(ns, rq);
2398 	if (ret)
2399 		return ret;
2400 
2401 	req->state = NVME_TCP_SEND_CMD_PDU;
2402 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2403 	req->offset = 0;
2404 	req->data_sent = 0;
2405 	req->pdu_len = 0;
2406 	req->pdu_sent = 0;
2407 	req->h2cdata_left = 0;
2408 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2409 				blk_rq_payload_bytes(rq) : 0;
2410 	req->curr_bio = rq->bio;
2411 	if (req->curr_bio && req->data_len)
2412 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2413 
2414 	if (rq_data_dir(rq) == WRITE &&
2415 	    req->data_len <= nvme_tcp_inline_data_size(req))
2416 		req->pdu_len = req->data_len;
2417 
2418 	pdu->hdr.type = nvme_tcp_cmd;
2419 	pdu->hdr.flags = 0;
2420 	if (queue->hdr_digest)
2421 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2422 	if (queue->data_digest && req->pdu_len) {
2423 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2424 		ddgst = nvme_tcp_ddgst_len(queue);
2425 	}
2426 	pdu->hdr.hlen = sizeof(*pdu);
2427 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2428 	pdu->hdr.plen =
2429 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2430 
2431 	ret = nvme_tcp_map_data(queue, rq);
2432 	if (unlikely(ret)) {
2433 		nvme_cleanup_cmd(rq);
2434 		dev_err(queue->ctrl->ctrl.device,
2435 			"Failed to map data (%d)\n", ret);
2436 		return ret;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2443 {
2444 	struct nvme_tcp_queue *queue = hctx->driver_data;
2445 
2446 	if (!llist_empty(&queue->req_list))
2447 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2448 }
2449 
2450 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2451 		const struct blk_mq_queue_data *bd)
2452 {
2453 	struct nvme_ns *ns = hctx->queue->queuedata;
2454 	struct nvme_tcp_queue *queue = hctx->driver_data;
2455 	struct request *rq = bd->rq;
2456 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2457 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2458 	blk_status_t ret;
2459 
2460 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2461 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2462 
2463 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2464 	if (unlikely(ret))
2465 		return ret;
2466 
2467 	blk_mq_start_request(rq);
2468 
2469 	nvme_tcp_queue_request(req, true, bd->last);
2470 
2471 	return BLK_STS_OK;
2472 }
2473 
2474 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2475 {
2476 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2477 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2478 
2479 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2480 		/* separate read/write queues */
2481 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2482 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2483 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2484 		set->map[HCTX_TYPE_READ].nr_queues =
2485 			ctrl->io_queues[HCTX_TYPE_READ];
2486 		set->map[HCTX_TYPE_READ].queue_offset =
2487 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2488 	} else {
2489 		/* shared read/write queues */
2490 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2491 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2492 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2493 		set->map[HCTX_TYPE_READ].nr_queues =
2494 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2495 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2496 	}
2497 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2498 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2499 
2500 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2501 		/* map dedicated poll queues only if we have queues left */
2502 		set->map[HCTX_TYPE_POLL].nr_queues =
2503 				ctrl->io_queues[HCTX_TYPE_POLL];
2504 		set->map[HCTX_TYPE_POLL].queue_offset =
2505 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2506 			ctrl->io_queues[HCTX_TYPE_READ];
2507 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2508 	}
2509 
2510 	dev_info(ctrl->ctrl.device,
2511 		"mapped %d/%d/%d default/read/poll queues.\n",
2512 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2513 		ctrl->io_queues[HCTX_TYPE_READ],
2514 		ctrl->io_queues[HCTX_TYPE_POLL]);
2515 
2516 	return 0;
2517 }
2518 
2519 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2520 {
2521 	struct nvme_tcp_queue *queue = hctx->driver_data;
2522 	struct sock *sk = queue->sock->sk;
2523 
2524 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2525 		return 0;
2526 
2527 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2528 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2529 		sk_busy_loop(sk, true);
2530 	nvme_tcp_try_recv(queue);
2531 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2532 	return queue->nr_cqe;
2533 }
2534 
2535 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2536 	.queue_rq	= nvme_tcp_queue_rq,
2537 	.commit_rqs	= nvme_tcp_commit_rqs,
2538 	.complete	= nvme_complete_rq,
2539 	.init_request	= nvme_tcp_init_request,
2540 	.exit_request	= nvme_tcp_exit_request,
2541 	.init_hctx	= nvme_tcp_init_hctx,
2542 	.timeout	= nvme_tcp_timeout,
2543 	.map_queues	= nvme_tcp_map_queues,
2544 	.poll		= nvme_tcp_poll,
2545 };
2546 
2547 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2548 	.queue_rq	= nvme_tcp_queue_rq,
2549 	.complete	= nvme_complete_rq,
2550 	.init_request	= nvme_tcp_init_request,
2551 	.exit_request	= nvme_tcp_exit_request,
2552 	.init_hctx	= nvme_tcp_init_admin_hctx,
2553 	.timeout	= nvme_tcp_timeout,
2554 };
2555 
2556 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2557 	.name			= "tcp",
2558 	.module			= THIS_MODULE,
2559 	.flags			= NVME_F_FABRICS,
2560 	.reg_read32		= nvmf_reg_read32,
2561 	.reg_read64		= nvmf_reg_read64,
2562 	.reg_write32		= nvmf_reg_write32,
2563 	.free_ctrl		= nvme_tcp_free_ctrl,
2564 	.submit_async_event	= nvme_tcp_submit_async_event,
2565 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2566 	.get_address		= nvmf_get_address,
2567 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2568 };
2569 
2570 static bool
2571 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2572 {
2573 	struct nvme_tcp_ctrl *ctrl;
2574 	bool found = false;
2575 
2576 	mutex_lock(&nvme_tcp_ctrl_mutex);
2577 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2578 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2579 		if (found)
2580 			break;
2581 	}
2582 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2583 
2584 	return found;
2585 }
2586 
2587 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2588 		struct nvmf_ctrl_options *opts)
2589 {
2590 	struct nvme_tcp_ctrl *ctrl;
2591 	int ret;
2592 
2593 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2594 	if (!ctrl)
2595 		return ERR_PTR(-ENOMEM);
2596 
2597 	INIT_LIST_HEAD(&ctrl->list);
2598 	ctrl->ctrl.opts = opts;
2599 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2600 				opts->nr_poll_queues + 1;
2601 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2602 	ctrl->ctrl.kato = opts->kato;
2603 
2604 	INIT_DELAYED_WORK(&ctrl->connect_work,
2605 			nvme_tcp_reconnect_ctrl_work);
2606 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2607 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2608 
2609 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2610 		opts->trsvcid =
2611 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2612 		if (!opts->trsvcid) {
2613 			ret = -ENOMEM;
2614 			goto out_free_ctrl;
2615 		}
2616 		opts->mask |= NVMF_OPT_TRSVCID;
2617 	}
2618 
2619 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2620 			opts->traddr, opts->trsvcid, &ctrl->addr);
2621 	if (ret) {
2622 		pr_err("malformed address passed: %s:%s\n",
2623 			opts->traddr, opts->trsvcid);
2624 		goto out_free_ctrl;
2625 	}
2626 
2627 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2628 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2629 			opts->host_traddr, NULL, &ctrl->src_addr);
2630 		if (ret) {
2631 			pr_err("malformed src address passed: %s\n",
2632 			       opts->host_traddr);
2633 			goto out_free_ctrl;
2634 		}
2635 	}
2636 
2637 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2638 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2639 			pr_err("invalid interface passed: %s\n",
2640 			       opts->host_iface);
2641 			ret = -ENODEV;
2642 			goto out_free_ctrl;
2643 		}
2644 	}
2645 
2646 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2647 		ret = -EALREADY;
2648 		goto out_free_ctrl;
2649 	}
2650 
2651 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2652 				GFP_KERNEL);
2653 	if (!ctrl->queues) {
2654 		ret = -ENOMEM;
2655 		goto out_free_ctrl;
2656 	}
2657 
2658 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2659 	if (ret)
2660 		goto out_kfree_queues;
2661 
2662 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2663 		WARN_ON_ONCE(1);
2664 		ret = -EINTR;
2665 		goto out_uninit_ctrl;
2666 	}
2667 
2668 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2669 	if (ret)
2670 		goto out_uninit_ctrl;
2671 
2672 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2673 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2674 
2675 	mutex_lock(&nvme_tcp_ctrl_mutex);
2676 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2677 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2678 
2679 	return &ctrl->ctrl;
2680 
2681 out_uninit_ctrl:
2682 	nvme_uninit_ctrl(&ctrl->ctrl);
2683 	nvme_put_ctrl(&ctrl->ctrl);
2684 	if (ret > 0)
2685 		ret = -EIO;
2686 	return ERR_PTR(ret);
2687 out_kfree_queues:
2688 	kfree(ctrl->queues);
2689 out_free_ctrl:
2690 	kfree(ctrl);
2691 	return ERR_PTR(ret);
2692 }
2693 
2694 static struct nvmf_transport_ops nvme_tcp_transport = {
2695 	.name		= "tcp",
2696 	.module		= THIS_MODULE,
2697 	.required_opts	= NVMF_OPT_TRADDR,
2698 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2699 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2700 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2701 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2702 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2703 	.create_ctrl	= nvme_tcp_create_ctrl,
2704 };
2705 
2706 static int __init nvme_tcp_init_module(void)
2707 {
2708 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2709 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2710 	if (!nvme_tcp_wq)
2711 		return -ENOMEM;
2712 
2713 	nvmf_register_transport(&nvme_tcp_transport);
2714 	return 0;
2715 }
2716 
2717 static void __exit nvme_tcp_cleanup_module(void)
2718 {
2719 	struct nvme_tcp_ctrl *ctrl;
2720 
2721 	nvmf_unregister_transport(&nvme_tcp_transport);
2722 
2723 	mutex_lock(&nvme_tcp_ctrl_mutex);
2724 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2725 		nvme_delete_ctrl(&ctrl->ctrl);
2726 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2727 	flush_workqueue(nvme_delete_wq);
2728 
2729 	destroy_workqueue(nvme_tcp_wq);
2730 }
2731 
2732 module_init(nvme_tcp_init_module);
2733 module_exit(nvme_tcp_cleanup_module);
2734 
2735 MODULE_LICENSE("GPL v2");
2736