xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 
17 #include "nvme.h"
18 #include "fabrics.h"
19 
20 struct nvme_tcp_queue;
21 
22 enum nvme_tcp_send_state {
23 	NVME_TCP_SEND_CMD_PDU = 0,
24 	NVME_TCP_SEND_H2C_PDU,
25 	NVME_TCP_SEND_DATA,
26 	NVME_TCP_SEND_DDGST,
27 };
28 
29 struct nvme_tcp_request {
30 	struct nvme_request	req;
31 	void			*pdu;
32 	struct nvme_tcp_queue	*queue;
33 	u32			data_len;
34 	u32			pdu_len;
35 	u32			pdu_sent;
36 	u16			ttag;
37 	struct list_head	entry;
38 	__le32			ddgst;
39 
40 	struct bio		*curr_bio;
41 	struct iov_iter		iter;
42 
43 	/* send state */
44 	size_t			offset;
45 	size_t			data_sent;
46 	enum nvme_tcp_send_state state;
47 };
48 
49 enum nvme_tcp_queue_flags {
50 	NVME_TCP_Q_ALLOCATED	= 0,
51 	NVME_TCP_Q_LIVE		= 1,
52 };
53 
54 enum nvme_tcp_recv_state {
55 	NVME_TCP_RECV_PDU = 0,
56 	NVME_TCP_RECV_DATA,
57 	NVME_TCP_RECV_DDGST,
58 };
59 
60 struct nvme_tcp_ctrl;
61 struct nvme_tcp_queue {
62 	struct socket		*sock;
63 	struct work_struct	io_work;
64 	int			io_cpu;
65 
66 	spinlock_t		lock;
67 	struct list_head	send_list;
68 
69 	/* recv state */
70 	void			*pdu;
71 	int			pdu_remaining;
72 	int			pdu_offset;
73 	size_t			data_remaining;
74 	size_t			ddgst_remaining;
75 
76 	/* send state */
77 	struct nvme_tcp_request *request;
78 
79 	int			queue_size;
80 	size_t			cmnd_capsule_len;
81 	struct nvme_tcp_ctrl	*ctrl;
82 	unsigned long		flags;
83 	bool			rd_enabled;
84 
85 	bool			hdr_digest;
86 	bool			data_digest;
87 	struct ahash_request	*rcv_hash;
88 	struct ahash_request	*snd_hash;
89 	__le32			exp_ddgst;
90 	__le32			recv_ddgst;
91 
92 	struct page_frag_cache	pf_cache;
93 
94 	void (*state_change)(struct sock *);
95 	void (*data_ready)(struct sock *);
96 	void (*write_space)(struct sock *);
97 };
98 
99 struct nvme_tcp_ctrl {
100 	/* read only in the hot path */
101 	struct nvme_tcp_queue	*queues;
102 	struct blk_mq_tag_set	tag_set;
103 
104 	/* other member variables */
105 	struct list_head	list;
106 	struct blk_mq_tag_set	admin_tag_set;
107 	struct sockaddr_storage addr;
108 	struct sockaddr_storage src_addr;
109 	struct nvme_ctrl	ctrl;
110 
111 	struct work_struct	err_work;
112 	struct delayed_work	connect_work;
113 	struct nvme_tcp_request async_req;
114 	u32			io_queues[HCTX_MAX_TYPES];
115 };
116 
117 static LIST_HEAD(nvme_tcp_ctrl_list);
118 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
119 static struct workqueue_struct *nvme_tcp_wq;
120 static struct blk_mq_ops nvme_tcp_mq_ops;
121 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
122 
123 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
124 {
125 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
126 }
127 
128 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
129 {
130 	return queue - queue->ctrl->queues;
131 }
132 
133 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
134 {
135 	u32 queue_idx = nvme_tcp_queue_id(queue);
136 
137 	if (queue_idx == 0)
138 		return queue->ctrl->admin_tag_set.tags[queue_idx];
139 	return queue->ctrl->tag_set.tags[queue_idx - 1];
140 }
141 
142 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
143 {
144 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
145 }
146 
147 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
148 {
149 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
150 }
151 
152 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
153 {
154 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
155 }
156 
157 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
158 {
159 	return req == &req->queue->ctrl->async_req;
160 }
161 
162 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
163 {
164 	struct request *rq;
165 	unsigned int bytes;
166 
167 	if (unlikely(nvme_tcp_async_req(req)))
168 		return false; /* async events don't have a request */
169 
170 	rq = blk_mq_rq_from_pdu(req);
171 	bytes = blk_rq_payload_bytes(rq);
172 
173 	return rq_data_dir(rq) == WRITE && bytes &&
174 		bytes <= nvme_tcp_inline_data_size(req->queue);
175 }
176 
177 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
178 {
179 	return req->iter.bvec->bv_page;
180 }
181 
182 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
183 {
184 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
185 }
186 
187 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
188 {
189 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
190 			req->pdu_len - req->pdu_sent);
191 }
192 
193 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
194 {
195 	return req->iter.iov_offset;
196 }
197 
198 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
199 {
200 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
201 			req->pdu_len - req->pdu_sent : 0;
202 }
203 
204 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
205 		int len)
206 {
207 	return nvme_tcp_pdu_data_left(req) <= len;
208 }
209 
210 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
211 		unsigned int dir)
212 {
213 	struct request *rq = blk_mq_rq_from_pdu(req);
214 	struct bio_vec *vec;
215 	unsigned int size;
216 	int nsegs;
217 	size_t offset;
218 
219 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
220 		vec = &rq->special_vec;
221 		nsegs = 1;
222 		size = blk_rq_payload_bytes(rq);
223 		offset = 0;
224 	} else {
225 		struct bio *bio = req->curr_bio;
226 
227 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
228 		nsegs = bio_segments(bio);
229 		size = bio->bi_iter.bi_size;
230 		offset = bio->bi_iter.bi_bvec_done;
231 	}
232 
233 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
234 	req->iter.iov_offset = offset;
235 }
236 
237 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
238 		int len)
239 {
240 	req->data_sent += len;
241 	req->pdu_sent += len;
242 	iov_iter_advance(&req->iter, len);
243 	if (!iov_iter_count(&req->iter) &&
244 	    req->data_sent < req->data_len) {
245 		req->curr_bio = req->curr_bio->bi_next;
246 		nvme_tcp_init_iter(req, WRITE);
247 	}
248 }
249 
250 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
251 {
252 	struct nvme_tcp_queue *queue = req->queue;
253 
254 	spin_lock(&queue->lock);
255 	list_add_tail(&req->entry, &queue->send_list);
256 	spin_unlock(&queue->lock);
257 
258 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
259 }
260 
261 static inline struct nvme_tcp_request *
262 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
263 {
264 	struct nvme_tcp_request *req;
265 
266 	spin_lock(&queue->lock);
267 	req = list_first_entry_or_null(&queue->send_list,
268 			struct nvme_tcp_request, entry);
269 	if (req)
270 		list_del(&req->entry);
271 	spin_unlock(&queue->lock);
272 
273 	return req;
274 }
275 
276 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
277 		__le32 *dgst)
278 {
279 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
280 	crypto_ahash_final(hash);
281 }
282 
283 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
284 		struct page *page, off_t off, size_t len)
285 {
286 	struct scatterlist sg;
287 
288 	sg_init_marker(&sg, 1);
289 	sg_set_page(&sg, page, len, off);
290 	ahash_request_set_crypt(hash, &sg, NULL, len);
291 	crypto_ahash_update(hash);
292 }
293 
294 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
295 		void *pdu, size_t len)
296 {
297 	struct scatterlist sg;
298 
299 	sg_init_one(&sg, pdu, len);
300 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
301 	crypto_ahash_digest(hash);
302 }
303 
304 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
305 		void *pdu, size_t pdu_len)
306 {
307 	struct nvme_tcp_hdr *hdr = pdu;
308 	__le32 recv_digest;
309 	__le32 exp_digest;
310 
311 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
312 		dev_err(queue->ctrl->ctrl.device,
313 			"queue %d: header digest flag is cleared\n",
314 			nvme_tcp_queue_id(queue));
315 		return -EPROTO;
316 	}
317 
318 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
319 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
320 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
321 	if (recv_digest != exp_digest) {
322 		dev_err(queue->ctrl->ctrl.device,
323 			"header digest error: recv %#x expected %#x\n",
324 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
325 		return -EIO;
326 	}
327 
328 	return 0;
329 }
330 
331 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
332 {
333 	struct nvme_tcp_hdr *hdr = pdu;
334 	u8 digest_len = nvme_tcp_hdgst_len(queue);
335 	u32 len;
336 
337 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
338 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
339 
340 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
341 		dev_err(queue->ctrl->ctrl.device,
342 			"queue %d: data digest flag is cleared\n",
343 		nvme_tcp_queue_id(queue));
344 		return -EPROTO;
345 	}
346 	crypto_ahash_init(queue->rcv_hash);
347 
348 	return 0;
349 }
350 
351 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
352 		struct request *rq, unsigned int hctx_idx)
353 {
354 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
355 
356 	page_frag_free(req->pdu);
357 }
358 
359 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
360 		struct request *rq, unsigned int hctx_idx,
361 		unsigned int numa_node)
362 {
363 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
364 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
365 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
366 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
367 	u8 hdgst = nvme_tcp_hdgst_len(queue);
368 
369 	req->pdu = page_frag_alloc(&queue->pf_cache,
370 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
371 		GFP_KERNEL | __GFP_ZERO);
372 	if (!req->pdu)
373 		return -ENOMEM;
374 
375 	req->queue = queue;
376 	nvme_req(rq)->ctrl = &ctrl->ctrl;
377 
378 	return 0;
379 }
380 
381 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
382 		unsigned int hctx_idx)
383 {
384 	struct nvme_tcp_ctrl *ctrl = data;
385 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
386 
387 	hctx->driver_data = queue;
388 	return 0;
389 }
390 
391 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
392 		unsigned int hctx_idx)
393 {
394 	struct nvme_tcp_ctrl *ctrl = data;
395 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
396 
397 	hctx->driver_data = queue;
398 	return 0;
399 }
400 
401 static enum nvme_tcp_recv_state
402 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
403 {
404 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
405 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
406 		NVME_TCP_RECV_DATA;
407 }
408 
409 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
410 {
411 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
412 				nvme_tcp_hdgst_len(queue);
413 	queue->pdu_offset = 0;
414 	queue->data_remaining = -1;
415 	queue->ddgst_remaining = 0;
416 }
417 
418 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
419 {
420 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
421 		return;
422 
423 	queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work);
424 }
425 
426 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
427 		struct nvme_completion *cqe)
428 {
429 	struct request *rq;
430 
431 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
432 	if (!rq) {
433 		dev_err(queue->ctrl->ctrl.device,
434 			"queue %d tag 0x%x not found\n",
435 			nvme_tcp_queue_id(queue), cqe->command_id);
436 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
437 		return -EINVAL;
438 	}
439 
440 	nvme_end_request(rq, cqe->status, cqe->result);
441 
442 	return 0;
443 }
444 
445 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
446 		struct nvme_tcp_data_pdu *pdu)
447 {
448 	struct request *rq;
449 
450 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
451 	if (!rq) {
452 		dev_err(queue->ctrl->ctrl.device,
453 			"queue %d tag %#x not found\n",
454 			nvme_tcp_queue_id(queue), pdu->command_id);
455 		return -ENOENT;
456 	}
457 
458 	if (!blk_rq_payload_bytes(rq)) {
459 		dev_err(queue->ctrl->ctrl.device,
460 			"queue %d tag %#x unexpected data\n",
461 			nvme_tcp_queue_id(queue), rq->tag);
462 		return -EIO;
463 	}
464 
465 	queue->data_remaining = le32_to_cpu(pdu->data_length);
466 
467 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
468 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
469 		dev_err(queue->ctrl->ctrl.device,
470 			"queue %d tag %#x SUCCESS set but not last PDU\n",
471 			nvme_tcp_queue_id(queue), rq->tag);
472 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
473 		return -EPROTO;
474 	}
475 
476 	return 0;
477 }
478 
479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
480 		struct nvme_tcp_rsp_pdu *pdu)
481 {
482 	struct nvme_completion *cqe = &pdu->cqe;
483 	int ret = 0;
484 
485 	/*
486 	 * AEN requests are special as they don't time out and can
487 	 * survive any kind of queue freeze and often don't respond to
488 	 * aborts.  We don't even bother to allocate a struct request
489 	 * for them but rather special case them here.
490 	 */
491 	if (unlikely(nvme_tcp_queue_id(queue) == 0 &&
492 	    cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
493 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
494 				&cqe->result);
495 	else
496 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
497 
498 	return ret;
499 }
500 
501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
502 		struct nvme_tcp_r2t_pdu *pdu)
503 {
504 	struct nvme_tcp_data_pdu *data = req->pdu;
505 	struct nvme_tcp_queue *queue = req->queue;
506 	struct request *rq = blk_mq_rq_from_pdu(req);
507 	u8 hdgst = nvme_tcp_hdgst_len(queue);
508 	u8 ddgst = nvme_tcp_ddgst_len(queue);
509 
510 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
511 	req->pdu_sent = 0;
512 
513 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
514 		dev_err(queue->ctrl->ctrl.device,
515 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
516 			rq->tag, req->pdu_len, req->data_len,
517 			req->data_sent);
518 		return -EPROTO;
519 	}
520 
521 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
522 		dev_err(queue->ctrl->ctrl.device,
523 			"req %d unexpected r2t offset %u (expected %zu)\n",
524 			rq->tag, le32_to_cpu(pdu->r2t_offset),
525 			req->data_sent);
526 		return -EPROTO;
527 	}
528 
529 	memset(data, 0, sizeof(*data));
530 	data->hdr.type = nvme_tcp_h2c_data;
531 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
532 	if (queue->hdr_digest)
533 		data->hdr.flags |= NVME_TCP_F_HDGST;
534 	if (queue->data_digest)
535 		data->hdr.flags |= NVME_TCP_F_DDGST;
536 	data->hdr.hlen = sizeof(*data);
537 	data->hdr.pdo = data->hdr.hlen + hdgst;
538 	data->hdr.plen =
539 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
540 	data->ttag = pdu->ttag;
541 	data->command_id = rq->tag;
542 	data->data_offset = cpu_to_le32(req->data_sent);
543 	data->data_length = cpu_to_le32(req->pdu_len);
544 	return 0;
545 }
546 
547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
548 		struct nvme_tcp_r2t_pdu *pdu)
549 {
550 	struct nvme_tcp_request *req;
551 	struct request *rq;
552 	int ret;
553 
554 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
555 	if (!rq) {
556 		dev_err(queue->ctrl->ctrl.device,
557 			"queue %d tag %#x not found\n",
558 			nvme_tcp_queue_id(queue), pdu->command_id);
559 		return -ENOENT;
560 	}
561 	req = blk_mq_rq_to_pdu(rq);
562 
563 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
564 	if (unlikely(ret))
565 		return ret;
566 
567 	req->state = NVME_TCP_SEND_H2C_PDU;
568 	req->offset = 0;
569 
570 	nvme_tcp_queue_request(req);
571 
572 	return 0;
573 }
574 
575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
576 		unsigned int *offset, size_t *len)
577 {
578 	struct nvme_tcp_hdr *hdr;
579 	char *pdu = queue->pdu;
580 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
581 	int ret;
582 
583 	ret = skb_copy_bits(skb, *offset,
584 		&pdu[queue->pdu_offset], rcv_len);
585 	if (unlikely(ret))
586 		return ret;
587 
588 	queue->pdu_remaining -= rcv_len;
589 	queue->pdu_offset += rcv_len;
590 	*offset += rcv_len;
591 	*len -= rcv_len;
592 	if (queue->pdu_remaining)
593 		return 0;
594 
595 	hdr = queue->pdu;
596 	if (queue->hdr_digest) {
597 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
598 		if (unlikely(ret))
599 			return ret;
600 	}
601 
602 
603 	if (queue->data_digest) {
604 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
605 		if (unlikely(ret))
606 			return ret;
607 	}
608 
609 	switch (hdr->type) {
610 	case nvme_tcp_c2h_data:
611 		ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
612 		break;
613 	case nvme_tcp_rsp:
614 		nvme_tcp_init_recv_ctx(queue);
615 		ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu);
616 		break;
617 	case nvme_tcp_r2t:
618 		nvme_tcp_init_recv_ctx(queue);
619 		ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
620 		break;
621 	default:
622 		dev_err(queue->ctrl->ctrl.device,
623 			"unsupported pdu type (%d)\n", hdr->type);
624 		return -EINVAL;
625 	}
626 
627 	return ret;
628 }
629 
630 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
631 {
632 	union nvme_result res = {};
633 
634 	nvme_end_request(rq, cpu_to_le16(status << 1), res);
635 }
636 
637 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
638 			      unsigned int *offset, size_t *len)
639 {
640 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
641 	struct nvme_tcp_request *req;
642 	struct request *rq;
643 
644 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
645 	if (!rq) {
646 		dev_err(queue->ctrl->ctrl.device,
647 			"queue %d tag %#x not found\n",
648 			nvme_tcp_queue_id(queue), pdu->command_id);
649 		return -ENOENT;
650 	}
651 	req = blk_mq_rq_to_pdu(rq);
652 
653 	while (true) {
654 		int recv_len, ret;
655 
656 		recv_len = min_t(size_t, *len, queue->data_remaining);
657 		if (!recv_len)
658 			break;
659 
660 		if (!iov_iter_count(&req->iter)) {
661 			req->curr_bio = req->curr_bio->bi_next;
662 
663 			/*
664 			 * If we don`t have any bios it means that controller
665 			 * sent more data than we requested, hence error
666 			 */
667 			if (!req->curr_bio) {
668 				dev_err(queue->ctrl->ctrl.device,
669 					"queue %d no space in request %#x",
670 					nvme_tcp_queue_id(queue), rq->tag);
671 				nvme_tcp_init_recv_ctx(queue);
672 				return -EIO;
673 			}
674 			nvme_tcp_init_iter(req, READ);
675 		}
676 
677 		/* we can read only from what is left in this bio */
678 		recv_len = min_t(size_t, recv_len,
679 				iov_iter_count(&req->iter));
680 
681 		if (queue->data_digest)
682 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
683 				&req->iter, recv_len, queue->rcv_hash);
684 		else
685 			ret = skb_copy_datagram_iter(skb, *offset,
686 					&req->iter, recv_len);
687 		if (ret) {
688 			dev_err(queue->ctrl->ctrl.device,
689 				"queue %d failed to copy request %#x data",
690 				nvme_tcp_queue_id(queue), rq->tag);
691 			return ret;
692 		}
693 
694 		*len -= recv_len;
695 		*offset += recv_len;
696 		queue->data_remaining -= recv_len;
697 	}
698 
699 	if (!queue->data_remaining) {
700 		if (queue->data_digest) {
701 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
702 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
703 		} else {
704 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS)
705 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
706 			nvme_tcp_init_recv_ctx(queue);
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
714 		struct sk_buff *skb, unsigned int *offset, size_t *len)
715 {
716 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
717 	char *ddgst = (char *)&queue->recv_ddgst;
718 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
719 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
720 	int ret;
721 
722 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
723 	if (unlikely(ret))
724 		return ret;
725 
726 	queue->ddgst_remaining -= recv_len;
727 	*offset += recv_len;
728 	*len -= recv_len;
729 	if (queue->ddgst_remaining)
730 		return 0;
731 
732 	if (queue->recv_ddgst != queue->exp_ddgst) {
733 		dev_err(queue->ctrl->ctrl.device,
734 			"data digest error: recv %#x expected %#x\n",
735 			le32_to_cpu(queue->recv_ddgst),
736 			le32_to_cpu(queue->exp_ddgst));
737 		return -EIO;
738 	}
739 
740 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
741 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
742 						pdu->command_id);
743 
744 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
745 	}
746 
747 	nvme_tcp_init_recv_ctx(queue);
748 	return 0;
749 }
750 
751 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
752 			     unsigned int offset, size_t len)
753 {
754 	struct nvme_tcp_queue *queue = desc->arg.data;
755 	size_t consumed = len;
756 	int result;
757 
758 	while (len) {
759 		switch (nvme_tcp_recv_state(queue)) {
760 		case NVME_TCP_RECV_PDU:
761 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
762 			break;
763 		case NVME_TCP_RECV_DATA:
764 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
765 			break;
766 		case NVME_TCP_RECV_DDGST:
767 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
768 			break;
769 		default:
770 			result = -EFAULT;
771 		}
772 		if (result) {
773 			dev_err(queue->ctrl->ctrl.device,
774 				"receive failed:  %d\n", result);
775 			queue->rd_enabled = false;
776 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
777 			return result;
778 		}
779 	}
780 
781 	return consumed;
782 }
783 
784 static void nvme_tcp_data_ready(struct sock *sk)
785 {
786 	struct nvme_tcp_queue *queue;
787 
788 	read_lock(&sk->sk_callback_lock);
789 	queue = sk->sk_user_data;
790 	if (likely(queue && queue->rd_enabled))
791 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
792 	read_unlock(&sk->sk_callback_lock);
793 }
794 
795 static void nvme_tcp_write_space(struct sock *sk)
796 {
797 	struct nvme_tcp_queue *queue;
798 
799 	read_lock_bh(&sk->sk_callback_lock);
800 	queue = sk->sk_user_data;
801 	if (likely(queue && sk_stream_is_writeable(sk))) {
802 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
803 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
804 	}
805 	read_unlock_bh(&sk->sk_callback_lock);
806 }
807 
808 static void nvme_tcp_state_change(struct sock *sk)
809 {
810 	struct nvme_tcp_queue *queue;
811 
812 	read_lock(&sk->sk_callback_lock);
813 	queue = sk->sk_user_data;
814 	if (!queue)
815 		goto done;
816 
817 	switch (sk->sk_state) {
818 	case TCP_CLOSE:
819 	case TCP_CLOSE_WAIT:
820 	case TCP_LAST_ACK:
821 	case TCP_FIN_WAIT1:
822 	case TCP_FIN_WAIT2:
823 		/* fallthrough */
824 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
825 		break;
826 	default:
827 		dev_info(queue->ctrl->ctrl.device,
828 			"queue %d socket state %d\n",
829 			nvme_tcp_queue_id(queue), sk->sk_state);
830 	}
831 
832 	queue->state_change(sk);
833 done:
834 	read_unlock(&sk->sk_callback_lock);
835 }
836 
837 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
838 {
839 	queue->request = NULL;
840 }
841 
842 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
843 {
844 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR);
845 }
846 
847 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
848 {
849 	struct nvme_tcp_queue *queue = req->queue;
850 
851 	while (true) {
852 		struct page *page = nvme_tcp_req_cur_page(req);
853 		size_t offset = nvme_tcp_req_cur_offset(req);
854 		size_t len = nvme_tcp_req_cur_length(req);
855 		bool last = nvme_tcp_pdu_last_send(req, len);
856 		int ret, flags = MSG_DONTWAIT;
857 
858 		if (last && !queue->data_digest)
859 			flags |= MSG_EOR;
860 		else
861 			flags |= MSG_MORE;
862 
863 		ret = kernel_sendpage(queue->sock, page, offset, len, flags);
864 		if (ret <= 0)
865 			return ret;
866 
867 		nvme_tcp_advance_req(req, ret);
868 		if (queue->data_digest)
869 			nvme_tcp_ddgst_update(queue->snd_hash, page,
870 					offset, ret);
871 
872 		/* fully successful last write*/
873 		if (last && ret == len) {
874 			if (queue->data_digest) {
875 				nvme_tcp_ddgst_final(queue->snd_hash,
876 					&req->ddgst);
877 				req->state = NVME_TCP_SEND_DDGST;
878 				req->offset = 0;
879 			} else {
880 				nvme_tcp_done_send_req(queue);
881 			}
882 			return 1;
883 		}
884 	}
885 	return -EAGAIN;
886 }
887 
888 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
889 {
890 	struct nvme_tcp_queue *queue = req->queue;
891 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
892 	bool inline_data = nvme_tcp_has_inline_data(req);
893 	int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
894 	u8 hdgst = nvme_tcp_hdgst_len(queue);
895 	int len = sizeof(*pdu) + hdgst - req->offset;
896 	int ret;
897 
898 	if (queue->hdr_digest && !req->offset)
899 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
900 
901 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
902 			offset_in_page(pdu) + req->offset, len,  flags);
903 	if (unlikely(ret <= 0))
904 		return ret;
905 
906 	len -= ret;
907 	if (!len) {
908 		if (inline_data) {
909 			req->state = NVME_TCP_SEND_DATA;
910 			if (queue->data_digest)
911 				crypto_ahash_init(queue->snd_hash);
912 			nvme_tcp_init_iter(req, WRITE);
913 		} else {
914 			nvme_tcp_done_send_req(queue);
915 		}
916 		return 1;
917 	}
918 	req->offset += ret;
919 
920 	return -EAGAIN;
921 }
922 
923 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
924 {
925 	struct nvme_tcp_queue *queue = req->queue;
926 	struct nvme_tcp_data_pdu *pdu = req->pdu;
927 	u8 hdgst = nvme_tcp_hdgst_len(queue);
928 	int len = sizeof(*pdu) - req->offset + hdgst;
929 	int ret;
930 
931 	if (queue->hdr_digest && !req->offset)
932 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
933 
934 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
935 			offset_in_page(pdu) + req->offset, len,
936 			MSG_DONTWAIT | MSG_MORE);
937 	if (unlikely(ret <= 0))
938 		return ret;
939 
940 	len -= ret;
941 	if (!len) {
942 		req->state = NVME_TCP_SEND_DATA;
943 		if (queue->data_digest)
944 			crypto_ahash_init(queue->snd_hash);
945 		if (!req->data_sent)
946 			nvme_tcp_init_iter(req, WRITE);
947 		return 1;
948 	}
949 	req->offset += ret;
950 
951 	return -EAGAIN;
952 }
953 
954 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
955 {
956 	struct nvme_tcp_queue *queue = req->queue;
957 	int ret;
958 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
959 	struct kvec iov = {
960 		.iov_base = &req->ddgst + req->offset,
961 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
962 	};
963 
964 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
965 	if (unlikely(ret <= 0))
966 		return ret;
967 
968 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
969 		nvme_tcp_done_send_req(queue);
970 		return 1;
971 	}
972 
973 	req->offset += ret;
974 	return -EAGAIN;
975 }
976 
977 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
978 {
979 	struct nvme_tcp_request *req;
980 	int ret = 1;
981 
982 	if (!queue->request) {
983 		queue->request = nvme_tcp_fetch_request(queue);
984 		if (!queue->request)
985 			return 0;
986 	}
987 	req = queue->request;
988 
989 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
990 		ret = nvme_tcp_try_send_cmd_pdu(req);
991 		if (ret <= 0)
992 			goto done;
993 		if (!nvme_tcp_has_inline_data(req))
994 			return ret;
995 	}
996 
997 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
998 		ret = nvme_tcp_try_send_data_pdu(req);
999 		if (ret <= 0)
1000 			goto done;
1001 	}
1002 
1003 	if (req->state == NVME_TCP_SEND_DATA) {
1004 		ret = nvme_tcp_try_send_data(req);
1005 		if (ret <= 0)
1006 			goto done;
1007 	}
1008 
1009 	if (req->state == NVME_TCP_SEND_DDGST)
1010 		ret = nvme_tcp_try_send_ddgst(req);
1011 done:
1012 	if (ret == -EAGAIN)
1013 		ret = 0;
1014 	return ret;
1015 }
1016 
1017 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1018 {
1019 	struct sock *sk = queue->sock->sk;
1020 	read_descriptor_t rd_desc;
1021 	int consumed;
1022 
1023 	rd_desc.arg.data = queue;
1024 	rd_desc.count = 1;
1025 	lock_sock(sk);
1026 	consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1027 	release_sock(sk);
1028 	return consumed;
1029 }
1030 
1031 static void nvme_tcp_io_work(struct work_struct *w)
1032 {
1033 	struct nvme_tcp_queue *queue =
1034 		container_of(w, struct nvme_tcp_queue, io_work);
1035 	unsigned long start = jiffies + msecs_to_jiffies(1);
1036 
1037 	do {
1038 		bool pending = false;
1039 		int result;
1040 
1041 		result = nvme_tcp_try_send(queue);
1042 		if (result > 0) {
1043 			pending = true;
1044 		} else if (unlikely(result < 0)) {
1045 			dev_err(queue->ctrl->ctrl.device,
1046 				"failed to send request %d\n", result);
1047 			if (result != -EPIPE)
1048 				nvme_tcp_fail_request(queue->request);
1049 			nvme_tcp_done_send_req(queue);
1050 			return;
1051 		}
1052 
1053 		result = nvme_tcp_try_recv(queue);
1054 		if (result > 0)
1055 			pending = true;
1056 
1057 		if (!pending)
1058 			return;
1059 
1060 	} while (time_after(jiffies, start)); /* quota is exhausted */
1061 
1062 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1063 }
1064 
1065 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1066 {
1067 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1068 
1069 	ahash_request_free(queue->rcv_hash);
1070 	ahash_request_free(queue->snd_hash);
1071 	crypto_free_ahash(tfm);
1072 }
1073 
1074 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1075 {
1076 	struct crypto_ahash *tfm;
1077 
1078 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1079 	if (IS_ERR(tfm))
1080 		return PTR_ERR(tfm);
1081 
1082 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1083 	if (!queue->snd_hash)
1084 		goto free_tfm;
1085 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1086 
1087 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1088 	if (!queue->rcv_hash)
1089 		goto free_snd_hash;
1090 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1091 
1092 	return 0;
1093 free_snd_hash:
1094 	ahash_request_free(queue->snd_hash);
1095 free_tfm:
1096 	crypto_free_ahash(tfm);
1097 	return -ENOMEM;
1098 }
1099 
1100 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1101 {
1102 	struct nvme_tcp_request *async = &ctrl->async_req;
1103 
1104 	page_frag_free(async->pdu);
1105 }
1106 
1107 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1108 {
1109 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1110 	struct nvme_tcp_request *async = &ctrl->async_req;
1111 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1112 
1113 	async->pdu = page_frag_alloc(&queue->pf_cache,
1114 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1115 		GFP_KERNEL | __GFP_ZERO);
1116 	if (!async->pdu)
1117 		return -ENOMEM;
1118 
1119 	async->queue = &ctrl->queues[0];
1120 	return 0;
1121 }
1122 
1123 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1124 {
1125 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1126 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1127 
1128 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1129 		return;
1130 
1131 	if (queue->hdr_digest || queue->data_digest)
1132 		nvme_tcp_free_crypto(queue);
1133 
1134 	sock_release(queue->sock);
1135 	kfree(queue->pdu);
1136 }
1137 
1138 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1139 {
1140 	struct nvme_tcp_icreq_pdu *icreq;
1141 	struct nvme_tcp_icresp_pdu *icresp;
1142 	struct msghdr msg = {};
1143 	struct kvec iov;
1144 	bool ctrl_hdgst, ctrl_ddgst;
1145 	int ret;
1146 
1147 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1148 	if (!icreq)
1149 		return -ENOMEM;
1150 
1151 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1152 	if (!icresp) {
1153 		ret = -ENOMEM;
1154 		goto free_icreq;
1155 	}
1156 
1157 	icreq->hdr.type = nvme_tcp_icreq;
1158 	icreq->hdr.hlen = sizeof(*icreq);
1159 	icreq->hdr.pdo = 0;
1160 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1161 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1162 	icreq->maxr2t = 0; /* single inflight r2t supported */
1163 	icreq->hpda = 0; /* no alignment constraint */
1164 	if (queue->hdr_digest)
1165 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1166 	if (queue->data_digest)
1167 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1168 
1169 	iov.iov_base = icreq;
1170 	iov.iov_len = sizeof(*icreq);
1171 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1172 	if (ret < 0)
1173 		goto free_icresp;
1174 
1175 	memset(&msg, 0, sizeof(msg));
1176 	iov.iov_base = icresp;
1177 	iov.iov_len = sizeof(*icresp);
1178 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1179 			iov.iov_len, msg.msg_flags);
1180 	if (ret < 0)
1181 		goto free_icresp;
1182 
1183 	ret = -EINVAL;
1184 	if (icresp->hdr.type != nvme_tcp_icresp) {
1185 		pr_err("queue %d: bad type returned %d\n",
1186 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1187 		goto free_icresp;
1188 	}
1189 
1190 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1191 		pr_err("queue %d: bad pdu length returned %d\n",
1192 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1193 		goto free_icresp;
1194 	}
1195 
1196 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1197 		pr_err("queue %d: bad pfv returned %d\n",
1198 			nvme_tcp_queue_id(queue), icresp->pfv);
1199 		goto free_icresp;
1200 	}
1201 
1202 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1203 	if ((queue->data_digest && !ctrl_ddgst) ||
1204 	    (!queue->data_digest && ctrl_ddgst)) {
1205 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1206 			nvme_tcp_queue_id(queue),
1207 			queue->data_digest ? "enabled" : "disabled",
1208 			ctrl_ddgst ? "enabled" : "disabled");
1209 		goto free_icresp;
1210 	}
1211 
1212 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1213 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1214 	    (!queue->hdr_digest && ctrl_hdgst)) {
1215 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1216 			nvme_tcp_queue_id(queue),
1217 			queue->hdr_digest ? "enabled" : "disabled",
1218 			ctrl_hdgst ? "enabled" : "disabled");
1219 		goto free_icresp;
1220 	}
1221 
1222 	if (icresp->cpda != 0) {
1223 		pr_err("queue %d: unsupported cpda returned %d\n",
1224 			nvme_tcp_queue_id(queue), icresp->cpda);
1225 		goto free_icresp;
1226 	}
1227 
1228 	ret = 0;
1229 free_icresp:
1230 	kfree(icresp);
1231 free_icreq:
1232 	kfree(icreq);
1233 	return ret;
1234 }
1235 
1236 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1237 		int qid, size_t queue_size)
1238 {
1239 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1240 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1241 	struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1242 	int ret, opt, rcv_pdu_size, n;
1243 
1244 	queue->ctrl = ctrl;
1245 	INIT_LIST_HEAD(&queue->send_list);
1246 	spin_lock_init(&queue->lock);
1247 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1248 	queue->queue_size = queue_size;
1249 
1250 	if (qid > 0)
1251 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1252 	else
1253 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1254 						NVME_TCP_ADMIN_CCSZ;
1255 
1256 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1257 			IPPROTO_TCP, &queue->sock);
1258 	if (ret) {
1259 		dev_err(ctrl->ctrl.device,
1260 			"failed to create socket: %d\n", ret);
1261 		return ret;
1262 	}
1263 
1264 	/* Single syn retry */
1265 	opt = 1;
1266 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1267 			(char *)&opt, sizeof(opt));
1268 	if (ret) {
1269 		dev_err(ctrl->ctrl.device,
1270 			"failed to set TCP_SYNCNT sock opt %d\n", ret);
1271 		goto err_sock;
1272 	}
1273 
1274 	/* Set TCP no delay */
1275 	opt = 1;
1276 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1277 			TCP_NODELAY, (char *)&opt, sizeof(opt));
1278 	if (ret) {
1279 		dev_err(ctrl->ctrl.device,
1280 			"failed to set TCP_NODELAY sock opt %d\n", ret);
1281 		goto err_sock;
1282 	}
1283 
1284 	/*
1285 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1286 	 * close. This is done to prevent stale data from being sent should
1287 	 * the network connection be restored before TCP times out.
1288 	 */
1289 	ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1290 			(char *)&sol, sizeof(sol));
1291 	if (ret) {
1292 		dev_err(ctrl->ctrl.device,
1293 			"failed to set SO_LINGER sock opt %d\n", ret);
1294 		goto err_sock;
1295 	}
1296 
1297 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1298 	if (!qid)
1299 		n = 0;
1300 	else
1301 		n = (qid - 1) % num_online_cpus();
1302 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1303 	queue->request = NULL;
1304 	queue->data_remaining = 0;
1305 	queue->ddgst_remaining = 0;
1306 	queue->pdu_remaining = 0;
1307 	queue->pdu_offset = 0;
1308 	sk_set_memalloc(queue->sock->sk);
1309 
1310 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1311 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1312 			sizeof(ctrl->src_addr));
1313 		if (ret) {
1314 			dev_err(ctrl->ctrl.device,
1315 				"failed to bind queue %d socket %d\n",
1316 				qid, ret);
1317 			goto err_sock;
1318 		}
1319 	}
1320 
1321 	queue->hdr_digest = nctrl->opts->hdr_digest;
1322 	queue->data_digest = nctrl->opts->data_digest;
1323 	if (queue->hdr_digest || queue->data_digest) {
1324 		ret = nvme_tcp_alloc_crypto(queue);
1325 		if (ret) {
1326 			dev_err(ctrl->ctrl.device,
1327 				"failed to allocate queue %d crypto\n", qid);
1328 			goto err_sock;
1329 		}
1330 	}
1331 
1332 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1333 			nvme_tcp_hdgst_len(queue);
1334 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1335 	if (!queue->pdu) {
1336 		ret = -ENOMEM;
1337 		goto err_crypto;
1338 	}
1339 
1340 	dev_dbg(ctrl->ctrl.device, "connecting queue %d\n",
1341 			nvme_tcp_queue_id(queue));
1342 
1343 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1344 		sizeof(ctrl->addr), 0);
1345 	if (ret) {
1346 		dev_err(ctrl->ctrl.device,
1347 			"failed to connect socket: %d\n", ret);
1348 		goto err_rcv_pdu;
1349 	}
1350 
1351 	ret = nvme_tcp_init_connection(queue);
1352 	if (ret)
1353 		goto err_init_connect;
1354 
1355 	queue->rd_enabled = true;
1356 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1357 	nvme_tcp_init_recv_ctx(queue);
1358 
1359 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1360 	queue->sock->sk->sk_user_data = queue;
1361 	queue->state_change = queue->sock->sk->sk_state_change;
1362 	queue->data_ready = queue->sock->sk->sk_data_ready;
1363 	queue->write_space = queue->sock->sk->sk_write_space;
1364 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1365 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1366 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1367 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1368 
1369 	return 0;
1370 
1371 err_init_connect:
1372 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1373 err_rcv_pdu:
1374 	kfree(queue->pdu);
1375 err_crypto:
1376 	if (queue->hdr_digest || queue->data_digest)
1377 		nvme_tcp_free_crypto(queue);
1378 err_sock:
1379 	sock_release(queue->sock);
1380 	queue->sock = NULL;
1381 	return ret;
1382 }
1383 
1384 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1385 {
1386 	struct socket *sock = queue->sock;
1387 
1388 	write_lock_bh(&sock->sk->sk_callback_lock);
1389 	sock->sk->sk_user_data  = NULL;
1390 	sock->sk->sk_data_ready = queue->data_ready;
1391 	sock->sk->sk_state_change = queue->state_change;
1392 	sock->sk->sk_write_space  = queue->write_space;
1393 	write_unlock_bh(&sock->sk->sk_callback_lock);
1394 }
1395 
1396 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1397 {
1398 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1399 	nvme_tcp_restore_sock_calls(queue);
1400 	cancel_work_sync(&queue->io_work);
1401 }
1402 
1403 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1404 {
1405 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1406 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1407 
1408 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1409 		return;
1410 
1411 	__nvme_tcp_stop_queue(queue);
1412 }
1413 
1414 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1415 {
1416 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1417 	int ret;
1418 
1419 	if (idx)
1420 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1421 	else
1422 		ret = nvmf_connect_admin_queue(nctrl);
1423 
1424 	if (!ret) {
1425 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1426 	} else {
1427 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1428 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1429 		dev_err(nctrl->device,
1430 			"failed to connect queue: %d ret=%d\n", idx, ret);
1431 	}
1432 	return ret;
1433 }
1434 
1435 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1436 		bool admin)
1437 {
1438 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1439 	struct blk_mq_tag_set *set;
1440 	int ret;
1441 
1442 	if (admin) {
1443 		set = &ctrl->admin_tag_set;
1444 		memset(set, 0, sizeof(*set));
1445 		set->ops = &nvme_tcp_admin_mq_ops;
1446 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1447 		set->reserved_tags = 2; /* connect + keep-alive */
1448 		set->numa_node = NUMA_NO_NODE;
1449 		set->cmd_size = sizeof(struct nvme_tcp_request);
1450 		set->driver_data = ctrl;
1451 		set->nr_hw_queues = 1;
1452 		set->timeout = ADMIN_TIMEOUT;
1453 	} else {
1454 		set = &ctrl->tag_set;
1455 		memset(set, 0, sizeof(*set));
1456 		set->ops = &nvme_tcp_mq_ops;
1457 		set->queue_depth = nctrl->sqsize + 1;
1458 		set->reserved_tags = 1; /* fabric connect */
1459 		set->numa_node = NUMA_NO_NODE;
1460 		set->flags = BLK_MQ_F_SHOULD_MERGE;
1461 		set->cmd_size = sizeof(struct nvme_tcp_request);
1462 		set->driver_data = ctrl;
1463 		set->nr_hw_queues = nctrl->queue_count - 1;
1464 		set->timeout = NVME_IO_TIMEOUT;
1465 		set->nr_maps = 2 /* default + read */;
1466 	}
1467 
1468 	ret = blk_mq_alloc_tag_set(set);
1469 	if (ret)
1470 		return ERR_PTR(ret);
1471 
1472 	return set;
1473 }
1474 
1475 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1476 {
1477 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1478 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1479 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1480 	}
1481 
1482 	nvme_tcp_free_queue(ctrl, 0);
1483 }
1484 
1485 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1486 {
1487 	int i;
1488 
1489 	for (i = 1; i < ctrl->queue_count; i++)
1490 		nvme_tcp_free_queue(ctrl, i);
1491 }
1492 
1493 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1494 {
1495 	int i;
1496 
1497 	for (i = 1; i < ctrl->queue_count; i++)
1498 		nvme_tcp_stop_queue(ctrl, i);
1499 }
1500 
1501 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1502 {
1503 	int i, ret = 0;
1504 
1505 	for (i = 1; i < ctrl->queue_count; i++) {
1506 		ret = nvme_tcp_start_queue(ctrl, i);
1507 		if (ret)
1508 			goto out_stop_queues;
1509 	}
1510 
1511 	return 0;
1512 
1513 out_stop_queues:
1514 	for (i--; i >= 1; i--)
1515 		nvme_tcp_stop_queue(ctrl, i);
1516 	return ret;
1517 }
1518 
1519 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1520 {
1521 	int ret;
1522 
1523 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1524 	if (ret)
1525 		return ret;
1526 
1527 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1528 	if (ret)
1529 		goto out_free_queue;
1530 
1531 	return 0;
1532 
1533 out_free_queue:
1534 	nvme_tcp_free_queue(ctrl, 0);
1535 	return ret;
1536 }
1537 
1538 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1539 {
1540 	int i, ret;
1541 
1542 	for (i = 1; i < ctrl->queue_count; i++) {
1543 		ret = nvme_tcp_alloc_queue(ctrl, i,
1544 				ctrl->sqsize + 1);
1545 		if (ret)
1546 			goto out_free_queues;
1547 	}
1548 
1549 	return 0;
1550 
1551 out_free_queues:
1552 	for (i--; i >= 1; i--)
1553 		nvme_tcp_free_queue(ctrl, i);
1554 
1555 	return ret;
1556 }
1557 
1558 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1559 {
1560 	unsigned int nr_io_queues;
1561 
1562 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1563 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1564 
1565 	return nr_io_queues;
1566 }
1567 
1568 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1569 		unsigned int nr_io_queues)
1570 {
1571 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1572 	struct nvmf_ctrl_options *opts = nctrl->opts;
1573 
1574 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1575 		/*
1576 		 * separate read/write queues
1577 		 * hand out dedicated default queues only after we have
1578 		 * sufficient read queues.
1579 		 */
1580 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1581 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1582 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1583 			min(opts->nr_write_queues, nr_io_queues);
1584 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1585 	} else {
1586 		/*
1587 		 * shared read/write queues
1588 		 * either no write queues were requested, or we don't have
1589 		 * sufficient queue count to have dedicated default queues.
1590 		 */
1591 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1592 			min(opts->nr_io_queues, nr_io_queues);
1593 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1594 	}
1595 }
1596 
1597 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1598 {
1599 	unsigned int nr_io_queues;
1600 	int ret;
1601 
1602 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1603 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1604 	if (ret)
1605 		return ret;
1606 
1607 	ctrl->queue_count = nr_io_queues + 1;
1608 	if (ctrl->queue_count < 2)
1609 		return 0;
1610 
1611 	dev_info(ctrl->device,
1612 		"creating %d I/O queues.\n", nr_io_queues);
1613 
1614 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1615 
1616 	return __nvme_tcp_alloc_io_queues(ctrl);
1617 }
1618 
1619 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1620 {
1621 	nvme_tcp_stop_io_queues(ctrl);
1622 	if (remove) {
1623 		blk_cleanup_queue(ctrl->connect_q);
1624 		blk_mq_free_tag_set(ctrl->tagset);
1625 	}
1626 	nvme_tcp_free_io_queues(ctrl);
1627 }
1628 
1629 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1630 {
1631 	int ret;
1632 
1633 	ret = nvme_tcp_alloc_io_queues(ctrl);
1634 	if (ret)
1635 		return ret;
1636 
1637 	if (new) {
1638 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1639 		if (IS_ERR(ctrl->tagset)) {
1640 			ret = PTR_ERR(ctrl->tagset);
1641 			goto out_free_io_queues;
1642 		}
1643 
1644 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1645 		if (IS_ERR(ctrl->connect_q)) {
1646 			ret = PTR_ERR(ctrl->connect_q);
1647 			goto out_free_tag_set;
1648 		}
1649 	} else {
1650 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1651 			ctrl->queue_count - 1);
1652 	}
1653 
1654 	ret = nvme_tcp_start_io_queues(ctrl);
1655 	if (ret)
1656 		goto out_cleanup_connect_q;
1657 
1658 	return 0;
1659 
1660 out_cleanup_connect_q:
1661 	if (new)
1662 		blk_cleanup_queue(ctrl->connect_q);
1663 out_free_tag_set:
1664 	if (new)
1665 		blk_mq_free_tag_set(ctrl->tagset);
1666 out_free_io_queues:
1667 	nvme_tcp_free_io_queues(ctrl);
1668 	return ret;
1669 }
1670 
1671 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1672 {
1673 	nvme_tcp_stop_queue(ctrl, 0);
1674 	if (remove) {
1675 		blk_cleanup_queue(ctrl->admin_q);
1676 		blk_mq_free_tag_set(ctrl->admin_tagset);
1677 	}
1678 	nvme_tcp_free_admin_queue(ctrl);
1679 }
1680 
1681 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1682 {
1683 	int error;
1684 
1685 	error = nvme_tcp_alloc_admin_queue(ctrl);
1686 	if (error)
1687 		return error;
1688 
1689 	if (new) {
1690 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1691 		if (IS_ERR(ctrl->admin_tagset)) {
1692 			error = PTR_ERR(ctrl->admin_tagset);
1693 			goto out_free_queue;
1694 		}
1695 
1696 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1697 		if (IS_ERR(ctrl->admin_q)) {
1698 			error = PTR_ERR(ctrl->admin_q);
1699 			goto out_free_tagset;
1700 		}
1701 	}
1702 
1703 	error = nvme_tcp_start_queue(ctrl, 0);
1704 	if (error)
1705 		goto out_cleanup_queue;
1706 
1707 	error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
1708 	if (error) {
1709 		dev_err(ctrl->device,
1710 			"prop_get NVME_REG_CAP failed\n");
1711 		goto out_stop_queue;
1712 	}
1713 
1714 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
1715 
1716 	error = nvme_enable_ctrl(ctrl, ctrl->cap);
1717 	if (error)
1718 		goto out_stop_queue;
1719 
1720 	error = nvme_init_identify(ctrl);
1721 	if (error)
1722 		goto out_stop_queue;
1723 
1724 	return 0;
1725 
1726 out_stop_queue:
1727 	nvme_tcp_stop_queue(ctrl, 0);
1728 out_cleanup_queue:
1729 	if (new)
1730 		blk_cleanup_queue(ctrl->admin_q);
1731 out_free_tagset:
1732 	if (new)
1733 		blk_mq_free_tag_set(ctrl->admin_tagset);
1734 out_free_queue:
1735 	nvme_tcp_free_admin_queue(ctrl);
1736 	return error;
1737 }
1738 
1739 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1740 		bool remove)
1741 {
1742 	blk_mq_quiesce_queue(ctrl->admin_q);
1743 	nvme_tcp_stop_queue(ctrl, 0);
1744 	if (ctrl->admin_tagset)
1745 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1746 			nvme_cancel_request, ctrl);
1747 	blk_mq_unquiesce_queue(ctrl->admin_q);
1748 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1749 }
1750 
1751 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1752 		bool remove)
1753 {
1754 	if (ctrl->queue_count <= 1)
1755 		return;
1756 	nvme_stop_queues(ctrl);
1757 	nvme_tcp_stop_io_queues(ctrl);
1758 	if (ctrl->tagset)
1759 		blk_mq_tagset_busy_iter(ctrl->tagset,
1760 			nvme_cancel_request, ctrl);
1761 	if (remove)
1762 		nvme_start_queues(ctrl);
1763 	nvme_tcp_destroy_io_queues(ctrl, remove);
1764 }
1765 
1766 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1767 {
1768 	/* If we are resetting/deleting then do nothing */
1769 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1770 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1771 			ctrl->state == NVME_CTRL_LIVE);
1772 		return;
1773 	}
1774 
1775 	if (nvmf_should_reconnect(ctrl)) {
1776 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1777 			ctrl->opts->reconnect_delay);
1778 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1779 				ctrl->opts->reconnect_delay * HZ);
1780 	} else {
1781 		dev_info(ctrl->device, "Removing controller...\n");
1782 		nvme_delete_ctrl(ctrl);
1783 	}
1784 }
1785 
1786 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1787 {
1788 	struct nvmf_ctrl_options *opts = ctrl->opts;
1789 	int ret = -EINVAL;
1790 
1791 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1792 	if (ret)
1793 		return ret;
1794 
1795 	if (ctrl->icdoff) {
1796 		dev_err(ctrl->device, "icdoff is not supported!\n");
1797 		goto destroy_admin;
1798 	}
1799 
1800 	if (opts->queue_size > ctrl->sqsize + 1)
1801 		dev_warn(ctrl->device,
1802 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1803 			opts->queue_size, ctrl->sqsize + 1);
1804 
1805 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1806 		dev_warn(ctrl->device,
1807 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1808 			ctrl->sqsize + 1, ctrl->maxcmd);
1809 		ctrl->sqsize = ctrl->maxcmd - 1;
1810 	}
1811 
1812 	if (ctrl->queue_count > 1) {
1813 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1814 		if (ret)
1815 			goto destroy_admin;
1816 	}
1817 
1818 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1819 		/* state change failure is ok if we're in DELETING state */
1820 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1821 		ret = -EINVAL;
1822 		goto destroy_io;
1823 	}
1824 
1825 	nvme_start_ctrl(ctrl);
1826 	return 0;
1827 
1828 destroy_io:
1829 	if (ctrl->queue_count > 1)
1830 		nvme_tcp_destroy_io_queues(ctrl, new);
1831 destroy_admin:
1832 	nvme_tcp_stop_queue(ctrl, 0);
1833 	nvme_tcp_destroy_admin_queue(ctrl, new);
1834 	return ret;
1835 }
1836 
1837 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1838 {
1839 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1840 			struct nvme_tcp_ctrl, connect_work);
1841 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1842 
1843 	++ctrl->nr_reconnects;
1844 
1845 	if (nvme_tcp_setup_ctrl(ctrl, false))
1846 		goto requeue;
1847 
1848 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1849 			ctrl->nr_reconnects);
1850 
1851 	ctrl->nr_reconnects = 0;
1852 
1853 	return;
1854 
1855 requeue:
1856 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1857 			ctrl->nr_reconnects);
1858 	nvme_tcp_reconnect_or_remove(ctrl);
1859 }
1860 
1861 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1862 {
1863 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1864 				struct nvme_tcp_ctrl, err_work);
1865 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1866 
1867 	nvme_stop_keep_alive(ctrl);
1868 	nvme_tcp_teardown_io_queues(ctrl, false);
1869 	/* unquiesce to fail fast pending requests */
1870 	nvme_start_queues(ctrl);
1871 	nvme_tcp_teardown_admin_queue(ctrl, false);
1872 
1873 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1874 		/* state change failure is ok if we're in DELETING state */
1875 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1876 		return;
1877 	}
1878 
1879 	nvme_tcp_reconnect_or_remove(ctrl);
1880 }
1881 
1882 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1883 {
1884 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1885 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1886 
1887 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
1888 	if (shutdown)
1889 		nvme_shutdown_ctrl(ctrl);
1890 	else
1891 		nvme_disable_ctrl(ctrl, ctrl->cap);
1892 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
1893 }
1894 
1895 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
1896 {
1897 	nvme_tcp_teardown_ctrl(ctrl, true);
1898 }
1899 
1900 static void nvme_reset_ctrl_work(struct work_struct *work)
1901 {
1902 	struct nvme_ctrl *ctrl =
1903 		container_of(work, struct nvme_ctrl, reset_work);
1904 
1905 	nvme_stop_ctrl(ctrl);
1906 	nvme_tcp_teardown_ctrl(ctrl, false);
1907 
1908 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1909 		/* state change failure is ok if we're in DELETING state */
1910 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1911 		return;
1912 	}
1913 
1914 	if (nvme_tcp_setup_ctrl(ctrl, false))
1915 		goto out_fail;
1916 
1917 	return;
1918 
1919 out_fail:
1920 	++ctrl->nr_reconnects;
1921 	nvme_tcp_reconnect_or_remove(ctrl);
1922 }
1923 
1924 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
1925 {
1926 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1927 
1928 	if (list_empty(&ctrl->list))
1929 		goto free_ctrl;
1930 
1931 	mutex_lock(&nvme_tcp_ctrl_mutex);
1932 	list_del(&ctrl->list);
1933 	mutex_unlock(&nvme_tcp_ctrl_mutex);
1934 
1935 	nvmf_free_options(nctrl->opts);
1936 free_ctrl:
1937 	kfree(ctrl->queues);
1938 	kfree(ctrl);
1939 }
1940 
1941 static void nvme_tcp_set_sg_null(struct nvme_command *c)
1942 {
1943 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1944 
1945 	sg->addr = 0;
1946 	sg->length = 0;
1947 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1948 			NVME_SGL_FMT_TRANSPORT_A;
1949 }
1950 
1951 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
1952 		struct nvme_command *c, u32 data_len)
1953 {
1954 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1955 
1956 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1957 	sg->length = cpu_to_le32(data_len);
1958 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1959 }
1960 
1961 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
1962 		u32 data_len)
1963 {
1964 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1965 
1966 	sg->addr = 0;
1967 	sg->length = cpu_to_le32(data_len);
1968 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1969 			NVME_SGL_FMT_TRANSPORT_A;
1970 }
1971 
1972 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
1973 {
1974 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
1975 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1976 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
1977 	struct nvme_command *cmd = &pdu->cmd;
1978 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1979 
1980 	memset(pdu, 0, sizeof(*pdu));
1981 	pdu->hdr.type = nvme_tcp_cmd;
1982 	if (queue->hdr_digest)
1983 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
1984 	pdu->hdr.hlen = sizeof(*pdu);
1985 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
1986 
1987 	cmd->common.opcode = nvme_admin_async_event;
1988 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1989 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1990 	nvme_tcp_set_sg_null(cmd);
1991 
1992 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
1993 	ctrl->async_req.offset = 0;
1994 	ctrl->async_req.curr_bio = NULL;
1995 	ctrl->async_req.data_len = 0;
1996 
1997 	nvme_tcp_queue_request(&ctrl->async_req);
1998 }
1999 
2000 static enum blk_eh_timer_return
2001 nvme_tcp_timeout(struct request *rq, bool reserved)
2002 {
2003 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2004 	struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2005 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2006 
2007 	dev_warn(ctrl->ctrl.device,
2008 		"queue %d: timeout request %#x type %d\n",
2009 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2010 
2011 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2012 		/*
2013 		 * Teardown immediately if controller times out while starting
2014 		 * or we are already started error recovery. all outstanding
2015 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
2016 		 */
2017 		flush_work(&ctrl->err_work);
2018 		nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2019 		nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2020 		return BLK_EH_DONE;
2021 	}
2022 
2023 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2024 	nvme_tcp_error_recovery(&ctrl->ctrl);
2025 
2026 	return BLK_EH_RESET_TIMER;
2027 }
2028 
2029 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2030 			struct request *rq)
2031 {
2032 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2033 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2034 	struct nvme_command *c = &pdu->cmd;
2035 
2036 	c->common.flags |= NVME_CMD_SGL_METABUF;
2037 
2038 	if (rq_data_dir(rq) == WRITE && req->data_len &&
2039 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2040 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2041 	else
2042 		nvme_tcp_set_sg_host_data(c, req->data_len);
2043 
2044 	return 0;
2045 }
2046 
2047 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2048 		struct request *rq)
2049 {
2050 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2051 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2052 	struct nvme_tcp_queue *queue = req->queue;
2053 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2054 	blk_status_t ret;
2055 
2056 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2057 	if (ret)
2058 		return ret;
2059 
2060 	req->state = NVME_TCP_SEND_CMD_PDU;
2061 	req->offset = 0;
2062 	req->data_sent = 0;
2063 	req->pdu_len = 0;
2064 	req->pdu_sent = 0;
2065 	req->data_len = blk_rq_payload_bytes(rq);
2066 	req->curr_bio = rq->bio;
2067 
2068 	if (rq_data_dir(rq) == WRITE &&
2069 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2070 		req->pdu_len = req->data_len;
2071 	else if (req->curr_bio)
2072 		nvme_tcp_init_iter(req, READ);
2073 
2074 	pdu->hdr.type = nvme_tcp_cmd;
2075 	pdu->hdr.flags = 0;
2076 	if (queue->hdr_digest)
2077 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2078 	if (queue->data_digest && req->pdu_len) {
2079 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2080 		ddgst = nvme_tcp_ddgst_len(queue);
2081 	}
2082 	pdu->hdr.hlen = sizeof(*pdu);
2083 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2084 	pdu->hdr.plen =
2085 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2086 
2087 	ret = nvme_tcp_map_data(queue, rq);
2088 	if (unlikely(ret)) {
2089 		dev_err(queue->ctrl->ctrl.device,
2090 			"Failed to map data (%d)\n", ret);
2091 		return ret;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2098 		const struct blk_mq_queue_data *bd)
2099 {
2100 	struct nvme_ns *ns = hctx->queue->queuedata;
2101 	struct nvme_tcp_queue *queue = hctx->driver_data;
2102 	struct request *rq = bd->rq;
2103 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2104 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2105 	blk_status_t ret;
2106 
2107 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2108 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2109 
2110 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2111 	if (unlikely(ret))
2112 		return ret;
2113 
2114 	blk_mq_start_request(rq);
2115 
2116 	nvme_tcp_queue_request(req);
2117 
2118 	return BLK_STS_OK;
2119 }
2120 
2121 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2122 {
2123 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2124 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2125 
2126 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2127 		/* separate read/write queues */
2128 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2129 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2130 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2131 		set->map[HCTX_TYPE_READ].nr_queues =
2132 			ctrl->io_queues[HCTX_TYPE_READ];
2133 		set->map[HCTX_TYPE_READ].queue_offset =
2134 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2135 	} else {
2136 		/* shared read/write queues */
2137 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2138 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2139 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2140 		set->map[HCTX_TYPE_READ].nr_queues =
2141 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2142 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2143 	}
2144 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2145 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2146 
2147 	dev_info(ctrl->ctrl.device,
2148 		"mapped %d/%d default/read queues.\n",
2149 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2150 		ctrl->io_queues[HCTX_TYPE_READ]);
2151 
2152 	return 0;
2153 }
2154 
2155 static struct blk_mq_ops nvme_tcp_mq_ops = {
2156 	.queue_rq	= nvme_tcp_queue_rq,
2157 	.complete	= nvme_complete_rq,
2158 	.init_request	= nvme_tcp_init_request,
2159 	.exit_request	= nvme_tcp_exit_request,
2160 	.init_hctx	= nvme_tcp_init_hctx,
2161 	.timeout	= nvme_tcp_timeout,
2162 	.map_queues	= nvme_tcp_map_queues,
2163 };
2164 
2165 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2166 	.queue_rq	= nvme_tcp_queue_rq,
2167 	.complete	= nvme_complete_rq,
2168 	.init_request	= nvme_tcp_init_request,
2169 	.exit_request	= nvme_tcp_exit_request,
2170 	.init_hctx	= nvme_tcp_init_admin_hctx,
2171 	.timeout	= nvme_tcp_timeout,
2172 };
2173 
2174 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2175 	.name			= "tcp",
2176 	.module			= THIS_MODULE,
2177 	.flags			= NVME_F_FABRICS,
2178 	.reg_read32		= nvmf_reg_read32,
2179 	.reg_read64		= nvmf_reg_read64,
2180 	.reg_write32		= nvmf_reg_write32,
2181 	.free_ctrl		= nvme_tcp_free_ctrl,
2182 	.submit_async_event	= nvme_tcp_submit_async_event,
2183 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2184 	.get_address		= nvmf_get_address,
2185 };
2186 
2187 static bool
2188 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2189 {
2190 	struct nvme_tcp_ctrl *ctrl;
2191 	bool found = false;
2192 
2193 	mutex_lock(&nvme_tcp_ctrl_mutex);
2194 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2195 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2196 		if (found)
2197 			break;
2198 	}
2199 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2200 
2201 	return found;
2202 }
2203 
2204 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2205 		struct nvmf_ctrl_options *opts)
2206 {
2207 	struct nvme_tcp_ctrl *ctrl;
2208 	int ret;
2209 
2210 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2211 	if (!ctrl)
2212 		return ERR_PTR(-ENOMEM);
2213 
2214 	INIT_LIST_HEAD(&ctrl->list);
2215 	ctrl->ctrl.opts = opts;
2216 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1;
2217 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2218 	ctrl->ctrl.kato = opts->kato;
2219 
2220 	INIT_DELAYED_WORK(&ctrl->connect_work,
2221 			nvme_tcp_reconnect_ctrl_work);
2222 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2223 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2224 
2225 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2226 		opts->trsvcid =
2227 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2228 		if (!opts->trsvcid) {
2229 			ret = -ENOMEM;
2230 			goto out_free_ctrl;
2231 		}
2232 		opts->mask |= NVMF_OPT_TRSVCID;
2233 	}
2234 
2235 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2236 			opts->traddr, opts->trsvcid, &ctrl->addr);
2237 	if (ret) {
2238 		pr_err("malformed address passed: %s:%s\n",
2239 			opts->traddr, opts->trsvcid);
2240 		goto out_free_ctrl;
2241 	}
2242 
2243 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2244 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2245 			opts->host_traddr, NULL, &ctrl->src_addr);
2246 		if (ret) {
2247 			pr_err("malformed src address passed: %s\n",
2248 			       opts->host_traddr);
2249 			goto out_free_ctrl;
2250 		}
2251 	}
2252 
2253 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2254 		ret = -EALREADY;
2255 		goto out_free_ctrl;
2256 	}
2257 
2258 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2259 				GFP_KERNEL);
2260 	if (!ctrl->queues) {
2261 		ret = -ENOMEM;
2262 		goto out_free_ctrl;
2263 	}
2264 
2265 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2266 	if (ret)
2267 		goto out_kfree_queues;
2268 
2269 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2270 		WARN_ON_ONCE(1);
2271 		ret = -EINTR;
2272 		goto out_uninit_ctrl;
2273 	}
2274 
2275 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2276 	if (ret)
2277 		goto out_uninit_ctrl;
2278 
2279 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2280 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2281 
2282 	nvme_get_ctrl(&ctrl->ctrl);
2283 
2284 	mutex_lock(&nvme_tcp_ctrl_mutex);
2285 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2286 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2287 
2288 	return &ctrl->ctrl;
2289 
2290 out_uninit_ctrl:
2291 	nvme_uninit_ctrl(&ctrl->ctrl);
2292 	nvme_put_ctrl(&ctrl->ctrl);
2293 	if (ret > 0)
2294 		ret = -EIO;
2295 	return ERR_PTR(ret);
2296 out_kfree_queues:
2297 	kfree(ctrl->queues);
2298 out_free_ctrl:
2299 	kfree(ctrl);
2300 	return ERR_PTR(ret);
2301 }
2302 
2303 static struct nvmf_transport_ops nvme_tcp_transport = {
2304 	.name		= "tcp",
2305 	.module		= THIS_MODULE,
2306 	.required_opts	= NVMF_OPT_TRADDR,
2307 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2308 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2309 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2310 			  NVMF_OPT_NR_WRITE_QUEUES,
2311 	.create_ctrl	= nvme_tcp_create_ctrl,
2312 };
2313 
2314 static int __init nvme_tcp_init_module(void)
2315 {
2316 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2317 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2318 	if (!nvme_tcp_wq)
2319 		return -ENOMEM;
2320 
2321 	nvmf_register_transport(&nvme_tcp_transport);
2322 	return 0;
2323 }
2324 
2325 static void __exit nvme_tcp_cleanup_module(void)
2326 {
2327 	struct nvme_tcp_ctrl *ctrl;
2328 
2329 	nvmf_unregister_transport(&nvme_tcp_transport);
2330 
2331 	mutex_lock(&nvme_tcp_ctrl_mutex);
2332 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2333 		nvme_delete_ctrl(&ctrl->ctrl);
2334 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2335 	flush_workqueue(nvme_delete_wq);
2336 
2337 	destroy_workqueue(nvme_tcp_wq);
2338 }
2339 
2340 module_init(nvme_tcp_init_module);
2341 module_exit(nvme_tcp_cleanup_module);
2342 
2343 MODULE_LICENSE("GPL v2");
2344