xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	__le32			ddgst;
50 
51 	struct bio		*curr_bio;
52 	struct iov_iter		iter;
53 
54 	/* send state */
55 	size_t			offset;
56 	size_t			data_sent;
57 	enum nvme_tcp_send_state state;
58 };
59 
60 enum nvme_tcp_queue_flags {
61 	NVME_TCP_Q_ALLOCATED	= 0,
62 	NVME_TCP_Q_LIVE		= 1,
63 	NVME_TCP_Q_POLLING	= 2,
64 };
65 
66 enum nvme_tcp_recv_state {
67 	NVME_TCP_RECV_PDU = 0,
68 	NVME_TCP_RECV_DATA,
69 	NVME_TCP_RECV_DDGST,
70 };
71 
72 struct nvme_tcp_ctrl;
73 struct nvme_tcp_queue {
74 	struct socket		*sock;
75 	struct work_struct	io_work;
76 	int			io_cpu;
77 
78 	spinlock_t		lock;
79 	struct mutex		send_mutex;
80 	struct list_head	send_list;
81 
82 	/* recv state */
83 	void			*pdu;
84 	int			pdu_remaining;
85 	int			pdu_offset;
86 	size_t			data_remaining;
87 	size_t			ddgst_remaining;
88 	unsigned int		nr_cqe;
89 
90 	/* send state */
91 	struct nvme_tcp_request *request;
92 
93 	int			queue_size;
94 	size_t			cmnd_capsule_len;
95 	struct nvme_tcp_ctrl	*ctrl;
96 	unsigned long		flags;
97 	bool			rd_enabled;
98 
99 	bool			hdr_digest;
100 	bool			data_digest;
101 	struct ahash_request	*rcv_hash;
102 	struct ahash_request	*snd_hash;
103 	__le32			exp_ddgst;
104 	__le32			recv_ddgst;
105 
106 	struct page_frag_cache	pf_cache;
107 
108 	void (*state_change)(struct sock *);
109 	void (*data_ready)(struct sock *);
110 	void (*write_space)(struct sock *);
111 };
112 
113 struct nvme_tcp_ctrl {
114 	/* read only in the hot path */
115 	struct nvme_tcp_queue	*queues;
116 	struct blk_mq_tag_set	tag_set;
117 
118 	/* other member variables */
119 	struct list_head	list;
120 	struct blk_mq_tag_set	admin_tag_set;
121 	struct sockaddr_storage addr;
122 	struct sockaddr_storage src_addr;
123 	struct nvme_ctrl	ctrl;
124 
125 	struct work_struct	err_work;
126 	struct delayed_work	connect_work;
127 	struct nvme_tcp_request async_req;
128 	u32			io_queues[HCTX_MAX_TYPES];
129 };
130 
131 static LIST_HEAD(nvme_tcp_ctrl_list);
132 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
133 static struct workqueue_struct *nvme_tcp_wq;
134 static const struct blk_mq_ops nvme_tcp_mq_ops;
135 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
136 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
137 
138 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
139 {
140 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
141 }
142 
143 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
144 {
145 	return queue - queue->ctrl->queues;
146 }
147 
148 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
149 {
150 	u32 queue_idx = nvme_tcp_queue_id(queue);
151 
152 	if (queue_idx == 0)
153 		return queue->ctrl->admin_tag_set.tags[queue_idx];
154 	return queue->ctrl->tag_set.tags[queue_idx - 1];
155 }
156 
157 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
158 {
159 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
160 }
161 
162 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
163 {
164 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
165 }
166 
167 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
168 {
169 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
170 }
171 
172 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
173 {
174 	return req == &req->queue->ctrl->async_req;
175 }
176 
177 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
178 {
179 	struct request *rq;
180 
181 	if (unlikely(nvme_tcp_async_req(req)))
182 		return false; /* async events don't have a request */
183 
184 	rq = blk_mq_rq_from_pdu(req);
185 
186 	return rq_data_dir(rq) == WRITE && req->data_len &&
187 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
188 }
189 
190 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
191 {
192 	return req->iter.bvec->bv_page;
193 }
194 
195 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
196 {
197 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
198 }
199 
200 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
201 {
202 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
203 			req->pdu_len - req->pdu_sent);
204 }
205 
206 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
207 {
208 	return req->iter.iov_offset;
209 }
210 
211 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
212 {
213 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
214 			req->pdu_len - req->pdu_sent : 0;
215 }
216 
217 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
218 		int len)
219 {
220 	return nvme_tcp_pdu_data_left(req) <= len;
221 }
222 
223 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
224 		unsigned int dir)
225 {
226 	struct request *rq = blk_mq_rq_from_pdu(req);
227 	struct bio_vec *vec;
228 	unsigned int size;
229 	int nsegs;
230 	size_t offset;
231 
232 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
233 		vec = &rq->special_vec;
234 		nsegs = 1;
235 		size = blk_rq_payload_bytes(rq);
236 		offset = 0;
237 	} else {
238 		struct bio *bio = req->curr_bio;
239 
240 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
241 		nsegs = bio_segments(bio);
242 		size = bio->bi_iter.bi_size;
243 		offset = bio->bi_iter.bi_bvec_done;
244 	}
245 
246 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
247 	req->iter.iov_offset = offset;
248 }
249 
250 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
251 		int len)
252 {
253 	req->data_sent += len;
254 	req->pdu_sent += len;
255 	iov_iter_advance(&req->iter, len);
256 	if (!iov_iter_count(&req->iter) &&
257 	    req->data_sent < req->data_len) {
258 		req->curr_bio = req->curr_bio->bi_next;
259 		nvme_tcp_init_iter(req, WRITE);
260 	}
261 }
262 
263 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
264 		bool sync)
265 {
266 	struct nvme_tcp_queue *queue = req->queue;
267 	bool empty;
268 
269 	spin_lock(&queue->lock);
270 	empty = list_empty(&queue->send_list) && !queue->request;
271 	list_add_tail(&req->entry, &queue->send_list);
272 	spin_unlock(&queue->lock);
273 
274 	/*
275 	 * if we're the first on the send_list and we can try to send
276 	 * directly, otherwise queue io_work. Also, only do that if we
277 	 * are on the same cpu, so we don't introduce contention.
278 	 */
279 	if (queue->io_cpu == smp_processor_id() &&
280 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
281 		nvme_tcp_try_send(queue);
282 		mutex_unlock(&queue->send_mutex);
283 	} else {
284 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
285 	}
286 }
287 
288 static inline struct nvme_tcp_request *
289 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
290 {
291 	struct nvme_tcp_request *req;
292 
293 	spin_lock(&queue->lock);
294 	req = list_first_entry_or_null(&queue->send_list,
295 			struct nvme_tcp_request, entry);
296 	if (req)
297 		list_del(&req->entry);
298 	spin_unlock(&queue->lock);
299 
300 	return req;
301 }
302 
303 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
304 		__le32 *dgst)
305 {
306 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
307 	crypto_ahash_final(hash);
308 }
309 
310 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
311 		struct page *page, off_t off, size_t len)
312 {
313 	struct scatterlist sg;
314 
315 	sg_init_marker(&sg, 1);
316 	sg_set_page(&sg, page, len, off);
317 	ahash_request_set_crypt(hash, &sg, NULL, len);
318 	crypto_ahash_update(hash);
319 }
320 
321 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
322 		void *pdu, size_t len)
323 {
324 	struct scatterlist sg;
325 
326 	sg_init_one(&sg, pdu, len);
327 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
328 	crypto_ahash_digest(hash);
329 }
330 
331 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
332 		void *pdu, size_t pdu_len)
333 {
334 	struct nvme_tcp_hdr *hdr = pdu;
335 	__le32 recv_digest;
336 	__le32 exp_digest;
337 
338 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
339 		dev_err(queue->ctrl->ctrl.device,
340 			"queue %d: header digest flag is cleared\n",
341 			nvme_tcp_queue_id(queue));
342 		return -EPROTO;
343 	}
344 
345 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
346 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
347 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
348 	if (recv_digest != exp_digest) {
349 		dev_err(queue->ctrl->ctrl.device,
350 			"header digest error: recv %#x expected %#x\n",
351 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
352 		return -EIO;
353 	}
354 
355 	return 0;
356 }
357 
358 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
359 {
360 	struct nvme_tcp_hdr *hdr = pdu;
361 	u8 digest_len = nvme_tcp_hdgst_len(queue);
362 	u32 len;
363 
364 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
365 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
366 
367 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
368 		dev_err(queue->ctrl->ctrl.device,
369 			"queue %d: data digest flag is cleared\n",
370 		nvme_tcp_queue_id(queue));
371 		return -EPROTO;
372 	}
373 	crypto_ahash_init(queue->rcv_hash);
374 
375 	return 0;
376 }
377 
378 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
379 		struct request *rq, unsigned int hctx_idx)
380 {
381 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
382 
383 	page_frag_free(req->pdu);
384 }
385 
386 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
387 		struct request *rq, unsigned int hctx_idx,
388 		unsigned int numa_node)
389 {
390 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
391 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
392 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
393 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
394 	u8 hdgst = nvme_tcp_hdgst_len(queue);
395 
396 	req->pdu = page_frag_alloc(&queue->pf_cache,
397 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
398 		GFP_KERNEL | __GFP_ZERO);
399 	if (!req->pdu)
400 		return -ENOMEM;
401 
402 	req->queue = queue;
403 	nvme_req(rq)->ctrl = &ctrl->ctrl;
404 
405 	return 0;
406 }
407 
408 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 		unsigned int hctx_idx)
410 {
411 	struct nvme_tcp_ctrl *ctrl = data;
412 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
413 
414 	hctx->driver_data = queue;
415 	return 0;
416 }
417 
418 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
419 		unsigned int hctx_idx)
420 {
421 	struct nvme_tcp_ctrl *ctrl = data;
422 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
423 
424 	hctx->driver_data = queue;
425 	return 0;
426 }
427 
428 static enum nvme_tcp_recv_state
429 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
430 {
431 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
432 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
433 		NVME_TCP_RECV_DATA;
434 }
435 
436 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
437 {
438 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
439 				nvme_tcp_hdgst_len(queue);
440 	queue->pdu_offset = 0;
441 	queue->data_remaining = -1;
442 	queue->ddgst_remaining = 0;
443 }
444 
445 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
446 {
447 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
448 		return;
449 
450 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
451 }
452 
453 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
454 		struct nvme_completion *cqe)
455 {
456 	struct request *rq;
457 
458 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
459 	if (!rq) {
460 		dev_err(queue->ctrl->ctrl.device,
461 			"queue %d tag 0x%x not found\n",
462 			nvme_tcp_queue_id(queue), cqe->command_id);
463 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
464 		return -EINVAL;
465 	}
466 
467 	if (!nvme_end_request(rq, cqe->status, cqe->result))
468 		nvme_complete_rq(rq);
469 	queue->nr_cqe++;
470 
471 	return 0;
472 }
473 
474 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
475 		struct nvme_tcp_data_pdu *pdu)
476 {
477 	struct request *rq;
478 
479 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
480 	if (!rq) {
481 		dev_err(queue->ctrl->ctrl.device,
482 			"queue %d tag %#x not found\n",
483 			nvme_tcp_queue_id(queue), pdu->command_id);
484 		return -ENOENT;
485 	}
486 
487 	if (!blk_rq_payload_bytes(rq)) {
488 		dev_err(queue->ctrl->ctrl.device,
489 			"queue %d tag %#x unexpected data\n",
490 			nvme_tcp_queue_id(queue), rq->tag);
491 		return -EIO;
492 	}
493 
494 	queue->data_remaining = le32_to_cpu(pdu->data_length);
495 
496 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
497 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
498 		dev_err(queue->ctrl->ctrl.device,
499 			"queue %d tag %#x SUCCESS set but not last PDU\n",
500 			nvme_tcp_queue_id(queue), rq->tag);
501 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
502 		return -EPROTO;
503 	}
504 
505 	return 0;
506 }
507 
508 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
509 		struct nvme_tcp_rsp_pdu *pdu)
510 {
511 	struct nvme_completion *cqe = &pdu->cqe;
512 	int ret = 0;
513 
514 	/*
515 	 * AEN requests are special as they don't time out and can
516 	 * survive any kind of queue freeze and often don't respond to
517 	 * aborts.  We don't even bother to allocate a struct request
518 	 * for them but rather special case them here.
519 	 */
520 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
521 				     cqe->command_id)))
522 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
523 				&cqe->result);
524 	else
525 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
526 
527 	return ret;
528 }
529 
530 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
531 		struct nvme_tcp_r2t_pdu *pdu)
532 {
533 	struct nvme_tcp_data_pdu *data = req->pdu;
534 	struct nvme_tcp_queue *queue = req->queue;
535 	struct request *rq = blk_mq_rq_from_pdu(req);
536 	u8 hdgst = nvme_tcp_hdgst_len(queue);
537 	u8 ddgst = nvme_tcp_ddgst_len(queue);
538 
539 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
540 	req->pdu_sent = 0;
541 
542 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
543 		dev_err(queue->ctrl->ctrl.device,
544 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
545 			rq->tag, req->pdu_len, req->data_len,
546 			req->data_sent);
547 		return -EPROTO;
548 	}
549 
550 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
551 		dev_err(queue->ctrl->ctrl.device,
552 			"req %d unexpected r2t offset %u (expected %zu)\n",
553 			rq->tag, le32_to_cpu(pdu->r2t_offset),
554 			req->data_sent);
555 		return -EPROTO;
556 	}
557 
558 	memset(data, 0, sizeof(*data));
559 	data->hdr.type = nvme_tcp_h2c_data;
560 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
561 	if (queue->hdr_digest)
562 		data->hdr.flags |= NVME_TCP_F_HDGST;
563 	if (queue->data_digest)
564 		data->hdr.flags |= NVME_TCP_F_DDGST;
565 	data->hdr.hlen = sizeof(*data);
566 	data->hdr.pdo = data->hdr.hlen + hdgst;
567 	data->hdr.plen =
568 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
569 	data->ttag = pdu->ttag;
570 	data->command_id = rq->tag;
571 	data->data_offset = cpu_to_le32(req->data_sent);
572 	data->data_length = cpu_to_le32(req->pdu_len);
573 	return 0;
574 }
575 
576 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
577 		struct nvme_tcp_r2t_pdu *pdu)
578 {
579 	struct nvme_tcp_request *req;
580 	struct request *rq;
581 	int ret;
582 
583 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
584 	if (!rq) {
585 		dev_err(queue->ctrl->ctrl.device,
586 			"queue %d tag %#x not found\n",
587 			nvme_tcp_queue_id(queue), pdu->command_id);
588 		return -ENOENT;
589 	}
590 	req = blk_mq_rq_to_pdu(rq);
591 
592 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
593 	if (unlikely(ret))
594 		return ret;
595 
596 	req->state = NVME_TCP_SEND_H2C_PDU;
597 	req->offset = 0;
598 
599 	nvme_tcp_queue_request(req, false);
600 
601 	return 0;
602 }
603 
604 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
605 		unsigned int *offset, size_t *len)
606 {
607 	struct nvme_tcp_hdr *hdr;
608 	char *pdu = queue->pdu;
609 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
610 	int ret;
611 
612 	ret = skb_copy_bits(skb, *offset,
613 		&pdu[queue->pdu_offset], rcv_len);
614 	if (unlikely(ret))
615 		return ret;
616 
617 	queue->pdu_remaining -= rcv_len;
618 	queue->pdu_offset += rcv_len;
619 	*offset += rcv_len;
620 	*len -= rcv_len;
621 	if (queue->pdu_remaining)
622 		return 0;
623 
624 	hdr = queue->pdu;
625 	if (queue->hdr_digest) {
626 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
627 		if (unlikely(ret))
628 			return ret;
629 	}
630 
631 
632 	if (queue->data_digest) {
633 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
634 		if (unlikely(ret))
635 			return ret;
636 	}
637 
638 	switch (hdr->type) {
639 	case nvme_tcp_c2h_data:
640 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
641 	case nvme_tcp_rsp:
642 		nvme_tcp_init_recv_ctx(queue);
643 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
644 	case nvme_tcp_r2t:
645 		nvme_tcp_init_recv_ctx(queue);
646 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
647 	default:
648 		dev_err(queue->ctrl->ctrl.device,
649 			"unsupported pdu type (%d)\n", hdr->type);
650 		return -EINVAL;
651 	}
652 }
653 
654 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
655 {
656 	union nvme_result res = {};
657 
658 	if (!nvme_end_request(rq, cpu_to_le16(status << 1), res))
659 		nvme_complete_rq(rq);
660 }
661 
662 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
663 			      unsigned int *offset, size_t *len)
664 {
665 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
666 	struct nvme_tcp_request *req;
667 	struct request *rq;
668 
669 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
670 	if (!rq) {
671 		dev_err(queue->ctrl->ctrl.device,
672 			"queue %d tag %#x not found\n",
673 			nvme_tcp_queue_id(queue), pdu->command_id);
674 		return -ENOENT;
675 	}
676 	req = blk_mq_rq_to_pdu(rq);
677 
678 	while (true) {
679 		int recv_len, ret;
680 
681 		recv_len = min_t(size_t, *len, queue->data_remaining);
682 		if (!recv_len)
683 			break;
684 
685 		if (!iov_iter_count(&req->iter)) {
686 			req->curr_bio = req->curr_bio->bi_next;
687 
688 			/*
689 			 * If we don`t have any bios it means that controller
690 			 * sent more data than we requested, hence error
691 			 */
692 			if (!req->curr_bio) {
693 				dev_err(queue->ctrl->ctrl.device,
694 					"queue %d no space in request %#x",
695 					nvme_tcp_queue_id(queue), rq->tag);
696 				nvme_tcp_init_recv_ctx(queue);
697 				return -EIO;
698 			}
699 			nvme_tcp_init_iter(req, READ);
700 		}
701 
702 		/* we can read only from what is left in this bio */
703 		recv_len = min_t(size_t, recv_len,
704 				iov_iter_count(&req->iter));
705 
706 		if (queue->data_digest)
707 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
708 				&req->iter, recv_len, queue->rcv_hash);
709 		else
710 			ret = skb_copy_datagram_iter(skb, *offset,
711 					&req->iter, recv_len);
712 		if (ret) {
713 			dev_err(queue->ctrl->ctrl.device,
714 				"queue %d failed to copy request %#x data",
715 				nvme_tcp_queue_id(queue), rq->tag);
716 			return ret;
717 		}
718 
719 		*len -= recv_len;
720 		*offset += recv_len;
721 		queue->data_remaining -= recv_len;
722 	}
723 
724 	if (!queue->data_remaining) {
725 		if (queue->data_digest) {
726 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
727 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
728 		} else {
729 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
730 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
731 				queue->nr_cqe++;
732 			}
733 			nvme_tcp_init_recv_ctx(queue);
734 		}
735 	}
736 
737 	return 0;
738 }
739 
740 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
741 		struct sk_buff *skb, unsigned int *offset, size_t *len)
742 {
743 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
744 	char *ddgst = (char *)&queue->recv_ddgst;
745 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
746 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
747 	int ret;
748 
749 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
750 	if (unlikely(ret))
751 		return ret;
752 
753 	queue->ddgst_remaining -= recv_len;
754 	*offset += recv_len;
755 	*len -= recv_len;
756 	if (queue->ddgst_remaining)
757 		return 0;
758 
759 	if (queue->recv_ddgst != queue->exp_ddgst) {
760 		dev_err(queue->ctrl->ctrl.device,
761 			"data digest error: recv %#x expected %#x\n",
762 			le32_to_cpu(queue->recv_ddgst),
763 			le32_to_cpu(queue->exp_ddgst));
764 		return -EIO;
765 	}
766 
767 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
768 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
769 						pdu->command_id);
770 
771 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
772 		queue->nr_cqe++;
773 	}
774 
775 	nvme_tcp_init_recv_ctx(queue);
776 	return 0;
777 }
778 
779 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
780 			     unsigned int offset, size_t len)
781 {
782 	struct nvme_tcp_queue *queue = desc->arg.data;
783 	size_t consumed = len;
784 	int result;
785 
786 	while (len) {
787 		switch (nvme_tcp_recv_state(queue)) {
788 		case NVME_TCP_RECV_PDU:
789 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
790 			break;
791 		case NVME_TCP_RECV_DATA:
792 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
793 			break;
794 		case NVME_TCP_RECV_DDGST:
795 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
796 			break;
797 		default:
798 			result = -EFAULT;
799 		}
800 		if (result) {
801 			dev_err(queue->ctrl->ctrl.device,
802 				"receive failed:  %d\n", result);
803 			queue->rd_enabled = false;
804 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
805 			return result;
806 		}
807 	}
808 
809 	return consumed;
810 }
811 
812 static void nvme_tcp_data_ready(struct sock *sk)
813 {
814 	struct nvme_tcp_queue *queue;
815 
816 	read_lock_bh(&sk->sk_callback_lock);
817 	queue = sk->sk_user_data;
818 	if (likely(queue && queue->rd_enabled) &&
819 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
820 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
821 	read_unlock_bh(&sk->sk_callback_lock);
822 }
823 
824 static void nvme_tcp_write_space(struct sock *sk)
825 {
826 	struct nvme_tcp_queue *queue;
827 
828 	read_lock_bh(&sk->sk_callback_lock);
829 	queue = sk->sk_user_data;
830 	if (likely(queue && sk_stream_is_writeable(sk))) {
831 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
832 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
833 	}
834 	read_unlock_bh(&sk->sk_callback_lock);
835 }
836 
837 static void nvme_tcp_state_change(struct sock *sk)
838 {
839 	struct nvme_tcp_queue *queue;
840 
841 	read_lock(&sk->sk_callback_lock);
842 	queue = sk->sk_user_data;
843 	if (!queue)
844 		goto done;
845 
846 	switch (sk->sk_state) {
847 	case TCP_CLOSE:
848 	case TCP_CLOSE_WAIT:
849 	case TCP_LAST_ACK:
850 	case TCP_FIN_WAIT1:
851 	case TCP_FIN_WAIT2:
852 		/* fallthrough */
853 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
854 		break;
855 	default:
856 		dev_info(queue->ctrl->ctrl.device,
857 			"queue %d socket state %d\n",
858 			nvme_tcp_queue_id(queue), sk->sk_state);
859 	}
860 
861 	queue->state_change(sk);
862 done:
863 	read_unlock(&sk->sk_callback_lock);
864 }
865 
866 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
867 {
868 	queue->request = NULL;
869 }
870 
871 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
872 {
873 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
874 }
875 
876 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
877 {
878 	struct nvme_tcp_queue *queue = req->queue;
879 
880 	while (true) {
881 		struct page *page = nvme_tcp_req_cur_page(req);
882 		size_t offset = nvme_tcp_req_cur_offset(req);
883 		size_t len = nvme_tcp_req_cur_length(req);
884 		bool last = nvme_tcp_pdu_last_send(req, len);
885 		int ret, flags = MSG_DONTWAIT;
886 
887 		if (last && !queue->data_digest)
888 			flags |= MSG_EOR;
889 		else
890 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
891 
892 		/* can't zcopy slab pages */
893 		if (unlikely(PageSlab(page))) {
894 			ret = sock_no_sendpage(queue->sock, page, offset, len,
895 					flags);
896 		} else {
897 			ret = kernel_sendpage(queue->sock, page, offset, len,
898 					flags);
899 		}
900 		if (ret <= 0)
901 			return ret;
902 
903 		nvme_tcp_advance_req(req, ret);
904 		if (queue->data_digest)
905 			nvme_tcp_ddgst_update(queue->snd_hash, page,
906 					offset, ret);
907 
908 		/* fully successful last write*/
909 		if (last && ret == len) {
910 			if (queue->data_digest) {
911 				nvme_tcp_ddgst_final(queue->snd_hash,
912 					&req->ddgst);
913 				req->state = NVME_TCP_SEND_DDGST;
914 				req->offset = 0;
915 			} else {
916 				nvme_tcp_done_send_req(queue);
917 			}
918 			return 1;
919 		}
920 	}
921 	return -EAGAIN;
922 }
923 
924 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
925 {
926 	struct nvme_tcp_queue *queue = req->queue;
927 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
928 	bool inline_data = nvme_tcp_has_inline_data(req);
929 	u8 hdgst = nvme_tcp_hdgst_len(queue);
930 	int len = sizeof(*pdu) + hdgst - req->offset;
931 	int flags = MSG_DONTWAIT;
932 	int ret;
933 
934 	if (inline_data)
935 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
936 	else
937 		flags |= MSG_EOR;
938 
939 	if (queue->hdr_digest && !req->offset)
940 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
941 
942 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
943 			offset_in_page(pdu) + req->offset, len,  flags);
944 	if (unlikely(ret <= 0))
945 		return ret;
946 
947 	len -= ret;
948 	if (!len) {
949 		if (inline_data) {
950 			req->state = NVME_TCP_SEND_DATA;
951 			if (queue->data_digest)
952 				crypto_ahash_init(queue->snd_hash);
953 			nvme_tcp_init_iter(req, WRITE);
954 		} else {
955 			nvme_tcp_done_send_req(queue);
956 		}
957 		return 1;
958 	}
959 	req->offset += ret;
960 
961 	return -EAGAIN;
962 }
963 
964 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
965 {
966 	struct nvme_tcp_queue *queue = req->queue;
967 	struct nvme_tcp_data_pdu *pdu = req->pdu;
968 	u8 hdgst = nvme_tcp_hdgst_len(queue);
969 	int len = sizeof(*pdu) - req->offset + hdgst;
970 	int ret;
971 
972 	if (queue->hdr_digest && !req->offset)
973 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
974 
975 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
976 			offset_in_page(pdu) + req->offset, len,
977 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
978 	if (unlikely(ret <= 0))
979 		return ret;
980 
981 	len -= ret;
982 	if (!len) {
983 		req->state = NVME_TCP_SEND_DATA;
984 		if (queue->data_digest)
985 			crypto_ahash_init(queue->snd_hash);
986 		if (!req->data_sent)
987 			nvme_tcp_init_iter(req, WRITE);
988 		return 1;
989 	}
990 	req->offset += ret;
991 
992 	return -EAGAIN;
993 }
994 
995 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
996 {
997 	struct nvme_tcp_queue *queue = req->queue;
998 	int ret;
999 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
1000 	struct kvec iov = {
1001 		.iov_base = &req->ddgst + req->offset,
1002 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1003 	};
1004 
1005 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1006 	if (unlikely(ret <= 0))
1007 		return ret;
1008 
1009 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1010 		nvme_tcp_done_send_req(queue);
1011 		return 1;
1012 	}
1013 
1014 	req->offset += ret;
1015 	return -EAGAIN;
1016 }
1017 
1018 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1019 {
1020 	struct nvme_tcp_request *req;
1021 	int ret = 1;
1022 
1023 	if (!queue->request) {
1024 		queue->request = nvme_tcp_fetch_request(queue);
1025 		if (!queue->request)
1026 			return 0;
1027 	}
1028 	req = queue->request;
1029 
1030 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1031 		ret = nvme_tcp_try_send_cmd_pdu(req);
1032 		if (ret <= 0)
1033 			goto done;
1034 		if (!nvme_tcp_has_inline_data(req))
1035 			return ret;
1036 	}
1037 
1038 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1039 		ret = nvme_tcp_try_send_data_pdu(req);
1040 		if (ret <= 0)
1041 			goto done;
1042 	}
1043 
1044 	if (req->state == NVME_TCP_SEND_DATA) {
1045 		ret = nvme_tcp_try_send_data(req);
1046 		if (ret <= 0)
1047 			goto done;
1048 	}
1049 
1050 	if (req->state == NVME_TCP_SEND_DDGST)
1051 		ret = nvme_tcp_try_send_ddgst(req);
1052 done:
1053 	if (ret == -EAGAIN) {
1054 		ret = 0;
1055 	} else if (ret < 0) {
1056 		dev_err(queue->ctrl->ctrl.device,
1057 			"failed to send request %d\n", ret);
1058 		if (ret != -EPIPE && ret != -ECONNRESET)
1059 			nvme_tcp_fail_request(queue->request);
1060 		nvme_tcp_done_send_req(queue);
1061 	}
1062 	return ret;
1063 }
1064 
1065 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1066 {
1067 	struct socket *sock = queue->sock;
1068 	struct sock *sk = sock->sk;
1069 	read_descriptor_t rd_desc;
1070 	int consumed;
1071 
1072 	rd_desc.arg.data = queue;
1073 	rd_desc.count = 1;
1074 	lock_sock(sk);
1075 	queue->nr_cqe = 0;
1076 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1077 	release_sock(sk);
1078 	return consumed;
1079 }
1080 
1081 static void nvme_tcp_io_work(struct work_struct *w)
1082 {
1083 	struct nvme_tcp_queue *queue =
1084 		container_of(w, struct nvme_tcp_queue, io_work);
1085 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1086 
1087 	do {
1088 		bool pending = false;
1089 		int result;
1090 
1091 		if (mutex_trylock(&queue->send_mutex)) {
1092 			result = nvme_tcp_try_send(queue);
1093 			mutex_unlock(&queue->send_mutex);
1094 			if (result > 0)
1095 				pending = true;
1096 			else if (unlikely(result < 0))
1097 				break;
1098 		}
1099 
1100 		result = nvme_tcp_try_recv(queue);
1101 		if (result > 0)
1102 			pending = true;
1103 		else if (unlikely(result < 0))
1104 			return;
1105 
1106 		if (!pending)
1107 			return;
1108 
1109 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1110 
1111 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1112 }
1113 
1114 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1115 {
1116 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1117 
1118 	ahash_request_free(queue->rcv_hash);
1119 	ahash_request_free(queue->snd_hash);
1120 	crypto_free_ahash(tfm);
1121 }
1122 
1123 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1124 {
1125 	struct crypto_ahash *tfm;
1126 
1127 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1128 	if (IS_ERR(tfm))
1129 		return PTR_ERR(tfm);
1130 
1131 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1132 	if (!queue->snd_hash)
1133 		goto free_tfm;
1134 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1135 
1136 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1137 	if (!queue->rcv_hash)
1138 		goto free_snd_hash;
1139 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1140 
1141 	return 0;
1142 free_snd_hash:
1143 	ahash_request_free(queue->snd_hash);
1144 free_tfm:
1145 	crypto_free_ahash(tfm);
1146 	return -ENOMEM;
1147 }
1148 
1149 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1150 {
1151 	struct nvme_tcp_request *async = &ctrl->async_req;
1152 
1153 	page_frag_free(async->pdu);
1154 }
1155 
1156 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1157 {
1158 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1159 	struct nvme_tcp_request *async = &ctrl->async_req;
1160 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1161 
1162 	async->pdu = page_frag_alloc(&queue->pf_cache,
1163 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1164 		GFP_KERNEL | __GFP_ZERO);
1165 	if (!async->pdu)
1166 		return -ENOMEM;
1167 
1168 	async->queue = &ctrl->queues[0];
1169 	return 0;
1170 }
1171 
1172 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1173 {
1174 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1175 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1176 
1177 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1178 		return;
1179 
1180 	if (queue->hdr_digest || queue->data_digest)
1181 		nvme_tcp_free_crypto(queue);
1182 
1183 	sock_release(queue->sock);
1184 	kfree(queue->pdu);
1185 }
1186 
1187 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1188 {
1189 	struct nvme_tcp_icreq_pdu *icreq;
1190 	struct nvme_tcp_icresp_pdu *icresp;
1191 	struct msghdr msg = {};
1192 	struct kvec iov;
1193 	bool ctrl_hdgst, ctrl_ddgst;
1194 	int ret;
1195 
1196 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1197 	if (!icreq)
1198 		return -ENOMEM;
1199 
1200 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1201 	if (!icresp) {
1202 		ret = -ENOMEM;
1203 		goto free_icreq;
1204 	}
1205 
1206 	icreq->hdr.type = nvme_tcp_icreq;
1207 	icreq->hdr.hlen = sizeof(*icreq);
1208 	icreq->hdr.pdo = 0;
1209 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1210 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1211 	icreq->maxr2t = 0; /* single inflight r2t supported */
1212 	icreq->hpda = 0; /* no alignment constraint */
1213 	if (queue->hdr_digest)
1214 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1215 	if (queue->data_digest)
1216 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1217 
1218 	iov.iov_base = icreq;
1219 	iov.iov_len = sizeof(*icreq);
1220 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1221 	if (ret < 0)
1222 		goto free_icresp;
1223 
1224 	memset(&msg, 0, sizeof(msg));
1225 	iov.iov_base = icresp;
1226 	iov.iov_len = sizeof(*icresp);
1227 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1228 			iov.iov_len, msg.msg_flags);
1229 	if (ret < 0)
1230 		goto free_icresp;
1231 
1232 	ret = -EINVAL;
1233 	if (icresp->hdr.type != nvme_tcp_icresp) {
1234 		pr_err("queue %d: bad type returned %d\n",
1235 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1236 		goto free_icresp;
1237 	}
1238 
1239 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1240 		pr_err("queue %d: bad pdu length returned %d\n",
1241 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1242 		goto free_icresp;
1243 	}
1244 
1245 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1246 		pr_err("queue %d: bad pfv returned %d\n",
1247 			nvme_tcp_queue_id(queue), icresp->pfv);
1248 		goto free_icresp;
1249 	}
1250 
1251 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1252 	if ((queue->data_digest && !ctrl_ddgst) ||
1253 	    (!queue->data_digest && ctrl_ddgst)) {
1254 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1255 			nvme_tcp_queue_id(queue),
1256 			queue->data_digest ? "enabled" : "disabled",
1257 			ctrl_ddgst ? "enabled" : "disabled");
1258 		goto free_icresp;
1259 	}
1260 
1261 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1262 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1263 	    (!queue->hdr_digest && ctrl_hdgst)) {
1264 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1265 			nvme_tcp_queue_id(queue),
1266 			queue->hdr_digest ? "enabled" : "disabled",
1267 			ctrl_hdgst ? "enabled" : "disabled");
1268 		goto free_icresp;
1269 	}
1270 
1271 	if (icresp->cpda != 0) {
1272 		pr_err("queue %d: unsupported cpda returned %d\n",
1273 			nvme_tcp_queue_id(queue), icresp->cpda);
1274 		goto free_icresp;
1275 	}
1276 
1277 	ret = 0;
1278 free_icresp:
1279 	kfree(icresp);
1280 free_icreq:
1281 	kfree(icreq);
1282 	return ret;
1283 }
1284 
1285 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1286 {
1287 	return nvme_tcp_queue_id(queue) == 0;
1288 }
1289 
1290 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1291 {
1292 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1293 	int qid = nvme_tcp_queue_id(queue);
1294 
1295 	return !nvme_tcp_admin_queue(queue) &&
1296 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1297 }
1298 
1299 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1300 {
1301 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1302 	int qid = nvme_tcp_queue_id(queue);
1303 
1304 	return !nvme_tcp_admin_queue(queue) &&
1305 		!nvme_tcp_default_queue(queue) &&
1306 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1307 			  ctrl->io_queues[HCTX_TYPE_READ];
1308 }
1309 
1310 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1311 {
1312 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1313 	int qid = nvme_tcp_queue_id(queue);
1314 
1315 	return !nvme_tcp_admin_queue(queue) &&
1316 		!nvme_tcp_default_queue(queue) &&
1317 		!nvme_tcp_read_queue(queue) &&
1318 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1319 			  ctrl->io_queues[HCTX_TYPE_READ] +
1320 			  ctrl->io_queues[HCTX_TYPE_POLL];
1321 }
1322 
1323 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1324 {
1325 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1326 	int qid = nvme_tcp_queue_id(queue);
1327 	int n = 0;
1328 
1329 	if (nvme_tcp_default_queue(queue))
1330 		n = qid - 1;
1331 	else if (nvme_tcp_read_queue(queue))
1332 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1333 	else if (nvme_tcp_poll_queue(queue))
1334 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1335 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1336 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1337 }
1338 
1339 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1340 		int qid, size_t queue_size)
1341 {
1342 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1343 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1344 	int ret, rcv_pdu_size;
1345 
1346 	queue->ctrl = ctrl;
1347 	INIT_LIST_HEAD(&queue->send_list);
1348 	spin_lock_init(&queue->lock);
1349 	mutex_init(&queue->send_mutex);
1350 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1351 	queue->queue_size = queue_size;
1352 
1353 	if (qid > 0)
1354 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1355 	else
1356 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1357 						NVME_TCP_ADMIN_CCSZ;
1358 
1359 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1360 			IPPROTO_TCP, &queue->sock);
1361 	if (ret) {
1362 		dev_err(nctrl->device,
1363 			"failed to create socket: %d\n", ret);
1364 		return ret;
1365 	}
1366 
1367 	/* Single syn retry */
1368 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1369 
1370 	/* Set TCP no delay */
1371 	tcp_sock_set_nodelay(queue->sock->sk);
1372 
1373 	/*
1374 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1375 	 * close. This is done to prevent stale data from being sent should
1376 	 * the network connection be restored before TCP times out.
1377 	 */
1378 	sock_no_linger(queue->sock->sk);
1379 
1380 	if (so_priority > 0)
1381 		sock_set_priority(queue->sock->sk, so_priority);
1382 
1383 	/* Set socket type of service */
1384 	if (nctrl->opts->tos >= 0)
1385 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1386 
1387 	/* Set 10 seconds timeout for icresp recvmsg */
1388 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1389 
1390 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1391 	nvme_tcp_set_queue_io_cpu(queue);
1392 	queue->request = NULL;
1393 	queue->data_remaining = 0;
1394 	queue->ddgst_remaining = 0;
1395 	queue->pdu_remaining = 0;
1396 	queue->pdu_offset = 0;
1397 	sk_set_memalloc(queue->sock->sk);
1398 
1399 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1400 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1401 			sizeof(ctrl->src_addr));
1402 		if (ret) {
1403 			dev_err(nctrl->device,
1404 				"failed to bind queue %d socket %d\n",
1405 				qid, ret);
1406 			goto err_sock;
1407 		}
1408 	}
1409 
1410 	queue->hdr_digest = nctrl->opts->hdr_digest;
1411 	queue->data_digest = nctrl->opts->data_digest;
1412 	if (queue->hdr_digest || queue->data_digest) {
1413 		ret = nvme_tcp_alloc_crypto(queue);
1414 		if (ret) {
1415 			dev_err(nctrl->device,
1416 				"failed to allocate queue %d crypto\n", qid);
1417 			goto err_sock;
1418 		}
1419 	}
1420 
1421 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1422 			nvme_tcp_hdgst_len(queue);
1423 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1424 	if (!queue->pdu) {
1425 		ret = -ENOMEM;
1426 		goto err_crypto;
1427 	}
1428 
1429 	dev_dbg(nctrl->device, "connecting queue %d\n",
1430 			nvme_tcp_queue_id(queue));
1431 
1432 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1433 		sizeof(ctrl->addr), 0);
1434 	if (ret) {
1435 		dev_err(nctrl->device,
1436 			"failed to connect socket: %d\n", ret);
1437 		goto err_rcv_pdu;
1438 	}
1439 
1440 	ret = nvme_tcp_init_connection(queue);
1441 	if (ret)
1442 		goto err_init_connect;
1443 
1444 	queue->rd_enabled = true;
1445 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1446 	nvme_tcp_init_recv_ctx(queue);
1447 
1448 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1449 	queue->sock->sk->sk_user_data = queue;
1450 	queue->state_change = queue->sock->sk->sk_state_change;
1451 	queue->data_ready = queue->sock->sk->sk_data_ready;
1452 	queue->write_space = queue->sock->sk->sk_write_space;
1453 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1454 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1455 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1456 #ifdef CONFIG_NET_RX_BUSY_POLL
1457 	queue->sock->sk->sk_ll_usec = 1;
1458 #endif
1459 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1460 
1461 	return 0;
1462 
1463 err_init_connect:
1464 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1465 err_rcv_pdu:
1466 	kfree(queue->pdu);
1467 err_crypto:
1468 	if (queue->hdr_digest || queue->data_digest)
1469 		nvme_tcp_free_crypto(queue);
1470 err_sock:
1471 	sock_release(queue->sock);
1472 	queue->sock = NULL;
1473 	return ret;
1474 }
1475 
1476 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1477 {
1478 	struct socket *sock = queue->sock;
1479 
1480 	write_lock_bh(&sock->sk->sk_callback_lock);
1481 	sock->sk->sk_user_data  = NULL;
1482 	sock->sk->sk_data_ready = queue->data_ready;
1483 	sock->sk->sk_state_change = queue->state_change;
1484 	sock->sk->sk_write_space  = queue->write_space;
1485 	write_unlock_bh(&sock->sk->sk_callback_lock);
1486 }
1487 
1488 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1489 {
1490 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1491 	nvme_tcp_restore_sock_calls(queue);
1492 	cancel_work_sync(&queue->io_work);
1493 }
1494 
1495 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1496 {
1497 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1498 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1499 
1500 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1501 		return;
1502 
1503 	__nvme_tcp_stop_queue(queue);
1504 }
1505 
1506 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1507 {
1508 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1509 	int ret;
1510 
1511 	if (idx)
1512 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1513 	else
1514 		ret = nvmf_connect_admin_queue(nctrl);
1515 
1516 	if (!ret) {
1517 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1518 	} else {
1519 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1520 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1521 		dev_err(nctrl->device,
1522 			"failed to connect queue: %d ret=%d\n", idx, ret);
1523 	}
1524 	return ret;
1525 }
1526 
1527 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1528 		bool admin)
1529 {
1530 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1531 	struct blk_mq_tag_set *set;
1532 	int ret;
1533 
1534 	if (admin) {
1535 		set = &ctrl->admin_tag_set;
1536 		memset(set, 0, sizeof(*set));
1537 		set->ops = &nvme_tcp_admin_mq_ops;
1538 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1539 		set->reserved_tags = 2; /* connect + keep-alive */
1540 		set->numa_node = nctrl->numa_node;
1541 		set->flags = BLK_MQ_F_BLOCKING;
1542 		set->cmd_size = sizeof(struct nvme_tcp_request);
1543 		set->driver_data = ctrl;
1544 		set->nr_hw_queues = 1;
1545 		set->timeout = ADMIN_TIMEOUT;
1546 	} else {
1547 		set = &ctrl->tag_set;
1548 		memset(set, 0, sizeof(*set));
1549 		set->ops = &nvme_tcp_mq_ops;
1550 		set->queue_depth = nctrl->sqsize + 1;
1551 		set->reserved_tags = 1; /* fabric connect */
1552 		set->numa_node = nctrl->numa_node;
1553 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1554 		set->cmd_size = sizeof(struct nvme_tcp_request);
1555 		set->driver_data = ctrl;
1556 		set->nr_hw_queues = nctrl->queue_count - 1;
1557 		set->timeout = NVME_IO_TIMEOUT;
1558 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1559 	}
1560 
1561 	ret = blk_mq_alloc_tag_set(set);
1562 	if (ret)
1563 		return ERR_PTR(ret);
1564 
1565 	return set;
1566 }
1567 
1568 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1569 {
1570 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1571 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1572 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1573 	}
1574 
1575 	nvme_tcp_free_queue(ctrl, 0);
1576 }
1577 
1578 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1579 {
1580 	int i;
1581 
1582 	for (i = 1; i < ctrl->queue_count; i++)
1583 		nvme_tcp_free_queue(ctrl, i);
1584 }
1585 
1586 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1587 {
1588 	int i;
1589 
1590 	for (i = 1; i < ctrl->queue_count; i++)
1591 		nvme_tcp_stop_queue(ctrl, i);
1592 }
1593 
1594 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1595 {
1596 	int i, ret = 0;
1597 
1598 	for (i = 1; i < ctrl->queue_count; i++) {
1599 		ret = nvme_tcp_start_queue(ctrl, i);
1600 		if (ret)
1601 			goto out_stop_queues;
1602 	}
1603 
1604 	return 0;
1605 
1606 out_stop_queues:
1607 	for (i--; i >= 1; i--)
1608 		nvme_tcp_stop_queue(ctrl, i);
1609 	return ret;
1610 }
1611 
1612 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1613 {
1614 	int ret;
1615 
1616 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1617 	if (ret)
1618 		return ret;
1619 
1620 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1621 	if (ret)
1622 		goto out_free_queue;
1623 
1624 	return 0;
1625 
1626 out_free_queue:
1627 	nvme_tcp_free_queue(ctrl, 0);
1628 	return ret;
1629 }
1630 
1631 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1632 {
1633 	int i, ret;
1634 
1635 	for (i = 1; i < ctrl->queue_count; i++) {
1636 		ret = nvme_tcp_alloc_queue(ctrl, i,
1637 				ctrl->sqsize + 1);
1638 		if (ret)
1639 			goto out_free_queues;
1640 	}
1641 
1642 	return 0;
1643 
1644 out_free_queues:
1645 	for (i--; i >= 1; i--)
1646 		nvme_tcp_free_queue(ctrl, i);
1647 
1648 	return ret;
1649 }
1650 
1651 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1652 {
1653 	unsigned int nr_io_queues;
1654 
1655 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1656 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1657 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1658 
1659 	return nr_io_queues;
1660 }
1661 
1662 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1663 		unsigned int nr_io_queues)
1664 {
1665 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1666 	struct nvmf_ctrl_options *opts = nctrl->opts;
1667 
1668 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1669 		/*
1670 		 * separate read/write queues
1671 		 * hand out dedicated default queues only after we have
1672 		 * sufficient read queues.
1673 		 */
1674 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1675 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1676 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1677 			min(opts->nr_write_queues, nr_io_queues);
1678 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1679 	} else {
1680 		/*
1681 		 * shared read/write queues
1682 		 * either no write queues were requested, or we don't have
1683 		 * sufficient queue count to have dedicated default queues.
1684 		 */
1685 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1686 			min(opts->nr_io_queues, nr_io_queues);
1687 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1688 	}
1689 
1690 	if (opts->nr_poll_queues && nr_io_queues) {
1691 		/* map dedicated poll queues only if we have queues left */
1692 		ctrl->io_queues[HCTX_TYPE_POLL] =
1693 			min(opts->nr_poll_queues, nr_io_queues);
1694 	}
1695 }
1696 
1697 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1698 {
1699 	unsigned int nr_io_queues;
1700 	int ret;
1701 
1702 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1703 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1704 	if (ret)
1705 		return ret;
1706 
1707 	ctrl->queue_count = nr_io_queues + 1;
1708 	if (ctrl->queue_count < 2)
1709 		return 0;
1710 
1711 	dev_info(ctrl->device,
1712 		"creating %d I/O queues.\n", nr_io_queues);
1713 
1714 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1715 
1716 	return __nvme_tcp_alloc_io_queues(ctrl);
1717 }
1718 
1719 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1720 {
1721 	nvme_tcp_stop_io_queues(ctrl);
1722 	if (remove) {
1723 		blk_cleanup_queue(ctrl->connect_q);
1724 		blk_mq_free_tag_set(ctrl->tagset);
1725 	}
1726 	nvme_tcp_free_io_queues(ctrl);
1727 }
1728 
1729 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1730 {
1731 	int ret;
1732 
1733 	ret = nvme_tcp_alloc_io_queues(ctrl);
1734 	if (ret)
1735 		return ret;
1736 
1737 	if (new) {
1738 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1739 		if (IS_ERR(ctrl->tagset)) {
1740 			ret = PTR_ERR(ctrl->tagset);
1741 			goto out_free_io_queues;
1742 		}
1743 
1744 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1745 		if (IS_ERR(ctrl->connect_q)) {
1746 			ret = PTR_ERR(ctrl->connect_q);
1747 			goto out_free_tag_set;
1748 		}
1749 	} else {
1750 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1751 			ctrl->queue_count - 1);
1752 	}
1753 
1754 	ret = nvme_tcp_start_io_queues(ctrl);
1755 	if (ret)
1756 		goto out_cleanup_connect_q;
1757 
1758 	return 0;
1759 
1760 out_cleanup_connect_q:
1761 	if (new)
1762 		blk_cleanup_queue(ctrl->connect_q);
1763 out_free_tag_set:
1764 	if (new)
1765 		blk_mq_free_tag_set(ctrl->tagset);
1766 out_free_io_queues:
1767 	nvme_tcp_free_io_queues(ctrl);
1768 	return ret;
1769 }
1770 
1771 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1772 {
1773 	nvme_tcp_stop_queue(ctrl, 0);
1774 	if (remove) {
1775 		blk_cleanup_queue(ctrl->admin_q);
1776 		blk_cleanup_queue(ctrl->fabrics_q);
1777 		blk_mq_free_tag_set(ctrl->admin_tagset);
1778 	}
1779 	nvme_tcp_free_admin_queue(ctrl);
1780 }
1781 
1782 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1783 {
1784 	int error;
1785 
1786 	error = nvme_tcp_alloc_admin_queue(ctrl);
1787 	if (error)
1788 		return error;
1789 
1790 	if (new) {
1791 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1792 		if (IS_ERR(ctrl->admin_tagset)) {
1793 			error = PTR_ERR(ctrl->admin_tagset);
1794 			goto out_free_queue;
1795 		}
1796 
1797 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1798 		if (IS_ERR(ctrl->fabrics_q)) {
1799 			error = PTR_ERR(ctrl->fabrics_q);
1800 			goto out_free_tagset;
1801 		}
1802 
1803 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1804 		if (IS_ERR(ctrl->admin_q)) {
1805 			error = PTR_ERR(ctrl->admin_q);
1806 			goto out_cleanup_fabrics_q;
1807 		}
1808 	}
1809 
1810 	error = nvme_tcp_start_queue(ctrl, 0);
1811 	if (error)
1812 		goto out_cleanup_queue;
1813 
1814 	error = nvme_enable_ctrl(ctrl);
1815 	if (error)
1816 		goto out_stop_queue;
1817 
1818 	blk_mq_unquiesce_queue(ctrl->admin_q);
1819 
1820 	error = nvme_init_identify(ctrl);
1821 	if (error)
1822 		goto out_stop_queue;
1823 
1824 	return 0;
1825 
1826 out_stop_queue:
1827 	nvme_tcp_stop_queue(ctrl, 0);
1828 out_cleanup_queue:
1829 	if (new)
1830 		blk_cleanup_queue(ctrl->admin_q);
1831 out_cleanup_fabrics_q:
1832 	if (new)
1833 		blk_cleanup_queue(ctrl->fabrics_q);
1834 out_free_tagset:
1835 	if (new)
1836 		blk_mq_free_tag_set(ctrl->admin_tagset);
1837 out_free_queue:
1838 	nvme_tcp_free_admin_queue(ctrl);
1839 	return error;
1840 }
1841 
1842 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1843 		bool remove)
1844 {
1845 	blk_mq_quiesce_queue(ctrl->admin_q);
1846 	nvme_tcp_stop_queue(ctrl, 0);
1847 	if (ctrl->admin_tagset) {
1848 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1849 			nvme_cancel_request, ctrl);
1850 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1851 	}
1852 	if (remove)
1853 		blk_mq_unquiesce_queue(ctrl->admin_q);
1854 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1855 }
1856 
1857 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1858 		bool remove)
1859 {
1860 	if (ctrl->queue_count <= 1)
1861 		return;
1862 	nvme_stop_queues(ctrl);
1863 	nvme_tcp_stop_io_queues(ctrl);
1864 	if (ctrl->tagset) {
1865 		blk_mq_tagset_busy_iter(ctrl->tagset,
1866 			nvme_cancel_request, ctrl);
1867 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1868 	}
1869 	if (remove)
1870 		nvme_start_queues(ctrl);
1871 	nvme_tcp_destroy_io_queues(ctrl, remove);
1872 }
1873 
1874 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1875 {
1876 	/* If we are resetting/deleting then do nothing */
1877 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1878 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1879 			ctrl->state == NVME_CTRL_LIVE);
1880 		return;
1881 	}
1882 
1883 	if (nvmf_should_reconnect(ctrl)) {
1884 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1885 			ctrl->opts->reconnect_delay);
1886 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1887 				ctrl->opts->reconnect_delay * HZ);
1888 	} else {
1889 		dev_info(ctrl->device, "Removing controller...\n");
1890 		nvme_delete_ctrl(ctrl);
1891 	}
1892 }
1893 
1894 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1895 {
1896 	struct nvmf_ctrl_options *opts = ctrl->opts;
1897 	int ret;
1898 
1899 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1900 	if (ret)
1901 		return ret;
1902 
1903 	if (ctrl->icdoff) {
1904 		dev_err(ctrl->device, "icdoff is not supported!\n");
1905 		goto destroy_admin;
1906 	}
1907 
1908 	if (opts->queue_size > ctrl->sqsize + 1)
1909 		dev_warn(ctrl->device,
1910 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1911 			opts->queue_size, ctrl->sqsize + 1);
1912 
1913 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1914 		dev_warn(ctrl->device,
1915 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1916 			ctrl->sqsize + 1, ctrl->maxcmd);
1917 		ctrl->sqsize = ctrl->maxcmd - 1;
1918 	}
1919 
1920 	if (ctrl->queue_count > 1) {
1921 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1922 		if (ret)
1923 			goto destroy_admin;
1924 	}
1925 
1926 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1927 		/*
1928 		 * state change failure is ok if we're in DELETING state,
1929 		 * unless we're during creation of a new controller to
1930 		 * avoid races with teardown flow.
1931 		 */
1932 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1933 		WARN_ON_ONCE(new);
1934 		ret = -EINVAL;
1935 		goto destroy_io;
1936 	}
1937 
1938 	nvme_start_ctrl(ctrl);
1939 	return 0;
1940 
1941 destroy_io:
1942 	if (ctrl->queue_count > 1)
1943 		nvme_tcp_destroy_io_queues(ctrl, new);
1944 destroy_admin:
1945 	nvme_tcp_stop_queue(ctrl, 0);
1946 	nvme_tcp_destroy_admin_queue(ctrl, new);
1947 	return ret;
1948 }
1949 
1950 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1951 {
1952 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1953 			struct nvme_tcp_ctrl, connect_work);
1954 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1955 
1956 	++ctrl->nr_reconnects;
1957 
1958 	if (nvme_tcp_setup_ctrl(ctrl, false))
1959 		goto requeue;
1960 
1961 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1962 			ctrl->nr_reconnects);
1963 
1964 	ctrl->nr_reconnects = 0;
1965 
1966 	return;
1967 
1968 requeue:
1969 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1970 			ctrl->nr_reconnects);
1971 	nvme_tcp_reconnect_or_remove(ctrl);
1972 }
1973 
1974 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1975 {
1976 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1977 				struct nvme_tcp_ctrl, err_work);
1978 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1979 
1980 	nvme_stop_keep_alive(ctrl);
1981 	nvme_tcp_teardown_io_queues(ctrl, false);
1982 	/* unquiesce to fail fast pending requests */
1983 	nvme_start_queues(ctrl);
1984 	nvme_tcp_teardown_admin_queue(ctrl, false);
1985 	blk_mq_unquiesce_queue(ctrl->admin_q);
1986 
1987 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1988 		/* state change failure is ok if we're in DELETING state */
1989 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1990 		return;
1991 	}
1992 
1993 	nvme_tcp_reconnect_or_remove(ctrl);
1994 }
1995 
1996 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1997 {
1998 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1999 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2000 
2001 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2002 	blk_mq_quiesce_queue(ctrl->admin_q);
2003 	if (shutdown)
2004 		nvme_shutdown_ctrl(ctrl);
2005 	else
2006 		nvme_disable_ctrl(ctrl);
2007 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2008 }
2009 
2010 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2011 {
2012 	nvme_tcp_teardown_ctrl(ctrl, true);
2013 }
2014 
2015 static void nvme_reset_ctrl_work(struct work_struct *work)
2016 {
2017 	struct nvme_ctrl *ctrl =
2018 		container_of(work, struct nvme_ctrl, reset_work);
2019 
2020 	nvme_stop_ctrl(ctrl);
2021 	nvme_tcp_teardown_ctrl(ctrl, false);
2022 
2023 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2024 		/* state change failure is ok if we're in DELETING state */
2025 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
2026 		return;
2027 	}
2028 
2029 	if (nvme_tcp_setup_ctrl(ctrl, false))
2030 		goto out_fail;
2031 
2032 	return;
2033 
2034 out_fail:
2035 	++ctrl->nr_reconnects;
2036 	nvme_tcp_reconnect_or_remove(ctrl);
2037 }
2038 
2039 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2040 {
2041 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2042 
2043 	if (list_empty(&ctrl->list))
2044 		goto free_ctrl;
2045 
2046 	mutex_lock(&nvme_tcp_ctrl_mutex);
2047 	list_del(&ctrl->list);
2048 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2049 
2050 	nvmf_free_options(nctrl->opts);
2051 free_ctrl:
2052 	kfree(ctrl->queues);
2053 	kfree(ctrl);
2054 }
2055 
2056 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2057 {
2058 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2059 
2060 	sg->addr = 0;
2061 	sg->length = 0;
2062 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2063 			NVME_SGL_FMT_TRANSPORT_A;
2064 }
2065 
2066 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2067 		struct nvme_command *c, u32 data_len)
2068 {
2069 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2070 
2071 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2072 	sg->length = cpu_to_le32(data_len);
2073 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2074 }
2075 
2076 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2077 		u32 data_len)
2078 {
2079 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2080 
2081 	sg->addr = 0;
2082 	sg->length = cpu_to_le32(data_len);
2083 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2084 			NVME_SGL_FMT_TRANSPORT_A;
2085 }
2086 
2087 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2088 {
2089 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2090 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2091 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2092 	struct nvme_command *cmd = &pdu->cmd;
2093 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2094 
2095 	memset(pdu, 0, sizeof(*pdu));
2096 	pdu->hdr.type = nvme_tcp_cmd;
2097 	if (queue->hdr_digest)
2098 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2099 	pdu->hdr.hlen = sizeof(*pdu);
2100 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2101 
2102 	cmd->common.opcode = nvme_admin_async_event;
2103 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2104 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2105 	nvme_tcp_set_sg_null(cmd);
2106 
2107 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2108 	ctrl->async_req.offset = 0;
2109 	ctrl->async_req.curr_bio = NULL;
2110 	ctrl->async_req.data_len = 0;
2111 
2112 	nvme_tcp_queue_request(&ctrl->async_req, true);
2113 }
2114 
2115 static enum blk_eh_timer_return
2116 nvme_tcp_timeout(struct request *rq, bool reserved)
2117 {
2118 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2119 	struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2120 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2121 
2122 	/*
2123 	 * Restart the timer if a controller reset is already scheduled. Any
2124 	 * timed out commands would be handled before entering the connecting
2125 	 * state.
2126 	 */
2127 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
2128 		return BLK_EH_RESET_TIMER;
2129 
2130 	dev_warn(ctrl->ctrl.device,
2131 		"queue %d: timeout request %#x type %d\n",
2132 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2133 
2134 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2135 		/*
2136 		 * Teardown immediately if controller times out while starting
2137 		 * or we are already started error recovery. all outstanding
2138 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
2139 		 */
2140 		flush_work(&ctrl->err_work);
2141 		nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2142 		nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2143 		return BLK_EH_DONE;
2144 	}
2145 
2146 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2147 	nvme_tcp_error_recovery(&ctrl->ctrl);
2148 
2149 	return BLK_EH_RESET_TIMER;
2150 }
2151 
2152 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2153 			struct request *rq)
2154 {
2155 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2156 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2157 	struct nvme_command *c = &pdu->cmd;
2158 
2159 	c->common.flags |= NVME_CMD_SGL_METABUF;
2160 
2161 	if (!blk_rq_nr_phys_segments(rq))
2162 		nvme_tcp_set_sg_null(c);
2163 	else if (rq_data_dir(rq) == WRITE &&
2164 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2165 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2166 	else
2167 		nvme_tcp_set_sg_host_data(c, req->data_len);
2168 
2169 	return 0;
2170 }
2171 
2172 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2173 		struct request *rq)
2174 {
2175 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2176 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2177 	struct nvme_tcp_queue *queue = req->queue;
2178 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2179 	blk_status_t ret;
2180 
2181 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2182 	if (ret)
2183 		return ret;
2184 
2185 	req->state = NVME_TCP_SEND_CMD_PDU;
2186 	req->offset = 0;
2187 	req->data_sent = 0;
2188 	req->pdu_len = 0;
2189 	req->pdu_sent = 0;
2190 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2191 				blk_rq_payload_bytes(rq) : 0;
2192 	req->curr_bio = rq->bio;
2193 
2194 	if (rq_data_dir(rq) == WRITE &&
2195 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2196 		req->pdu_len = req->data_len;
2197 	else if (req->curr_bio)
2198 		nvme_tcp_init_iter(req, READ);
2199 
2200 	pdu->hdr.type = nvme_tcp_cmd;
2201 	pdu->hdr.flags = 0;
2202 	if (queue->hdr_digest)
2203 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2204 	if (queue->data_digest && req->pdu_len) {
2205 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2206 		ddgst = nvme_tcp_ddgst_len(queue);
2207 	}
2208 	pdu->hdr.hlen = sizeof(*pdu);
2209 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2210 	pdu->hdr.plen =
2211 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2212 
2213 	ret = nvme_tcp_map_data(queue, rq);
2214 	if (unlikely(ret)) {
2215 		nvme_cleanup_cmd(rq);
2216 		dev_err(queue->ctrl->ctrl.device,
2217 			"Failed to map data (%d)\n", ret);
2218 		return ret;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2225 		const struct blk_mq_queue_data *bd)
2226 {
2227 	struct nvme_ns *ns = hctx->queue->queuedata;
2228 	struct nvme_tcp_queue *queue = hctx->driver_data;
2229 	struct request *rq = bd->rq;
2230 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2231 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2232 	blk_status_t ret;
2233 
2234 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2235 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2236 
2237 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2238 	if (unlikely(ret))
2239 		return ret;
2240 
2241 	blk_mq_start_request(rq);
2242 
2243 	nvme_tcp_queue_request(req, true);
2244 
2245 	return BLK_STS_OK;
2246 }
2247 
2248 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2249 {
2250 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2251 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2252 
2253 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2254 		/* separate read/write queues */
2255 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2256 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2257 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2258 		set->map[HCTX_TYPE_READ].nr_queues =
2259 			ctrl->io_queues[HCTX_TYPE_READ];
2260 		set->map[HCTX_TYPE_READ].queue_offset =
2261 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2262 	} else {
2263 		/* shared read/write queues */
2264 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2265 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2266 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2267 		set->map[HCTX_TYPE_READ].nr_queues =
2268 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2269 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2270 	}
2271 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2272 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2273 
2274 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2275 		/* map dedicated poll queues only if we have queues left */
2276 		set->map[HCTX_TYPE_POLL].nr_queues =
2277 				ctrl->io_queues[HCTX_TYPE_POLL];
2278 		set->map[HCTX_TYPE_POLL].queue_offset =
2279 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2280 			ctrl->io_queues[HCTX_TYPE_READ];
2281 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2282 	}
2283 
2284 	dev_info(ctrl->ctrl.device,
2285 		"mapped %d/%d/%d default/read/poll queues.\n",
2286 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2287 		ctrl->io_queues[HCTX_TYPE_READ],
2288 		ctrl->io_queues[HCTX_TYPE_POLL]);
2289 
2290 	return 0;
2291 }
2292 
2293 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2294 {
2295 	struct nvme_tcp_queue *queue = hctx->driver_data;
2296 	struct sock *sk = queue->sock->sk;
2297 
2298 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2299 		return 0;
2300 
2301 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2302 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2303 		sk_busy_loop(sk, true);
2304 	nvme_tcp_try_recv(queue);
2305 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2306 	return queue->nr_cqe;
2307 }
2308 
2309 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2310 	.queue_rq	= nvme_tcp_queue_rq,
2311 	.complete	= nvme_complete_rq,
2312 	.init_request	= nvme_tcp_init_request,
2313 	.exit_request	= nvme_tcp_exit_request,
2314 	.init_hctx	= nvme_tcp_init_hctx,
2315 	.timeout	= nvme_tcp_timeout,
2316 	.map_queues	= nvme_tcp_map_queues,
2317 	.poll		= nvme_tcp_poll,
2318 };
2319 
2320 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2321 	.queue_rq	= nvme_tcp_queue_rq,
2322 	.complete	= nvme_complete_rq,
2323 	.init_request	= nvme_tcp_init_request,
2324 	.exit_request	= nvme_tcp_exit_request,
2325 	.init_hctx	= nvme_tcp_init_admin_hctx,
2326 	.timeout	= nvme_tcp_timeout,
2327 };
2328 
2329 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2330 	.name			= "tcp",
2331 	.module			= THIS_MODULE,
2332 	.flags			= NVME_F_FABRICS,
2333 	.reg_read32		= nvmf_reg_read32,
2334 	.reg_read64		= nvmf_reg_read64,
2335 	.reg_write32		= nvmf_reg_write32,
2336 	.free_ctrl		= nvme_tcp_free_ctrl,
2337 	.submit_async_event	= nvme_tcp_submit_async_event,
2338 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2339 	.get_address		= nvmf_get_address,
2340 };
2341 
2342 static bool
2343 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2344 {
2345 	struct nvme_tcp_ctrl *ctrl;
2346 	bool found = false;
2347 
2348 	mutex_lock(&nvme_tcp_ctrl_mutex);
2349 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2350 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2351 		if (found)
2352 			break;
2353 	}
2354 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2355 
2356 	return found;
2357 }
2358 
2359 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2360 		struct nvmf_ctrl_options *opts)
2361 {
2362 	struct nvme_tcp_ctrl *ctrl;
2363 	int ret;
2364 
2365 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2366 	if (!ctrl)
2367 		return ERR_PTR(-ENOMEM);
2368 
2369 	INIT_LIST_HEAD(&ctrl->list);
2370 	ctrl->ctrl.opts = opts;
2371 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2372 				opts->nr_poll_queues + 1;
2373 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2374 	ctrl->ctrl.kato = opts->kato;
2375 
2376 	INIT_DELAYED_WORK(&ctrl->connect_work,
2377 			nvme_tcp_reconnect_ctrl_work);
2378 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2379 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2380 
2381 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2382 		opts->trsvcid =
2383 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2384 		if (!opts->trsvcid) {
2385 			ret = -ENOMEM;
2386 			goto out_free_ctrl;
2387 		}
2388 		opts->mask |= NVMF_OPT_TRSVCID;
2389 	}
2390 
2391 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2392 			opts->traddr, opts->trsvcid, &ctrl->addr);
2393 	if (ret) {
2394 		pr_err("malformed address passed: %s:%s\n",
2395 			opts->traddr, opts->trsvcid);
2396 		goto out_free_ctrl;
2397 	}
2398 
2399 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2400 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2401 			opts->host_traddr, NULL, &ctrl->src_addr);
2402 		if (ret) {
2403 			pr_err("malformed src address passed: %s\n",
2404 			       opts->host_traddr);
2405 			goto out_free_ctrl;
2406 		}
2407 	}
2408 
2409 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2410 		ret = -EALREADY;
2411 		goto out_free_ctrl;
2412 	}
2413 
2414 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2415 				GFP_KERNEL);
2416 	if (!ctrl->queues) {
2417 		ret = -ENOMEM;
2418 		goto out_free_ctrl;
2419 	}
2420 
2421 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2422 	if (ret)
2423 		goto out_kfree_queues;
2424 
2425 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2426 		WARN_ON_ONCE(1);
2427 		ret = -EINTR;
2428 		goto out_uninit_ctrl;
2429 	}
2430 
2431 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2432 	if (ret)
2433 		goto out_uninit_ctrl;
2434 
2435 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2436 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2437 
2438 	mutex_lock(&nvme_tcp_ctrl_mutex);
2439 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2440 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2441 
2442 	return &ctrl->ctrl;
2443 
2444 out_uninit_ctrl:
2445 	nvme_uninit_ctrl(&ctrl->ctrl);
2446 	nvme_put_ctrl(&ctrl->ctrl);
2447 	if (ret > 0)
2448 		ret = -EIO;
2449 	return ERR_PTR(ret);
2450 out_kfree_queues:
2451 	kfree(ctrl->queues);
2452 out_free_ctrl:
2453 	kfree(ctrl);
2454 	return ERR_PTR(ret);
2455 }
2456 
2457 static struct nvmf_transport_ops nvme_tcp_transport = {
2458 	.name		= "tcp",
2459 	.module		= THIS_MODULE,
2460 	.required_opts	= NVMF_OPT_TRADDR,
2461 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2462 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2463 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2464 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2465 			  NVMF_OPT_TOS,
2466 	.create_ctrl	= nvme_tcp_create_ctrl,
2467 };
2468 
2469 static int __init nvme_tcp_init_module(void)
2470 {
2471 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2472 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2473 	if (!nvme_tcp_wq)
2474 		return -ENOMEM;
2475 
2476 	nvmf_register_transport(&nvme_tcp_transport);
2477 	return 0;
2478 }
2479 
2480 static void __exit nvme_tcp_cleanup_module(void)
2481 {
2482 	struct nvme_tcp_ctrl *ctrl;
2483 
2484 	nvmf_unregister_transport(&nvme_tcp_transport);
2485 
2486 	mutex_lock(&nvme_tcp_ctrl_mutex);
2487 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2488 		nvme_delete_ctrl(&ctrl->ctrl);
2489 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2490 	flush_workqueue(nvme_delete_wq);
2491 
2492 	destroy_workqueue(nvme_tcp_wq);
2493 }
2494 
2495 module_init(nvme_tcp_init_module);
2496 module_exit(nvme_tcp_cleanup_module);
2497 
2498 MODULE_LICENSE("GPL v2");
2499