1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex send_mutex; 80 struct llist_head req_list; 81 struct list_head send_list; 82 bool more_requests; 83 84 /* recv state */ 85 void *pdu; 86 int pdu_remaining; 87 int pdu_offset; 88 size_t data_remaining; 89 size_t ddgst_remaining; 90 unsigned int nr_cqe; 91 92 /* send state */ 93 struct nvme_tcp_request *request; 94 95 int queue_size; 96 size_t cmnd_capsule_len; 97 struct nvme_tcp_ctrl *ctrl; 98 unsigned long flags; 99 bool rd_enabled; 100 101 bool hdr_digest; 102 bool data_digest; 103 struct ahash_request *rcv_hash; 104 struct ahash_request *snd_hash; 105 __le32 exp_ddgst; 106 __le32 recv_ddgst; 107 108 struct page_frag_cache pf_cache; 109 110 void (*state_change)(struct sock *); 111 void (*data_ready)(struct sock *); 112 void (*write_space)(struct sock *); 113 }; 114 115 struct nvme_tcp_ctrl { 116 /* read only in the hot path */ 117 struct nvme_tcp_queue *queues; 118 struct blk_mq_tag_set tag_set; 119 120 /* other member variables */ 121 struct list_head list; 122 struct blk_mq_tag_set admin_tag_set; 123 struct sockaddr_storage addr; 124 struct sockaddr_storage src_addr; 125 struct nvme_ctrl ctrl; 126 127 struct work_struct err_work; 128 struct delayed_work connect_work; 129 struct nvme_tcp_request async_req; 130 u32 io_queues[HCTX_MAX_TYPES]; 131 }; 132 133 static LIST_HEAD(nvme_tcp_ctrl_list); 134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 135 static struct workqueue_struct *nvme_tcp_wq; 136 static const struct blk_mq_ops nvme_tcp_mq_ops; 137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 139 140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 141 { 142 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 143 } 144 145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 146 { 147 return queue - queue->ctrl->queues; 148 } 149 150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 151 { 152 u32 queue_idx = nvme_tcp_queue_id(queue); 153 154 if (queue_idx == 0) 155 return queue->ctrl->admin_tag_set.tags[queue_idx]; 156 return queue->ctrl->tag_set.tags[queue_idx - 1]; 157 } 158 159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 160 { 161 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 162 } 163 164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 165 { 166 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 167 } 168 169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 170 { 171 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 172 } 173 174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 175 { 176 return req == &req->queue->ctrl->async_req; 177 } 178 179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 180 { 181 struct request *rq; 182 183 if (unlikely(nvme_tcp_async_req(req))) 184 return false; /* async events don't have a request */ 185 186 rq = blk_mq_rq_from_pdu(req); 187 188 return rq_data_dir(rq) == WRITE && req->data_len && 189 req->data_len <= nvme_tcp_inline_data_size(req->queue); 190 } 191 192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 193 { 194 return req->iter.bvec->bv_page; 195 } 196 197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 198 { 199 return req->iter.bvec->bv_offset + req->iter.iov_offset; 200 } 201 202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 203 { 204 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 205 req->pdu_len - req->pdu_sent); 206 } 207 208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 209 { 210 return req->iter.iov_offset; 211 } 212 213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 214 { 215 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 216 req->pdu_len - req->pdu_sent : 0; 217 } 218 219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 220 int len) 221 { 222 return nvme_tcp_pdu_data_left(req) <= len; 223 } 224 225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 226 unsigned int dir) 227 { 228 struct request *rq = blk_mq_rq_from_pdu(req); 229 struct bio_vec *vec; 230 unsigned int size; 231 int nsegs; 232 size_t offset; 233 234 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 235 vec = &rq->special_vec; 236 nsegs = 1; 237 size = blk_rq_payload_bytes(rq); 238 offset = 0; 239 } else { 240 struct bio *bio = req->curr_bio; 241 242 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 243 nsegs = bio_segments(bio); 244 size = bio->bi_iter.bi_size; 245 offset = bio->bi_iter.bi_bvec_done; 246 } 247 248 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 249 req->iter.iov_offset = offset; 250 } 251 252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 253 int len) 254 { 255 req->data_sent += len; 256 req->pdu_sent += len; 257 iov_iter_advance(&req->iter, len); 258 if (!iov_iter_count(&req->iter) && 259 req->data_sent < req->data_len) { 260 req->curr_bio = req->curr_bio->bi_next; 261 nvme_tcp_init_iter(req, WRITE); 262 } 263 } 264 265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 266 bool sync, bool last) 267 { 268 struct nvme_tcp_queue *queue = req->queue; 269 bool empty; 270 271 empty = llist_add(&req->lentry, &queue->req_list) && 272 list_empty(&queue->send_list) && !queue->request; 273 274 /* 275 * if we're the first on the send_list and we can try to send 276 * directly, otherwise queue io_work. Also, only do that if we 277 * are on the same cpu, so we don't introduce contention. 278 */ 279 if (queue->io_cpu == smp_processor_id() && 280 sync && empty && mutex_trylock(&queue->send_mutex)) { 281 queue->more_requests = !last; 282 nvme_tcp_try_send(queue); 283 queue->more_requests = false; 284 mutex_unlock(&queue->send_mutex); 285 } else if (last) { 286 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 287 } 288 } 289 290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 291 { 292 struct nvme_tcp_request *req; 293 struct llist_node *node; 294 295 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 296 req = llist_entry(node, struct nvme_tcp_request, lentry); 297 list_add(&req->entry, &queue->send_list); 298 } 299 } 300 301 static inline struct nvme_tcp_request * 302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 303 { 304 struct nvme_tcp_request *req; 305 306 req = list_first_entry_or_null(&queue->send_list, 307 struct nvme_tcp_request, entry); 308 if (!req) { 309 nvme_tcp_process_req_list(queue); 310 req = list_first_entry_or_null(&queue->send_list, 311 struct nvme_tcp_request, entry); 312 if (unlikely(!req)) 313 return NULL; 314 } 315 316 list_del(&req->entry); 317 return req; 318 } 319 320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 321 __le32 *dgst) 322 { 323 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 324 crypto_ahash_final(hash); 325 } 326 327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 328 struct page *page, off_t off, size_t len) 329 { 330 struct scatterlist sg; 331 332 sg_init_marker(&sg, 1); 333 sg_set_page(&sg, page, len, off); 334 ahash_request_set_crypt(hash, &sg, NULL, len); 335 crypto_ahash_update(hash); 336 } 337 338 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 339 void *pdu, size_t len) 340 { 341 struct scatterlist sg; 342 343 sg_init_one(&sg, pdu, len); 344 ahash_request_set_crypt(hash, &sg, pdu + len, len); 345 crypto_ahash_digest(hash); 346 } 347 348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 349 void *pdu, size_t pdu_len) 350 { 351 struct nvme_tcp_hdr *hdr = pdu; 352 __le32 recv_digest; 353 __le32 exp_digest; 354 355 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 356 dev_err(queue->ctrl->ctrl.device, 357 "queue %d: header digest flag is cleared\n", 358 nvme_tcp_queue_id(queue)); 359 return -EPROTO; 360 } 361 362 recv_digest = *(__le32 *)(pdu + hdr->hlen); 363 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 364 exp_digest = *(__le32 *)(pdu + hdr->hlen); 365 if (recv_digest != exp_digest) { 366 dev_err(queue->ctrl->ctrl.device, 367 "header digest error: recv %#x expected %#x\n", 368 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 369 return -EIO; 370 } 371 372 return 0; 373 } 374 375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 376 { 377 struct nvme_tcp_hdr *hdr = pdu; 378 u8 digest_len = nvme_tcp_hdgst_len(queue); 379 u32 len; 380 381 len = le32_to_cpu(hdr->plen) - hdr->hlen - 382 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 383 384 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 385 dev_err(queue->ctrl->ctrl.device, 386 "queue %d: data digest flag is cleared\n", 387 nvme_tcp_queue_id(queue)); 388 return -EPROTO; 389 } 390 crypto_ahash_init(queue->rcv_hash); 391 392 return 0; 393 } 394 395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 396 struct request *rq, unsigned int hctx_idx) 397 { 398 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 399 400 page_frag_free(req->pdu); 401 } 402 403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 404 struct request *rq, unsigned int hctx_idx, 405 unsigned int numa_node) 406 { 407 struct nvme_tcp_ctrl *ctrl = set->driver_data; 408 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 409 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 410 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 411 u8 hdgst = nvme_tcp_hdgst_len(queue); 412 413 req->pdu = page_frag_alloc(&queue->pf_cache, 414 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 415 GFP_KERNEL | __GFP_ZERO); 416 if (!req->pdu) 417 return -ENOMEM; 418 419 req->queue = queue; 420 nvme_req(rq)->ctrl = &ctrl->ctrl; 421 422 return 0; 423 } 424 425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 426 unsigned int hctx_idx) 427 { 428 struct nvme_tcp_ctrl *ctrl = data; 429 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 430 431 hctx->driver_data = queue; 432 return 0; 433 } 434 435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 436 unsigned int hctx_idx) 437 { 438 struct nvme_tcp_ctrl *ctrl = data; 439 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 440 441 hctx->driver_data = queue; 442 return 0; 443 } 444 445 static enum nvme_tcp_recv_state 446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 447 { 448 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 449 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 450 NVME_TCP_RECV_DATA; 451 } 452 453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 454 { 455 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 456 nvme_tcp_hdgst_len(queue); 457 queue->pdu_offset = 0; 458 queue->data_remaining = -1; 459 queue->ddgst_remaining = 0; 460 } 461 462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 463 { 464 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 465 return; 466 467 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 468 } 469 470 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 471 struct nvme_completion *cqe) 472 { 473 struct request *rq; 474 475 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 476 if (!rq) { 477 dev_err(queue->ctrl->ctrl.device, 478 "queue %d tag 0x%x not found\n", 479 nvme_tcp_queue_id(queue), cqe->command_id); 480 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 481 return -EINVAL; 482 } 483 484 if (!nvme_end_request(rq, cqe->status, cqe->result)) 485 nvme_complete_rq(rq); 486 queue->nr_cqe++; 487 488 return 0; 489 } 490 491 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 492 struct nvme_tcp_data_pdu *pdu) 493 { 494 struct request *rq; 495 496 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 497 if (!rq) { 498 dev_err(queue->ctrl->ctrl.device, 499 "queue %d tag %#x not found\n", 500 nvme_tcp_queue_id(queue), pdu->command_id); 501 return -ENOENT; 502 } 503 504 if (!blk_rq_payload_bytes(rq)) { 505 dev_err(queue->ctrl->ctrl.device, 506 "queue %d tag %#x unexpected data\n", 507 nvme_tcp_queue_id(queue), rq->tag); 508 return -EIO; 509 } 510 511 queue->data_remaining = le32_to_cpu(pdu->data_length); 512 513 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 514 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 515 dev_err(queue->ctrl->ctrl.device, 516 "queue %d tag %#x SUCCESS set but not last PDU\n", 517 nvme_tcp_queue_id(queue), rq->tag); 518 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 519 return -EPROTO; 520 } 521 522 return 0; 523 } 524 525 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 526 struct nvme_tcp_rsp_pdu *pdu) 527 { 528 struct nvme_completion *cqe = &pdu->cqe; 529 int ret = 0; 530 531 /* 532 * AEN requests are special as they don't time out and can 533 * survive any kind of queue freeze and often don't respond to 534 * aborts. We don't even bother to allocate a struct request 535 * for them but rather special case them here. 536 */ 537 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 538 cqe->command_id))) 539 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 540 &cqe->result); 541 else 542 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 543 544 return ret; 545 } 546 547 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 548 struct nvme_tcp_r2t_pdu *pdu) 549 { 550 struct nvme_tcp_data_pdu *data = req->pdu; 551 struct nvme_tcp_queue *queue = req->queue; 552 struct request *rq = blk_mq_rq_from_pdu(req); 553 u8 hdgst = nvme_tcp_hdgst_len(queue); 554 u8 ddgst = nvme_tcp_ddgst_len(queue); 555 556 req->pdu_len = le32_to_cpu(pdu->r2t_length); 557 req->pdu_sent = 0; 558 559 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 560 dev_err(queue->ctrl->ctrl.device, 561 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 562 rq->tag, req->pdu_len, req->data_len, 563 req->data_sent); 564 return -EPROTO; 565 } 566 567 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 568 dev_err(queue->ctrl->ctrl.device, 569 "req %d unexpected r2t offset %u (expected %zu)\n", 570 rq->tag, le32_to_cpu(pdu->r2t_offset), 571 req->data_sent); 572 return -EPROTO; 573 } 574 575 memset(data, 0, sizeof(*data)); 576 data->hdr.type = nvme_tcp_h2c_data; 577 data->hdr.flags = NVME_TCP_F_DATA_LAST; 578 if (queue->hdr_digest) 579 data->hdr.flags |= NVME_TCP_F_HDGST; 580 if (queue->data_digest) 581 data->hdr.flags |= NVME_TCP_F_DDGST; 582 data->hdr.hlen = sizeof(*data); 583 data->hdr.pdo = data->hdr.hlen + hdgst; 584 data->hdr.plen = 585 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 586 data->ttag = pdu->ttag; 587 data->command_id = rq->tag; 588 data->data_offset = cpu_to_le32(req->data_sent); 589 data->data_length = cpu_to_le32(req->pdu_len); 590 return 0; 591 } 592 593 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 594 struct nvme_tcp_r2t_pdu *pdu) 595 { 596 struct nvme_tcp_request *req; 597 struct request *rq; 598 int ret; 599 600 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 601 if (!rq) { 602 dev_err(queue->ctrl->ctrl.device, 603 "queue %d tag %#x not found\n", 604 nvme_tcp_queue_id(queue), pdu->command_id); 605 return -ENOENT; 606 } 607 req = blk_mq_rq_to_pdu(rq); 608 609 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 610 if (unlikely(ret)) 611 return ret; 612 613 req->state = NVME_TCP_SEND_H2C_PDU; 614 req->offset = 0; 615 616 nvme_tcp_queue_request(req, false, true); 617 618 return 0; 619 } 620 621 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 622 unsigned int *offset, size_t *len) 623 { 624 struct nvme_tcp_hdr *hdr; 625 char *pdu = queue->pdu; 626 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 627 int ret; 628 629 ret = skb_copy_bits(skb, *offset, 630 &pdu[queue->pdu_offset], rcv_len); 631 if (unlikely(ret)) 632 return ret; 633 634 queue->pdu_remaining -= rcv_len; 635 queue->pdu_offset += rcv_len; 636 *offset += rcv_len; 637 *len -= rcv_len; 638 if (queue->pdu_remaining) 639 return 0; 640 641 hdr = queue->pdu; 642 if (queue->hdr_digest) { 643 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 644 if (unlikely(ret)) 645 return ret; 646 } 647 648 649 if (queue->data_digest) { 650 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 651 if (unlikely(ret)) 652 return ret; 653 } 654 655 switch (hdr->type) { 656 case nvme_tcp_c2h_data: 657 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 658 case nvme_tcp_rsp: 659 nvme_tcp_init_recv_ctx(queue); 660 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 661 case nvme_tcp_r2t: 662 nvme_tcp_init_recv_ctx(queue); 663 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 664 default: 665 dev_err(queue->ctrl->ctrl.device, 666 "unsupported pdu type (%d)\n", hdr->type); 667 return -EINVAL; 668 } 669 } 670 671 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 672 { 673 union nvme_result res = {}; 674 675 if (!nvme_end_request(rq, cpu_to_le16(status << 1), res)) 676 nvme_complete_rq(rq); 677 } 678 679 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 680 unsigned int *offset, size_t *len) 681 { 682 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 683 struct nvme_tcp_request *req; 684 struct request *rq; 685 686 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 687 if (!rq) { 688 dev_err(queue->ctrl->ctrl.device, 689 "queue %d tag %#x not found\n", 690 nvme_tcp_queue_id(queue), pdu->command_id); 691 return -ENOENT; 692 } 693 req = blk_mq_rq_to_pdu(rq); 694 695 while (true) { 696 int recv_len, ret; 697 698 recv_len = min_t(size_t, *len, queue->data_remaining); 699 if (!recv_len) 700 break; 701 702 if (!iov_iter_count(&req->iter)) { 703 req->curr_bio = req->curr_bio->bi_next; 704 705 /* 706 * If we don`t have any bios it means that controller 707 * sent more data than we requested, hence error 708 */ 709 if (!req->curr_bio) { 710 dev_err(queue->ctrl->ctrl.device, 711 "queue %d no space in request %#x", 712 nvme_tcp_queue_id(queue), rq->tag); 713 nvme_tcp_init_recv_ctx(queue); 714 return -EIO; 715 } 716 nvme_tcp_init_iter(req, READ); 717 } 718 719 /* we can read only from what is left in this bio */ 720 recv_len = min_t(size_t, recv_len, 721 iov_iter_count(&req->iter)); 722 723 if (queue->data_digest) 724 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 725 &req->iter, recv_len, queue->rcv_hash); 726 else 727 ret = skb_copy_datagram_iter(skb, *offset, 728 &req->iter, recv_len); 729 if (ret) { 730 dev_err(queue->ctrl->ctrl.device, 731 "queue %d failed to copy request %#x data", 732 nvme_tcp_queue_id(queue), rq->tag); 733 return ret; 734 } 735 736 *len -= recv_len; 737 *offset += recv_len; 738 queue->data_remaining -= recv_len; 739 } 740 741 if (!queue->data_remaining) { 742 if (queue->data_digest) { 743 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 744 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 745 } else { 746 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 747 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 748 queue->nr_cqe++; 749 } 750 nvme_tcp_init_recv_ctx(queue); 751 } 752 } 753 754 return 0; 755 } 756 757 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 758 struct sk_buff *skb, unsigned int *offset, size_t *len) 759 { 760 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 761 char *ddgst = (char *)&queue->recv_ddgst; 762 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 763 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 764 int ret; 765 766 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 767 if (unlikely(ret)) 768 return ret; 769 770 queue->ddgst_remaining -= recv_len; 771 *offset += recv_len; 772 *len -= recv_len; 773 if (queue->ddgst_remaining) 774 return 0; 775 776 if (queue->recv_ddgst != queue->exp_ddgst) { 777 dev_err(queue->ctrl->ctrl.device, 778 "data digest error: recv %#x expected %#x\n", 779 le32_to_cpu(queue->recv_ddgst), 780 le32_to_cpu(queue->exp_ddgst)); 781 return -EIO; 782 } 783 784 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 785 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 786 pdu->command_id); 787 788 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 789 queue->nr_cqe++; 790 } 791 792 nvme_tcp_init_recv_ctx(queue); 793 return 0; 794 } 795 796 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 797 unsigned int offset, size_t len) 798 { 799 struct nvme_tcp_queue *queue = desc->arg.data; 800 size_t consumed = len; 801 int result; 802 803 while (len) { 804 switch (nvme_tcp_recv_state(queue)) { 805 case NVME_TCP_RECV_PDU: 806 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 807 break; 808 case NVME_TCP_RECV_DATA: 809 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 810 break; 811 case NVME_TCP_RECV_DDGST: 812 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 813 break; 814 default: 815 result = -EFAULT; 816 } 817 if (result) { 818 dev_err(queue->ctrl->ctrl.device, 819 "receive failed: %d\n", result); 820 queue->rd_enabled = false; 821 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 822 return result; 823 } 824 } 825 826 return consumed; 827 } 828 829 static void nvme_tcp_data_ready(struct sock *sk) 830 { 831 struct nvme_tcp_queue *queue; 832 833 read_lock_bh(&sk->sk_callback_lock); 834 queue = sk->sk_user_data; 835 if (likely(queue && queue->rd_enabled) && 836 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 837 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 838 read_unlock_bh(&sk->sk_callback_lock); 839 } 840 841 static void nvme_tcp_write_space(struct sock *sk) 842 { 843 struct nvme_tcp_queue *queue; 844 845 read_lock_bh(&sk->sk_callback_lock); 846 queue = sk->sk_user_data; 847 if (likely(queue && sk_stream_is_writeable(sk))) { 848 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 849 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 850 } 851 read_unlock_bh(&sk->sk_callback_lock); 852 } 853 854 static void nvme_tcp_state_change(struct sock *sk) 855 { 856 struct nvme_tcp_queue *queue; 857 858 read_lock(&sk->sk_callback_lock); 859 queue = sk->sk_user_data; 860 if (!queue) 861 goto done; 862 863 switch (sk->sk_state) { 864 case TCP_CLOSE: 865 case TCP_CLOSE_WAIT: 866 case TCP_LAST_ACK: 867 case TCP_FIN_WAIT1: 868 case TCP_FIN_WAIT2: 869 /* fallthrough */ 870 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 871 break; 872 default: 873 dev_info(queue->ctrl->ctrl.device, 874 "queue %d socket state %d\n", 875 nvme_tcp_queue_id(queue), sk->sk_state); 876 } 877 878 queue->state_change(sk); 879 done: 880 read_unlock(&sk->sk_callback_lock); 881 } 882 883 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 884 { 885 return !list_empty(&queue->send_list) || 886 !llist_empty(&queue->req_list) || queue->more_requests; 887 } 888 889 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 890 { 891 queue->request = NULL; 892 } 893 894 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 895 { 896 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 897 } 898 899 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 900 { 901 struct nvme_tcp_queue *queue = req->queue; 902 903 while (true) { 904 struct page *page = nvme_tcp_req_cur_page(req); 905 size_t offset = nvme_tcp_req_cur_offset(req); 906 size_t len = nvme_tcp_req_cur_length(req); 907 bool last = nvme_tcp_pdu_last_send(req, len); 908 int ret, flags = MSG_DONTWAIT; 909 910 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 911 flags |= MSG_EOR; 912 else 913 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 914 915 /* can't zcopy slab pages */ 916 if (unlikely(PageSlab(page))) { 917 ret = sock_no_sendpage(queue->sock, page, offset, len, 918 flags); 919 } else { 920 ret = kernel_sendpage(queue->sock, page, offset, len, 921 flags); 922 } 923 if (ret <= 0) 924 return ret; 925 926 nvme_tcp_advance_req(req, ret); 927 if (queue->data_digest) 928 nvme_tcp_ddgst_update(queue->snd_hash, page, 929 offset, ret); 930 931 /* fully successful last write*/ 932 if (last && ret == len) { 933 if (queue->data_digest) { 934 nvme_tcp_ddgst_final(queue->snd_hash, 935 &req->ddgst); 936 req->state = NVME_TCP_SEND_DDGST; 937 req->offset = 0; 938 } else { 939 nvme_tcp_done_send_req(queue); 940 } 941 return 1; 942 } 943 } 944 return -EAGAIN; 945 } 946 947 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 948 { 949 struct nvme_tcp_queue *queue = req->queue; 950 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 951 bool inline_data = nvme_tcp_has_inline_data(req); 952 u8 hdgst = nvme_tcp_hdgst_len(queue); 953 int len = sizeof(*pdu) + hdgst - req->offset; 954 int flags = MSG_DONTWAIT; 955 int ret; 956 957 if (inline_data || nvme_tcp_queue_more(queue)) 958 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 959 else 960 flags |= MSG_EOR; 961 962 if (queue->hdr_digest && !req->offset) 963 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 964 965 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 966 offset_in_page(pdu) + req->offset, len, flags); 967 if (unlikely(ret <= 0)) 968 return ret; 969 970 len -= ret; 971 if (!len) { 972 if (inline_data) { 973 req->state = NVME_TCP_SEND_DATA; 974 if (queue->data_digest) 975 crypto_ahash_init(queue->snd_hash); 976 nvme_tcp_init_iter(req, WRITE); 977 } else { 978 nvme_tcp_done_send_req(queue); 979 } 980 return 1; 981 } 982 req->offset += ret; 983 984 return -EAGAIN; 985 } 986 987 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 988 { 989 struct nvme_tcp_queue *queue = req->queue; 990 struct nvme_tcp_data_pdu *pdu = req->pdu; 991 u8 hdgst = nvme_tcp_hdgst_len(queue); 992 int len = sizeof(*pdu) - req->offset + hdgst; 993 int ret; 994 995 if (queue->hdr_digest && !req->offset) 996 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 997 998 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 999 offset_in_page(pdu) + req->offset, len, 1000 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1001 if (unlikely(ret <= 0)) 1002 return ret; 1003 1004 len -= ret; 1005 if (!len) { 1006 req->state = NVME_TCP_SEND_DATA; 1007 if (queue->data_digest) 1008 crypto_ahash_init(queue->snd_hash); 1009 if (!req->data_sent) 1010 nvme_tcp_init_iter(req, WRITE); 1011 return 1; 1012 } 1013 req->offset += ret; 1014 1015 return -EAGAIN; 1016 } 1017 1018 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1019 { 1020 struct nvme_tcp_queue *queue = req->queue; 1021 int ret; 1022 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1023 struct kvec iov = { 1024 .iov_base = &req->ddgst + req->offset, 1025 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1026 }; 1027 1028 if (nvme_tcp_queue_more(queue)) 1029 msg.msg_flags |= MSG_MORE; 1030 else 1031 msg.msg_flags |= MSG_EOR; 1032 1033 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1034 if (unlikely(ret <= 0)) 1035 return ret; 1036 1037 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1038 nvme_tcp_done_send_req(queue); 1039 return 1; 1040 } 1041 1042 req->offset += ret; 1043 return -EAGAIN; 1044 } 1045 1046 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1047 { 1048 struct nvme_tcp_request *req; 1049 int ret = 1; 1050 1051 if (!queue->request) { 1052 queue->request = nvme_tcp_fetch_request(queue); 1053 if (!queue->request) 1054 return 0; 1055 } 1056 req = queue->request; 1057 1058 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1059 ret = nvme_tcp_try_send_cmd_pdu(req); 1060 if (ret <= 0) 1061 goto done; 1062 if (!nvme_tcp_has_inline_data(req)) 1063 return ret; 1064 } 1065 1066 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1067 ret = nvme_tcp_try_send_data_pdu(req); 1068 if (ret <= 0) 1069 goto done; 1070 } 1071 1072 if (req->state == NVME_TCP_SEND_DATA) { 1073 ret = nvme_tcp_try_send_data(req); 1074 if (ret <= 0) 1075 goto done; 1076 } 1077 1078 if (req->state == NVME_TCP_SEND_DDGST) 1079 ret = nvme_tcp_try_send_ddgst(req); 1080 done: 1081 if (ret == -EAGAIN) { 1082 ret = 0; 1083 } else if (ret < 0) { 1084 dev_err(queue->ctrl->ctrl.device, 1085 "failed to send request %d\n", ret); 1086 if (ret != -EPIPE && ret != -ECONNRESET) 1087 nvme_tcp_fail_request(queue->request); 1088 nvme_tcp_done_send_req(queue); 1089 } 1090 return ret; 1091 } 1092 1093 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1094 { 1095 struct socket *sock = queue->sock; 1096 struct sock *sk = sock->sk; 1097 read_descriptor_t rd_desc; 1098 int consumed; 1099 1100 rd_desc.arg.data = queue; 1101 rd_desc.count = 1; 1102 lock_sock(sk); 1103 queue->nr_cqe = 0; 1104 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1105 release_sock(sk); 1106 return consumed; 1107 } 1108 1109 static void nvme_tcp_io_work(struct work_struct *w) 1110 { 1111 struct nvme_tcp_queue *queue = 1112 container_of(w, struct nvme_tcp_queue, io_work); 1113 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1114 1115 do { 1116 bool pending = false; 1117 int result; 1118 1119 if (mutex_trylock(&queue->send_mutex)) { 1120 result = nvme_tcp_try_send(queue); 1121 mutex_unlock(&queue->send_mutex); 1122 if (result > 0) 1123 pending = true; 1124 else if (unlikely(result < 0)) 1125 break; 1126 } 1127 1128 result = nvme_tcp_try_recv(queue); 1129 if (result > 0) 1130 pending = true; 1131 else if (unlikely(result < 0)) 1132 return; 1133 1134 if (!pending) 1135 return; 1136 1137 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1138 1139 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1140 } 1141 1142 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1143 { 1144 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1145 1146 ahash_request_free(queue->rcv_hash); 1147 ahash_request_free(queue->snd_hash); 1148 crypto_free_ahash(tfm); 1149 } 1150 1151 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1152 { 1153 struct crypto_ahash *tfm; 1154 1155 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1156 if (IS_ERR(tfm)) 1157 return PTR_ERR(tfm); 1158 1159 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1160 if (!queue->snd_hash) 1161 goto free_tfm; 1162 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1163 1164 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1165 if (!queue->rcv_hash) 1166 goto free_snd_hash; 1167 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1168 1169 return 0; 1170 free_snd_hash: 1171 ahash_request_free(queue->snd_hash); 1172 free_tfm: 1173 crypto_free_ahash(tfm); 1174 return -ENOMEM; 1175 } 1176 1177 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1178 { 1179 struct nvme_tcp_request *async = &ctrl->async_req; 1180 1181 page_frag_free(async->pdu); 1182 } 1183 1184 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1185 { 1186 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1187 struct nvme_tcp_request *async = &ctrl->async_req; 1188 u8 hdgst = nvme_tcp_hdgst_len(queue); 1189 1190 async->pdu = page_frag_alloc(&queue->pf_cache, 1191 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1192 GFP_KERNEL | __GFP_ZERO); 1193 if (!async->pdu) 1194 return -ENOMEM; 1195 1196 async->queue = &ctrl->queues[0]; 1197 return 0; 1198 } 1199 1200 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1201 { 1202 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1203 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1204 1205 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1206 return; 1207 1208 if (queue->hdr_digest || queue->data_digest) 1209 nvme_tcp_free_crypto(queue); 1210 1211 sock_release(queue->sock); 1212 kfree(queue->pdu); 1213 } 1214 1215 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1216 { 1217 struct nvme_tcp_icreq_pdu *icreq; 1218 struct nvme_tcp_icresp_pdu *icresp; 1219 struct msghdr msg = {}; 1220 struct kvec iov; 1221 bool ctrl_hdgst, ctrl_ddgst; 1222 int ret; 1223 1224 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1225 if (!icreq) 1226 return -ENOMEM; 1227 1228 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1229 if (!icresp) { 1230 ret = -ENOMEM; 1231 goto free_icreq; 1232 } 1233 1234 icreq->hdr.type = nvme_tcp_icreq; 1235 icreq->hdr.hlen = sizeof(*icreq); 1236 icreq->hdr.pdo = 0; 1237 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1238 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1239 icreq->maxr2t = 0; /* single inflight r2t supported */ 1240 icreq->hpda = 0; /* no alignment constraint */ 1241 if (queue->hdr_digest) 1242 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1243 if (queue->data_digest) 1244 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1245 1246 iov.iov_base = icreq; 1247 iov.iov_len = sizeof(*icreq); 1248 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1249 if (ret < 0) 1250 goto free_icresp; 1251 1252 memset(&msg, 0, sizeof(msg)); 1253 iov.iov_base = icresp; 1254 iov.iov_len = sizeof(*icresp); 1255 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1256 iov.iov_len, msg.msg_flags); 1257 if (ret < 0) 1258 goto free_icresp; 1259 1260 ret = -EINVAL; 1261 if (icresp->hdr.type != nvme_tcp_icresp) { 1262 pr_err("queue %d: bad type returned %d\n", 1263 nvme_tcp_queue_id(queue), icresp->hdr.type); 1264 goto free_icresp; 1265 } 1266 1267 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1268 pr_err("queue %d: bad pdu length returned %d\n", 1269 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1270 goto free_icresp; 1271 } 1272 1273 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1274 pr_err("queue %d: bad pfv returned %d\n", 1275 nvme_tcp_queue_id(queue), icresp->pfv); 1276 goto free_icresp; 1277 } 1278 1279 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1280 if ((queue->data_digest && !ctrl_ddgst) || 1281 (!queue->data_digest && ctrl_ddgst)) { 1282 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1283 nvme_tcp_queue_id(queue), 1284 queue->data_digest ? "enabled" : "disabled", 1285 ctrl_ddgst ? "enabled" : "disabled"); 1286 goto free_icresp; 1287 } 1288 1289 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1290 if ((queue->hdr_digest && !ctrl_hdgst) || 1291 (!queue->hdr_digest && ctrl_hdgst)) { 1292 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1293 nvme_tcp_queue_id(queue), 1294 queue->hdr_digest ? "enabled" : "disabled", 1295 ctrl_hdgst ? "enabled" : "disabled"); 1296 goto free_icresp; 1297 } 1298 1299 if (icresp->cpda != 0) { 1300 pr_err("queue %d: unsupported cpda returned %d\n", 1301 nvme_tcp_queue_id(queue), icresp->cpda); 1302 goto free_icresp; 1303 } 1304 1305 ret = 0; 1306 free_icresp: 1307 kfree(icresp); 1308 free_icreq: 1309 kfree(icreq); 1310 return ret; 1311 } 1312 1313 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1314 { 1315 return nvme_tcp_queue_id(queue) == 0; 1316 } 1317 1318 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1319 { 1320 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1321 int qid = nvme_tcp_queue_id(queue); 1322 1323 return !nvme_tcp_admin_queue(queue) && 1324 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1325 } 1326 1327 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1328 { 1329 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1330 int qid = nvme_tcp_queue_id(queue); 1331 1332 return !nvme_tcp_admin_queue(queue) && 1333 !nvme_tcp_default_queue(queue) && 1334 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1335 ctrl->io_queues[HCTX_TYPE_READ]; 1336 } 1337 1338 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1339 { 1340 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1341 int qid = nvme_tcp_queue_id(queue); 1342 1343 return !nvme_tcp_admin_queue(queue) && 1344 !nvme_tcp_default_queue(queue) && 1345 !nvme_tcp_read_queue(queue) && 1346 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1347 ctrl->io_queues[HCTX_TYPE_READ] + 1348 ctrl->io_queues[HCTX_TYPE_POLL]; 1349 } 1350 1351 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1352 { 1353 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1354 int qid = nvme_tcp_queue_id(queue); 1355 int n = 0; 1356 1357 if (nvme_tcp_default_queue(queue)) 1358 n = qid - 1; 1359 else if (nvme_tcp_read_queue(queue)) 1360 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1361 else if (nvme_tcp_poll_queue(queue)) 1362 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1363 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1364 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1365 } 1366 1367 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1368 int qid, size_t queue_size) 1369 { 1370 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1371 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1372 int ret, rcv_pdu_size; 1373 1374 queue->ctrl = ctrl; 1375 init_llist_head(&queue->req_list); 1376 INIT_LIST_HEAD(&queue->send_list); 1377 mutex_init(&queue->send_mutex); 1378 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1379 queue->queue_size = queue_size; 1380 1381 if (qid > 0) 1382 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1383 else 1384 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1385 NVME_TCP_ADMIN_CCSZ; 1386 1387 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1388 IPPROTO_TCP, &queue->sock); 1389 if (ret) { 1390 dev_err(nctrl->device, 1391 "failed to create socket: %d\n", ret); 1392 return ret; 1393 } 1394 1395 /* Single syn retry */ 1396 tcp_sock_set_syncnt(queue->sock->sk, 1); 1397 1398 /* Set TCP no delay */ 1399 tcp_sock_set_nodelay(queue->sock->sk); 1400 1401 /* 1402 * Cleanup whatever is sitting in the TCP transmit queue on socket 1403 * close. This is done to prevent stale data from being sent should 1404 * the network connection be restored before TCP times out. 1405 */ 1406 sock_no_linger(queue->sock->sk); 1407 1408 if (so_priority > 0) 1409 sock_set_priority(queue->sock->sk, so_priority); 1410 1411 /* Set socket type of service */ 1412 if (nctrl->opts->tos >= 0) 1413 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1414 1415 /* Set 10 seconds timeout for icresp recvmsg */ 1416 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1417 1418 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1419 nvme_tcp_set_queue_io_cpu(queue); 1420 queue->request = NULL; 1421 queue->data_remaining = 0; 1422 queue->ddgst_remaining = 0; 1423 queue->pdu_remaining = 0; 1424 queue->pdu_offset = 0; 1425 sk_set_memalloc(queue->sock->sk); 1426 1427 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1428 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1429 sizeof(ctrl->src_addr)); 1430 if (ret) { 1431 dev_err(nctrl->device, 1432 "failed to bind queue %d socket %d\n", 1433 qid, ret); 1434 goto err_sock; 1435 } 1436 } 1437 1438 queue->hdr_digest = nctrl->opts->hdr_digest; 1439 queue->data_digest = nctrl->opts->data_digest; 1440 if (queue->hdr_digest || queue->data_digest) { 1441 ret = nvme_tcp_alloc_crypto(queue); 1442 if (ret) { 1443 dev_err(nctrl->device, 1444 "failed to allocate queue %d crypto\n", qid); 1445 goto err_sock; 1446 } 1447 } 1448 1449 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1450 nvme_tcp_hdgst_len(queue); 1451 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1452 if (!queue->pdu) { 1453 ret = -ENOMEM; 1454 goto err_crypto; 1455 } 1456 1457 dev_dbg(nctrl->device, "connecting queue %d\n", 1458 nvme_tcp_queue_id(queue)); 1459 1460 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1461 sizeof(ctrl->addr), 0); 1462 if (ret) { 1463 dev_err(nctrl->device, 1464 "failed to connect socket: %d\n", ret); 1465 goto err_rcv_pdu; 1466 } 1467 1468 ret = nvme_tcp_init_connection(queue); 1469 if (ret) 1470 goto err_init_connect; 1471 1472 queue->rd_enabled = true; 1473 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1474 nvme_tcp_init_recv_ctx(queue); 1475 1476 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1477 queue->sock->sk->sk_user_data = queue; 1478 queue->state_change = queue->sock->sk->sk_state_change; 1479 queue->data_ready = queue->sock->sk->sk_data_ready; 1480 queue->write_space = queue->sock->sk->sk_write_space; 1481 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1482 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1483 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1484 #ifdef CONFIG_NET_RX_BUSY_POLL 1485 queue->sock->sk->sk_ll_usec = 1; 1486 #endif 1487 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1488 1489 return 0; 1490 1491 err_init_connect: 1492 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1493 err_rcv_pdu: 1494 kfree(queue->pdu); 1495 err_crypto: 1496 if (queue->hdr_digest || queue->data_digest) 1497 nvme_tcp_free_crypto(queue); 1498 err_sock: 1499 sock_release(queue->sock); 1500 queue->sock = NULL; 1501 return ret; 1502 } 1503 1504 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1505 { 1506 struct socket *sock = queue->sock; 1507 1508 write_lock_bh(&sock->sk->sk_callback_lock); 1509 sock->sk->sk_user_data = NULL; 1510 sock->sk->sk_data_ready = queue->data_ready; 1511 sock->sk->sk_state_change = queue->state_change; 1512 sock->sk->sk_write_space = queue->write_space; 1513 write_unlock_bh(&sock->sk->sk_callback_lock); 1514 } 1515 1516 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1517 { 1518 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1519 nvme_tcp_restore_sock_calls(queue); 1520 cancel_work_sync(&queue->io_work); 1521 } 1522 1523 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1524 { 1525 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1526 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1527 1528 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1529 return; 1530 1531 __nvme_tcp_stop_queue(queue); 1532 } 1533 1534 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1535 { 1536 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1537 int ret; 1538 1539 if (idx) 1540 ret = nvmf_connect_io_queue(nctrl, idx, false); 1541 else 1542 ret = nvmf_connect_admin_queue(nctrl); 1543 1544 if (!ret) { 1545 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1546 } else { 1547 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1548 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1549 dev_err(nctrl->device, 1550 "failed to connect queue: %d ret=%d\n", idx, ret); 1551 } 1552 return ret; 1553 } 1554 1555 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1556 bool admin) 1557 { 1558 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1559 struct blk_mq_tag_set *set; 1560 int ret; 1561 1562 if (admin) { 1563 set = &ctrl->admin_tag_set; 1564 memset(set, 0, sizeof(*set)); 1565 set->ops = &nvme_tcp_admin_mq_ops; 1566 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1567 set->reserved_tags = 2; /* connect + keep-alive */ 1568 set->numa_node = nctrl->numa_node; 1569 set->flags = BLK_MQ_F_BLOCKING; 1570 set->cmd_size = sizeof(struct nvme_tcp_request); 1571 set->driver_data = ctrl; 1572 set->nr_hw_queues = 1; 1573 set->timeout = ADMIN_TIMEOUT; 1574 } else { 1575 set = &ctrl->tag_set; 1576 memset(set, 0, sizeof(*set)); 1577 set->ops = &nvme_tcp_mq_ops; 1578 set->queue_depth = nctrl->sqsize + 1; 1579 set->reserved_tags = 1; /* fabric connect */ 1580 set->numa_node = nctrl->numa_node; 1581 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1582 set->cmd_size = sizeof(struct nvme_tcp_request); 1583 set->driver_data = ctrl; 1584 set->nr_hw_queues = nctrl->queue_count - 1; 1585 set->timeout = NVME_IO_TIMEOUT; 1586 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1587 } 1588 1589 ret = blk_mq_alloc_tag_set(set); 1590 if (ret) 1591 return ERR_PTR(ret); 1592 1593 return set; 1594 } 1595 1596 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1597 { 1598 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1599 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1600 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1601 } 1602 1603 nvme_tcp_free_queue(ctrl, 0); 1604 } 1605 1606 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1607 { 1608 int i; 1609 1610 for (i = 1; i < ctrl->queue_count; i++) 1611 nvme_tcp_free_queue(ctrl, i); 1612 } 1613 1614 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1615 { 1616 int i; 1617 1618 for (i = 1; i < ctrl->queue_count; i++) 1619 nvme_tcp_stop_queue(ctrl, i); 1620 } 1621 1622 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1623 { 1624 int i, ret = 0; 1625 1626 for (i = 1; i < ctrl->queue_count; i++) { 1627 ret = nvme_tcp_start_queue(ctrl, i); 1628 if (ret) 1629 goto out_stop_queues; 1630 } 1631 1632 return 0; 1633 1634 out_stop_queues: 1635 for (i--; i >= 1; i--) 1636 nvme_tcp_stop_queue(ctrl, i); 1637 return ret; 1638 } 1639 1640 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1641 { 1642 int ret; 1643 1644 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1645 if (ret) 1646 return ret; 1647 1648 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1649 if (ret) 1650 goto out_free_queue; 1651 1652 return 0; 1653 1654 out_free_queue: 1655 nvme_tcp_free_queue(ctrl, 0); 1656 return ret; 1657 } 1658 1659 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1660 { 1661 int i, ret; 1662 1663 for (i = 1; i < ctrl->queue_count; i++) { 1664 ret = nvme_tcp_alloc_queue(ctrl, i, 1665 ctrl->sqsize + 1); 1666 if (ret) 1667 goto out_free_queues; 1668 } 1669 1670 return 0; 1671 1672 out_free_queues: 1673 for (i--; i >= 1; i--) 1674 nvme_tcp_free_queue(ctrl, i); 1675 1676 return ret; 1677 } 1678 1679 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1680 { 1681 unsigned int nr_io_queues; 1682 1683 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1684 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1685 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1686 1687 return nr_io_queues; 1688 } 1689 1690 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1691 unsigned int nr_io_queues) 1692 { 1693 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1694 struct nvmf_ctrl_options *opts = nctrl->opts; 1695 1696 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1697 /* 1698 * separate read/write queues 1699 * hand out dedicated default queues only after we have 1700 * sufficient read queues. 1701 */ 1702 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1703 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1704 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1705 min(opts->nr_write_queues, nr_io_queues); 1706 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1707 } else { 1708 /* 1709 * shared read/write queues 1710 * either no write queues were requested, or we don't have 1711 * sufficient queue count to have dedicated default queues. 1712 */ 1713 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1714 min(opts->nr_io_queues, nr_io_queues); 1715 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1716 } 1717 1718 if (opts->nr_poll_queues && nr_io_queues) { 1719 /* map dedicated poll queues only if we have queues left */ 1720 ctrl->io_queues[HCTX_TYPE_POLL] = 1721 min(opts->nr_poll_queues, nr_io_queues); 1722 } 1723 } 1724 1725 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1726 { 1727 unsigned int nr_io_queues; 1728 int ret; 1729 1730 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1731 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1732 if (ret) 1733 return ret; 1734 1735 ctrl->queue_count = nr_io_queues + 1; 1736 if (ctrl->queue_count < 2) 1737 return 0; 1738 1739 dev_info(ctrl->device, 1740 "creating %d I/O queues.\n", nr_io_queues); 1741 1742 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1743 1744 return __nvme_tcp_alloc_io_queues(ctrl); 1745 } 1746 1747 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1748 { 1749 nvme_tcp_stop_io_queues(ctrl); 1750 if (remove) { 1751 blk_cleanup_queue(ctrl->connect_q); 1752 blk_mq_free_tag_set(ctrl->tagset); 1753 } 1754 nvme_tcp_free_io_queues(ctrl); 1755 } 1756 1757 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1758 { 1759 int ret; 1760 1761 ret = nvme_tcp_alloc_io_queues(ctrl); 1762 if (ret) 1763 return ret; 1764 1765 if (new) { 1766 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1767 if (IS_ERR(ctrl->tagset)) { 1768 ret = PTR_ERR(ctrl->tagset); 1769 goto out_free_io_queues; 1770 } 1771 1772 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1773 if (IS_ERR(ctrl->connect_q)) { 1774 ret = PTR_ERR(ctrl->connect_q); 1775 goto out_free_tag_set; 1776 } 1777 } 1778 1779 ret = nvme_tcp_start_io_queues(ctrl); 1780 if (ret) 1781 goto out_cleanup_connect_q; 1782 1783 if (!new) { 1784 nvme_start_queues(ctrl); 1785 nvme_wait_freeze(ctrl); 1786 blk_mq_update_nr_hw_queues(ctrl->tagset, 1787 ctrl->queue_count - 1); 1788 nvme_unfreeze(ctrl); 1789 } 1790 1791 return 0; 1792 1793 out_cleanup_connect_q: 1794 if (new) 1795 blk_cleanup_queue(ctrl->connect_q); 1796 out_free_tag_set: 1797 if (new) 1798 blk_mq_free_tag_set(ctrl->tagset); 1799 out_free_io_queues: 1800 nvme_tcp_free_io_queues(ctrl); 1801 return ret; 1802 } 1803 1804 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1805 { 1806 nvme_tcp_stop_queue(ctrl, 0); 1807 if (remove) { 1808 blk_cleanup_queue(ctrl->admin_q); 1809 blk_cleanup_queue(ctrl->fabrics_q); 1810 blk_mq_free_tag_set(ctrl->admin_tagset); 1811 } 1812 nvme_tcp_free_admin_queue(ctrl); 1813 } 1814 1815 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1816 { 1817 int error; 1818 1819 error = nvme_tcp_alloc_admin_queue(ctrl); 1820 if (error) 1821 return error; 1822 1823 if (new) { 1824 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1825 if (IS_ERR(ctrl->admin_tagset)) { 1826 error = PTR_ERR(ctrl->admin_tagset); 1827 goto out_free_queue; 1828 } 1829 1830 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1831 if (IS_ERR(ctrl->fabrics_q)) { 1832 error = PTR_ERR(ctrl->fabrics_q); 1833 goto out_free_tagset; 1834 } 1835 1836 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1837 if (IS_ERR(ctrl->admin_q)) { 1838 error = PTR_ERR(ctrl->admin_q); 1839 goto out_cleanup_fabrics_q; 1840 } 1841 } 1842 1843 error = nvme_tcp_start_queue(ctrl, 0); 1844 if (error) 1845 goto out_cleanup_queue; 1846 1847 error = nvme_enable_ctrl(ctrl); 1848 if (error) 1849 goto out_stop_queue; 1850 1851 blk_mq_unquiesce_queue(ctrl->admin_q); 1852 1853 error = nvme_init_identify(ctrl); 1854 if (error) 1855 goto out_stop_queue; 1856 1857 return 0; 1858 1859 out_stop_queue: 1860 nvme_tcp_stop_queue(ctrl, 0); 1861 out_cleanup_queue: 1862 if (new) 1863 blk_cleanup_queue(ctrl->admin_q); 1864 out_cleanup_fabrics_q: 1865 if (new) 1866 blk_cleanup_queue(ctrl->fabrics_q); 1867 out_free_tagset: 1868 if (new) 1869 blk_mq_free_tag_set(ctrl->admin_tagset); 1870 out_free_queue: 1871 nvme_tcp_free_admin_queue(ctrl); 1872 return error; 1873 } 1874 1875 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1876 bool remove) 1877 { 1878 blk_mq_quiesce_queue(ctrl->admin_q); 1879 nvme_tcp_stop_queue(ctrl, 0); 1880 if (ctrl->admin_tagset) { 1881 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1882 nvme_cancel_request, ctrl); 1883 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1884 } 1885 if (remove) 1886 blk_mq_unquiesce_queue(ctrl->admin_q); 1887 nvme_tcp_destroy_admin_queue(ctrl, remove); 1888 } 1889 1890 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1891 bool remove) 1892 { 1893 if (ctrl->queue_count <= 1) 1894 return; 1895 nvme_start_freeze(ctrl); 1896 nvme_stop_queues(ctrl); 1897 nvme_tcp_stop_io_queues(ctrl); 1898 if (ctrl->tagset) { 1899 blk_mq_tagset_busy_iter(ctrl->tagset, 1900 nvme_cancel_request, ctrl); 1901 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1902 } 1903 if (remove) 1904 nvme_start_queues(ctrl); 1905 nvme_tcp_destroy_io_queues(ctrl, remove); 1906 } 1907 1908 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1909 { 1910 /* If we are resetting/deleting then do nothing */ 1911 if (ctrl->state != NVME_CTRL_CONNECTING) { 1912 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1913 ctrl->state == NVME_CTRL_LIVE); 1914 return; 1915 } 1916 1917 if (nvmf_should_reconnect(ctrl)) { 1918 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1919 ctrl->opts->reconnect_delay); 1920 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1921 ctrl->opts->reconnect_delay * HZ); 1922 } else { 1923 dev_info(ctrl->device, "Removing controller...\n"); 1924 nvme_delete_ctrl(ctrl); 1925 } 1926 } 1927 1928 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1929 { 1930 struct nvmf_ctrl_options *opts = ctrl->opts; 1931 int ret; 1932 1933 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1934 if (ret) 1935 return ret; 1936 1937 if (ctrl->icdoff) { 1938 dev_err(ctrl->device, "icdoff is not supported!\n"); 1939 goto destroy_admin; 1940 } 1941 1942 if (opts->queue_size > ctrl->sqsize + 1) 1943 dev_warn(ctrl->device, 1944 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1945 opts->queue_size, ctrl->sqsize + 1); 1946 1947 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1948 dev_warn(ctrl->device, 1949 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1950 ctrl->sqsize + 1, ctrl->maxcmd); 1951 ctrl->sqsize = ctrl->maxcmd - 1; 1952 } 1953 1954 if (ctrl->queue_count > 1) { 1955 ret = nvme_tcp_configure_io_queues(ctrl, new); 1956 if (ret) 1957 goto destroy_admin; 1958 } 1959 1960 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1961 /* 1962 * state change failure is ok if we started ctrl delete, 1963 * unless we're during creation of a new controller to 1964 * avoid races with teardown flow. 1965 */ 1966 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 1967 ctrl->state != NVME_CTRL_DELETING_NOIO); 1968 WARN_ON_ONCE(new); 1969 ret = -EINVAL; 1970 goto destroy_io; 1971 } 1972 1973 nvme_start_ctrl(ctrl); 1974 return 0; 1975 1976 destroy_io: 1977 if (ctrl->queue_count > 1) 1978 nvme_tcp_destroy_io_queues(ctrl, new); 1979 destroy_admin: 1980 nvme_tcp_stop_queue(ctrl, 0); 1981 nvme_tcp_destroy_admin_queue(ctrl, new); 1982 return ret; 1983 } 1984 1985 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1986 { 1987 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1988 struct nvme_tcp_ctrl, connect_work); 1989 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1990 1991 ++ctrl->nr_reconnects; 1992 1993 if (nvme_tcp_setup_ctrl(ctrl, false)) 1994 goto requeue; 1995 1996 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1997 ctrl->nr_reconnects); 1998 1999 ctrl->nr_reconnects = 0; 2000 2001 return; 2002 2003 requeue: 2004 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2005 ctrl->nr_reconnects); 2006 nvme_tcp_reconnect_or_remove(ctrl); 2007 } 2008 2009 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2010 { 2011 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2012 struct nvme_tcp_ctrl, err_work); 2013 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2014 2015 nvme_stop_keep_alive(ctrl); 2016 nvme_tcp_teardown_io_queues(ctrl, false); 2017 /* unquiesce to fail fast pending requests */ 2018 nvme_start_queues(ctrl); 2019 nvme_tcp_teardown_admin_queue(ctrl, false); 2020 blk_mq_unquiesce_queue(ctrl->admin_q); 2021 2022 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2023 /* state change failure is ok if we started ctrl delete */ 2024 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2025 ctrl->state != NVME_CTRL_DELETING_NOIO); 2026 return; 2027 } 2028 2029 nvme_tcp_reconnect_or_remove(ctrl); 2030 } 2031 2032 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2033 { 2034 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2035 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2036 2037 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2038 blk_mq_quiesce_queue(ctrl->admin_q); 2039 if (shutdown) 2040 nvme_shutdown_ctrl(ctrl); 2041 else 2042 nvme_disable_ctrl(ctrl); 2043 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2044 } 2045 2046 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2047 { 2048 nvme_tcp_teardown_ctrl(ctrl, true); 2049 } 2050 2051 static void nvme_reset_ctrl_work(struct work_struct *work) 2052 { 2053 struct nvme_ctrl *ctrl = 2054 container_of(work, struct nvme_ctrl, reset_work); 2055 2056 nvme_stop_ctrl(ctrl); 2057 nvme_tcp_teardown_ctrl(ctrl, false); 2058 2059 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2060 /* state change failure is ok if we started ctrl delete */ 2061 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2062 ctrl->state != NVME_CTRL_DELETING_NOIO); 2063 return; 2064 } 2065 2066 if (nvme_tcp_setup_ctrl(ctrl, false)) 2067 goto out_fail; 2068 2069 return; 2070 2071 out_fail: 2072 ++ctrl->nr_reconnects; 2073 nvme_tcp_reconnect_or_remove(ctrl); 2074 } 2075 2076 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2077 { 2078 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2079 2080 if (list_empty(&ctrl->list)) 2081 goto free_ctrl; 2082 2083 mutex_lock(&nvme_tcp_ctrl_mutex); 2084 list_del(&ctrl->list); 2085 mutex_unlock(&nvme_tcp_ctrl_mutex); 2086 2087 nvmf_free_options(nctrl->opts); 2088 free_ctrl: 2089 kfree(ctrl->queues); 2090 kfree(ctrl); 2091 } 2092 2093 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2094 { 2095 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2096 2097 sg->addr = 0; 2098 sg->length = 0; 2099 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2100 NVME_SGL_FMT_TRANSPORT_A; 2101 } 2102 2103 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2104 struct nvme_command *c, u32 data_len) 2105 { 2106 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2107 2108 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2109 sg->length = cpu_to_le32(data_len); 2110 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2111 } 2112 2113 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2114 u32 data_len) 2115 { 2116 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2117 2118 sg->addr = 0; 2119 sg->length = cpu_to_le32(data_len); 2120 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2121 NVME_SGL_FMT_TRANSPORT_A; 2122 } 2123 2124 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2125 { 2126 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2127 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2128 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2129 struct nvme_command *cmd = &pdu->cmd; 2130 u8 hdgst = nvme_tcp_hdgst_len(queue); 2131 2132 memset(pdu, 0, sizeof(*pdu)); 2133 pdu->hdr.type = nvme_tcp_cmd; 2134 if (queue->hdr_digest) 2135 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2136 pdu->hdr.hlen = sizeof(*pdu); 2137 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2138 2139 cmd->common.opcode = nvme_admin_async_event; 2140 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2141 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2142 nvme_tcp_set_sg_null(cmd); 2143 2144 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2145 ctrl->async_req.offset = 0; 2146 ctrl->async_req.curr_bio = NULL; 2147 ctrl->async_req.data_len = 0; 2148 2149 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2150 } 2151 2152 static enum blk_eh_timer_return 2153 nvme_tcp_timeout(struct request *rq, bool reserved) 2154 { 2155 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2156 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2157 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2158 2159 /* 2160 * Restart the timer if a controller reset is already scheduled. Any 2161 * timed out commands would be handled before entering the connecting 2162 * state. 2163 */ 2164 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 2165 return BLK_EH_RESET_TIMER; 2166 2167 dev_warn(ctrl->ctrl.device, 2168 "queue %d: timeout request %#x type %d\n", 2169 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2170 2171 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2172 /* 2173 * Teardown immediately if controller times out while starting 2174 * or we are already started error recovery. all outstanding 2175 * requests are completed on shutdown, so we return BLK_EH_DONE. 2176 */ 2177 flush_work(&ctrl->err_work); 2178 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2179 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2180 return BLK_EH_DONE; 2181 } 2182 2183 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2184 nvme_tcp_error_recovery(&ctrl->ctrl); 2185 2186 return BLK_EH_RESET_TIMER; 2187 } 2188 2189 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2190 struct request *rq) 2191 { 2192 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2193 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2194 struct nvme_command *c = &pdu->cmd; 2195 2196 c->common.flags |= NVME_CMD_SGL_METABUF; 2197 2198 if (!blk_rq_nr_phys_segments(rq)) 2199 nvme_tcp_set_sg_null(c); 2200 else if (rq_data_dir(rq) == WRITE && 2201 req->data_len <= nvme_tcp_inline_data_size(queue)) 2202 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2203 else 2204 nvme_tcp_set_sg_host_data(c, req->data_len); 2205 2206 return 0; 2207 } 2208 2209 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2210 struct request *rq) 2211 { 2212 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2213 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2214 struct nvme_tcp_queue *queue = req->queue; 2215 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2216 blk_status_t ret; 2217 2218 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2219 if (ret) 2220 return ret; 2221 2222 req->state = NVME_TCP_SEND_CMD_PDU; 2223 req->offset = 0; 2224 req->data_sent = 0; 2225 req->pdu_len = 0; 2226 req->pdu_sent = 0; 2227 req->data_len = blk_rq_nr_phys_segments(rq) ? 2228 blk_rq_payload_bytes(rq) : 0; 2229 req->curr_bio = rq->bio; 2230 2231 if (rq_data_dir(rq) == WRITE && 2232 req->data_len <= nvme_tcp_inline_data_size(queue)) 2233 req->pdu_len = req->data_len; 2234 else if (req->curr_bio) 2235 nvme_tcp_init_iter(req, READ); 2236 2237 pdu->hdr.type = nvme_tcp_cmd; 2238 pdu->hdr.flags = 0; 2239 if (queue->hdr_digest) 2240 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2241 if (queue->data_digest && req->pdu_len) { 2242 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2243 ddgst = nvme_tcp_ddgst_len(queue); 2244 } 2245 pdu->hdr.hlen = sizeof(*pdu); 2246 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2247 pdu->hdr.plen = 2248 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2249 2250 ret = nvme_tcp_map_data(queue, rq); 2251 if (unlikely(ret)) { 2252 nvme_cleanup_cmd(rq); 2253 dev_err(queue->ctrl->ctrl.device, 2254 "Failed to map data (%d)\n", ret); 2255 return ret; 2256 } 2257 2258 return 0; 2259 } 2260 2261 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2262 { 2263 struct nvme_tcp_queue *queue = hctx->driver_data; 2264 2265 if (!llist_empty(&queue->req_list)) 2266 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2267 } 2268 2269 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2270 const struct blk_mq_queue_data *bd) 2271 { 2272 struct nvme_ns *ns = hctx->queue->queuedata; 2273 struct nvme_tcp_queue *queue = hctx->driver_data; 2274 struct request *rq = bd->rq; 2275 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2276 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2277 blk_status_t ret; 2278 2279 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2280 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2281 2282 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2283 if (unlikely(ret)) 2284 return ret; 2285 2286 blk_mq_start_request(rq); 2287 2288 nvme_tcp_queue_request(req, true, bd->last); 2289 2290 return BLK_STS_OK; 2291 } 2292 2293 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2294 { 2295 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2296 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2297 2298 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2299 /* separate read/write queues */ 2300 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2301 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2302 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2303 set->map[HCTX_TYPE_READ].nr_queues = 2304 ctrl->io_queues[HCTX_TYPE_READ]; 2305 set->map[HCTX_TYPE_READ].queue_offset = 2306 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2307 } else { 2308 /* shared read/write queues */ 2309 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2310 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2311 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2312 set->map[HCTX_TYPE_READ].nr_queues = 2313 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2314 set->map[HCTX_TYPE_READ].queue_offset = 0; 2315 } 2316 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2317 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2318 2319 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2320 /* map dedicated poll queues only if we have queues left */ 2321 set->map[HCTX_TYPE_POLL].nr_queues = 2322 ctrl->io_queues[HCTX_TYPE_POLL]; 2323 set->map[HCTX_TYPE_POLL].queue_offset = 2324 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2325 ctrl->io_queues[HCTX_TYPE_READ]; 2326 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2327 } 2328 2329 dev_info(ctrl->ctrl.device, 2330 "mapped %d/%d/%d default/read/poll queues.\n", 2331 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2332 ctrl->io_queues[HCTX_TYPE_READ], 2333 ctrl->io_queues[HCTX_TYPE_POLL]); 2334 2335 return 0; 2336 } 2337 2338 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2339 { 2340 struct nvme_tcp_queue *queue = hctx->driver_data; 2341 struct sock *sk = queue->sock->sk; 2342 2343 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2344 return 0; 2345 2346 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2347 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2348 sk_busy_loop(sk, true); 2349 nvme_tcp_try_recv(queue); 2350 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2351 return queue->nr_cqe; 2352 } 2353 2354 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2355 .queue_rq = nvme_tcp_queue_rq, 2356 .commit_rqs = nvme_tcp_commit_rqs, 2357 .complete = nvme_complete_rq, 2358 .init_request = nvme_tcp_init_request, 2359 .exit_request = nvme_tcp_exit_request, 2360 .init_hctx = nvme_tcp_init_hctx, 2361 .timeout = nvme_tcp_timeout, 2362 .map_queues = nvme_tcp_map_queues, 2363 .poll = nvme_tcp_poll, 2364 }; 2365 2366 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2367 .queue_rq = nvme_tcp_queue_rq, 2368 .complete = nvme_complete_rq, 2369 .init_request = nvme_tcp_init_request, 2370 .exit_request = nvme_tcp_exit_request, 2371 .init_hctx = nvme_tcp_init_admin_hctx, 2372 .timeout = nvme_tcp_timeout, 2373 }; 2374 2375 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2376 .name = "tcp", 2377 .module = THIS_MODULE, 2378 .flags = NVME_F_FABRICS, 2379 .reg_read32 = nvmf_reg_read32, 2380 .reg_read64 = nvmf_reg_read64, 2381 .reg_write32 = nvmf_reg_write32, 2382 .free_ctrl = nvme_tcp_free_ctrl, 2383 .submit_async_event = nvme_tcp_submit_async_event, 2384 .delete_ctrl = nvme_tcp_delete_ctrl, 2385 .get_address = nvmf_get_address, 2386 }; 2387 2388 static bool 2389 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2390 { 2391 struct nvme_tcp_ctrl *ctrl; 2392 bool found = false; 2393 2394 mutex_lock(&nvme_tcp_ctrl_mutex); 2395 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2396 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2397 if (found) 2398 break; 2399 } 2400 mutex_unlock(&nvme_tcp_ctrl_mutex); 2401 2402 return found; 2403 } 2404 2405 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2406 struct nvmf_ctrl_options *opts) 2407 { 2408 struct nvme_tcp_ctrl *ctrl; 2409 int ret; 2410 2411 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2412 if (!ctrl) 2413 return ERR_PTR(-ENOMEM); 2414 2415 INIT_LIST_HEAD(&ctrl->list); 2416 ctrl->ctrl.opts = opts; 2417 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2418 opts->nr_poll_queues + 1; 2419 ctrl->ctrl.sqsize = opts->queue_size - 1; 2420 ctrl->ctrl.kato = opts->kato; 2421 2422 INIT_DELAYED_WORK(&ctrl->connect_work, 2423 nvme_tcp_reconnect_ctrl_work); 2424 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2425 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2426 2427 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2428 opts->trsvcid = 2429 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2430 if (!opts->trsvcid) { 2431 ret = -ENOMEM; 2432 goto out_free_ctrl; 2433 } 2434 opts->mask |= NVMF_OPT_TRSVCID; 2435 } 2436 2437 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2438 opts->traddr, opts->trsvcid, &ctrl->addr); 2439 if (ret) { 2440 pr_err("malformed address passed: %s:%s\n", 2441 opts->traddr, opts->trsvcid); 2442 goto out_free_ctrl; 2443 } 2444 2445 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2446 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2447 opts->host_traddr, NULL, &ctrl->src_addr); 2448 if (ret) { 2449 pr_err("malformed src address passed: %s\n", 2450 opts->host_traddr); 2451 goto out_free_ctrl; 2452 } 2453 } 2454 2455 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2456 ret = -EALREADY; 2457 goto out_free_ctrl; 2458 } 2459 2460 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2461 GFP_KERNEL); 2462 if (!ctrl->queues) { 2463 ret = -ENOMEM; 2464 goto out_free_ctrl; 2465 } 2466 2467 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2468 if (ret) 2469 goto out_kfree_queues; 2470 2471 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2472 WARN_ON_ONCE(1); 2473 ret = -EINTR; 2474 goto out_uninit_ctrl; 2475 } 2476 2477 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2478 if (ret) 2479 goto out_uninit_ctrl; 2480 2481 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2482 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2483 2484 mutex_lock(&nvme_tcp_ctrl_mutex); 2485 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2486 mutex_unlock(&nvme_tcp_ctrl_mutex); 2487 2488 return &ctrl->ctrl; 2489 2490 out_uninit_ctrl: 2491 nvme_uninit_ctrl(&ctrl->ctrl); 2492 nvme_put_ctrl(&ctrl->ctrl); 2493 if (ret > 0) 2494 ret = -EIO; 2495 return ERR_PTR(ret); 2496 out_kfree_queues: 2497 kfree(ctrl->queues); 2498 out_free_ctrl: 2499 kfree(ctrl); 2500 return ERR_PTR(ret); 2501 } 2502 2503 static struct nvmf_transport_ops nvme_tcp_transport = { 2504 .name = "tcp", 2505 .module = THIS_MODULE, 2506 .required_opts = NVMF_OPT_TRADDR, 2507 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2508 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2509 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2510 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2511 NVMF_OPT_TOS, 2512 .create_ctrl = nvme_tcp_create_ctrl, 2513 }; 2514 2515 static int __init nvme_tcp_init_module(void) 2516 { 2517 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2518 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2519 if (!nvme_tcp_wq) 2520 return -ENOMEM; 2521 2522 nvmf_register_transport(&nvme_tcp_transport); 2523 return 0; 2524 } 2525 2526 static void __exit nvme_tcp_cleanup_module(void) 2527 { 2528 struct nvme_tcp_ctrl *ctrl; 2529 2530 nvmf_unregister_transport(&nvme_tcp_transport); 2531 2532 mutex_lock(&nvme_tcp_ctrl_mutex); 2533 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2534 nvme_delete_ctrl(&ctrl->ctrl); 2535 mutex_unlock(&nvme_tcp_ctrl_mutex); 2536 flush_workqueue(nvme_delete_wq); 2537 2538 destroy_workqueue(nvme_tcp_wq); 2539 } 2540 2541 module_init(nvme_tcp_init_module); 2542 module_exit(nvme_tcp_cleanup_module); 2543 2544 MODULE_LICENSE("GPL v2"); 2545