xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		send_mutex;
80 	struct llist_head	req_list;
81 	struct list_head	send_list;
82 	bool			more_requests;
83 
84 	/* recv state */
85 	void			*pdu;
86 	int			pdu_remaining;
87 	int			pdu_offset;
88 	size_t			data_remaining;
89 	size_t			ddgst_remaining;
90 	unsigned int		nr_cqe;
91 
92 	/* send state */
93 	struct nvme_tcp_request *request;
94 
95 	int			queue_size;
96 	size_t			cmnd_capsule_len;
97 	struct nvme_tcp_ctrl	*ctrl;
98 	unsigned long		flags;
99 	bool			rd_enabled;
100 
101 	bool			hdr_digest;
102 	bool			data_digest;
103 	struct ahash_request	*rcv_hash;
104 	struct ahash_request	*snd_hash;
105 	__le32			exp_ddgst;
106 	__le32			recv_ddgst;
107 
108 	struct page_frag_cache	pf_cache;
109 
110 	void (*state_change)(struct sock *);
111 	void (*data_ready)(struct sock *);
112 	void (*write_space)(struct sock *);
113 };
114 
115 struct nvme_tcp_ctrl {
116 	/* read only in the hot path */
117 	struct nvme_tcp_queue	*queues;
118 	struct blk_mq_tag_set	tag_set;
119 
120 	/* other member variables */
121 	struct list_head	list;
122 	struct blk_mq_tag_set	admin_tag_set;
123 	struct sockaddr_storage addr;
124 	struct sockaddr_storage src_addr;
125 	struct nvme_ctrl	ctrl;
126 
127 	struct work_struct	err_work;
128 	struct delayed_work	connect_work;
129 	struct nvme_tcp_request async_req;
130 	u32			io_queues[HCTX_MAX_TYPES];
131 };
132 
133 static LIST_HEAD(nvme_tcp_ctrl_list);
134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
135 static struct workqueue_struct *nvme_tcp_wq;
136 static const struct blk_mq_ops nvme_tcp_mq_ops;
137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
139 
140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
141 {
142 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
143 }
144 
145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
146 {
147 	return queue - queue->ctrl->queues;
148 }
149 
150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
151 {
152 	u32 queue_idx = nvme_tcp_queue_id(queue);
153 
154 	if (queue_idx == 0)
155 		return queue->ctrl->admin_tag_set.tags[queue_idx];
156 	return queue->ctrl->tag_set.tags[queue_idx - 1];
157 }
158 
159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
160 {
161 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
162 }
163 
164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
165 {
166 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
167 }
168 
169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
170 {
171 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173 
174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
175 {
176 	return req == &req->queue->ctrl->async_req;
177 }
178 
179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
180 {
181 	struct request *rq;
182 
183 	if (unlikely(nvme_tcp_async_req(req)))
184 		return false; /* async events don't have a request */
185 
186 	rq = blk_mq_rq_from_pdu(req);
187 
188 	return rq_data_dir(rq) == WRITE && req->data_len &&
189 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
190 }
191 
192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
193 {
194 	return req->iter.bvec->bv_page;
195 }
196 
197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
198 {
199 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
200 }
201 
202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
203 {
204 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
205 			req->pdu_len - req->pdu_sent);
206 }
207 
208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
209 {
210 	return req->iter.iov_offset;
211 }
212 
213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
214 {
215 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
216 			req->pdu_len - req->pdu_sent : 0;
217 }
218 
219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
220 		int len)
221 {
222 	return nvme_tcp_pdu_data_left(req) <= len;
223 }
224 
225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
226 		unsigned int dir)
227 {
228 	struct request *rq = blk_mq_rq_from_pdu(req);
229 	struct bio_vec *vec;
230 	unsigned int size;
231 	int nsegs;
232 	size_t offset;
233 
234 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
235 		vec = &rq->special_vec;
236 		nsegs = 1;
237 		size = blk_rq_payload_bytes(rq);
238 		offset = 0;
239 	} else {
240 		struct bio *bio = req->curr_bio;
241 
242 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
243 		nsegs = bio_segments(bio);
244 		size = bio->bi_iter.bi_size;
245 		offset = bio->bi_iter.bi_bvec_done;
246 	}
247 
248 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
249 	req->iter.iov_offset = offset;
250 }
251 
252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
253 		int len)
254 {
255 	req->data_sent += len;
256 	req->pdu_sent += len;
257 	iov_iter_advance(&req->iter, len);
258 	if (!iov_iter_count(&req->iter) &&
259 	    req->data_sent < req->data_len) {
260 		req->curr_bio = req->curr_bio->bi_next;
261 		nvme_tcp_init_iter(req, WRITE);
262 	}
263 }
264 
265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
266 		bool sync, bool last)
267 {
268 	struct nvme_tcp_queue *queue = req->queue;
269 	bool empty;
270 
271 	empty = llist_add(&req->lentry, &queue->req_list) &&
272 		list_empty(&queue->send_list) && !queue->request;
273 
274 	/*
275 	 * if we're the first on the send_list and we can try to send
276 	 * directly, otherwise queue io_work. Also, only do that if we
277 	 * are on the same cpu, so we don't introduce contention.
278 	 */
279 	if (queue->io_cpu == smp_processor_id() &&
280 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
281 		queue->more_requests = !last;
282 		nvme_tcp_try_send(queue);
283 		queue->more_requests = false;
284 		mutex_unlock(&queue->send_mutex);
285 	} else if (last) {
286 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
287 	}
288 }
289 
290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
291 {
292 	struct nvme_tcp_request *req;
293 	struct llist_node *node;
294 
295 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
296 		req = llist_entry(node, struct nvme_tcp_request, lentry);
297 		list_add(&req->entry, &queue->send_list);
298 	}
299 }
300 
301 static inline struct nvme_tcp_request *
302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
303 {
304 	struct nvme_tcp_request *req;
305 
306 	req = list_first_entry_or_null(&queue->send_list,
307 			struct nvme_tcp_request, entry);
308 	if (!req) {
309 		nvme_tcp_process_req_list(queue);
310 		req = list_first_entry_or_null(&queue->send_list,
311 				struct nvme_tcp_request, entry);
312 		if (unlikely(!req))
313 			return NULL;
314 	}
315 
316 	list_del(&req->entry);
317 	return req;
318 }
319 
320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
321 		__le32 *dgst)
322 {
323 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
324 	crypto_ahash_final(hash);
325 }
326 
327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
328 		struct page *page, off_t off, size_t len)
329 {
330 	struct scatterlist sg;
331 
332 	sg_init_marker(&sg, 1);
333 	sg_set_page(&sg, page, len, off);
334 	ahash_request_set_crypt(hash, &sg, NULL, len);
335 	crypto_ahash_update(hash);
336 }
337 
338 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
339 		void *pdu, size_t len)
340 {
341 	struct scatterlist sg;
342 
343 	sg_init_one(&sg, pdu, len);
344 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
345 	crypto_ahash_digest(hash);
346 }
347 
348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
349 		void *pdu, size_t pdu_len)
350 {
351 	struct nvme_tcp_hdr *hdr = pdu;
352 	__le32 recv_digest;
353 	__le32 exp_digest;
354 
355 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
356 		dev_err(queue->ctrl->ctrl.device,
357 			"queue %d: header digest flag is cleared\n",
358 			nvme_tcp_queue_id(queue));
359 		return -EPROTO;
360 	}
361 
362 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
363 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
364 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
365 	if (recv_digest != exp_digest) {
366 		dev_err(queue->ctrl->ctrl.device,
367 			"header digest error: recv %#x expected %#x\n",
368 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
369 		return -EIO;
370 	}
371 
372 	return 0;
373 }
374 
375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
376 {
377 	struct nvme_tcp_hdr *hdr = pdu;
378 	u8 digest_len = nvme_tcp_hdgst_len(queue);
379 	u32 len;
380 
381 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
382 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
383 
384 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
385 		dev_err(queue->ctrl->ctrl.device,
386 			"queue %d: data digest flag is cleared\n",
387 		nvme_tcp_queue_id(queue));
388 		return -EPROTO;
389 	}
390 	crypto_ahash_init(queue->rcv_hash);
391 
392 	return 0;
393 }
394 
395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
396 		struct request *rq, unsigned int hctx_idx)
397 {
398 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
399 
400 	page_frag_free(req->pdu);
401 }
402 
403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
404 		struct request *rq, unsigned int hctx_idx,
405 		unsigned int numa_node)
406 {
407 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
408 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
409 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
410 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
411 	u8 hdgst = nvme_tcp_hdgst_len(queue);
412 
413 	req->pdu = page_frag_alloc(&queue->pf_cache,
414 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
415 		GFP_KERNEL | __GFP_ZERO);
416 	if (!req->pdu)
417 		return -ENOMEM;
418 
419 	req->queue = queue;
420 	nvme_req(rq)->ctrl = &ctrl->ctrl;
421 
422 	return 0;
423 }
424 
425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
426 		unsigned int hctx_idx)
427 {
428 	struct nvme_tcp_ctrl *ctrl = data;
429 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
430 
431 	hctx->driver_data = queue;
432 	return 0;
433 }
434 
435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
436 		unsigned int hctx_idx)
437 {
438 	struct nvme_tcp_ctrl *ctrl = data;
439 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
440 
441 	hctx->driver_data = queue;
442 	return 0;
443 }
444 
445 static enum nvme_tcp_recv_state
446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
447 {
448 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
449 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
450 		NVME_TCP_RECV_DATA;
451 }
452 
453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
454 {
455 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
456 				nvme_tcp_hdgst_len(queue);
457 	queue->pdu_offset = 0;
458 	queue->data_remaining = -1;
459 	queue->ddgst_remaining = 0;
460 }
461 
462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
463 {
464 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
465 		return;
466 
467 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
468 }
469 
470 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
471 		struct nvme_completion *cqe)
472 {
473 	struct request *rq;
474 
475 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
476 	if (!rq) {
477 		dev_err(queue->ctrl->ctrl.device,
478 			"queue %d tag 0x%x not found\n",
479 			nvme_tcp_queue_id(queue), cqe->command_id);
480 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
481 		return -EINVAL;
482 	}
483 
484 	if (!nvme_end_request(rq, cqe->status, cqe->result))
485 		nvme_complete_rq(rq);
486 	queue->nr_cqe++;
487 
488 	return 0;
489 }
490 
491 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
492 		struct nvme_tcp_data_pdu *pdu)
493 {
494 	struct request *rq;
495 
496 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
497 	if (!rq) {
498 		dev_err(queue->ctrl->ctrl.device,
499 			"queue %d tag %#x not found\n",
500 			nvme_tcp_queue_id(queue), pdu->command_id);
501 		return -ENOENT;
502 	}
503 
504 	if (!blk_rq_payload_bytes(rq)) {
505 		dev_err(queue->ctrl->ctrl.device,
506 			"queue %d tag %#x unexpected data\n",
507 			nvme_tcp_queue_id(queue), rq->tag);
508 		return -EIO;
509 	}
510 
511 	queue->data_remaining = le32_to_cpu(pdu->data_length);
512 
513 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
514 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
515 		dev_err(queue->ctrl->ctrl.device,
516 			"queue %d tag %#x SUCCESS set but not last PDU\n",
517 			nvme_tcp_queue_id(queue), rq->tag);
518 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
519 		return -EPROTO;
520 	}
521 
522 	return 0;
523 }
524 
525 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
526 		struct nvme_tcp_rsp_pdu *pdu)
527 {
528 	struct nvme_completion *cqe = &pdu->cqe;
529 	int ret = 0;
530 
531 	/*
532 	 * AEN requests are special as they don't time out and can
533 	 * survive any kind of queue freeze and often don't respond to
534 	 * aborts.  We don't even bother to allocate a struct request
535 	 * for them but rather special case them here.
536 	 */
537 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
538 				     cqe->command_id)))
539 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
540 				&cqe->result);
541 	else
542 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
543 
544 	return ret;
545 }
546 
547 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
548 		struct nvme_tcp_r2t_pdu *pdu)
549 {
550 	struct nvme_tcp_data_pdu *data = req->pdu;
551 	struct nvme_tcp_queue *queue = req->queue;
552 	struct request *rq = blk_mq_rq_from_pdu(req);
553 	u8 hdgst = nvme_tcp_hdgst_len(queue);
554 	u8 ddgst = nvme_tcp_ddgst_len(queue);
555 
556 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
557 	req->pdu_sent = 0;
558 
559 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
560 		dev_err(queue->ctrl->ctrl.device,
561 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
562 			rq->tag, req->pdu_len, req->data_len,
563 			req->data_sent);
564 		return -EPROTO;
565 	}
566 
567 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
568 		dev_err(queue->ctrl->ctrl.device,
569 			"req %d unexpected r2t offset %u (expected %zu)\n",
570 			rq->tag, le32_to_cpu(pdu->r2t_offset),
571 			req->data_sent);
572 		return -EPROTO;
573 	}
574 
575 	memset(data, 0, sizeof(*data));
576 	data->hdr.type = nvme_tcp_h2c_data;
577 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
578 	if (queue->hdr_digest)
579 		data->hdr.flags |= NVME_TCP_F_HDGST;
580 	if (queue->data_digest)
581 		data->hdr.flags |= NVME_TCP_F_DDGST;
582 	data->hdr.hlen = sizeof(*data);
583 	data->hdr.pdo = data->hdr.hlen + hdgst;
584 	data->hdr.plen =
585 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
586 	data->ttag = pdu->ttag;
587 	data->command_id = rq->tag;
588 	data->data_offset = cpu_to_le32(req->data_sent);
589 	data->data_length = cpu_to_le32(req->pdu_len);
590 	return 0;
591 }
592 
593 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
594 		struct nvme_tcp_r2t_pdu *pdu)
595 {
596 	struct nvme_tcp_request *req;
597 	struct request *rq;
598 	int ret;
599 
600 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
601 	if (!rq) {
602 		dev_err(queue->ctrl->ctrl.device,
603 			"queue %d tag %#x not found\n",
604 			nvme_tcp_queue_id(queue), pdu->command_id);
605 		return -ENOENT;
606 	}
607 	req = blk_mq_rq_to_pdu(rq);
608 
609 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
610 	if (unlikely(ret))
611 		return ret;
612 
613 	req->state = NVME_TCP_SEND_H2C_PDU;
614 	req->offset = 0;
615 
616 	nvme_tcp_queue_request(req, false, true);
617 
618 	return 0;
619 }
620 
621 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
622 		unsigned int *offset, size_t *len)
623 {
624 	struct nvme_tcp_hdr *hdr;
625 	char *pdu = queue->pdu;
626 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
627 	int ret;
628 
629 	ret = skb_copy_bits(skb, *offset,
630 		&pdu[queue->pdu_offset], rcv_len);
631 	if (unlikely(ret))
632 		return ret;
633 
634 	queue->pdu_remaining -= rcv_len;
635 	queue->pdu_offset += rcv_len;
636 	*offset += rcv_len;
637 	*len -= rcv_len;
638 	if (queue->pdu_remaining)
639 		return 0;
640 
641 	hdr = queue->pdu;
642 	if (queue->hdr_digest) {
643 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
644 		if (unlikely(ret))
645 			return ret;
646 	}
647 
648 
649 	if (queue->data_digest) {
650 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
651 		if (unlikely(ret))
652 			return ret;
653 	}
654 
655 	switch (hdr->type) {
656 	case nvme_tcp_c2h_data:
657 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
658 	case nvme_tcp_rsp:
659 		nvme_tcp_init_recv_ctx(queue);
660 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
661 	case nvme_tcp_r2t:
662 		nvme_tcp_init_recv_ctx(queue);
663 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
664 	default:
665 		dev_err(queue->ctrl->ctrl.device,
666 			"unsupported pdu type (%d)\n", hdr->type);
667 		return -EINVAL;
668 	}
669 }
670 
671 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
672 {
673 	union nvme_result res = {};
674 
675 	if (!nvme_end_request(rq, cpu_to_le16(status << 1), res))
676 		nvme_complete_rq(rq);
677 }
678 
679 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
680 			      unsigned int *offset, size_t *len)
681 {
682 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
683 	struct nvme_tcp_request *req;
684 	struct request *rq;
685 
686 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
687 	if (!rq) {
688 		dev_err(queue->ctrl->ctrl.device,
689 			"queue %d tag %#x not found\n",
690 			nvme_tcp_queue_id(queue), pdu->command_id);
691 		return -ENOENT;
692 	}
693 	req = blk_mq_rq_to_pdu(rq);
694 
695 	while (true) {
696 		int recv_len, ret;
697 
698 		recv_len = min_t(size_t, *len, queue->data_remaining);
699 		if (!recv_len)
700 			break;
701 
702 		if (!iov_iter_count(&req->iter)) {
703 			req->curr_bio = req->curr_bio->bi_next;
704 
705 			/*
706 			 * If we don`t have any bios it means that controller
707 			 * sent more data than we requested, hence error
708 			 */
709 			if (!req->curr_bio) {
710 				dev_err(queue->ctrl->ctrl.device,
711 					"queue %d no space in request %#x",
712 					nvme_tcp_queue_id(queue), rq->tag);
713 				nvme_tcp_init_recv_ctx(queue);
714 				return -EIO;
715 			}
716 			nvme_tcp_init_iter(req, READ);
717 		}
718 
719 		/* we can read only from what is left in this bio */
720 		recv_len = min_t(size_t, recv_len,
721 				iov_iter_count(&req->iter));
722 
723 		if (queue->data_digest)
724 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
725 				&req->iter, recv_len, queue->rcv_hash);
726 		else
727 			ret = skb_copy_datagram_iter(skb, *offset,
728 					&req->iter, recv_len);
729 		if (ret) {
730 			dev_err(queue->ctrl->ctrl.device,
731 				"queue %d failed to copy request %#x data",
732 				nvme_tcp_queue_id(queue), rq->tag);
733 			return ret;
734 		}
735 
736 		*len -= recv_len;
737 		*offset += recv_len;
738 		queue->data_remaining -= recv_len;
739 	}
740 
741 	if (!queue->data_remaining) {
742 		if (queue->data_digest) {
743 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
744 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
745 		} else {
746 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
747 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
748 				queue->nr_cqe++;
749 			}
750 			nvme_tcp_init_recv_ctx(queue);
751 		}
752 	}
753 
754 	return 0;
755 }
756 
757 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
758 		struct sk_buff *skb, unsigned int *offset, size_t *len)
759 {
760 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
761 	char *ddgst = (char *)&queue->recv_ddgst;
762 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
763 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
764 	int ret;
765 
766 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
767 	if (unlikely(ret))
768 		return ret;
769 
770 	queue->ddgst_remaining -= recv_len;
771 	*offset += recv_len;
772 	*len -= recv_len;
773 	if (queue->ddgst_remaining)
774 		return 0;
775 
776 	if (queue->recv_ddgst != queue->exp_ddgst) {
777 		dev_err(queue->ctrl->ctrl.device,
778 			"data digest error: recv %#x expected %#x\n",
779 			le32_to_cpu(queue->recv_ddgst),
780 			le32_to_cpu(queue->exp_ddgst));
781 		return -EIO;
782 	}
783 
784 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
785 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
786 						pdu->command_id);
787 
788 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
789 		queue->nr_cqe++;
790 	}
791 
792 	nvme_tcp_init_recv_ctx(queue);
793 	return 0;
794 }
795 
796 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
797 			     unsigned int offset, size_t len)
798 {
799 	struct nvme_tcp_queue *queue = desc->arg.data;
800 	size_t consumed = len;
801 	int result;
802 
803 	while (len) {
804 		switch (nvme_tcp_recv_state(queue)) {
805 		case NVME_TCP_RECV_PDU:
806 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
807 			break;
808 		case NVME_TCP_RECV_DATA:
809 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
810 			break;
811 		case NVME_TCP_RECV_DDGST:
812 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
813 			break;
814 		default:
815 			result = -EFAULT;
816 		}
817 		if (result) {
818 			dev_err(queue->ctrl->ctrl.device,
819 				"receive failed:  %d\n", result);
820 			queue->rd_enabled = false;
821 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
822 			return result;
823 		}
824 	}
825 
826 	return consumed;
827 }
828 
829 static void nvme_tcp_data_ready(struct sock *sk)
830 {
831 	struct nvme_tcp_queue *queue;
832 
833 	read_lock_bh(&sk->sk_callback_lock);
834 	queue = sk->sk_user_data;
835 	if (likely(queue && queue->rd_enabled) &&
836 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
837 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
838 	read_unlock_bh(&sk->sk_callback_lock);
839 }
840 
841 static void nvme_tcp_write_space(struct sock *sk)
842 {
843 	struct nvme_tcp_queue *queue;
844 
845 	read_lock_bh(&sk->sk_callback_lock);
846 	queue = sk->sk_user_data;
847 	if (likely(queue && sk_stream_is_writeable(sk))) {
848 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
849 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
850 	}
851 	read_unlock_bh(&sk->sk_callback_lock);
852 }
853 
854 static void nvme_tcp_state_change(struct sock *sk)
855 {
856 	struct nvme_tcp_queue *queue;
857 
858 	read_lock(&sk->sk_callback_lock);
859 	queue = sk->sk_user_data;
860 	if (!queue)
861 		goto done;
862 
863 	switch (sk->sk_state) {
864 	case TCP_CLOSE:
865 	case TCP_CLOSE_WAIT:
866 	case TCP_LAST_ACK:
867 	case TCP_FIN_WAIT1:
868 	case TCP_FIN_WAIT2:
869 		/* fallthrough */
870 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
871 		break;
872 	default:
873 		dev_info(queue->ctrl->ctrl.device,
874 			"queue %d socket state %d\n",
875 			nvme_tcp_queue_id(queue), sk->sk_state);
876 	}
877 
878 	queue->state_change(sk);
879 done:
880 	read_unlock(&sk->sk_callback_lock);
881 }
882 
883 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
884 {
885 	return !list_empty(&queue->send_list) ||
886 		!llist_empty(&queue->req_list) || queue->more_requests;
887 }
888 
889 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
890 {
891 	queue->request = NULL;
892 }
893 
894 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
895 {
896 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
897 }
898 
899 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
900 {
901 	struct nvme_tcp_queue *queue = req->queue;
902 
903 	while (true) {
904 		struct page *page = nvme_tcp_req_cur_page(req);
905 		size_t offset = nvme_tcp_req_cur_offset(req);
906 		size_t len = nvme_tcp_req_cur_length(req);
907 		bool last = nvme_tcp_pdu_last_send(req, len);
908 		int ret, flags = MSG_DONTWAIT;
909 
910 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
911 			flags |= MSG_EOR;
912 		else
913 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
914 
915 		/* can't zcopy slab pages */
916 		if (unlikely(PageSlab(page))) {
917 			ret = sock_no_sendpage(queue->sock, page, offset, len,
918 					flags);
919 		} else {
920 			ret = kernel_sendpage(queue->sock, page, offset, len,
921 					flags);
922 		}
923 		if (ret <= 0)
924 			return ret;
925 
926 		nvme_tcp_advance_req(req, ret);
927 		if (queue->data_digest)
928 			nvme_tcp_ddgst_update(queue->snd_hash, page,
929 					offset, ret);
930 
931 		/* fully successful last write*/
932 		if (last && ret == len) {
933 			if (queue->data_digest) {
934 				nvme_tcp_ddgst_final(queue->snd_hash,
935 					&req->ddgst);
936 				req->state = NVME_TCP_SEND_DDGST;
937 				req->offset = 0;
938 			} else {
939 				nvme_tcp_done_send_req(queue);
940 			}
941 			return 1;
942 		}
943 	}
944 	return -EAGAIN;
945 }
946 
947 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
948 {
949 	struct nvme_tcp_queue *queue = req->queue;
950 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
951 	bool inline_data = nvme_tcp_has_inline_data(req);
952 	u8 hdgst = nvme_tcp_hdgst_len(queue);
953 	int len = sizeof(*pdu) + hdgst - req->offset;
954 	int flags = MSG_DONTWAIT;
955 	int ret;
956 
957 	if (inline_data || nvme_tcp_queue_more(queue))
958 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
959 	else
960 		flags |= MSG_EOR;
961 
962 	if (queue->hdr_digest && !req->offset)
963 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
964 
965 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
966 			offset_in_page(pdu) + req->offset, len,  flags);
967 	if (unlikely(ret <= 0))
968 		return ret;
969 
970 	len -= ret;
971 	if (!len) {
972 		if (inline_data) {
973 			req->state = NVME_TCP_SEND_DATA;
974 			if (queue->data_digest)
975 				crypto_ahash_init(queue->snd_hash);
976 			nvme_tcp_init_iter(req, WRITE);
977 		} else {
978 			nvme_tcp_done_send_req(queue);
979 		}
980 		return 1;
981 	}
982 	req->offset += ret;
983 
984 	return -EAGAIN;
985 }
986 
987 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
988 {
989 	struct nvme_tcp_queue *queue = req->queue;
990 	struct nvme_tcp_data_pdu *pdu = req->pdu;
991 	u8 hdgst = nvme_tcp_hdgst_len(queue);
992 	int len = sizeof(*pdu) - req->offset + hdgst;
993 	int ret;
994 
995 	if (queue->hdr_digest && !req->offset)
996 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
997 
998 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
999 			offset_in_page(pdu) + req->offset, len,
1000 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1001 	if (unlikely(ret <= 0))
1002 		return ret;
1003 
1004 	len -= ret;
1005 	if (!len) {
1006 		req->state = NVME_TCP_SEND_DATA;
1007 		if (queue->data_digest)
1008 			crypto_ahash_init(queue->snd_hash);
1009 		if (!req->data_sent)
1010 			nvme_tcp_init_iter(req, WRITE);
1011 		return 1;
1012 	}
1013 	req->offset += ret;
1014 
1015 	return -EAGAIN;
1016 }
1017 
1018 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1019 {
1020 	struct nvme_tcp_queue *queue = req->queue;
1021 	int ret;
1022 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1023 	struct kvec iov = {
1024 		.iov_base = &req->ddgst + req->offset,
1025 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1026 	};
1027 
1028 	if (nvme_tcp_queue_more(queue))
1029 		msg.msg_flags |= MSG_MORE;
1030 	else
1031 		msg.msg_flags |= MSG_EOR;
1032 
1033 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1034 	if (unlikely(ret <= 0))
1035 		return ret;
1036 
1037 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1038 		nvme_tcp_done_send_req(queue);
1039 		return 1;
1040 	}
1041 
1042 	req->offset += ret;
1043 	return -EAGAIN;
1044 }
1045 
1046 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1047 {
1048 	struct nvme_tcp_request *req;
1049 	int ret = 1;
1050 
1051 	if (!queue->request) {
1052 		queue->request = nvme_tcp_fetch_request(queue);
1053 		if (!queue->request)
1054 			return 0;
1055 	}
1056 	req = queue->request;
1057 
1058 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1059 		ret = nvme_tcp_try_send_cmd_pdu(req);
1060 		if (ret <= 0)
1061 			goto done;
1062 		if (!nvme_tcp_has_inline_data(req))
1063 			return ret;
1064 	}
1065 
1066 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1067 		ret = nvme_tcp_try_send_data_pdu(req);
1068 		if (ret <= 0)
1069 			goto done;
1070 	}
1071 
1072 	if (req->state == NVME_TCP_SEND_DATA) {
1073 		ret = nvme_tcp_try_send_data(req);
1074 		if (ret <= 0)
1075 			goto done;
1076 	}
1077 
1078 	if (req->state == NVME_TCP_SEND_DDGST)
1079 		ret = nvme_tcp_try_send_ddgst(req);
1080 done:
1081 	if (ret == -EAGAIN) {
1082 		ret = 0;
1083 	} else if (ret < 0) {
1084 		dev_err(queue->ctrl->ctrl.device,
1085 			"failed to send request %d\n", ret);
1086 		if (ret != -EPIPE && ret != -ECONNRESET)
1087 			nvme_tcp_fail_request(queue->request);
1088 		nvme_tcp_done_send_req(queue);
1089 	}
1090 	return ret;
1091 }
1092 
1093 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1094 {
1095 	struct socket *sock = queue->sock;
1096 	struct sock *sk = sock->sk;
1097 	read_descriptor_t rd_desc;
1098 	int consumed;
1099 
1100 	rd_desc.arg.data = queue;
1101 	rd_desc.count = 1;
1102 	lock_sock(sk);
1103 	queue->nr_cqe = 0;
1104 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1105 	release_sock(sk);
1106 	return consumed;
1107 }
1108 
1109 static void nvme_tcp_io_work(struct work_struct *w)
1110 {
1111 	struct nvme_tcp_queue *queue =
1112 		container_of(w, struct nvme_tcp_queue, io_work);
1113 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1114 
1115 	do {
1116 		bool pending = false;
1117 		int result;
1118 
1119 		if (mutex_trylock(&queue->send_mutex)) {
1120 			result = nvme_tcp_try_send(queue);
1121 			mutex_unlock(&queue->send_mutex);
1122 			if (result > 0)
1123 				pending = true;
1124 			else if (unlikely(result < 0))
1125 				break;
1126 		}
1127 
1128 		result = nvme_tcp_try_recv(queue);
1129 		if (result > 0)
1130 			pending = true;
1131 		else if (unlikely(result < 0))
1132 			return;
1133 
1134 		if (!pending)
1135 			return;
1136 
1137 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1138 
1139 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1140 }
1141 
1142 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1143 {
1144 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1145 
1146 	ahash_request_free(queue->rcv_hash);
1147 	ahash_request_free(queue->snd_hash);
1148 	crypto_free_ahash(tfm);
1149 }
1150 
1151 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1152 {
1153 	struct crypto_ahash *tfm;
1154 
1155 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1156 	if (IS_ERR(tfm))
1157 		return PTR_ERR(tfm);
1158 
1159 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1160 	if (!queue->snd_hash)
1161 		goto free_tfm;
1162 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1163 
1164 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1165 	if (!queue->rcv_hash)
1166 		goto free_snd_hash;
1167 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1168 
1169 	return 0;
1170 free_snd_hash:
1171 	ahash_request_free(queue->snd_hash);
1172 free_tfm:
1173 	crypto_free_ahash(tfm);
1174 	return -ENOMEM;
1175 }
1176 
1177 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1178 {
1179 	struct nvme_tcp_request *async = &ctrl->async_req;
1180 
1181 	page_frag_free(async->pdu);
1182 }
1183 
1184 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1185 {
1186 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1187 	struct nvme_tcp_request *async = &ctrl->async_req;
1188 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1189 
1190 	async->pdu = page_frag_alloc(&queue->pf_cache,
1191 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1192 		GFP_KERNEL | __GFP_ZERO);
1193 	if (!async->pdu)
1194 		return -ENOMEM;
1195 
1196 	async->queue = &ctrl->queues[0];
1197 	return 0;
1198 }
1199 
1200 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1201 {
1202 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1203 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1204 
1205 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1206 		return;
1207 
1208 	if (queue->hdr_digest || queue->data_digest)
1209 		nvme_tcp_free_crypto(queue);
1210 
1211 	sock_release(queue->sock);
1212 	kfree(queue->pdu);
1213 }
1214 
1215 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1216 {
1217 	struct nvme_tcp_icreq_pdu *icreq;
1218 	struct nvme_tcp_icresp_pdu *icresp;
1219 	struct msghdr msg = {};
1220 	struct kvec iov;
1221 	bool ctrl_hdgst, ctrl_ddgst;
1222 	int ret;
1223 
1224 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1225 	if (!icreq)
1226 		return -ENOMEM;
1227 
1228 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1229 	if (!icresp) {
1230 		ret = -ENOMEM;
1231 		goto free_icreq;
1232 	}
1233 
1234 	icreq->hdr.type = nvme_tcp_icreq;
1235 	icreq->hdr.hlen = sizeof(*icreq);
1236 	icreq->hdr.pdo = 0;
1237 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1238 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1239 	icreq->maxr2t = 0; /* single inflight r2t supported */
1240 	icreq->hpda = 0; /* no alignment constraint */
1241 	if (queue->hdr_digest)
1242 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1243 	if (queue->data_digest)
1244 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1245 
1246 	iov.iov_base = icreq;
1247 	iov.iov_len = sizeof(*icreq);
1248 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1249 	if (ret < 0)
1250 		goto free_icresp;
1251 
1252 	memset(&msg, 0, sizeof(msg));
1253 	iov.iov_base = icresp;
1254 	iov.iov_len = sizeof(*icresp);
1255 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1256 			iov.iov_len, msg.msg_flags);
1257 	if (ret < 0)
1258 		goto free_icresp;
1259 
1260 	ret = -EINVAL;
1261 	if (icresp->hdr.type != nvme_tcp_icresp) {
1262 		pr_err("queue %d: bad type returned %d\n",
1263 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1264 		goto free_icresp;
1265 	}
1266 
1267 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1268 		pr_err("queue %d: bad pdu length returned %d\n",
1269 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1270 		goto free_icresp;
1271 	}
1272 
1273 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1274 		pr_err("queue %d: bad pfv returned %d\n",
1275 			nvme_tcp_queue_id(queue), icresp->pfv);
1276 		goto free_icresp;
1277 	}
1278 
1279 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1280 	if ((queue->data_digest && !ctrl_ddgst) ||
1281 	    (!queue->data_digest && ctrl_ddgst)) {
1282 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1283 			nvme_tcp_queue_id(queue),
1284 			queue->data_digest ? "enabled" : "disabled",
1285 			ctrl_ddgst ? "enabled" : "disabled");
1286 		goto free_icresp;
1287 	}
1288 
1289 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1290 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1291 	    (!queue->hdr_digest && ctrl_hdgst)) {
1292 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1293 			nvme_tcp_queue_id(queue),
1294 			queue->hdr_digest ? "enabled" : "disabled",
1295 			ctrl_hdgst ? "enabled" : "disabled");
1296 		goto free_icresp;
1297 	}
1298 
1299 	if (icresp->cpda != 0) {
1300 		pr_err("queue %d: unsupported cpda returned %d\n",
1301 			nvme_tcp_queue_id(queue), icresp->cpda);
1302 		goto free_icresp;
1303 	}
1304 
1305 	ret = 0;
1306 free_icresp:
1307 	kfree(icresp);
1308 free_icreq:
1309 	kfree(icreq);
1310 	return ret;
1311 }
1312 
1313 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1314 {
1315 	return nvme_tcp_queue_id(queue) == 0;
1316 }
1317 
1318 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1319 {
1320 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1321 	int qid = nvme_tcp_queue_id(queue);
1322 
1323 	return !nvme_tcp_admin_queue(queue) &&
1324 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1325 }
1326 
1327 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1328 {
1329 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1330 	int qid = nvme_tcp_queue_id(queue);
1331 
1332 	return !nvme_tcp_admin_queue(queue) &&
1333 		!nvme_tcp_default_queue(queue) &&
1334 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1335 			  ctrl->io_queues[HCTX_TYPE_READ];
1336 }
1337 
1338 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1339 {
1340 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1341 	int qid = nvme_tcp_queue_id(queue);
1342 
1343 	return !nvme_tcp_admin_queue(queue) &&
1344 		!nvme_tcp_default_queue(queue) &&
1345 		!nvme_tcp_read_queue(queue) &&
1346 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1347 			  ctrl->io_queues[HCTX_TYPE_READ] +
1348 			  ctrl->io_queues[HCTX_TYPE_POLL];
1349 }
1350 
1351 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1352 {
1353 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1354 	int qid = nvme_tcp_queue_id(queue);
1355 	int n = 0;
1356 
1357 	if (nvme_tcp_default_queue(queue))
1358 		n = qid - 1;
1359 	else if (nvme_tcp_read_queue(queue))
1360 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1361 	else if (nvme_tcp_poll_queue(queue))
1362 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1363 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1364 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1365 }
1366 
1367 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1368 		int qid, size_t queue_size)
1369 {
1370 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1371 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1372 	int ret, rcv_pdu_size;
1373 
1374 	queue->ctrl = ctrl;
1375 	init_llist_head(&queue->req_list);
1376 	INIT_LIST_HEAD(&queue->send_list);
1377 	mutex_init(&queue->send_mutex);
1378 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1379 	queue->queue_size = queue_size;
1380 
1381 	if (qid > 0)
1382 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1383 	else
1384 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1385 						NVME_TCP_ADMIN_CCSZ;
1386 
1387 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1388 			IPPROTO_TCP, &queue->sock);
1389 	if (ret) {
1390 		dev_err(nctrl->device,
1391 			"failed to create socket: %d\n", ret);
1392 		return ret;
1393 	}
1394 
1395 	/* Single syn retry */
1396 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1397 
1398 	/* Set TCP no delay */
1399 	tcp_sock_set_nodelay(queue->sock->sk);
1400 
1401 	/*
1402 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1403 	 * close. This is done to prevent stale data from being sent should
1404 	 * the network connection be restored before TCP times out.
1405 	 */
1406 	sock_no_linger(queue->sock->sk);
1407 
1408 	if (so_priority > 0)
1409 		sock_set_priority(queue->sock->sk, so_priority);
1410 
1411 	/* Set socket type of service */
1412 	if (nctrl->opts->tos >= 0)
1413 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1414 
1415 	/* Set 10 seconds timeout for icresp recvmsg */
1416 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1417 
1418 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1419 	nvme_tcp_set_queue_io_cpu(queue);
1420 	queue->request = NULL;
1421 	queue->data_remaining = 0;
1422 	queue->ddgst_remaining = 0;
1423 	queue->pdu_remaining = 0;
1424 	queue->pdu_offset = 0;
1425 	sk_set_memalloc(queue->sock->sk);
1426 
1427 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1428 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1429 			sizeof(ctrl->src_addr));
1430 		if (ret) {
1431 			dev_err(nctrl->device,
1432 				"failed to bind queue %d socket %d\n",
1433 				qid, ret);
1434 			goto err_sock;
1435 		}
1436 	}
1437 
1438 	queue->hdr_digest = nctrl->opts->hdr_digest;
1439 	queue->data_digest = nctrl->opts->data_digest;
1440 	if (queue->hdr_digest || queue->data_digest) {
1441 		ret = nvme_tcp_alloc_crypto(queue);
1442 		if (ret) {
1443 			dev_err(nctrl->device,
1444 				"failed to allocate queue %d crypto\n", qid);
1445 			goto err_sock;
1446 		}
1447 	}
1448 
1449 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1450 			nvme_tcp_hdgst_len(queue);
1451 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1452 	if (!queue->pdu) {
1453 		ret = -ENOMEM;
1454 		goto err_crypto;
1455 	}
1456 
1457 	dev_dbg(nctrl->device, "connecting queue %d\n",
1458 			nvme_tcp_queue_id(queue));
1459 
1460 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1461 		sizeof(ctrl->addr), 0);
1462 	if (ret) {
1463 		dev_err(nctrl->device,
1464 			"failed to connect socket: %d\n", ret);
1465 		goto err_rcv_pdu;
1466 	}
1467 
1468 	ret = nvme_tcp_init_connection(queue);
1469 	if (ret)
1470 		goto err_init_connect;
1471 
1472 	queue->rd_enabled = true;
1473 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1474 	nvme_tcp_init_recv_ctx(queue);
1475 
1476 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1477 	queue->sock->sk->sk_user_data = queue;
1478 	queue->state_change = queue->sock->sk->sk_state_change;
1479 	queue->data_ready = queue->sock->sk->sk_data_ready;
1480 	queue->write_space = queue->sock->sk->sk_write_space;
1481 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1482 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1483 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1484 #ifdef CONFIG_NET_RX_BUSY_POLL
1485 	queue->sock->sk->sk_ll_usec = 1;
1486 #endif
1487 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1488 
1489 	return 0;
1490 
1491 err_init_connect:
1492 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1493 err_rcv_pdu:
1494 	kfree(queue->pdu);
1495 err_crypto:
1496 	if (queue->hdr_digest || queue->data_digest)
1497 		nvme_tcp_free_crypto(queue);
1498 err_sock:
1499 	sock_release(queue->sock);
1500 	queue->sock = NULL;
1501 	return ret;
1502 }
1503 
1504 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1505 {
1506 	struct socket *sock = queue->sock;
1507 
1508 	write_lock_bh(&sock->sk->sk_callback_lock);
1509 	sock->sk->sk_user_data  = NULL;
1510 	sock->sk->sk_data_ready = queue->data_ready;
1511 	sock->sk->sk_state_change = queue->state_change;
1512 	sock->sk->sk_write_space  = queue->write_space;
1513 	write_unlock_bh(&sock->sk->sk_callback_lock);
1514 }
1515 
1516 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1517 {
1518 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1519 	nvme_tcp_restore_sock_calls(queue);
1520 	cancel_work_sync(&queue->io_work);
1521 }
1522 
1523 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1524 {
1525 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1526 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1527 
1528 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1529 		return;
1530 
1531 	__nvme_tcp_stop_queue(queue);
1532 }
1533 
1534 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1535 {
1536 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1537 	int ret;
1538 
1539 	if (idx)
1540 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1541 	else
1542 		ret = nvmf_connect_admin_queue(nctrl);
1543 
1544 	if (!ret) {
1545 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1546 	} else {
1547 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1548 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1549 		dev_err(nctrl->device,
1550 			"failed to connect queue: %d ret=%d\n", idx, ret);
1551 	}
1552 	return ret;
1553 }
1554 
1555 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1556 		bool admin)
1557 {
1558 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1559 	struct blk_mq_tag_set *set;
1560 	int ret;
1561 
1562 	if (admin) {
1563 		set = &ctrl->admin_tag_set;
1564 		memset(set, 0, sizeof(*set));
1565 		set->ops = &nvme_tcp_admin_mq_ops;
1566 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1567 		set->reserved_tags = 2; /* connect + keep-alive */
1568 		set->numa_node = nctrl->numa_node;
1569 		set->flags = BLK_MQ_F_BLOCKING;
1570 		set->cmd_size = sizeof(struct nvme_tcp_request);
1571 		set->driver_data = ctrl;
1572 		set->nr_hw_queues = 1;
1573 		set->timeout = ADMIN_TIMEOUT;
1574 	} else {
1575 		set = &ctrl->tag_set;
1576 		memset(set, 0, sizeof(*set));
1577 		set->ops = &nvme_tcp_mq_ops;
1578 		set->queue_depth = nctrl->sqsize + 1;
1579 		set->reserved_tags = 1; /* fabric connect */
1580 		set->numa_node = nctrl->numa_node;
1581 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1582 		set->cmd_size = sizeof(struct nvme_tcp_request);
1583 		set->driver_data = ctrl;
1584 		set->nr_hw_queues = nctrl->queue_count - 1;
1585 		set->timeout = NVME_IO_TIMEOUT;
1586 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1587 	}
1588 
1589 	ret = blk_mq_alloc_tag_set(set);
1590 	if (ret)
1591 		return ERR_PTR(ret);
1592 
1593 	return set;
1594 }
1595 
1596 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1597 {
1598 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1599 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1600 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1601 	}
1602 
1603 	nvme_tcp_free_queue(ctrl, 0);
1604 }
1605 
1606 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1607 {
1608 	int i;
1609 
1610 	for (i = 1; i < ctrl->queue_count; i++)
1611 		nvme_tcp_free_queue(ctrl, i);
1612 }
1613 
1614 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1615 {
1616 	int i;
1617 
1618 	for (i = 1; i < ctrl->queue_count; i++)
1619 		nvme_tcp_stop_queue(ctrl, i);
1620 }
1621 
1622 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1623 {
1624 	int i, ret = 0;
1625 
1626 	for (i = 1; i < ctrl->queue_count; i++) {
1627 		ret = nvme_tcp_start_queue(ctrl, i);
1628 		if (ret)
1629 			goto out_stop_queues;
1630 	}
1631 
1632 	return 0;
1633 
1634 out_stop_queues:
1635 	for (i--; i >= 1; i--)
1636 		nvme_tcp_stop_queue(ctrl, i);
1637 	return ret;
1638 }
1639 
1640 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1641 {
1642 	int ret;
1643 
1644 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1645 	if (ret)
1646 		return ret;
1647 
1648 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1649 	if (ret)
1650 		goto out_free_queue;
1651 
1652 	return 0;
1653 
1654 out_free_queue:
1655 	nvme_tcp_free_queue(ctrl, 0);
1656 	return ret;
1657 }
1658 
1659 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1660 {
1661 	int i, ret;
1662 
1663 	for (i = 1; i < ctrl->queue_count; i++) {
1664 		ret = nvme_tcp_alloc_queue(ctrl, i,
1665 				ctrl->sqsize + 1);
1666 		if (ret)
1667 			goto out_free_queues;
1668 	}
1669 
1670 	return 0;
1671 
1672 out_free_queues:
1673 	for (i--; i >= 1; i--)
1674 		nvme_tcp_free_queue(ctrl, i);
1675 
1676 	return ret;
1677 }
1678 
1679 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1680 {
1681 	unsigned int nr_io_queues;
1682 
1683 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1684 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1685 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1686 
1687 	return nr_io_queues;
1688 }
1689 
1690 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1691 		unsigned int nr_io_queues)
1692 {
1693 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1694 	struct nvmf_ctrl_options *opts = nctrl->opts;
1695 
1696 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1697 		/*
1698 		 * separate read/write queues
1699 		 * hand out dedicated default queues only after we have
1700 		 * sufficient read queues.
1701 		 */
1702 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1703 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1704 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1705 			min(opts->nr_write_queues, nr_io_queues);
1706 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1707 	} else {
1708 		/*
1709 		 * shared read/write queues
1710 		 * either no write queues were requested, or we don't have
1711 		 * sufficient queue count to have dedicated default queues.
1712 		 */
1713 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1714 			min(opts->nr_io_queues, nr_io_queues);
1715 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1716 	}
1717 
1718 	if (opts->nr_poll_queues && nr_io_queues) {
1719 		/* map dedicated poll queues only if we have queues left */
1720 		ctrl->io_queues[HCTX_TYPE_POLL] =
1721 			min(opts->nr_poll_queues, nr_io_queues);
1722 	}
1723 }
1724 
1725 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1726 {
1727 	unsigned int nr_io_queues;
1728 	int ret;
1729 
1730 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1731 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1732 	if (ret)
1733 		return ret;
1734 
1735 	ctrl->queue_count = nr_io_queues + 1;
1736 	if (ctrl->queue_count < 2)
1737 		return 0;
1738 
1739 	dev_info(ctrl->device,
1740 		"creating %d I/O queues.\n", nr_io_queues);
1741 
1742 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1743 
1744 	return __nvme_tcp_alloc_io_queues(ctrl);
1745 }
1746 
1747 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1748 {
1749 	nvme_tcp_stop_io_queues(ctrl);
1750 	if (remove) {
1751 		blk_cleanup_queue(ctrl->connect_q);
1752 		blk_mq_free_tag_set(ctrl->tagset);
1753 	}
1754 	nvme_tcp_free_io_queues(ctrl);
1755 }
1756 
1757 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1758 {
1759 	int ret;
1760 
1761 	ret = nvme_tcp_alloc_io_queues(ctrl);
1762 	if (ret)
1763 		return ret;
1764 
1765 	if (new) {
1766 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1767 		if (IS_ERR(ctrl->tagset)) {
1768 			ret = PTR_ERR(ctrl->tagset);
1769 			goto out_free_io_queues;
1770 		}
1771 
1772 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1773 		if (IS_ERR(ctrl->connect_q)) {
1774 			ret = PTR_ERR(ctrl->connect_q);
1775 			goto out_free_tag_set;
1776 		}
1777 	}
1778 
1779 	ret = nvme_tcp_start_io_queues(ctrl);
1780 	if (ret)
1781 		goto out_cleanup_connect_q;
1782 
1783 	if (!new) {
1784 		nvme_start_queues(ctrl);
1785 		nvme_wait_freeze(ctrl);
1786 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1787 			ctrl->queue_count - 1);
1788 		nvme_unfreeze(ctrl);
1789 	}
1790 
1791 	return 0;
1792 
1793 out_cleanup_connect_q:
1794 	if (new)
1795 		blk_cleanup_queue(ctrl->connect_q);
1796 out_free_tag_set:
1797 	if (new)
1798 		blk_mq_free_tag_set(ctrl->tagset);
1799 out_free_io_queues:
1800 	nvme_tcp_free_io_queues(ctrl);
1801 	return ret;
1802 }
1803 
1804 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1805 {
1806 	nvme_tcp_stop_queue(ctrl, 0);
1807 	if (remove) {
1808 		blk_cleanup_queue(ctrl->admin_q);
1809 		blk_cleanup_queue(ctrl->fabrics_q);
1810 		blk_mq_free_tag_set(ctrl->admin_tagset);
1811 	}
1812 	nvme_tcp_free_admin_queue(ctrl);
1813 }
1814 
1815 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1816 {
1817 	int error;
1818 
1819 	error = nvme_tcp_alloc_admin_queue(ctrl);
1820 	if (error)
1821 		return error;
1822 
1823 	if (new) {
1824 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1825 		if (IS_ERR(ctrl->admin_tagset)) {
1826 			error = PTR_ERR(ctrl->admin_tagset);
1827 			goto out_free_queue;
1828 		}
1829 
1830 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1831 		if (IS_ERR(ctrl->fabrics_q)) {
1832 			error = PTR_ERR(ctrl->fabrics_q);
1833 			goto out_free_tagset;
1834 		}
1835 
1836 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1837 		if (IS_ERR(ctrl->admin_q)) {
1838 			error = PTR_ERR(ctrl->admin_q);
1839 			goto out_cleanup_fabrics_q;
1840 		}
1841 	}
1842 
1843 	error = nvme_tcp_start_queue(ctrl, 0);
1844 	if (error)
1845 		goto out_cleanup_queue;
1846 
1847 	error = nvme_enable_ctrl(ctrl);
1848 	if (error)
1849 		goto out_stop_queue;
1850 
1851 	blk_mq_unquiesce_queue(ctrl->admin_q);
1852 
1853 	error = nvme_init_identify(ctrl);
1854 	if (error)
1855 		goto out_stop_queue;
1856 
1857 	return 0;
1858 
1859 out_stop_queue:
1860 	nvme_tcp_stop_queue(ctrl, 0);
1861 out_cleanup_queue:
1862 	if (new)
1863 		blk_cleanup_queue(ctrl->admin_q);
1864 out_cleanup_fabrics_q:
1865 	if (new)
1866 		blk_cleanup_queue(ctrl->fabrics_q);
1867 out_free_tagset:
1868 	if (new)
1869 		blk_mq_free_tag_set(ctrl->admin_tagset);
1870 out_free_queue:
1871 	nvme_tcp_free_admin_queue(ctrl);
1872 	return error;
1873 }
1874 
1875 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1876 		bool remove)
1877 {
1878 	blk_mq_quiesce_queue(ctrl->admin_q);
1879 	nvme_tcp_stop_queue(ctrl, 0);
1880 	if (ctrl->admin_tagset) {
1881 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1882 			nvme_cancel_request, ctrl);
1883 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1884 	}
1885 	if (remove)
1886 		blk_mq_unquiesce_queue(ctrl->admin_q);
1887 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1888 }
1889 
1890 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1891 		bool remove)
1892 {
1893 	if (ctrl->queue_count <= 1)
1894 		return;
1895 	nvme_start_freeze(ctrl);
1896 	nvme_stop_queues(ctrl);
1897 	nvme_tcp_stop_io_queues(ctrl);
1898 	if (ctrl->tagset) {
1899 		blk_mq_tagset_busy_iter(ctrl->tagset,
1900 			nvme_cancel_request, ctrl);
1901 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1902 	}
1903 	if (remove)
1904 		nvme_start_queues(ctrl);
1905 	nvme_tcp_destroy_io_queues(ctrl, remove);
1906 }
1907 
1908 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1909 {
1910 	/* If we are resetting/deleting then do nothing */
1911 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1912 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1913 			ctrl->state == NVME_CTRL_LIVE);
1914 		return;
1915 	}
1916 
1917 	if (nvmf_should_reconnect(ctrl)) {
1918 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1919 			ctrl->opts->reconnect_delay);
1920 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1921 				ctrl->opts->reconnect_delay * HZ);
1922 	} else {
1923 		dev_info(ctrl->device, "Removing controller...\n");
1924 		nvme_delete_ctrl(ctrl);
1925 	}
1926 }
1927 
1928 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1929 {
1930 	struct nvmf_ctrl_options *opts = ctrl->opts;
1931 	int ret;
1932 
1933 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1934 	if (ret)
1935 		return ret;
1936 
1937 	if (ctrl->icdoff) {
1938 		dev_err(ctrl->device, "icdoff is not supported!\n");
1939 		goto destroy_admin;
1940 	}
1941 
1942 	if (opts->queue_size > ctrl->sqsize + 1)
1943 		dev_warn(ctrl->device,
1944 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1945 			opts->queue_size, ctrl->sqsize + 1);
1946 
1947 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1948 		dev_warn(ctrl->device,
1949 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1950 			ctrl->sqsize + 1, ctrl->maxcmd);
1951 		ctrl->sqsize = ctrl->maxcmd - 1;
1952 	}
1953 
1954 	if (ctrl->queue_count > 1) {
1955 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1956 		if (ret)
1957 			goto destroy_admin;
1958 	}
1959 
1960 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1961 		/*
1962 		 * state change failure is ok if we started ctrl delete,
1963 		 * unless we're during creation of a new controller to
1964 		 * avoid races with teardown flow.
1965 		 */
1966 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1967 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
1968 		WARN_ON_ONCE(new);
1969 		ret = -EINVAL;
1970 		goto destroy_io;
1971 	}
1972 
1973 	nvme_start_ctrl(ctrl);
1974 	return 0;
1975 
1976 destroy_io:
1977 	if (ctrl->queue_count > 1)
1978 		nvme_tcp_destroy_io_queues(ctrl, new);
1979 destroy_admin:
1980 	nvme_tcp_stop_queue(ctrl, 0);
1981 	nvme_tcp_destroy_admin_queue(ctrl, new);
1982 	return ret;
1983 }
1984 
1985 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1986 {
1987 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1988 			struct nvme_tcp_ctrl, connect_work);
1989 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1990 
1991 	++ctrl->nr_reconnects;
1992 
1993 	if (nvme_tcp_setup_ctrl(ctrl, false))
1994 		goto requeue;
1995 
1996 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1997 			ctrl->nr_reconnects);
1998 
1999 	ctrl->nr_reconnects = 0;
2000 
2001 	return;
2002 
2003 requeue:
2004 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2005 			ctrl->nr_reconnects);
2006 	nvme_tcp_reconnect_or_remove(ctrl);
2007 }
2008 
2009 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2010 {
2011 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2012 				struct nvme_tcp_ctrl, err_work);
2013 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2014 
2015 	nvme_stop_keep_alive(ctrl);
2016 	nvme_tcp_teardown_io_queues(ctrl, false);
2017 	/* unquiesce to fail fast pending requests */
2018 	nvme_start_queues(ctrl);
2019 	nvme_tcp_teardown_admin_queue(ctrl, false);
2020 	blk_mq_unquiesce_queue(ctrl->admin_q);
2021 
2022 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2023 		/* state change failure is ok if we started ctrl delete */
2024 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2025 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2026 		return;
2027 	}
2028 
2029 	nvme_tcp_reconnect_or_remove(ctrl);
2030 }
2031 
2032 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2033 {
2034 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2035 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2036 
2037 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2038 	blk_mq_quiesce_queue(ctrl->admin_q);
2039 	if (shutdown)
2040 		nvme_shutdown_ctrl(ctrl);
2041 	else
2042 		nvme_disable_ctrl(ctrl);
2043 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2044 }
2045 
2046 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2047 {
2048 	nvme_tcp_teardown_ctrl(ctrl, true);
2049 }
2050 
2051 static void nvme_reset_ctrl_work(struct work_struct *work)
2052 {
2053 	struct nvme_ctrl *ctrl =
2054 		container_of(work, struct nvme_ctrl, reset_work);
2055 
2056 	nvme_stop_ctrl(ctrl);
2057 	nvme_tcp_teardown_ctrl(ctrl, false);
2058 
2059 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2060 		/* state change failure is ok if we started ctrl delete */
2061 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2062 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2063 		return;
2064 	}
2065 
2066 	if (nvme_tcp_setup_ctrl(ctrl, false))
2067 		goto out_fail;
2068 
2069 	return;
2070 
2071 out_fail:
2072 	++ctrl->nr_reconnects;
2073 	nvme_tcp_reconnect_or_remove(ctrl);
2074 }
2075 
2076 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2077 {
2078 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2079 
2080 	if (list_empty(&ctrl->list))
2081 		goto free_ctrl;
2082 
2083 	mutex_lock(&nvme_tcp_ctrl_mutex);
2084 	list_del(&ctrl->list);
2085 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2086 
2087 	nvmf_free_options(nctrl->opts);
2088 free_ctrl:
2089 	kfree(ctrl->queues);
2090 	kfree(ctrl);
2091 }
2092 
2093 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2094 {
2095 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2096 
2097 	sg->addr = 0;
2098 	sg->length = 0;
2099 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2100 			NVME_SGL_FMT_TRANSPORT_A;
2101 }
2102 
2103 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2104 		struct nvme_command *c, u32 data_len)
2105 {
2106 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2107 
2108 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2109 	sg->length = cpu_to_le32(data_len);
2110 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2111 }
2112 
2113 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2114 		u32 data_len)
2115 {
2116 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2117 
2118 	sg->addr = 0;
2119 	sg->length = cpu_to_le32(data_len);
2120 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2121 			NVME_SGL_FMT_TRANSPORT_A;
2122 }
2123 
2124 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2125 {
2126 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2127 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2128 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2129 	struct nvme_command *cmd = &pdu->cmd;
2130 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2131 
2132 	memset(pdu, 0, sizeof(*pdu));
2133 	pdu->hdr.type = nvme_tcp_cmd;
2134 	if (queue->hdr_digest)
2135 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2136 	pdu->hdr.hlen = sizeof(*pdu);
2137 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2138 
2139 	cmd->common.opcode = nvme_admin_async_event;
2140 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2141 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2142 	nvme_tcp_set_sg_null(cmd);
2143 
2144 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2145 	ctrl->async_req.offset = 0;
2146 	ctrl->async_req.curr_bio = NULL;
2147 	ctrl->async_req.data_len = 0;
2148 
2149 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2150 }
2151 
2152 static enum blk_eh_timer_return
2153 nvme_tcp_timeout(struct request *rq, bool reserved)
2154 {
2155 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2156 	struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2157 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2158 
2159 	/*
2160 	 * Restart the timer if a controller reset is already scheduled. Any
2161 	 * timed out commands would be handled before entering the connecting
2162 	 * state.
2163 	 */
2164 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
2165 		return BLK_EH_RESET_TIMER;
2166 
2167 	dev_warn(ctrl->ctrl.device,
2168 		"queue %d: timeout request %#x type %d\n",
2169 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2170 
2171 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2172 		/*
2173 		 * Teardown immediately if controller times out while starting
2174 		 * or we are already started error recovery. all outstanding
2175 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
2176 		 */
2177 		flush_work(&ctrl->err_work);
2178 		nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2179 		nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2180 		return BLK_EH_DONE;
2181 	}
2182 
2183 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2184 	nvme_tcp_error_recovery(&ctrl->ctrl);
2185 
2186 	return BLK_EH_RESET_TIMER;
2187 }
2188 
2189 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2190 			struct request *rq)
2191 {
2192 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2193 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2194 	struct nvme_command *c = &pdu->cmd;
2195 
2196 	c->common.flags |= NVME_CMD_SGL_METABUF;
2197 
2198 	if (!blk_rq_nr_phys_segments(rq))
2199 		nvme_tcp_set_sg_null(c);
2200 	else if (rq_data_dir(rq) == WRITE &&
2201 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2202 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2203 	else
2204 		nvme_tcp_set_sg_host_data(c, req->data_len);
2205 
2206 	return 0;
2207 }
2208 
2209 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2210 		struct request *rq)
2211 {
2212 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2213 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2214 	struct nvme_tcp_queue *queue = req->queue;
2215 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2216 	blk_status_t ret;
2217 
2218 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2219 	if (ret)
2220 		return ret;
2221 
2222 	req->state = NVME_TCP_SEND_CMD_PDU;
2223 	req->offset = 0;
2224 	req->data_sent = 0;
2225 	req->pdu_len = 0;
2226 	req->pdu_sent = 0;
2227 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2228 				blk_rq_payload_bytes(rq) : 0;
2229 	req->curr_bio = rq->bio;
2230 
2231 	if (rq_data_dir(rq) == WRITE &&
2232 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2233 		req->pdu_len = req->data_len;
2234 	else if (req->curr_bio)
2235 		nvme_tcp_init_iter(req, READ);
2236 
2237 	pdu->hdr.type = nvme_tcp_cmd;
2238 	pdu->hdr.flags = 0;
2239 	if (queue->hdr_digest)
2240 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2241 	if (queue->data_digest && req->pdu_len) {
2242 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2243 		ddgst = nvme_tcp_ddgst_len(queue);
2244 	}
2245 	pdu->hdr.hlen = sizeof(*pdu);
2246 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2247 	pdu->hdr.plen =
2248 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2249 
2250 	ret = nvme_tcp_map_data(queue, rq);
2251 	if (unlikely(ret)) {
2252 		nvme_cleanup_cmd(rq);
2253 		dev_err(queue->ctrl->ctrl.device,
2254 			"Failed to map data (%d)\n", ret);
2255 		return ret;
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2262 {
2263 	struct nvme_tcp_queue *queue = hctx->driver_data;
2264 
2265 	if (!llist_empty(&queue->req_list))
2266 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2267 }
2268 
2269 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2270 		const struct blk_mq_queue_data *bd)
2271 {
2272 	struct nvme_ns *ns = hctx->queue->queuedata;
2273 	struct nvme_tcp_queue *queue = hctx->driver_data;
2274 	struct request *rq = bd->rq;
2275 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2276 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2277 	blk_status_t ret;
2278 
2279 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2280 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2281 
2282 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2283 	if (unlikely(ret))
2284 		return ret;
2285 
2286 	blk_mq_start_request(rq);
2287 
2288 	nvme_tcp_queue_request(req, true, bd->last);
2289 
2290 	return BLK_STS_OK;
2291 }
2292 
2293 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2294 {
2295 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2296 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2297 
2298 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2299 		/* separate read/write queues */
2300 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2301 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2302 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2303 		set->map[HCTX_TYPE_READ].nr_queues =
2304 			ctrl->io_queues[HCTX_TYPE_READ];
2305 		set->map[HCTX_TYPE_READ].queue_offset =
2306 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2307 	} else {
2308 		/* shared read/write queues */
2309 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2310 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2311 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2312 		set->map[HCTX_TYPE_READ].nr_queues =
2313 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2314 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2315 	}
2316 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2317 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2318 
2319 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2320 		/* map dedicated poll queues only if we have queues left */
2321 		set->map[HCTX_TYPE_POLL].nr_queues =
2322 				ctrl->io_queues[HCTX_TYPE_POLL];
2323 		set->map[HCTX_TYPE_POLL].queue_offset =
2324 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2325 			ctrl->io_queues[HCTX_TYPE_READ];
2326 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2327 	}
2328 
2329 	dev_info(ctrl->ctrl.device,
2330 		"mapped %d/%d/%d default/read/poll queues.\n",
2331 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2332 		ctrl->io_queues[HCTX_TYPE_READ],
2333 		ctrl->io_queues[HCTX_TYPE_POLL]);
2334 
2335 	return 0;
2336 }
2337 
2338 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2339 {
2340 	struct nvme_tcp_queue *queue = hctx->driver_data;
2341 	struct sock *sk = queue->sock->sk;
2342 
2343 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2344 		return 0;
2345 
2346 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2347 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2348 		sk_busy_loop(sk, true);
2349 	nvme_tcp_try_recv(queue);
2350 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2351 	return queue->nr_cqe;
2352 }
2353 
2354 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2355 	.queue_rq	= nvme_tcp_queue_rq,
2356 	.commit_rqs	= nvme_tcp_commit_rqs,
2357 	.complete	= nvme_complete_rq,
2358 	.init_request	= nvme_tcp_init_request,
2359 	.exit_request	= nvme_tcp_exit_request,
2360 	.init_hctx	= nvme_tcp_init_hctx,
2361 	.timeout	= nvme_tcp_timeout,
2362 	.map_queues	= nvme_tcp_map_queues,
2363 	.poll		= nvme_tcp_poll,
2364 };
2365 
2366 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2367 	.queue_rq	= nvme_tcp_queue_rq,
2368 	.complete	= nvme_complete_rq,
2369 	.init_request	= nvme_tcp_init_request,
2370 	.exit_request	= nvme_tcp_exit_request,
2371 	.init_hctx	= nvme_tcp_init_admin_hctx,
2372 	.timeout	= nvme_tcp_timeout,
2373 };
2374 
2375 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2376 	.name			= "tcp",
2377 	.module			= THIS_MODULE,
2378 	.flags			= NVME_F_FABRICS,
2379 	.reg_read32		= nvmf_reg_read32,
2380 	.reg_read64		= nvmf_reg_read64,
2381 	.reg_write32		= nvmf_reg_write32,
2382 	.free_ctrl		= nvme_tcp_free_ctrl,
2383 	.submit_async_event	= nvme_tcp_submit_async_event,
2384 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2385 	.get_address		= nvmf_get_address,
2386 };
2387 
2388 static bool
2389 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2390 {
2391 	struct nvme_tcp_ctrl *ctrl;
2392 	bool found = false;
2393 
2394 	mutex_lock(&nvme_tcp_ctrl_mutex);
2395 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2396 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2397 		if (found)
2398 			break;
2399 	}
2400 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2401 
2402 	return found;
2403 }
2404 
2405 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2406 		struct nvmf_ctrl_options *opts)
2407 {
2408 	struct nvme_tcp_ctrl *ctrl;
2409 	int ret;
2410 
2411 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2412 	if (!ctrl)
2413 		return ERR_PTR(-ENOMEM);
2414 
2415 	INIT_LIST_HEAD(&ctrl->list);
2416 	ctrl->ctrl.opts = opts;
2417 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2418 				opts->nr_poll_queues + 1;
2419 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2420 	ctrl->ctrl.kato = opts->kato;
2421 
2422 	INIT_DELAYED_WORK(&ctrl->connect_work,
2423 			nvme_tcp_reconnect_ctrl_work);
2424 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2425 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2426 
2427 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2428 		opts->trsvcid =
2429 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2430 		if (!opts->trsvcid) {
2431 			ret = -ENOMEM;
2432 			goto out_free_ctrl;
2433 		}
2434 		opts->mask |= NVMF_OPT_TRSVCID;
2435 	}
2436 
2437 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2438 			opts->traddr, opts->trsvcid, &ctrl->addr);
2439 	if (ret) {
2440 		pr_err("malformed address passed: %s:%s\n",
2441 			opts->traddr, opts->trsvcid);
2442 		goto out_free_ctrl;
2443 	}
2444 
2445 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2446 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2447 			opts->host_traddr, NULL, &ctrl->src_addr);
2448 		if (ret) {
2449 			pr_err("malformed src address passed: %s\n",
2450 			       opts->host_traddr);
2451 			goto out_free_ctrl;
2452 		}
2453 	}
2454 
2455 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2456 		ret = -EALREADY;
2457 		goto out_free_ctrl;
2458 	}
2459 
2460 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2461 				GFP_KERNEL);
2462 	if (!ctrl->queues) {
2463 		ret = -ENOMEM;
2464 		goto out_free_ctrl;
2465 	}
2466 
2467 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2468 	if (ret)
2469 		goto out_kfree_queues;
2470 
2471 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2472 		WARN_ON_ONCE(1);
2473 		ret = -EINTR;
2474 		goto out_uninit_ctrl;
2475 	}
2476 
2477 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2478 	if (ret)
2479 		goto out_uninit_ctrl;
2480 
2481 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2482 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2483 
2484 	mutex_lock(&nvme_tcp_ctrl_mutex);
2485 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2486 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2487 
2488 	return &ctrl->ctrl;
2489 
2490 out_uninit_ctrl:
2491 	nvme_uninit_ctrl(&ctrl->ctrl);
2492 	nvme_put_ctrl(&ctrl->ctrl);
2493 	if (ret > 0)
2494 		ret = -EIO;
2495 	return ERR_PTR(ret);
2496 out_kfree_queues:
2497 	kfree(ctrl->queues);
2498 out_free_ctrl:
2499 	kfree(ctrl);
2500 	return ERR_PTR(ret);
2501 }
2502 
2503 static struct nvmf_transport_ops nvme_tcp_transport = {
2504 	.name		= "tcp",
2505 	.module		= THIS_MODULE,
2506 	.required_opts	= NVMF_OPT_TRADDR,
2507 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2508 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2509 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2510 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2511 			  NVMF_OPT_TOS,
2512 	.create_ctrl	= nvme_tcp_create_ctrl,
2513 };
2514 
2515 static int __init nvme_tcp_init_module(void)
2516 {
2517 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2518 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2519 	if (!nvme_tcp_wq)
2520 		return -ENOMEM;
2521 
2522 	nvmf_register_transport(&nvme_tcp_transport);
2523 	return 0;
2524 }
2525 
2526 static void __exit nvme_tcp_cleanup_module(void)
2527 {
2528 	struct nvme_tcp_ctrl *ctrl;
2529 
2530 	nvmf_unregister_transport(&nvme_tcp_transport);
2531 
2532 	mutex_lock(&nvme_tcp_ctrl_mutex);
2533 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2534 		nvme_delete_ctrl(&ctrl->ctrl);
2535 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2536 	flush_workqueue(nvme_delete_wq);
2537 
2538 	destroy_workqueue(nvme_tcp_wq);
2539 }
2540 
2541 module_init(nvme_tcp_init_module);
2542 module_exit(nvme_tcp_cleanup_module);
2543 
2544 MODULE_LICENSE("GPL v2");
2545