1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 #include <trace/events/sock.h> 18 19 #include "nvme.h" 20 #include "fabrics.h" 21 22 struct nvme_tcp_queue; 23 24 /* Define the socket priority to use for connections were it is desirable 25 * that the NIC consider performing optimized packet processing or filtering. 26 * A non-zero value being sufficient to indicate general consideration of any 27 * possible optimization. Making it a module param allows for alternative 28 * values that may be unique for some NIC implementations. 29 */ 30 static int so_priority; 31 module_param(so_priority, int, 0644); 32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 33 34 #ifdef CONFIG_DEBUG_LOCK_ALLOC 35 /* lockdep can detect a circular dependency of the form 36 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 37 * because dependencies are tracked for both nvme-tcp and user contexts. Using 38 * a separate class prevents lockdep from conflating nvme-tcp socket use with 39 * user-space socket API use. 40 */ 41 static struct lock_class_key nvme_tcp_sk_key[2]; 42 static struct lock_class_key nvme_tcp_slock_key[2]; 43 44 static void nvme_tcp_reclassify_socket(struct socket *sock) 45 { 46 struct sock *sk = sock->sk; 47 48 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 49 return; 50 51 switch (sk->sk_family) { 52 case AF_INET: 53 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 54 &nvme_tcp_slock_key[0], 55 "sk_lock-AF_INET-NVME", 56 &nvme_tcp_sk_key[0]); 57 break; 58 case AF_INET6: 59 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 60 &nvme_tcp_slock_key[1], 61 "sk_lock-AF_INET6-NVME", 62 &nvme_tcp_sk_key[1]); 63 break; 64 default: 65 WARN_ON_ONCE(1); 66 } 67 } 68 #else 69 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 70 #endif 71 72 enum nvme_tcp_send_state { 73 NVME_TCP_SEND_CMD_PDU = 0, 74 NVME_TCP_SEND_H2C_PDU, 75 NVME_TCP_SEND_DATA, 76 NVME_TCP_SEND_DDGST, 77 }; 78 79 struct nvme_tcp_request { 80 struct nvme_request req; 81 void *pdu; 82 struct nvme_tcp_queue *queue; 83 u32 data_len; 84 u32 pdu_len; 85 u32 pdu_sent; 86 u32 h2cdata_left; 87 u32 h2cdata_offset; 88 u16 ttag; 89 __le16 status; 90 struct list_head entry; 91 struct llist_node lentry; 92 __le32 ddgst; 93 94 struct bio *curr_bio; 95 struct iov_iter iter; 96 97 /* send state */ 98 size_t offset; 99 size_t data_sent; 100 enum nvme_tcp_send_state state; 101 }; 102 103 enum nvme_tcp_queue_flags { 104 NVME_TCP_Q_ALLOCATED = 0, 105 NVME_TCP_Q_LIVE = 1, 106 NVME_TCP_Q_POLLING = 2, 107 }; 108 109 enum nvme_tcp_recv_state { 110 NVME_TCP_RECV_PDU = 0, 111 NVME_TCP_RECV_DATA, 112 NVME_TCP_RECV_DDGST, 113 }; 114 115 struct nvme_tcp_ctrl; 116 struct nvme_tcp_queue { 117 struct socket *sock; 118 struct work_struct io_work; 119 int io_cpu; 120 121 struct mutex queue_lock; 122 struct mutex send_mutex; 123 struct llist_head req_list; 124 struct list_head send_list; 125 126 /* recv state */ 127 void *pdu; 128 int pdu_remaining; 129 int pdu_offset; 130 size_t data_remaining; 131 size_t ddgst_remaining; 132 unsigned int nr_cqe; 133 134 /* send state */ 135 struct nvme_tcp_request *request; 136 137 u32 maxh2cdata; 138 size_t cmnd_capsule_len; 139 struct nvme_tcp_ctrl *ctrl; 140 unsigned long flags; 141 bool rd_enabled; 142 143 bool hdr_digest; 144 bool data_digest; 145 struct ahash_request *rcv_hash; 146 struct ahash_request *snd_hash; 147 __le32 exp_ddgst; 148 __le32 recv_ddgst; 149 150 struct page_frag_cache pf_cache; 151 152 void (*state_change)(struct sock *); 153 void (*data_ready)(struct sock *); 154 void (*write_space)(struct sock *); 155 }; 156 157 struct nvme_tcp_ctrl { 158 /* read only in the hot path */ 159 struct nvme_tcp_queue *queues; 160 struct blk_mq_tag_set tag_set; 161 162 /* other member variables */ 163 struct list_head list; 164 struct blk_mq_tag_set admin_tag_set; 165 struct sockaddr_storage addr; 166 struct sockaddr_storage src_addr; 167 struct nvme_ctrl ctrl; 168 169 struct work_struct err_work; 170 struct delayed_work connect_work; 171 struct nvme_tcp_request async_req; 172 u32 io_queues[HCTX_MAX_TYPES]; 173 }; 174 175 static LIST_HEAD(nvme_tcp_ctrl_list); 176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 177 static struct workqueue_struct *nvme_tcp_wq; 178 static const struct blk_mq_ops nvme_tcp_mq_ops; 179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 181 182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 183 { 184 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 185 } 186 187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 188 { 189 return queue - queue->ctrl->queues; 190 } 191 192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 193 { 194 u32 queue_idx = nvme_tcp_queue_id(queue); 195 196 if (queue_idx == 0) 197 return queue->ctrl->admin_tag_set.tags[queue_idx]; 198 return queue->ctrl->tag_set.tags[queue_idx - 1]; 199 } 200 201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 202 { 203 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 204 } 205 206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 207 { 208 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 209 } 210 211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 212 { 213 return req->pdu; 214 } 215 216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 217 { 218 /* use the pdu space in the back for the data pdu */ 219 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 220 sizeof(struct nvme_tcp_data_pdu); 221 } 222 223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 224 { 225 if (nvme_is_fabrics(req->req.cmd)) 226 return NVME_TCP_ADMIN_CCSZ; 227 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 228 } 229 230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 231 { 232 return req == &req->queue->ctrl->async_req; 233 } 234 235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 236 { 237 struct request *rq; 238 239 if (unlikely(nvme_tcp_async_req(req))) 240 return false; /* async events don't have a request */ 241 242 rq = blk_mq_rq_from_pdu(req); 243 244 return rq_data_dir(rq) == WRITE && req->data_len && 245 req->data_len <= nvme_tcp_inline_data_size(req); 246 } 247 248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 249 { 250 return req->iter.bvec->bv_page; 251 } 252 253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 254 { 255 return req->iter.bvec->bv_offset + req->iter.iov_offset; 256 } 257 258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 259 { 260 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 261 req->pdu_len - req->pdu_sent); 262 } 263 264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 265 { 266 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 267 req->pdu_len - req->pdu_sent : 0; 268 } 269 270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 271 int len) 272 { 273 return nvme_tcp_pdu_data_left(req) <= len; 274 } 275 276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 277 unsigned int dir) 278 { 279 struct request *rq = blk_mq_rq_from_pdu(req); 280 struct bio_vec *vec; 281 unsigned int size; 282 int nr_bvec; 283 size_t offset; 284 285 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 286 vec = &rq->special_vec; 287 nr_bvec = 1; 288 size = blk_rq_payload_bytes(rq); 289 offset = 0; 290 } else { 291 struct bio *bio = req->curr_bio; 292 struct bvec_iter bi; 293 struct bio_vec bv; 294 295 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 296 nr_bvec = 0; 297 bio_for_each_bvec(bv, bio, bi) { 298 nr_bvec++; 299 } 300 size = bio->bi_iter.bi_size; 301 offset = bio->bi_iter.bi_bvec_done; 302 } 303 304 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 305 req->iter.iov_offset = offset; 306 } 307 308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 309 int len) 310 { 311 req->data_sent += len; 312 req->pdu_sent += len; 313 iov_iter_advance(&req->iter, len); 314 if (!iov_iter_count(&req->iter) && 315 req->data_sent < req->data_len) { 316 req->curr_bio = req->curr_bio->bi_next; 317 nvme_tcp_init_iter(req, ITER_SOURCE); 318 } 319 } 320 321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 322 { 323 int ret; 324 325 /* drain the send queue as much as we can... */ 326 do { 327 ret = nvme_tcp_try_send(queue); 328 } while (ret > 0); 329 } 330 331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 332 { 333 return !list_empty(&queue->send_list) || 334 !llist_empty(&queue->req_list); 335 } 336 337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 338 bool sync, bool last) 339 { 340 struct nvme_tcp_queue *queue = req->queue; 341 bool empty; 342 343 empty = llist_add(&req->lentry, &queue->req_list) && 344 list_empty(&queue->send_list) && !queue->request; 345 346 /* 347 * if we're the first on the send_list and we can try to send 348 * directly, otherwise queue io_work. Also, only do that if we 349 * are on the same cpu, so we don't introduce contention. 350 */ 351 if (queue->io_cpu == raw_smp_processor_id() && 352 sync && empty && mutex_trylock(&queue->send_mutex)) { 353 nvme_tcp_send_all(queue); 354 mutex_unlock(&queue->send_mutex); 355 } 356 357 if (last && nvme_tcp_queue_more(queue)) 358 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 359 } 360 361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 362 { 363 struct nvme_tcp_request *req; 364 struct llist_node *node; 365 366 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 367 req = llist_entry(node, struct nvme_tcp_request, lentry); 368 list_add(&req->entry, &queue->send_list); 369 } 370 } 371 372 static inline struct nvme_tcp_request * 373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 374 { 375 struct nvme_tcp_request *req; 376 377 req = list_first_entry_or_null(&queue->send_list, 378 struct nvme_tcp_request, entry); 379 if (!req) { 380 nvme_tcp_process_req_list(queue); 381 req = list_first_entry_or_null(&queue->send_list, 382 struct nvme_tcp_request, entry); 383 if (unlikely(!req)) 384 return NULL; 385 } 386 387 list_del(&req->entry); 388 return req; 389 } 390 391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 392 __le32 *dgst) 393 { 394 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 395 crypto_ahash_final(hash); 396 } 397 398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 399 struct page *page, off_t off, size_t len) 400 { 401 struct scatterlist sg; 402 403 sg_init_table(&sg, 1); 404 sg_set_page(&sg, page, len, off); 405 ahash_request_set_crypt(hash, &sg, NULL, len); 406 crypto_ahash_update(hash); 407 } 408 409 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 410 void *pdu, size_t len) 411 { 412 struct scatterlist sg; 413 414 sg_init_one(&sg, pdu, len); 415 ahash_request_set_crypt(hash, &sg, pdu + len, len); 416 crypto_ahash_digest(hash); 417 } 418 419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 420 void *pdu, size_t pdu_len) 421 { 422 struct nvme_tcp_hdr *hdr = pdu; 423 __le32 recv_digest; 424 __le32 exp_digest; 425 426 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 427 dev_err(queue->ctrl->ctrl.device, 428 "queue %d: header digest flag is cleared\n", 429 nvme_tcp_queue_id(queue)); 430 return -EPROTO; 431 } 432 433 recv_digest = *(__le32 *)(pdu + hdr->hlen); 434 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 435 exp_digest = *(__le32 *)(pdu + hdr->hlen); 436 if (recv_digest != exp_digest) { 437 dev_err(queue->ctrl->ctrl.device, 438 "header digest error: recv %#x expected %#x\n", 439 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 440 return -EIO; 441 } 442 443 return 0; 444 } 445 446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 447 { 448 struct nvme_tcp_hdr *hdr = pdu; 449 u8 digest_len = nvme_tcp_hdgst_len(queue); 450 u32 len; 451 452 len = le32_to_cpu(hdr->plen) - hdr->hlen - 453 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 454 455 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 456 dev_err(queue->ctrl->ctrl.device, 457 "queue %d: data digest flag is cleared\n", 458 nvme_tcp_queue_id(queue)); 459 return -EPROTO; 460 } 461 crypto_ahash_init(queue->rcv_hash); 462 463 return 0; 464 } 465 466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 467 struct request *rq, unsigned int hctx_idx) 468 { 469 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 470 471 page_frag_free(req->pdu); 472 } 473 474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 475 struct request *rq, unsigned int hctx_idx, 476 unsigned int numa_node) 477 { 478 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 479 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 480 struct nvme_tcp_cmd_pdu *pdu; 481 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 482 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 483 u8 hdgst = nvme_tcp_hdgst_len(queue); 484 485 req->pdu = page_frag_alloc(&queue->pf_cache, 486 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 487 GFP_KERNEL | __GFP_ZERO); 488 if (!req->pdu) 489 return -ENOMEM; 490 491 pdu = req->pdu; 492 req->queue = queue; 493 nvme_req(rq)->ctrl = &ctrl->ctrl; 494 nvme_req(rq)->cmd = &pdu->cmd; 495 496 return 0; 497 } 498 499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 500 unsigned int hctx_idx) 501 { 502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 503 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 504 505 hctx->driver_data = queue; 506 return 0; 507 } 508 509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 510 unsigned int hctx_idx) 511 { 512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 513 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 514 515 hctx->driver_data = queue; 516 return 0; 517 } 518 519 static enum nvme_tcp_recv_state 520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 521 { 522 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 523 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 524 NVME_TCP_RECV_DATA; 525 } 526 527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 528 { 529 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 530 nvme_tcp_hdgst_len(queue); 531 queue->pdu_offset = 0; 532 queue->data_remaining = -1; 533 queue->ddgst_remaining = 0; 534 } 535 536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 537 { 538 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 539 return; 540 541 dev_warn(ctrl->device, "starting error recovery\n"); 542 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 543 } 544 545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 546 struct nvme_completion *cqe) 547 { 548 struct nvme_tcp_request *req; 549 struct request *rq; 550 551 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 552 if (!rq) { 553 dev_err(queue->ctrl->ctrl.device, 554 "got bad cqe.command_id %#x on queue %d\n", 555 cqe->command_id, nvme_tcp_queue_id(queue)); 556 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 557 return -EINVAL; 558 } 559 560 req = blk_mq_rq_to_pdu(rq); 561 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 562 req->status = cqe->status; 563 564 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 565 nvme_complete_rq(rq); 566 queue->nr_cqe++; 567 568 return 0; 569 } 570 571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 572 struct nvme_tcp_data_pdu *pdu) 573 { 574 struct request *rq; 575 576 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 577 if (!rq) { 578 dev_err(queue->ctrl->ctrl.device, 579 "got bad c2hdata.command_id %#x on queue %d\n", 580 pdu->command_id, nvme_tcp_queue_id(queue)); 581 return -ENOENT; 582 } 583 584 if (!blk_rq_payload_bytes(rq)) { 585 dev_err(queue->ctrl->ctrl.device, 586 "queue %d tag %#x unexpected data\n", 587 nvme_tcp_queue_id(queue), rq->tag); 588 return -EIO; 589 } 590 591 queue->data_remaining = le32_to_cpu(pdu->data_length); 592 593 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 594 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 595 dev_err(queue->ctrl->ctrl.device, 596 "queue %d tag %#x SUCCESS set but not last PDU\n", 597 nvme_tcp_queue_id(queue), rq->tag); 598 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 599 return -EPROTO; 600 } 601 602 return 0; 603 } 604 605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 606 struct nvme_tcp_rsp_pdu *pdu) 607 { 608 struct nvme_completion *cqe = &pdu->cqe; 609 int ret = 0; 610 611 /* 612 * AEN requests are special as they don't time out and can 613 * survive any kind of queue freeze and often don't respond to 614 * aborts. We don't even bother to allocate a struct request 615 * for them but rather special case them here. 616 */ 617 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 618 cqe->command_id))) 619 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 620 &cqe->result); 621 else 622 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 623 624 return ret; 625 } 626 627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 628 { 629 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 630 struct nvme_tcp_queue *queue = req->queue; 631 struct request *rq = blk_mq_rq_from_pdu(req); 632 u32 h2cdata_sent = req->pdu_len; 633 u8 hdgst = nvme_tcp_hdgst_len(queue); 634 u8 ddgst = nvme_tcp_ddgst_len(queue); 635 636 req->state = NVME_TCP_SEND_H2C_PDU; 637 req->offset = 0; 638 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 639 req->pdu_sent = 0; 640 req->h2cdata_left -= req->pdu_len; 641 req->h2cdata_offset += h2cdata_sent; 642 643 memset(data, 0, sizeof(*data)); 644 data->hdr.type = nvme_tcp_h2c_data; 645 if (!req->h2cdata_left) 646 data->hdr.flags = NVME_TCP_F_DATA_LAST; 647 if (queue->hdr_digest) 648 data->hdr.flags |= NVME_TCP_F_HDGST; 649 if (queue->data_digest) 650 data->hdr.flags |= NVME_TCP_F_DDGST; 651 data->hdr.hlen = sizeof(*data); 652 data->hdr.pdo = data->hdr.hlen + hdgst; 653 data->hdr.plen = 654 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 655 data->ttag = req->ttag; 656 data->command_id = nvme_cid(rq); 657 data->data_offset = cpu_to_le32(req->h2cdata_offset); 658 data->data_length = cpu_to_le32(req->pdu_len); 659 } 660 661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 662 struct nvme_tcp_r2t_pdu *pdu) 663 { 664 struct nvme_tcp_request *req; 665 struct request *rq; 666 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 667 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 668 669 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 670 if (!rq) { 671 dev_err(queue->ctrl->ctrl.device, 672 "got bad r2t.command_id %#x on queue %d\n", 673 pdu->command_id, nvme_tcp_queue_id(queue)); 674 return -ENOENT; 675 } 676 req = blk_mq_rq_to_pdu(rq); 677 678 if (unlikely(!r2t_length)) { 679 dev_err(queue->ctrl->ctrl.device, 680 "req %d r2t len is %u, probably a bug...\n", 681 rq->tag, r2t_length); 682 return -EPROTO; 683 } 684 685 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 686 dev_err(queue->ctrl->ctrl.device, 687 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 688 rq->tag, r2t_length, req->data_len, req->data_sent); 689 return -EPROTO; 690 } 691 692 if (unlikely(r2t_offset < req->data_sent)) { 693 dev_err(queue->ctrl->ctrl.device, 694 "req %d unexpected r2t offset %u (expected %zu)\n", 695 rq->tag, r2t_offset, req->data_sent); 696 return -EPROTO; 697 } 698 699 req->pdu_len = 0; 700 req->h2cdata_left = r2t_length; 701 req->h2cdata_offset = r2t_offset; 702 req->ttag = pdu->ttag; 703 704 nvme_tcp_setup_h2c_data_pdu(req); 705 nvme_tcp_queue_request(req, false, true); 706 707 return 0; 708 } 709 710 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 711 unsigned int *offset, size_t *len) 712 { 713 struct nvme_tcp_hdr *hdr; 714 char *pdu = queue->pdu; 715 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 716 int ret; 717 718 ret = skb_copy_bits(skb, *offset, 719 &pdu[queue->pdu_offset], rcv_len); 720 if (unlikely(ret)) 721 return ret; 722 723 queue->pdu_remaining -= rcv_len; 724 queue->pdu_offset += rcv_len; 725 *offset += rcv_len; 726 *len -= rcv_len; 727 if (queue->pdu_remaining) 728 return 0; 729 730 hdr = queue->pdu; 731 if (queue->hdr_digest) { 732 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 733 if (unlikely(ret)) 734 return ret; 735 } 736 737 738 if (queue->data_digest) { 739 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 740 if (unlikely(ret)) 741 return ret; 742 } 743 744 switch (hdr->type) { 745 case nvme_tcp_c2h_data: 746 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 747 case nvme_tcp_rsp: 748 nvme_tcp_init_recv_ctx(queue); 749 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 750 case nvme_tcp_r2t: 751 nvme_tcp_init_recv_ctx(queue); 752 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 753 default: 754 dev_err(queue->ctrl->ctrl.device, 755 "unsupported pdu type (%d)\n", hdr->type); 756 return -EINVAL; 757 } 758 } 759 760 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 761 { 762 union nvme_result res = {}; 763 764 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 765 nvme_complete_rq(rq); 766 } 767 768 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 769 unsigned int *offset, size_t *len) 770 { 771 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 772 struct request *rq = 773 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 774 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 775 776 while (true) { 777 int recv_len, ret; 778 779 recv_len = min_t(size_t, *len, queue->data_remaining); 780 if (!recv_len) 781 break; 782 783 if (!iov_iter_count(&req->iter)) { 784 req->curr_bio = req->curr_bio->bi_next; 785 786 /* 787 * If we don`t have any bios it means that controller 788 * sent more data than we requested, hence error 789 */ 790 if (!req->curr_bio) { 791 dev_err(queue->ctrl->ctrl.device, 792 "queue %d no space in request %#x", 793 nvme_tcp_queue_id(queue), rq->tag); 794 nvme_tcp_init_recv_ctx(queue); 795 return -EIO; 796 } 797 nvme_tcp_init_iter(req, ITER_DEST); 798 } 799 800 /* we can read only from what is left in this bio */ 801 recv_len = min_t(size_t, recv_len, 802 iov_iter_count(&req->iter)); 803 804 if (queue->data_digest) 805 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 806 &req->iter, recv_len, queue->rcv_hash); 807 else 808 ret = skb_copy_datagram_iter(skb, *offset, 809 &req->iter, recv_len); 810 if (ret) { 811 dev_err(queue->ctrl->ctrl.device, 812 "queue %d failed to copy request %#x data", 813 nvme_tcp_queue_id(queue), rq->tag); 814 return ret; 815 } 816 817 *len -= recv_len; 818 *offset += recv_len; 819 queue->data_remaining -= recv_len; 820 } 821 822 if (!queue->data_remaining) { 823 if (queue->data_digest) { 824 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 825 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 826 } else { 827 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 828 nvme_tcp_end_request(rq, 829 le16_to_cpu(req->status)); 830 queue->nr_cqe++; 831 } 832 nvme_tcp_init_recv_ctx(queue); 833 } 834 } 835 836 return 0; 837 } 838 839 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 840 struct sk_buff *skb, unsigned int *offset, size_t *len) 841 { 842 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 843 char *ddgst = (char *)&queue->recv_ddgst; 844 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 845 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 846 int ret; 847 848 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 849 if (unlikely(ret)) 850 return ret; 851 852 queue->ddgst_remaining -= recv_len; 853 *offset += recv_len; 854 *len -= recv_len; 855 if (queue->ddgst_remaining) 856 return 0; 857 858 if (queue->recv_ddgst != queue->exp_ddgst) { 859 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 860 pdu->command_id); 861 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 862 863 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 864 865 dev_err(queue->ctrl->ctrl.device, 866 "data digest error: recv %#x expected %#x\n", 867 le32_to_cpu(queue->recv_ddgst), 868 le32_to_cpu(queue->exp_ddgst)); 869 } 870 871 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 872 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 873 pdu->command_id); 874 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 875 876 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 877 queue->nr_cqe++; 878 } 879 880 nvme_tcp_init_recv_ctx(queue); 881 return 0; 882 } 883 884 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 885 unsigned int offset, size_t len) 886 { 887 struct nvme_tcp_queue *queue = desc->arg.data; 888 size_t consumed = len; 889 int result; 890 891 while (len) { 892 switch (nvme_tcp_recv_state(queue)) { 893 case NVME_TCP_RECV_PDU: 894 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 895 break; 896 case NVME_TCP_RECV_DATA: 897 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 898 break; 899 case NVME_TCP_RECV_DDGST: 900 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 901 break; 902 default: 903 result = -EFAULT; 904 } 905 if (result) { 906 dev_err(queue->ctrl->ctrl.device, 907 "receive failed: %d\n", result); 908 queue->rd_enabled = false; 909 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 910 return result; 911 } 912 } 913 914 return consumed; 915 } 916 917 static void nvme_tcp_data_ready(struct sock *sk) 918 { 919 struct nvme_tcp_queue *queue; 920 921 trace_sk_data_ready(sk); 922 923 read_lock_bh(&sk->sk_callback_lock); 924 queue = sk->sk_user_data; 925 if (likely(queue && queue->rd_enabled) && 926 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 927 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 928 read_unlock_bh(&sk->sk_callback_lock); 929 } 930 931 static void nvme_tcp_write_space(struct sock *sk) 932 { 933 struct nvme_tcp_queue *queue; 934 935 read_lock_bh(&sk->sk_callback_lock); 936 queue = sk->sk_user_data; 937 if (likely(queue && sk_stream_is_writeable(sk))) { 938 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 939 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 940 } 941 read_unlock_bh(&sk->sk_callback_lock); 942 } 943 944 static void nvme_tcp_state_change(struct sock *sk) 945 { 946 struct nvme_tcp_queue *queue; 947 948 read_lock_bh(&sk->sk_callback_lock); 949 queue = sk->sk_user_data; 950 if (!queue) 951 goto done; 952 953 switch (sk->sk_state) { 954 case TCP_CLOSE: 955 case TCP_CLOSE_WAIT: 956 case TCP_LAST_ACK: 957 case TCP_FIN_WAIT1: 958 case TCP_FIN_WAIT2: 959 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 960 break; 961 default: 962 dev_info(queue->ctrl->ctrl.device, 963 "queue %d socket state %d\n", 964 nvme_tcp_queue_id(queue), sk->sk_state); 965 } 966 967 queue->state_change(sk); 968 done: 969 read_unlock_bh(&sk->sk_callback_lock); 970 } 971 972 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 973 { 974 queue->request = NULL; 975 } 976 977 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 978 { 979 if (nvme_tcp_async_req(req)) { 980 union nvme_result res = {}; 981 982 nvme_complete_async_event(&req->queue->ctrl->ctrl, 983 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 984 } else { 985 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 986 NVME_SC_HOST_PATH_ERROR); 987 } 988 } 989 990 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 991 { 992 struct nvme_tcp_queue *queue = req->queue; 993 int req_data_len = req->data_len; 994 u32 h2cdata_left = req->h2cdata_left; 995 996 while (true) { 997 struct page *page = nvme_tcp_req_cur_page(req); 998 size_t offset = nvme_tcp_req_cur_offset(req); 999 size_t len = nvme_tcp_req_cur_length(req); 1000 bool last = nvme_tcp_pdu_last_send(req, len); 1001 int req_data_sent = req->data_sent; 1002 int ret, flags = MSG_DONTWAIT; 1003 1004 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1005 flags |= MSG_EOR; 1006 else 1007 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 1008 1009 if (sendpage_ok(page)) { 1010 ret = kernel_sendpage(queue->sock, page, offset, len, 1011 flags); 1012 } else { 1013 ret = sock_no_sendpage(queue->sock, page, offset, len, 1014 flags); 1015 } 1016 if (ret <= 0) 1017 return ret; 1018 1019 if (queue->data_digest) 1020 nvme_tcp_ddgst_update(queue->snd_hash, page, 1021 offset, ret); 1022 1023 /* 1024 * update the request iterator except for the last payload send 1025 * in the request where we don't want to modify it as we may 1026 * compete with the RX path completing the request. 1027 */ 1028 if (req_data_sent + ret < req_data_len) 1029 nvme_tcp_advance_req(req, ret); 1030 1031 /* fully successful last send in current PDU */ 1032 if (last && ret == len) { 1033 if (queue->data_digest) { 1034 nvme_tcp_ddgst_final(queue->snd_hash, 1035 &req->ddgst); 1036 req->state = NVME_TCP_SEND_DDGST; 1037 req->offset = 0; 1038 } else { 1039 if (h2cdata_left) 1040 nvme_tcp_setup_h2c_data_pdu(req); 1041 else 1042 nvme_tcp_done_send_req(queue); 1043 } 1044 return 1; 1045 } 1046 } 1047 return -EAGAIN; 1048 } 1049 1050 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1051 { 1052 struct nvme_tcp_queue *queue = req->queue; 1053 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1054 bool inline_data = nvme_tcp_has_inline_data(req); 1055 u8 hdgst = nvme_tcp_hdgst_len(queue); 1056 int len = sizeof(*pdu) + hdgst - req->offset; 1057 int flags = MSG_DONTWAIT; 1058 int ret; 1059 1060 if (inline_data || nvme_tcp_queue_more(queue)) 1061 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 1062 else 1063 flags |= MSG_EOR; 1064 1065 if (queue->hdr_digest && !req->offset) 1066 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1067 1068 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1069 offset_in_page(pdu) + req->offset, len, flags); 1070 if (unlikely(ret <= 0)) 1071 return ret; 1072 1073 len -= ret; 1074 if (!len) { 1075 if (inline_data) { 1076 req->state = NVME_TCP_SEND_DATA; 1077 if (queue->data_digest) 1078 crypto_ahash_init(queue->snd_hash); 1079 } else { 1080 nvme_tcp_done_send_req(queue); 1081 } 1082 return 1; 1083 } 1084 req->offset += ret; 1085 1086 return -EAGAIN; 1087 } 1088 1089 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1090 { 1091 struct nvme_tcp_queue *queue = req->queue; 1092 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1093 u8 hdgst = nvme_tcp_hdgst_len(queue); 1094 int len = sizeof(*pdu) - req->offset + hdgst; 1095 int ret; 1096 1097 if (queue->hdr_digest && !req->offset) 1098 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1099 1100 if (!req->h2cdata_left) 1101 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1102 offset_in_page(pdu) + req->offset, len, 1103 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1104 else 1105 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu), 1106 offset_in_page(pdu) + req->offset, len, 1107 MSG_DONTWAIT | MSG_MORE); 1108 if (unlikely(ret <= 0)) 1109 return ret; 1110 1111 len -= ret; 1112 if (!len) { 1113 req->state = NVME_TCP_SEND_DATA; 1114 if (queue->data_digest) 1115 crypto_ahash_init(queue->snd_hash); 1116 return 1; 1117 } 1118 req->offset += ret; 1119 1120 return -EAGAIN; 1121 } 1122 1123 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1124 { 1125 struct nvme_tcp_queue *queue = req->queue; 1126 size_t offset = req->offset; 1127 u32 h2cdata_left = req->h2cdata_left; 1128 int ret; 1129 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1130 struct kvec iov = { 1131 .iov_base = (u8 *)&req->ddgst + req->offset, 1132 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1133 }; 1134 1135 if (nvme_tcp_queue_more(queue)) 1136 msg.msg_flags |= MSG_MORE; 1137 else 1138 msg.msg_flags |= MSG_EOR; 1139 1140 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1141 if (unlikely(ret <= 0)) 1142 return ret; 1143 1144 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1145 if (h2cdata_left) 1146 nvme_tcp_setup_h2c_data_pdu(req); 1147 else 1148 nvme_tcp_done_send_req(queue); 1149 return 1; 1150 } 1151 1152 req->offset += ret; 1153 return -EAGAIN; 1154 } 1155 1156 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1157 { 1158 struct nvme_tcp_request *req; 1159 unsigned int noreclaim_flag; 1160 int ret = 1; 1161 1162 if (!queue->request) { 1163 queue->request = nvme_tcp_fetch_request(queue); 1164 if (!queue->request) 1165 return 0; 1166 } 1167 req = queue->request; 1168 1169 noreclaim_flag = memalloc_noreclaim_save(); 1170 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1171 ret = nvme_tcp_try_send_cmd_pdu(req); 1172 if (ret <= 0) 1173 goto done; 1174 if (!nvme_tcp_has_inline_data(req)) 1175 goto out; 1176 } 1177 1178 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1179 ret = nvme_tcp_try_send_data_pdu(req); 1180 if (ret <= 0) 1181 goto done; 1182 } 1183 1184 if (req->state == NVME_TCP_SEND_DATA) { 1185 ret = nvme_tcp_try_send_data(req); 1186 if (ret <= 0) 1187 goto done; 1188 } 1189 1190 if (req->state == NVME_TCP_SEND_DDGST) 1191 ret = nvme_tcp_try_send_ddgst(req); 1192 done: 1193 if (ret == -EAGAIN) { 1194 ret = 0; 1195 } else if (ret < 0) { 1196 dev_err(queue->ctrl->ctrl.device, 1197 "failed to send request %d\n", ret); 1198 nvme_tcp_fail_request(queue->request); 1199 nvme_tcp_done_send_req(queue); 1200 } 1201 out: 1202 memalloc_noreclaim_restore(noreclaim_flag); 1203 return ret; 1204 } 1205 1206 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1207 { 1208 struct socket *sock = queue->sock; 1209 struct sock *sk = sock->sk; 1210 read_descriptor_t rd_desc; 1211 int consumed; 1212 1213 rd_desc.arg.data = queue; 1214 rd_desc.count = 1; 1215 lock_sock(sk); 1216 queue->nr_cqe = 0; 1217 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1218 release_sock(sk); 1219 return consumed; 1220 } 1221 1222 static void nvme_tcp_io_work(struct work_struct *w) 1223 { 1224 struct nvme_tcp_queue *queue = 1225 container_of(w, struct nvme_tcp_queue, io_work); 1226 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1227 1228 do { 1229 bool pending = false; 1230 int result; 1231 1232 if (mutex_trylock(&queue->send_mutex)) { 1233 result = nvme_tcp_try_send(queue); 1234 mutex_unlock(&queue->send_mutex); 1235 if (result > 0) 1236 pending = true; 1237 else if (unlikely(result < 0)) 1238 break; 1239 } 1240 1241 result = nvme_tcp_try_recv(queue); 1242 if (result > 0) 1243 pending = true; 1244 else if (unlikely(result < 0)) 1245 return; 1246 1247 if (!pending || !queue->rd_enabled) 1248 return; 1249 1250 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1251 1252 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1253 } 1254 1255 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1256 { 1257 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1258 1259 ahash_request_free(queue->rcv_hash); 1260 ahash_request_free(queue->snd_hash); 1261 crypto_free_ahash(tfm); 1262 } 1263 1264 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1265 { 1266 struct crypto_ahash *tfm; 1267 1268 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1269 if (IS_ERR(tfm)) 1270 return PTR_ERR(tfm); 1271 1272 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1273 if (!queue->snd_hash) 1274 goto free_tfm; 1275 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1276 1277 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1278 if (!queue->rcv_hash) 1279 goto free_snd_hash; 1280 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1281 1282 return 0; 1283 free_snd_hash: 1284 ahash_request_free(queue->snd_hash); 1285 free_tfm: 1286 crypto_free_ahash(tfm); 1287 return -ENOMEM; 1288 } 1289 1290 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1291 { 1292 struct nvme_tcp_request *async = &ctrl->async_req; 1293 1294 page_frag_free(async->pdu); 1295 } 1296 1297 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1298 { 1299 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1300 struct nvme_tcp_request *async = &ctrl->async_req; 1301 u8 hdgst = nvme_tcp_hdgst_len(queue); 1302 1303 async->pdu = page_frag_alloc(&queue->pf_cache, 1304 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1305 GFP_KERNEL | __GFP_ZERO); 1306 if (!async->pdu) 1307 return -ENOMEM; 1308 1309 async->queue = &ctrl->queues[0]; 1310 return 0; 1311 } 1312 1313 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1314 { 1315 struct page *page; 1316 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1317 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1318 unsigned int noreclaim_flag; 1319 1320 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1321 return; 1322 1323 if (queue->hdr_digest || queue->data_digest) 1324 nvme_tcp_free_crypto(queue); 1325 1326 if (queue->pf_cache.va) { 1327 page = virt_to_head_page(queue->pf_cache.va); 1328 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1329 queue->pf_cache.va = NULL; 1330 } 1331 1332 noreclaim_flag = memalloc_noreclaim_save(); 1333 sock_release(queue->sock); 1334 memalloc_noreclaim_restore(noreclaim_flag); 1335 1336 kfree(queue->pdu); 1337 mutex_destroy(&queue->send_mutex); 1338 mutex_destroy(&queue->queue_lock); 1339 } 1340 1341 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1342 { 1343 struct nvme_tcp_icreq_pdu *icreq; 1344 struct nvme_tcp_icresp_pdu *icresp; 1345 struct msghdr msg = {}; 1346 struct kvec iov; 1347 bool ctrl_hdgst, ctrl_ddgst; 1348 u32 maxh2cdata; 1349 int ret; 1350 1351 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1352 if (!icreq) 1353 return -ENOMEM; 1354 1355 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1356 if (!icresp) { 1357 ret = -ENOMEM; 1358 goto free_icreq; 1359 } 1360 1361 icreq->hdr.type = nvme_tcp_icreq; 1362 icreq->hdr.hlen = sizeof(*icreq); 1363 icreq->hdr.pdo = 0; 1364 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1365 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1366 icreq->maxr2t = 0; /* single inflight r2t supported */ 1367 icreq->hpda = 0; /* no alignment constraint */ 1368 if (queue->hdr_digest) 1369 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1370 if (queue->data_digest) 1371 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1372 1373 iov.iov_base = icreq; 1374 iov.iov_len = sizeof(*icreq); 1375 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1376 if (ret < 0) 1377 goto free_icresp; 1378 1379 memset(&msg, 0, sizeof(msg)); 1380 iov.iov_base = icresp; 1381 iov.iov_len = sizeof(*icresp); 1382 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1383 iov.iov_len, msg.msg_flags); 1384 if (ret < 0) 1385 goto free_icresp; 1386 1387 ret = -EINVAL; 1388 if (icresp->hdr.type != nvme_tcp_icresp) { 1389 pr_err("queue %d: bad type returned %d\n", 1390 nvme_tcp_queue_id(queue), icresp->hdr.type); 1391 goto free_icresp; 1392 } 1393 1394 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1395 pr_err("queue %d: bad pdu length returned %d\n", 1396 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1397 goto free_icresp; 1398 } 1399 1400 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1401 pr_err("queue %d: bad pfv returned %d\n", 1402 nvme_tcp_queue_id(queue), icresp->pfv); 1403 goto free_icresp; 1404 } 1405 1406 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1407 if ((queue->data_digest && !ctrl_ddgst) || 1408 (!queue->data_digest && ctrl_ddgst)) { 1409 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1410 nvme_tcp_queue_id(queue), 1411 queue->data_digest ? "enabled" : "disabled", 1412 ctrl_ddgst ? "enabled" : "disabled"); 1413 goto free_icresp; 1414 } 1415 1416 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1417 if ((queue->hdr_digest && !ctrl_hdgst) || 1418 (!queue->hdr_digest && ctrl_hdgst)) { 1419 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1420 nvme_tcp_queue_id(queue), 1421 queue->hdr_digest ? "enabled" : "disabled", 1422 ctrl_hdgst ? "enabled" : "disabled"); 1423 goto free_icresp; 1424 } 1425 1426 if (icresp->cpda != 0) { 1427 pr_err("queue %d: unsupported cpda returned %d\n", 1428 nvme_tcp_queue_id(queue), icresp->cpda); 1429 goto free_icresp; 1430 } 1431 1432 maxh2cdata = le32_to_cpu(icresp->maxdata); 1433 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1434 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1435 nvme_tcp_queue_id(queue), maxh2cdata); 1436 goto free_icresp; 1437 } 1438 queue->maxh2cdata = maxh2cdata; 1439 1440 ret = 0; 1441 free_icresp: 1442 kfree(icresp); 1443 free_icreq: 1444 kfree(icreq); 1445 return ret; 1446 } 1447 1448 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1449 { 1450 return nvme_tcp_queue_id(queue) == 0; 1451 } 1452 1453 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1454 { 1455 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1456 int qid = nvme_tcp_queue_id(queue); 1457 1458 return !nvme_tcp_admin_queue(queue) && 1459 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1460 } 1461 1462 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1463 { 1464 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1465 int qid = nvme_tcp_queue_id(queue); 1466 1467 return !nvme_tcp_admin_queue(queue) && 1468 !nvme_tcp_default_queue(queue) && 1469 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1470 ctrl->io_queues[HCTX_TYPE_READ]; 1471 } 1472 1473 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1474 { 1475 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1476 int qid = nvme_tcp_queue_id(queue); 1477 1478 return !nvme_tcp_admin_queue(queue) && 1479 !nvme_tcp_default_queue(queue) && 1480 !nvme_tcp_read_queue(queue) && 1481 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1482 ctrl->io_queues[HCTX_TYPE_READ] + 1483 ctrl->io_queues[HCTX_TYPE_POLL]; 1484 } 1485 1486 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1487 { 1488 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1489 int qid = nvme_tcp_queue_id(queue); 1490 int n = 0; 1491 1492 if (nvme_tcp_default_queue(queue)) 1493 n = qid - 1; 1494 else if (nvme_tcp_read_queue(queue)) 1495 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1496 else if (nvme_tcp_poll_queue(queue)) 1497 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1498 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1499 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1500 } 1501 1502 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid) 1503 { 1504 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1505 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1506 int ret, rcv_pdu_size; 1507 1508 mutex_init(&queue->queue_lock); 1509 queue->ctrl = ctrl; 1510 init_llist_head(&queue->req_list); 1511 INIT_LIST_HEAD(&queue->send_list); 1512 mutex_init(&queue->send_mutex); 1513 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1514 1515 if (qid > 0) 1516 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1517 else 1518 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1519 NVME_TCP_ADMIN_CCSZ; 1520 1521 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1522 IPPROTO_TCP, &queue->sock); 1523 if (ret) { 1524 dev_err(nctrl->device, 1525 "failed to create socket: %d\n", ret); 1526 goto err_destroy_mutex; 1527 } 1528 1529 nvme_tcp_reclassify_socket(queue->sock); 1530 1531 /* Single syn retry */ 1532 tcp_sock_set_syncnt(queue->sock->sk, 1); 1533 1534 /* Set TCP no delay */ 1535 tcp_sock_set_nodelay(queue->sock->sk); 1536 1537 /* 1538 * Cleanup whatever is sitting in the TCP transmit queue on socket 1539 * close. This is done to prevent stale data from being sent should 1540 * the network connection be restored before TCP times out. 1541 */ 1542 sock_no_linger(queue->sock->sk); 1543 1544 if (so_priority > 0) 1545 sock_set_priority(queue->sock->sk, so_priority); 1546 1547 /* Set socket type of service */ 1548 if (nctrl->opts->tos >= 0) 1549 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1550 1551 /* Set 10 seconds timeout for icresp recvmsg */ 1552 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1553 1554 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1555 queue->sock->sk->sk_use_task_frag = false; 1556 nvme_tcp_set_queue_io_cpu(queue); 1557 queue->request = NULL; 1558 queue->data_remaining = 0; 1559 queue->ddgst_remaining = 0; 1560 queue->pdu_remaining = 0; 1561 queue->pdu_offset = 0; 1562 sk_set_memalloc(queue->sock->sk); 1563 1564 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1565 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1566 sizeof(ctrl->src_addr)); 1567 if (ret) { 1568 dev_err(nctrl->device, 1569 "failed to bind queue %d socket %d\n", 1570 qid, ret); 1571 goto err_sock; 1572 } 1573 } 1574 1575 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1576 char *iface = nctrl->opts->host_iface; 1577 sockptr_t optval = KERNEL_SOCKPTR(iface); 1578 1579 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1580 optval, strlen(iface)); 1581 if (ret) { 1582 dev_err(nctrl->device, 1583 "failed to bind to interface %s queue %d err %d\n", 1584 iface, qid, ret); 1585 goto err_sock; 1586 } 1587 } 1588 1589 queue->hdr_digest = nctrl->opts->hdr_digest; 1590 queue->data_digest = nctrl->opts->data_digest; 1591 if (queue->hdr_digest || queue->data_digest) { 1592 ret = nvme_tcp_alloc_crypto(queue); 1593 if (ret) { 1594 dev_err(nctrl->device, 1595 "failed to allocate queue %d crypto\n", qid); 1596 goto err_sock; 1597 } 1598 } 1599 1600 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1601 nvme_tcp_hdgst_len(queue); 1602 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1603 if (!queue->pdu) { 1604 ret = -ENOMEM; 1605 goto err_crypto; 1606 } 1607 1608 dev_dbg(nctrl->device, "connecting queue %d\n", 1609 nvme_tcp_queue_id(queue)); 1610 1611 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1612 sizeof(ctrl->addr), 0); 1613 if (ret) { 1614 dev_err(nctrl->device, 1615 "failed to connect socket: %d\n", ret); 1616 goto err_rcv_pdu; 1617 } 1618 1619 ret = nvme_tcp_init_connection(queue); 1620 if (ret) 1621 goto err_init_connect; 1622 1623 queue->rd_enabled = true; 1624 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1625 nvme_tcp_init_recv_ctx(queue); 1626 1627 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1628 queue->sock->sk->sk_user_data = queue; 1629 queue->state_change = queue->sock->sk->sk_state_change; 1630 queue->data_ready = queue->sock->sk->sk_data_ready; 1631 queue->write_space = queue->sock->sk->sk_write_space; 1632 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1633 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1634 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1635 #ifdef CONFIG_NET_RX_BUSY_POLL 1636 queue->sock->sk->sk_ll_usec = 1; 1637 #endif 1638 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1639 1640 return 0; 1641 1642 err_init_connect: 1643 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1644 err_rcv_pdu: 1645 kfree(queue->pdu); 1646 err_crypto: 1647 if (queue->hdr_digest || queue->data_digest) 1648 nvme_tcp_free_crypto(queue); 1649 err_sock: 1650 sock_release(queue->sock); 1651 queue->sock = NULL; 1652 err_destroy_mutex: 1653 mutex_destroy(&queue->send_mutex); 1654 mutex_destroy(&queue->queue_lock); 1655 return ret; 1656 } 1657 1658 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1659 { 1660 struct socket *sock = queue->sock; 1661 1662 write_lock_bh(&sock->sk->sk_callback_lock); 1663 sock->sk->sk_user_data = NULL; 1664 sock->sk->sk_data_ready = queue->data_ready; 1665 sock->sk->sk_state_change = queue->state_change; 1666 sock->sk->sk_write_space = queue->write_space; 1667 write_unlock_bh(&sock->sk->sk_callback_lock); 1668 } 1669 1670 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1671 { 1672 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1673 nvme_tcp_restore_sock_calls(queue); 1674 cancel_work_sync(&queue->io_work); 1675 } 1676 1677 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1678 { 1679 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1680 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1681 1682 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1683 return; 1684 1685 mutex_lock(&queue->queue_lock); 1686 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1687 __nvme_tcp_stop_queue(queue); 1688 mutex_unlock(&queue->queue_lock); 1689 } 1690 1691 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1692 { 1693 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1694 int ret; 1695 1696 if (idx) 1697 ret = nvmf_connect_io_queue(nctrl, idx); 1698 else 1699 ret = nvmf_connect_admin_queue(nctrl); 1700 1701 if (!ret) { 1702 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1703 } else { 1704 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1705 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1706 dev_err(nctrl->device, 1707 "failed to connect queue: %d ret=%d\n", idx, ret); 1708 } 1709 return ret; 1710 } 1711 1712 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1713 { 1714 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1715 cancel_work_sync(&ctrl->async_event_work); 1716 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1717 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1718 } 1719 1720 nvme_tcp_free_queue(ctrl, 0); 1721 } 1722 1723 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1724 { 1725 int i; 1726 1727 for (i = 1; i < ctrl->queue_count; i++) 1728 nvme_tcp_free_queue(ctrl, i); 1729 } 1730 1731 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1732 { 1733 int i; 1734 1735 for (i = 1; i < ctrl->queue_count; i++) 1736 nvme_tcp_stop_queue(ctrl, i); 1737 } 1738 1739 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 1740 int first, int last) 1741 { 1742 int i, ret; 1743 1744 for (i = first; i < last; i++) { 1745 ret = nvme_tcp_start_queue(ctrl, i); 1746 if (ret) 1747 goto out_stop_queues; 1748 } 1749 1750 return 0; 1751 1752 out_stop_queues: 1753 for (i--; i >= first; i--) 1754 nvme_tcp_stop_queue(ctrl, i); 1755 return ret; 1756 } 1757 1758 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1759 { 1760 int ret; 1761 1762 ret = nvme_tcp_alloc_queue(ctrl, 0); 1763 if (ret) 1764 return ret; 1765 1766 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1767 if (ret) 1768 goto out_free_queue; 1769 1770 return 0; 1771 1772 out_free_queue: 1773 nvme_tcp_free_queue(ctrl, 0); 1774 return ret; 1775 } 1776 1777 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1778 { 1779 int i, ret; 1780 1781 for (i = 1; i < ctrl->queue_count; i++) { 1782 ret = nvme_tcp_alloc_queue(ctrl, i); 1783 if (ret) 1784 goto out_free_queues; 1785 } 1786 1787 return 0; 1788 1789 out_free_queues: 1790 for (i--; i >= 1; i--) 1791 nvme_tcp_free_queue(ctrl, i); 1792 1793 return ret; 1794 } 1795 1796 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1797 { 1798 unsigned int nr_io_queues; 1799 1800 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1801 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1802 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1803 1804 return nr_io_queues; 1805 } 1806 1807 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1808 unsigned int nr_io_queues) 1809 { 1810 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1811 struct nvmf_ctrl_options *opts = nctrl->opts; 1812 1813 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1814 /* 1815 * separate read/write queues 1816 * hand out dedicated default queues only after we have 1817 * sufficient read queues. 1818 */ 1819 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1820 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1821 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1822 min(opts->nr_write_queues, nr_io_queues); 1823 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1824 } else { 1825 /* 1826 * shared read/write queues 1827 * either no write queues were requested, or we don't have 1828 * sufficient queue count to have dedicated default queues. 1829 */ 1830 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1831 min(opts->nr_io_queues, nr_io_queues); 1832 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1833 } 1834 1835 if (opts->nr_poll_queues && nr_io_queues) { 1836 /* map dedicated poll queues only if we have queues left */ 1837 ctrl->io_queues[HCTX_TYPE_POLL] = 1838 min(opts->nr_poll_queues, nr_io_queues); 1839 } 1840 } 1841 1842 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1843 { 1844 unsigned int nr_io_queues; 1845 int ret; 1846 1847 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1848 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1849 if (ret) 1850 return ret; 1851 1852 if (nr_io_queues == 0) { 1853 dev_err(ctrl->device, 1854 "unable to set any I/O queues\n"); 1855 return -ENOMEM; 1856 } 1857 1858 ctrl->queue_count = nr_io_queues + 1; 1859 dev_info(ctrl->device, 1860 "creating %d I/O queues.\n", nr_io_queues); 1861 1862 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1863 1864 return __nvme_tcp_alloc_io_queues(ctrl); 1865 } 1866 1867 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1868 { 1869 nvme_tcp_stop_io_queues(ctrl); 1870 if (remove) 1871 nvme_remove_io_tag_set(ctrl); 1872 nvme_tcp_free_io_queues(ctrl); 1873 } 1874 1875 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1876 { 1877 int ret, nr_queues; 1878 1879 ret = nvme_tcp_alloc_io_queues(ctrl); 1880 if (ret) 1881 return ret; 1882 1883 if (new) { 1884 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 1885 &nvme_tcp_mq_ops, 1886 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 1887 sizeof(struct nvme_tcp_request)); 1888 if (ret) 1889 goto out_free_io_queues; 1890 } 1891 1892 /* 1893 * Only start IO queues for which we have allocated the tagset 1894 * and limitted it to the available queues. On reconnects, the 1895 * queue number might have changed. 1896 */ 1897 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 1898 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 1899 if (ret) 1900 goto out_cleanup_connect_q; 1901 1902 if (!new) { 1903 nvme_unquiesce_io_queues(ctrl); 1904 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1905 /* 1906 * If we timed out waiting for freeze we are likely to 1907 * be stuck. Fail the controller initialization just 1908 * to be safe. 1909 */ 1910 ret = -ENODEV; 1911 goto out_wait_freeze_timed_out; 1912 } 1913 blk_mq_update_nr_hw_queues(ctrl->tagset, 1914 ctrl->queue_count - 1); 1915 nvme_unfreeze(ctrl); 1916 } 1917 1918 /* 1919 * If the number of queues has increased (reconnect case) 1920 * start all new queues now. 1921 */ 1922 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 1923 ctrl->tagset->nr_hw_queues + 1); 1924 if (ret) 1925 goto out_wait_freeze_timed_out; 1926 1927 return 0; 1928 1929 out_wait_freeze_timed_out: 1930 nvme_quiesce_io_queues(ctrl); 1931 nvme_sync_io_queues(ctrl); 1932 nvme_tcp_stop_io_queues(ctrl); 1933 out_cleanup_connect_q: 1934 nvme_cancel_tagset(ctrl); 1935 if (new) 1936 nvme_remove_io_tag_set(ctrl); 1937 out_free_io_queues: 1938 nvme_tcp_free_io_queues(ctrl); 1939 return ret; 1940 } 1941 1942 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1943 { 1944 nvme_tcp_stop_queue(ctrl, 0); 1945 if (remove) 1946 nvme_remove_admin_tag_set(ctrl); 1947 nvme_tcp_free_admin_queue(ctrl); 1948 } 1949 1950 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1951 { 1952 int error; 1953 1954 error = nvme_tcp_alloc_admin_queue(ctrl); 1955 if (error) 1956 return error; 1957 1958 if (new) { 1959 error = nvme_alloc_admin_tag_set(ctrl, 1960 &to_tcp_ctrl(ctrl)->admin_tag_set, 1961 &nvme_tcp_admin_mq_ops, 1962 sizeof(struct nvme_tcp_request)); 1963 if (error) 1964 goto out_free_queue; 1965 } 1966 1967 error = nvme_tcp_start_queue(ctrl, 0); 1968 if (error) 1969 goto out_cleanup_tagset; 1970 1971 error = nvme_enable_ctrl(ctrl); 1972 if (error) 1973 goto out_stop_queue; 1974 1975 nvme_unquiesce_admin_queue(ctrl); 1976 1977 error = nvme_init_ctrl_finish(ctrl, false); 1978 if (error) 1979 goto out_quiesce_queue; 1980 1981 return 0; 1982 1983 out_quiesce_queue: 1984 nvme_quiesce_admin_queue(ctrl); 1985 blk_sync_queue(ctrl->admin_q); 1986 out_stop_queue: 1987 nvme_tcp_stop_queue(ctrl, 0); 1988 nvme_cancel_admin_tagset(ctrl); 1989 out_cleanup_tagset: 1990 if (new) 1991 nvme_remove_admin_tag_set(ctrl); 1992 out_free_queue: 1993 nvme_tcp_free_admin_queue(ctrl); 1994 return error; 1995 } 1996 1997 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1998 bool remove) 1999 { 2000 nvme_quiesce_admin_queue(ctrl); 2001 blk_sync_queue(ctrl->admin_q); 2002 nvme_tcp_stop_queue(ctrl, 0); 2003 nvme_cancel_admin_tagset(ctrl); 2004 if (remove) 2005 nvme_unquiesce_admin_queue(ctrl); 2006 nvme_tcp_destroy_admin_queue(ctrl, remove); 2007 } 2008 2009 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2010 bool remove) 2011 { 2012 if (ctrl->queue_count <= 1) 2013 return; 2014 nvme_quiesce_admin_queue(ctrl); 2015 nvme_start_freeze(ctrl); 2016 nvme_quiesce_io_queues(ctrl); 2017 nvme_sync_io_queues(ctrl); 2018 nvme_tcp_stop_io_queues(ctrl); 2019 nvme_cancel_tagset(ctrl); 2020 if (remove) 2021 nvme_unquiesce_io_queues(ctrl); 2022 nvme_tcp_destroy_io_queues(ctrl, remove); 2023 } 2024 2025 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 2026 { 2027 /* If we are resetting/deleting then do nothing */ 2028 if (ctrl->state != NVME_CTRL_CONNECTING) { 2029 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 2030 ctrl->state == NVME_CTRL_LIVE); 2031 return; 2032 } 2033 2034 if (nvmf_should_reconnect(ctrl)) { 2035 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2036 ctrl->opts->reconnect_delay); 2037 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2038 ctrl->opts->reconnect_delay * HZ); 2039 } else { 2040 dev_info(ctrl->device, "Removing controller...\n"); 2041 nvme_delete_ctrl(ctrl); 2042 } 2043 } 2044 2045 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2046 { 2047 struct nvmf_ctrl_options *opts = ctrl->opts; 2048 int ret; 2049 2050 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2051 if (ret) 2052 return ret; 2053 2054 if (ctrl->icdoff) { 2055 ret = -EOPNOTSUPP; 2056 dev_err(ctrl->device, "icdoff is not supported!\n"); 2057 goto destroy_admin; 2058 } 2059 2060 if (!nvme_ctrl_sgl_supported(ctrl)) { 2061 ret = -EOPNOTSUPP; 2062 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2063 goto destroy_admin; 2064 } 2065 2066 if (opts->queue_size > ctrl->sqsize + 1) 2067 dev_warn(ctrl->device, 2068 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2069 opts->queue_size, ctrl->sqsize + 1); 2070 2071 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2072 dev_warn(ctrl->device, 2073 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2074 ctrl->sqsize + 1, ctrl->maxcmd); 2075 ctrl->sqsize = ctrl->maxcmd - 1; 2076 } 2077 2078 if (ctrl->queue_count > 1) { 2079 ret = nvme_tcp_configure_io_queues(ctrl, new); 2080 if (ret) 2081 goto destroy_admin; 2082 } 2083 2084 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2085 /* 2086 * state change failure is ok if we started ctrl delete, 2087 * unless we're during creation of a new controller to 2088 * avoid races with teardown flow. 2089 */ 2090 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2091 ctrl->state != NVME_CTRL_DELETING_NOIO); 2092 WARN_ON_ONCE(new); 2093 ret = -EINVAL; 2094 goto destroy_io; 2095 } 2096 2097 nvme_start_ctrl(ctrl); 2098 return 0; 2099 2100 destroy_io: 2101 if (ctrl->queue_count > 1) { 2102 nvme_quiesce_io_queues(ctrl); 2103 nvme_sync_io_queues(ctrl); 2104 nvme_tcp_stop_io_queues(ctrl); 2105 nvme_cancel_tagset(ctrl); 2106 nvme_tcp_destroy_io_queues(ctrl, new); 2107 } 2108 destroy_admin: 2109 nvme_quiesce_admin_queue(ctrl); 2110 blk_sync_queue(ctrl->admin_q); 2111 nvme_tcp_stop_queue(ctrl, 0); 2112 nvme_cancel_admin_tagset(ctrl); 2113 nvme_tcp_destroy_admin_queue(ctrl, new); 2114 return ret; 2115 } 2116 2117 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2118 { 2119 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2120 struct nvme_tcp_ctrl, connect_work); 2121 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2122 2123 ++ctrl->nr_reconnects; 2124 2125 if (nvme_tcp_setup_ctrl(ctrl, false)) 2126 goto requeue; 2127 2128 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2129 ctrl->nr_reconnects); 2130 2131 ctrl->nr_reconnects = 0; 2132 2133 return; 2134 2135 requeue: 2136 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2137 ctrl->nr_reconnects); 2138 nvme_tcp_reconnect_or_remove(ctrl); 2139 } 2140 2141 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2142 { 2143 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2144 struct nvme_tcp_ctrl, err_work); 2145 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2146 2147 nvme_stop_keep_alive(ctrl); 2148 flush_work(&ctrl->async_event_work); 2149 nvme_tcp_teardown_io_queues(ctrl, false); 2150 /* unquiesce to fail fast pending requests */ 2151 nvme_unquiesce_io_queues(ctrl); 2152 nvme_tcp_teardown_admin_queue(ctrl, false); 2153 nvme_unquiesce_admin_queue(ctrl); 2154 nvme_auth_stop(ctrl); 2155 2156 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2157 /* state change failure is ok if we started ctrl delete */ 2158 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2159 ctrl->state != NVME_CTRL_DELETING_NOIO); 2160 return; 2161 } 2162 2163 nvme_tcp_reconnect_or_remove(ctrl); 2164 } 2165 2166 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2167 { 2168 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2169 nvme_quiesce_admin_queue(ctrl); 2170 nvme_disable_ctrl(ctrl, shutdown); 2171 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2172 } 2173 2174 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2175 { 2176 nvme_tcp_teardown_ctrl(ctrl, true); 2177 } 2178 2179 static void nvme_reset_ctrl_work(struct work_struct *work) 2180 { 2181 struct nvme_ctrl *ctrl = 2182 container_of(work, struct nvme_ctrl, reset_work); 2183 2184 nvme_stop_ctrl(ctrl); 2185 nvme_tcp_teardown_ctrl(ctrl, false); 2186 2187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2188 /* state change failure is ok if we started ctrl delete */ 2189 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2190 ctrl->state != NVME_CTRL_DELETING_NOIO); 2191 return; 2192 } 2193 2194 if (nvme_tcp_setup_ctrl(ctrl, false)) 2195 goto out_fail; 2196 2197 return; 2198 2199 out_fail: 2200 ++ctrl->nr_reconnects; 2201 nvme_tcp_reconnect_or_remove(ctrl); 2202 } 2203 2204 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2205 { 2206 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2207 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2208 } 2209 2210 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2211 { 2212 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2213 2214 if (list_empty(&ctrl->list)) 2215 goto free_ctrl; 2216 2217 mutex_lock(&nvme_tcp_ctrl_mutex); 2218 list_del(&ctrl->list); 2219 mutex_unlock(&nvme_tcp_ctrl_mutex); 2220 2221 nvmf_free_options(nctrl->opts); 2222 free_ctrl: 2223 kfree(ctrl->queues); 2224 kfree(ctrl); 2225 } 2226 2227 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2228 { 2229 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2230 2231 sg->addr = 0; 2232 sg->length = 0; 2233 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2234 NVME_SGL_FMT_TRANSPORT_A; 2235 } 2236 2237 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2238 struct nvme_command *c, u32 data_len) 2239 { 2240 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2241 2242 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2243 sg->length = cpu_to_le32(data_len); 2244 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2245 } 2246 2247 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2248 u32 data_len) 2249 { 2250 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2251 2252 sg->addr = 0; 2253 sg->length = cpu_to_le32(data_len); 2254 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2255 NVME_SGL_FMT_TRANSPORT_A; 2256 } 2257 2258 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2259 { 2260 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2261 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2262 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2263 struct nvme_command *cmd = &pdu->cmd; 2264 u8 hdgst = nvme_tcp_hdgst_len(queue); 2265 2266 memset(pdu, 0, sizeof(*pdu)); 2267 pdu->hdr.type = nvme_tcp_cmd; 2268 if (queue->hdr_digest) 2269 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2270 pdu->hdr.hlen = sizeof(*pdu); 2271 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2272 2273 cmd->common.opcode = nvme_admin_async_event; 2274 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2275 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2276 nvme_tcp_set_sg_null(cmd); 2277 2278 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2279 ctrl->async_req.offset = 0; 2280 ctrl->async_req.curr_bio = NULL; 2281 ctrl->async_req.data_len = 0; 2282 2283 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2284 } 2285 2286 static void nvme_tcp_complete_timed_out(struct request *rq) 2287 { 2288 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2289 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2290 2291 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2292 nvmf_complete_timed_out_request(rq); 2293 } 2294 2295 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2296 { 2297 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2298 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2299 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2300 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype; 2301 int qid = nvme_tcp_queue_id(req->queue); 2302 2303 dev_warn(ctrl->device, 2304 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n", 2305 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type, 2306 opc, nvme_opcode_str(qid, opc, fctype)); 2307 2308 if (ctrl->state != NVME_CTRL_LIVE) { 2309 /* 2310 * If we are resetting, connecting or deleting we should 2311 * complete immediately because we may block controller 2312 * teardown or setup sequence 2313 * - ctrl disable/shutdown fabrics requests 2314 * - connect requests 2315 * - initialization admin requests 2316 * - I/O requests that entered after unquiescing and 2317 * the controller stopped responding 2318 * 2319 * All other requests should be cancelled by the error 2320 * recovery work, so it's fine that we fail it here. 2321 */ 2322 nvme_tcp_complete_timed_out(rq); 2323 return BLK_EH_DONE; 2324 } 2325 2326 /* 2327 * LIVE state should trigger the normal error recovery which will 2328 * handle completing this request. 2329 */ 2330 nvme_tcp_error_recovery(ctrl); 2331 return BLK_EH_RESET_TIMER; 2332 } 2333 2334 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2335 struct request *rq) 2336 { 2337 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2338 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2339 struct nvme_command *c = &pdu->cmd; 2340 2341 c->common.flags |= NVME_CMD_SGL_METABUF; 2342 2343 if (!blk_rq_nr_phys_segments(rq)) 2344 nvme_tcp_set_sg_null(c); 2345 else if (rq_data_dir(rq) == WRITE && 2346 req->data_len <= nvme_tcp_inline_data_size(req)) 2347 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2348 else 2349 nvme_tcp_set_sg_host_data(c, req->data_len); 2350 2351 return 0; 2352 } 2353 2354 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2355 struct request *rq) 2356 { 2357 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2358 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2359 struct nvme_tcp_queue *queue = req->queue; 2360 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2361 blk_status_t ret; 2362 2363 ret = nvme_setup_cmd(ns, rq); 2364 if (ret) 2365 return ret; 2366 2367 req->state = NVME_TCP_SEND_CMD_PDU; 2368 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2369 req->offset = 0; 2370 req->data_sent = 0; 2371 req->pdu_len = 0; 2372 req->pdu_sent = 0; 2373 req->h2cdata_left = 0; 2374 req->data_len = blk_rq_nr_phys_segments(rq) ? 2375 blk_rq_payload_bytes(rq) : 0; 2376 req->curr_bio = rq->bio; 2377 if (req->curr_bio && req->data_len) 2378 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2379 2380 if (rq_data_dir(rq) == WRITE && 2381 req->data_len <= nvme_tcp_inline_data_size(req)) 2382 req->pdu_len = req->data_len; 2383 2384 pdu->hdr.type = nvme_tcp_cmd; 2385 pdu->hdr.flags = 0; 2386 if (queue->hdr_digest) 2387 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2388 if (queue->data_digest && req->pdu_len) { 2389 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2390 ddgst = nvme_tcp_ddgst_len(queue); 2391 } 2392 pdu->hdr.hlen = sizeof(*pdu); 2393 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2394 pdu->hdr.plen = 2395 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2396 2397 ret = nvme_tcp_map_data(queue, rq); 2398 if (unlikely(ret)) { 2399 nvme_cleanup_cmd(rq); 2400 dev_err(queue->ctrl->ctrl.device, 2401 "Failed to map data (%d)\n", ret); 2402 return ret; 2403 } 2404 2405 return 0; 2406 } 2407 2408 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2409 { 2410 struct nvme_tcp_queue *queue = hctx->driver_data; 2411 2412 if (!llist_empty(&queue->req_list)) 2413 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2414 } 2415 2416 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2417 const struct blk_mq_queue_data *bd) 2418 { 2419 struct nvme_ns *ns = hctx->queue->queuedata; 2420 struct nvme_tcp_queue *queue = hctx->driver_data; 2421 struct request *rq = bd->rq; 2422 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2423 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2424 blk_status_t ret; 2425 2426 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2427 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2428 2429 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2430 if (unlikely(ret)) 2431 return ret; 2432 2433 nvme_start_request(rq); 2434 2435 nvme_tcp_queue_request(req, true, bd->last); 2436 2437 return BLK_STS_OK; 2438 } 2439 2440 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2441 { 2442 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2443 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2444 2445 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2446 /* separate read/write queues */ 2447 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2448 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2449 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2450 set->map[HCTX_TYPE_READ].nr_queues = 2451 ctrl->io_queues[HCTX_TYPE_READ]; 2452 set->map[HCTX_TYPE_READ].queue_offset = 2453 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2454 } else { 2455 /* shared read/write queues */ 2456 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2457 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2458 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2459 set->map[HCTX_TYPE_READ].nr_queues = 2460 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2461 set->map[HCTX_TYPE_READ].queue_offset = 0; 2462 } 2463 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2464 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2465 2466 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2467 /* map dedicated poll queues only if we have queues left */ 2468 set->map[HCTX_TYPE_POLL].nr_queues = 2469 ctrl->io_queues[HCTX_TYPE_POLL]; 2470 set->map[HCTX_TYPE_POLL].queue_offset = 2471 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2472 ctrl->io_queues[HCTX_TYPE_READ]; 2473 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2474 } 2475 2476 dev_info(ctrl->ctrl.device, 2477 "mapped %d/%d/%d default/read/poll queues.\n", 2478 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2479 ctrl->io_queues[HCTX_TYPE_READ], 2480 ctrl->io_queues[HCTX_TYPE_POLL]); 2481 } 2482 2483 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2484 { 2485 struct nvme_tcp_queue *queue = hctx->driver_data; 2486 struct sock *sk = queue->sock->sk; 2487 2488 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2489 return 0; 2490 2491 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2492 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2493 sk_busy_loop(sk, true); 2494 nvme_tcp_try_recv(queue); 2495 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2496 return queue->nr_cqe; 2497 } 2498 2499 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2500 { 2501 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2502 struct sockaddr_storage src_addr; 2503 int ret, len; 2504 2505 len = nvmf_get_address(ctrl, buf, size); 2506 2507 mutex_lock(&queue->queue_lock); 2508 2509 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2510 goto done; 2511 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2512 if (ret > 0) { 2513 if (len > 0) 2514 len--; /* strip trailing newline */ 2515 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2516 (len) ? "," : "", &src_addr); 2517 } 2518 done: 2519 mutex_unlock(&queue->queue_lock); 2520 2521 return len; 2522 } 2523 2524 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2525 .queue_rq = nvme_tcp_queue_rq, 2526 .commit_rqs = nvme_tcp_commit_rqs, 2527 .complete = nvme_complete_rq, 2528 .init_request = nvme_tcp_init_request, 2529 .exit_request = nvme_tcp_exit_request, 2530 .init_hctx = nvme_tcp_init_hctx, 2531 .timeout = nvme_tcp_timeout, 2532 .map_queues = nvme_tcp_map_queues, 2533 .poll = nvme_tcp_poll, 2534 }; 2535 2536 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2537 .queue_rq = nvme_tcp_queue_rq, 2538 .complete = nvme_complete_rq, 2539 .init_request = nvme_tcp_init_request, 2540 .exit_request = nvme_tcp_exit_request, 2541 .init_hctx = nvme_tcp_init_admin_hctx, 2542 .timeout = nvme_tcp_timeout, 2543 }; 2544 2545 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2546 .name = "tcp", 2547 .module = THIS_MODULE, 2548 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2549 .reg_read32 = nvmf_reg_read32, 2550 .reg_read64 = nvmf_reg_read64, 2551 .reg_write32 = nvmf_reg_write32, 2552 .free_ctrl = nvme_tcp_free_ctrl, 2553 .submit_async_event = nvme_tcp_submit_async_event, 2554 .delete_ctrl = nvme_tcp_delete_ctrl, 2555 .get_address = nvme_tcp_get_address, 2556 .stop_ctrl = nvme_tcp_stop_ctrl, 2557 }; 2558 2559 static bool 2560 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2561 { 2562 struct nvme_tcp_ctrl *ctrl; 2563 bool found = false; 2564 2565 mutex_lock(&nvme_tcp_ctrl_mutex); 2566 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2567 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2568 if (found) 2569 break; 2570 } 2571 mutex_unlock(&nvme_tcp_ctrl_mutex); 2572 2573 return found; 2574 } 2575 2576 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2577 struct nvmf_ctrl_options *opts) 2578 { 2579 struct nvme_tcp_ctrl *ctrl; 2580 int ret; 2581 2582 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2583 if (!ctrl) 2584 return ERR_PTR(-ENOMEM); 2585 2586 INIT_LIST_HEAD(&ctrl->list); 2587 ctrl->ctrl.opts = opts; 2588 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2589 opts->nr_poll_queues + 1; 2590 ctrl->ctrl.sqsize = opts->queue_size - 1; 2591 ctrl->ctrl.kato = opts->kato; 2592 2593 INIT_DELAYED_WORK(&ctrl->connect_work, 2594 nvme_tcp_reconnect_ctrl_work); 2595 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2596 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2597 2598 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2599 opts->trsvcid = 2600 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2601 if (!opts->trsvcid) { 2602 ret = -ENOMEM; 2603 goto out_free_ctrl; 2604 } 2605 opts->mask |= NVMF_OPT_TRSVCID; 2606 } 2607 2608 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2609 opts->traddr, opts->trsvcid, &ctrl->addr); 2610 if (ret) { 2611 pr_err("malformed address passed: %s:%s\n", 2612 opts->traddr, opts->trsvcid); 2613 goto out_free_ctrl; 2614 } 2615 2616 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2617 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2618 opts->host_traddr, NULL, &ctrl->src_addr); 2619 if (ret) { 2620 pr_err("malformed src address passed: %s\n", 2621 opts->host_traddr); 2622 goto out_free_ctrl; 2623 } 2624 } 2625 2626 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2627 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2628 pr_err("invalid interface passed: %s\n", 2629 opts->host_iface); 2630 ret = -ENODEV; 2631 goto out_free_ctrl; 2632 } 2633 } 2634 2635 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2636 ret = -EALREADY; 2637 goto out_free_ctrl; 2638 } 2639 2640 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2641 GFP_KERNEL); 2642 if (!ctrl->queues) { 2643 ret = -ENOMEM; 2644 goto out_free_ctrl; 2645 } 2646 2647 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2648 if (ret) 2649 goto out_kfree_queues; 2650 2651 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2652 WARN_ON_ONCE(1); 2653 ret = -EINTR; 2654 goto out_uninit_ctrl; 2655 } 2656 2657 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2658 if (ret) 2659 goto out_uninit_ctrl; 2660 2661 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2662 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2663 2664 mutex_lock(&nvme_tcp_ctrl_mutex); 2665 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2666 mutex_unlock(&nvme_tcp_ctrl_mutex); 2667 2668 return &ctrl->ctrl; 2669 2670 out_uninit_ctrl: 2671 nvme_uninit_ctrl(&ctrl->ctrl); 2672 nvme_put_ctrl(&ctrl->ctrl); 2673 if (ret > 0) 2674 ret = -EIO; 2675 return ERR_PTR(ret); 2676 out_kfree_queues: 2677 kfree(ctrl->queues); 2678 out_free_ctrl: 2679 kfree(ctrl); 2680 return ERR_PTR(ret); 2681 } 2682 2683 static struct nvmf_transport_ops nvme_tcp_transport = { 2684 .name = "tcp", 2685 .module = THIS_MODULE, 2686 .required_opts = NVMF_OPT_TRADDR, 2687 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2688 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2689 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2690 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2691 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2692 .create_ctrl = nvme_tcp_create_ctrl, 2693 }; 2694 2695 static int __init nvme_tcp_init_module(void) 2696 { 2697 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 2698 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 2699 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 2700 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 2701 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 2702 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 2703 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 2704 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 2705 2706 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2707 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2708 if (!nvme_tcp_wq) 2709 return -ENOMEM; 2710 2711 nvmf_register_transport(&nvme_tcp_transport); 2712 return 0; 2713 } 2714 2715 static void __exit nvme_tcp_cleanup_module(void) 2716 { 2717 struct nvme_tcp_ctrl *ctrl; 2718 2719 nvmf_unregister_transport(&nvme_tcp_transport); 2720 2721 mutex_lock(&nvme_tcp_ctrl_mutex); 2722 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2723 nvme_delete_ctrl(&ctrl->ctrl); 2724 mutex_unlock(&nvme_tcp_ctrl_mutex); 2725 flush_workqueue(nvme_delete_wq); 2726 2727 destroy_workqueue(nvme_tcp_wq); 2728 } 2729 2730 module_init(nvme_tcp_init_module); 2731 module_exit(nvme_tcp_cleanup_module); 2732 2733 MODULE_LICENSE("GPL v2"); 2734