xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 163b0991)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		queue_lock;
80 	struct mutex		send_mutex;
81 	struct llist_head	req_list;
82 	struct list_head	send_list;
83 	bool			more_requests;
84 
85 	/* recv state */
86 	void			*pdu;
87 	int			pdu_remaining;
88 	int			pdu_offset;
89 	size_t			data_remaining;
90 	size_t			ddgst_remaining;
91 	unsigned int		nr_cqe;
92 
93 	/* send state */
94 	struct nvme_tcp_request *request;
95 
96 	int			queue_size;
97 	size_t			cmnd_capsule_len;
98 	struct nvme_tcp_ctrl	*ctrl;
99 	unsigned long		flags;
100 	bool			rd_enabled;
101 
102 	bool			hdr_digest;
103 	bool			data_digest;
104 	struct ahash_request	*rcv_hash;
105 	struct ahash_request	*snd_hash;
106 	__le32			exp_ddgst;
107 	__le32			recv_ddgst;
108 
109 	struct page_frag_cache	pf_cache;
110 
111 	void (*state_change)(struct sock *);
112 	void (*data_ready)(struct sock *);
113 	void (*write_space)(struct sock *);
114 };
115 
116 struct nvme_tcp_ctrl {
117 	/* read only in the hot path */
118 	struct nvme_tcp_queue	*queues;
119 	struct blk_mq_tag_set	tag_set;
120 
121 	/* other member variables */
122 	struct list_head	list;
123 	struct blk_mq_tag_set	admin_tag_set;
124 	struct sockaddr_storage addr;
125 	struct sockaddr_storage src_addr;
126 	struct nvme_ctrl	ctrl;
127 
128 	struct work_struct	err_work;
129 	struct delayed_work	connect_work;
130 	struct nvme_tcp_request async_req;
131 	u32			io_queues[HCTX_MAX_TYPES];
132 };
133 
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140 
141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 {
143 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
144 }
145 
146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 {
148 	return queue - queue->ctrl->queues;
149 }
150 
151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 {
153 	u32 queue_idx = nvme_tcp_queue_id(queue);
154 
155 	if (queue_idx == 0)
156 		return queue->ctrl->admin_tag_set.tags[queue_idx];
157 	return queue->ctrl->tag_set.tags[queue_idx - 1];
158 }
159 
160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 {
162 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
163 }
164 
165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 {
167 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
168 }
169 
170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 {
172 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174 
175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 {
177 	return req == &req->queue->ctrl->async_req;
178 }
179 
180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
181 {
182 	struct request *rq;
183 
184 	if (unlikely(nvme_tcp_async_req(req)))
185 		return false; /* async events don't have a request */
186 
187 	rq = blk_mq_rq_from_pdu(req);
188 
189 	return rq_data_dir(rq) == WRITE && req->data_len &&
190 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
191 }
192 
193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 {
195 	return req->iter.bvec->bv_page;
196 }
197 
198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 {
200 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
201 }
202 
203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 {
205 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
206 			req->pdu_len - req->pdu_sent);
207 }
208 
209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
210 {
211 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
212 			req->pdu_len - req->pdu_sent : 0;
213 }
214 
215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
216 		int len)
217 {
218 	return nvme_tcp_pdu_data_left(req) <= len;
219 }
220 
221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
222 		unsigned int dir)
223 {
224 	struct request *rq = blk_mq_rq_from_pdu(req);
225 	struct bio_vec *vec;
226 	unsigned int size;
227 	int nr_bvec;
228 	size_t offset;
229 
230 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
231 		vec = &rq->special_vec;
232 		nr_bvec = 1;
233 		size = blk_rq_payload_bytes(rq);
234 		offset = 0;
235 	} else {
236 		struct bio *bio = req->curr_bio;
237 		struct bvec_iter bi;
238 		struct bio_vec bv;
239 
240 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
241 		nr_bvec = 0;
242 		bio_for_each_bvec(bv, bio, bi) {
243 			nr_bvec++;
244 		}
245 		size = bio->bi_iter.bi_size;
246 		offset = bio->bi_iter.bi_bvec_done;
247 	}
248 
249 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
250 	req->iter.iov_offset = offset;
251 }
252 
253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
254 		int len)
255 {
256 	req->data_sent += len;
257 	req->pdu_sent += len;
258 	iov_iter_advance(&req->iter, len);
259 	if (!iov_iter_count(&req->iter) &&
260 	    req->data_sent < req->data_len) {
261 		req->curr_bio = req->curr_bio->bi_next;
262 		nvme_tcp_init_iter(req, WRITE);
263 	}
264 }
265 
266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
267 {
268 	int ret;
269 
270 	/* drain the send queue as much as we can... */
271 	do {
272 		ret = nvme_tcp_try_send(queue);
273 	} while (ret > 0);
274 }
275 
276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
277 		bool sync, bool last)
278 {
279 	struct nvme_tcp_queue *queue = req->queue;
280 	bool empty;
281 
282 	empty = llist_add(&req->lentry, &queue->req_list) &&
283 		list_empty(&queue->send_list) && !queue->request;
284 
285 	/*
286 	 * if we're the first on the send_list and we can try to send
287 	 * directly, otherwise queue io_work. Also, only do that if we
288 	 * are on the same cpu, so we don't introduce contention.
289 	 */
290 	if (queue->io_cpu == raw_smp_processor_id() &&
291 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
292 		queue->more_requests = !last;
293 		nvme_tcp_send_all(queue);
294 		queue->more_requests = false;
295 		mutex_unlock(&queue->send_mutex);
296 	} else if (last) {
297 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
298 	}
299 }
300 
301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
302 {
303 	struct nvme_tcp_request *req;
304 	struct llist_node *node;
305 
306 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
307 		req = llist_entry(node, struct nvme_tcp_request, lentry);
308 		list_add(&req->entry, &queue->send_list);
309 	}
310 }
311 
312 static inline struct nvme_tcp_request *
313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
314 {
315 	struct nvme_tcp_request *req;
316 
317 	req = list_first_entry_or_null(&queue->send_list,
318 			struct nvme_tcp_request, entry);
319 	if (!req) {
320 		nvme_tcp_process_req_list(queue);
321 		req = list_first_entry_or_null(&queue->send_list,
322 				struct nvme_tcp_request, entry);
323 		if (unlikely(!req))
324 			return NULL;
325 	}
326 
327 	list_del(&req->entry);
328 	return req;
329 }
330 
331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
332 		__le32 *dgst)
333 {
334 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
335 	crypto_ahash_final(hash);
336 }
337 
338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
339 		struct page *page, off_t off, size_t len)
340 {
341 	struct scatterlist sg;
342 
343 	sg_init_marker(&sg, 1);
344 	sg_set_page(&sg, page, len, off);
345 	ahash_request_set_crypt(hash, &sg, NULL, len);
346 	crypto_ahash_update(hash);
347 }
348 
349 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
350 		void *pdu, size_t len)
351 {
352 	struct scatterlist sg;
353 
354 	sg_init_one(&sg, pdu, len);
355 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
356 	crypto_ahash_digest(hash);
357 }
358 
359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
360 		void *pdu, size_t pdu_len)
361 {
362 	struct nvme_tcp_hdr *hdr = pdu;
363 	__le32 recv_digest;
364 	__le32 exp_digest;
365 
366 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
367 		dev_err(queue->ctrl->ctrl.device,
368 			"queue %d: header digest flag is cleared\n",
369 			nvme_tcp_queue_id(queue));
370 		return -EPROTO;
371 	}
372 
373 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
374 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
375 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
376 	if (recv_digest != exp_digest) {
377 		dev_err(queue->ctrl->ctrl.device,
378 			"header digest error: recv %#x expected %#x\n",
379 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
380 		return -EIO;
381 	}
382 
383 	return 0;
384 }
385 
386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
387 {
388 	struct nvme_tcp_hdr *hdr = pdu;
389 	u8 digest_len = nvme_tcp_hdgst_len(queue);
390 	u32 len;
391 
392 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
393 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
394 
395 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
396 		dev_err(queue->ctrl->ctrl.device,
397 			"queue %d: data digest flag is cleared\n",
398 		nvme_tcp_queue_id(queue));
399 		return -EPROTO;
400 	}
401 	crypto_ahash_init(queue->rcv_hash);
402 
403 	return 0;
404 }
405 
406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
407 		struct request *rq, unsigned int hctx_idx)
408 {
409 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
410 
411 	page_frag_free(req->pdu);
412 }
413 
414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
415 		struct request *rq, unsigned int hctx_idx,
416 		unsigned int numa_node)
417 {
418 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
419 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
420 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
421 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
422 	u8 hdgst = nvme_tcp_hdgst_len(queue);
423 
424 	req->pdu = page_frag_alloc(&queue->pf_cache,
425 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
426 		GFP_KERNEL | __GFP_ZERO);
427 	if (!req->pdu)
428 		return -ENOMEM;
429 
430 	req->queue = queue;
431 	nvme_req(rq)->ctrl = &ctrl->ctrl;
432 
433 	return 0;
434 }
435 
436 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
437 		unsigned int hctx_idx)
438 {
439 	struct nvme_tcp_ctrl *ctrl = data;
440 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
441 
442 	hctx->driver_data = queue;
443 	return 0;
444 }
445 
446 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
447 		unsigned int hctx_idx)
448 {
449 	struct nvme_tcp_ctrl *ctrl = data;
450 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
451 
452 	hctx->driver_data = queue;
453 	return 0;
454 }
455 
456 static enum nvme_tcp_recv_state
457 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
458 {
459 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
460 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
461 		NVME_TCP_RECV_DATA;
462 }
463 
464 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
465 {
466 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
467 				nvme_tcp_hdgst_len(queue);
468 	queue->pdu_offset = 0;
469 	queue->data_remaining = -1;
470 	queue->ddgst_remaining = 0;
471 }
472 
473 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
474 {
475 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
476 		return;
477 
478 	dev_warn(ctrl->device, "starting error recovery\n");
479 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
480 }
481 
482 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
483 		struct nvme_completion *cqe)
484 {
485 	struct request *rq;
486 
487 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
488 	if (!rq) {
489 		dev_err(queue->ctrl->ctrl.device,
490 			"queue %d tag 0x%x not found\n",
491 			nvme_tcp_queue_id(queue), cqe->command_id);
492 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
493 		return -EINVAL;
494 	}
495 
496 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
497 		nvme_complete_rq(rq);
498 	queue->nr_cqe++;
499 
500 	return 0;
501 }
502 
503 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
504 		struct nvme_tcp_data_pdu *pdu)
505 {
506 	struct request *rq;
507 
508 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
509 	if (!rq) {
510 		dev_err(queue->ctrl->ctrl.device,
511 			"queue %d tag %#x not found\n",
512 			nvme_tcp_queue_id(queue), pdu->command_id);
513 		return -ENOENT;
514 	}
515 
516 	if (!blk_rq_payload_bytes(rq)) {
517 		dev_err(queue->ctrl->ctrl.device,
518 			"queue %d tag %#x unexpected data\n",
519 			nvme_tcp_queue_id(queue), rq->tag);
520 		return -EIO;
521 	}
522 
523 	queue->data_remaining = le32_to_cpu(pdu->data_length);
524 
525 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
526 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
527 		dev_err(queue->ctrl->ctrl.device,
528 			"queue %d tag %#x SUCCESS set but not last PDU\n",
529 			nvme_tcp_queue_id(queue), rq->tag);
530 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
531 		return -EPROTO;
532 	}
533 
534 	return 0;
535 }
536 
537 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
538 		struct nvme_tcp_rsp_pdu *pdu)
539 {
540 	struct nvme_completion *cqe = &pdu->cqe;
541 	int ret = 0;
542 
543 	/*
544 	 * AEN requests are special as they don't time out and can
545 	 * survive any kind of queue freeze and often don't respond to
546 	 * aborts.  We don't even bother to allocate a struct request
547 	 * for them but rather special case them here.
548 	 */
549 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
550 				     cqe->command_id)))
551 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
552 				&cqe->result);
553 	else
554 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
555 
556 	return ret;
557 }
558 
559 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
560 		struct nvme_tcp_r2t_pdu *pdu)
561 {
562 	struct nvme_tcp_data_pdu *data = req->pdu;
563 	struct nvme_tcp_queue *queue = req->queue;
564 	struct request *rq = blk_mq_rq_from_pdu(req);
565 	u8 hdgst = nvme_tcp_hdgst_len(queue);
566 	u8 ddgst = nvme_tcp_ddgst_len(queue);
567 
568 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
569 	req->pdu_sent = 0;
570 
571 	if (unlikely(!req->pdu_len)) {
572 		dev_err(queue->ctrl->ctrl.device,
573 			"req %d r2t len is %u, probably a bug...\n",
574 			rq->tag, req->pdu_len);
575 		return -EPROTO;
576 	}
577 
578 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
579 		dev_err(queue->ctrl->ctrl.device,
580 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
581 			rq->tag, req->pdu_len, req->data_len,
582 			req->data_sent);
583 		return -EPROTO;
584 	}
585 
586 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
587 		dev_err(queue->ctrl->ctrl.device,
588 			"req %d unexpected r2t offset %u (expected %zu)\n",
589 			rq->tag, le32_to_cpu(pdu->r2t_offset),
590 			req->data_sent);
591 		return -EPROTO;
592 	}
593 
594 	memset(data, 0, sizeof(*data));
595 	data->hdr.type = nvme_tcp_h2c_data;
596 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
597 	if (queue->hdr_digest)
598 		data->hdr.flags |= NVME_TCP_F_HDGST;
599 	if (queue->data_digest)
600 		data->hdr.flags |= NVME_TCP_F_DDGST;
601 	data->hdr.hlen = sizeof(*data);
602 	data->hdr.pdo = data->hdr.hlen + hdgst;
603 	data->hdr.plen =
604 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
605 	data->ttag = pdu->ttag;
606 	data->command_id = rq->tag;
607 	data->data_offset = cpu_to_le32(req->data_sent);
608 	data->data_length = cpu_to_le32(req->pdu_len);
609 	return 0;
610 }
611 
612 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
613 		struct nvme_tcp_r2t_pdu *pdu)
614 {
615 	struct nvme_tcp_request *req;
616 	struct request *rq;
617 	int ret;
618 
619 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
620 	if (!rq) {
621 		dev_err(queue->ctrl->ctrl.device,
622 			"queue %d tag %#x not found\n",
623 			nvme_tcp_queue_id(queue), pdu->command_id);
624 		return -ENOENT;
625 	}
626 	req = blk_mq_rq_to_pdu(rq);
627 
628 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
629 	if (unlikely(ret))
630 		return ret;
631 
632 	req->state = NVME_TCP_SEND_H2C_PDU;
633 	req->offset = 0;
634 
635 	nvme_tcp_queue_request(req, false, true);
636 
637 	return 0;
638 }
639 
640 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
641 		unsigned int *offset, size_t *len)
642 {
643 	struct nvme_tcp_hdr *hdr;
644 	char *pdu = queue->pdu;
645 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
646 	int ret;
647 
648 	ret = skb_copy_bits(skb, *offset,
649 		&pdu[queue->pdu_offset], rcv_len);
650 	if (unlikely(ret))
651 		return ret;
652 
653 	queue->pdu_remaining -= rcv_len;
654 	queue->pdu_offset += rcv_len;
655 	*offset += rcv_len;
656 	*len -= rcv_len;
657 	if (queue->pdu_remaining)
658 		return 0;
659 
660 	hdr = queue->pdu;
661 	if (queue->hdr_digest) {
662 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
663 		if (unlikely(ret))
664 			return ret;
665 	}
666 
667 
668 	if (queue->data_digest) {
669 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
670 		if (unlikely(ret))
671 			return ret;
672 	}
673 
674 	switch (hdr->type) {
675 	case nvme_tcp_c2h_data:
676 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
677 	case nvme_tcp_rsp:
678 		nvme_tcp_init_recv_ctx(queue);
679 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
680 	case nvme_tcp_r2t:
681 		nvme_tcp_init_recv_ctx(queue);
682 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
683 	default:
684 		dev_err(queue->ctrl->ctrl.device,
685 			"unsupported pdu type (%d)\n", hdr->type);
686 		return -EINVAL;
687 	}
688 }
689 
690 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
691 {
692 	union nvme_result res = {};
693 
694 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
695 		nvme_complete_rq(rq);
696 }
697 
698 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
699 			      unsigned int *offset, size_t *len)
700 {
701 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
702 	struct nvme_tcp_request *req;
703 	struct request *rq;
704 
705 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
706 	if (!rq) {
707 		dev_err(queue->ctrl->ctrl.device,
708 			"queue %d tag %#x not found\n",
709 			nvme_tcp_queue_id(queue), pdu->command_id);
710 		return -ENOENT;
711 	}
712 	req = blk_mq_rq_to_pdu(rq);
713 
714 	while (true) {
715 		int recv_len, ret;
716 
717 		recv_len = min_t(size_t, *len, queue->data_remaining);
718 		if (!recv_len)
719 			break;
720 
721 		if (!iov_iter_count(&req->iter)) {
722 			req->curr_bio = req->curr_bio->bi_next;
723 
724 			/*
725 			 * If we don`t have any bios it means that controller
726 			 * sent more data than we requested, hence error
727 			 */
728 			if (!req->curr_bio) {
729 				dev_err(queue->ctrl->ctrl.device,
730 					"queue %d no space in request %#x",
731 					nvme_tcp_queue_id(queue), rq->tag);
732 				nvme_tcp_init_recv_ctx(queue);
733 				return -EIO;
734 			}
735 			nvme_tcp_init_iter(req, READ);
736 		}
737 
738 		/* we can read only from what is left in this bio */
739 		recv_len = min_t(size_t, recv_len,
740 				iov_iter_count(&req->iter));
741 
742 		if (queue->data_digest)
743 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
744 				&req->iter, recv_len, queue->rcv_hash);
745 		else
746 			ret = skb_copy_datagram_iter(skb, *offset,
747 					&req->iter, recv_len);
748 		if (ret) {
749 			dev_err(queue->ctrl->ctrl.device,
750 				"queue %d failed to copy request %#x data",
751 				nvme_tcp_queue_id(queue), rq->tag);
752 			return ret;
753 		}
754 
755 		*len -= recv_len;
756 		*offset += recv_len;
757 		queue->data_remaining -= recv_len;
758 	}
759 
760 	if (!queue->data_remaining) {
761 		if (queue->data_digest) {
762 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
763 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
764 		} else {
765 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
766 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
767 				queue->nr_cqe++;
768 			}
769 			nvme_tcp_init_recv_ctx(queue);
770 		}
771 	}
772 
773 	return 0;
774 }
775 
776 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
777 		struct sk_buff *skb, unsigned int *offset, size_t *len)
778 {
779 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
780 	char *ddgst = (char *)&queue->recv_ddgst;
781 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
782 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
783 	int ret;
784 
785 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
786 	if (unlikely(ret))
787 		return ret;
788 
789 	queue->ddgst_remaining -= recv_len;
790 	*offset += recv_len;
791 	*len -= recv_len;
792 	if (queue->ddgst_remaining)
793 		return 0;
794 
795 	if (queue->recv_ddgst != queue->exp_ddgst) {
796 		dev_err(queue->ctrl->ctrl.device,
797 			"data digest error: recv %#x expected %#x\n",
798 			le32_to_cpu(queue->recv_ddgst),
799 			le32_to_cpu(queue->exp_ddgst));
800 		return -EIO;
801 	}
802 
803 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
804 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
805 						pdu->command_id);
806 
807 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
808 		queue->nr_cqe++;
809 	}
810 
811 	nvme_tcp_init_recv_ctx(queue);
812 	return 0;
813 }
814 
815 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
816 			     unsigned int offset, size_t len)
817 {
818 	struct nvme_tcp_queue *queue = desc->arg.data;
819 	size_t consumed = len;
820 	int result;
821 
822 	while (len) {
823 		switch (nvme_tcp_recv_state(queue)) {
824 		case NVME_TCP_RECV_PDU:
825 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
826 			break;
827 		case NVME_TCP_RECV_DATA:
828 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
829 			break;
830 		case NVME_TCP_RECV_DDGST:
831 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
832 			break;
833 		default:
834 			result = -EFAULT;
835 		}
836 		if (result) {
837 			dev_err(queue->ctrl->ctrl.device,
838 				"receive failed:  %d\n", result);
839 			queue->rd_enabled = false;
840 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
841 			return result;
842 		}
843 	}
844 
845 	return consumed;
846 }
847 
848 static void nvme_tcp_data_ready(struct sock *sk)
849 {
850 	struct nvme_tcp_queue *queue;
851 
852 	read_lock_bh(&sk->sk_callback_lock);
853 	queue = sk->sk_user_data;
854 	if (likely(queue && queue->rd_enabled) &&
855 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
856 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
857 	read_unlock_bh(&sk->sk_callback_lock);
858 }
859 
860 static void nvme_tcp_write_space(struct sock *sk)
861 {
862 	struct nvme_tcp_queue *queue;
863 
864 	read_lock_bh(&sk->sk_callback_lock);
865 	queue = sk->sk_user_data;
866 	if (likely(queue && sk_stream_is_writeable(sk))) {
867 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
868 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
869 	}
870 	read_unlock_bh(&sk->sk_callback_lock);
871 }
872 
873 static void nvme_tcp_state_change(struct sock *sk)
874 {
875 	struct nvme_tcp_queue *queue;
876 
877 	read_lock(&sk->sk_callback_lock);
878 	queue = sk->sk_user_data;
879 	if (!queue)
880 		goto done;
881 
882 	switch (sk->sk_state) {
883 	case TCP_CLOSE:
884 	case TCP_CLOSE_WAIT:
885 	case TCP_LAST_ACK:
886 	case TCP_FIN_WAIT1:
887 	case TCP_FIN_WAIT2:
888 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
889 		break;
890 	default:
891 		dev_info(queue->ctrl->ctrl.device,
892 			"queue %d socket state %d\n",
893 			nvme_tcp_queue_id(queue), sk->sk_state);
894 	}
895 
896 	queue->state_change(sk);
897 done:
898 	read_unlock(&sk->sk_callback_lock);
899 }
900 
901 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
902 {
903 	return !list_empty(&queue->send_list) ||
904 		!llist_empty(&queue->req_list) || queue->more_requests;
905 }
906 
907 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
908 {
909 	queue->request = NULL;
910 }
911 
912 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
913 {
914 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
915 }
916 
917 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
918 {
919 	struct nvme_tcp_queue *queue = req->queue;
920 
921 	while (true) {
922 		struct page *page = nvme_tcp_req_cur_page(req);
923 		size_t offset = nvme_tcp_req_cur_offset(req);
924 		size_t len = nvme_tcp_req_cur_length(req);
925 		bool last = nvme_tcp_pdu_last_send(req, len);
926 		int ret, flags = MSG_DONTWAIT;
927 
928 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
929 			flags |= MSG_EOR;
930 		else
931 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
932 
933 		if (sendpage_ok(page)) {
934 			ret = kernel_sendpage(queue->sock, page, offset, len,
935 					flags);
936 		} else {
937 			ret = sock_no_sendpage(queue->sock, page, offset, len,
938 					flags);
939 		}
940 		if (ret <= 0)
941 			return ret;
942 
943 		nvme_tcp_advance_req(req, ret);
944 		if (queue->data_digest)
945 			nvme_tcp_ddgst_update(queue->snd_hash, page,
946 					offset, ret);
947 
948 		/* fully successful last write*/
949 		if (last && ret == len) {
950 			if (queue->data_digest) {
951 				nvme_tcp_ddgst_final(queue->snd_hash,
952 					&req->ddgst);
953 				req->state = NVME_TCP_SEND_DDGST;
954 				req->offset = 0;
955 			} else {
956 				nvme_tcp_done_send_req(queue);
957 			}
958 			return 1;
959 		}
960 	}
961 	return -EAGAIN;
962 }
963 
964 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
965 {
966 	struct nvme_tcp_queue *queue = req->queue;
967 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
968 	bool inline_data = nvme_tcp_has_inline_data(req);
969 	u8 hdgst = nvme_tcp_hdgst_len(queue);
970 	int len = sizeof(*pdu) + hdgst - req->offset;
971 	int flags = MSG_DONTWAIT;
972 	int ret;
973 
974 	if (inline_data || nvme_tcp_queue_more(queue))
975 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
976 	else
977 		flags |= MSG_EOR;
978 
979 	if (queue->hdr_digest && !req->offset)
980 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
981 
982 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
983 			offset_in_page(pdu) + req->offset, len,  flags);
984 	if (unlikely(ret <= 0))
985 		return ret;
986 
987 	len -= ret;
988 	if (!len) {
989 		if (inline_data) {
990 			req->state = NVME_TCP_SEND_DATA;
991 			if (queue->data_digest)
992 				crypto_ahash_init(queue->snd_hash);
993 		} else {
994 			nvme_tcp_done_send_req(queue);
995 		}
996 		return 1;
997 	}
998 	req->offset += ret;
999 
1000 	return -EAGAIN;
1001 }
1002 
1003 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1004 {
1005 	struct nvme_tcp_queue *queue = req->queue;
1006 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1007 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1008 	int len = sizeof(*pdu) - req->offset + hdgst;
1009 	int ret;
1010 
1011 	if (queue->hdr_digest && !req->offset)
1012 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1013 
1014 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1015 			offset_in_page(pdu) + req->offset, len,
1016 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1017 	if (unlikely(ret <= 0))
1018 		return ret;
1019 
1020 	len -= ret;
1021 	if (!len) {
1022 		req->state = NVME_TCP_SEND_DATA;
1023 		if (queue->data_digest)
1024 			crypto_ahash_init(queue->snd_hash);
1025 		return 1;
1026 	}
1027 	req->offset += ret;
1028 
1029 	return -EAGAIN;
1030 }
1031 
1032 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1033 {
1034 	struct nvme_tcp_queue *queue = req->queue;
1035 	int ret;
1036 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1037 	struct kvec iov = {
1038 		.iov_base = &req->ddgst + req->offset,
1039 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1040 	};
1041 
1042 	if (nvme_tcp_queue_more(queue))
1043 		msg.msg_flags |= MSG_MORE;
1044 	else
1045 		msg.msg_flags |= MSG_EOR;
1046 
1047 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1048 	if (unlikely(ret <= 0))
1049 		return ret;
1050 
1051 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1052 		nvme_tcp_done_send_req(queue);
1053 		return 1;
1054 	}
1055 
1056 	req->offset += ret;
1057 	return -EAGAIN;
1058 }
1059 
1060 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1061 {
1062 	struct nvme_tcp_request *req;
1063 	int ret = 1;
1064 
1065 	if (!queue->request) {
1066 		queue->request = nvme_tcp_fetch_request(queue);
1067 		if (!queue->request)
1068 			return 0;
1069 	}
1070 	req = queue->request;
1071 
1072 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1073 		ret = nvme_tcp_try_send_cmd_pdu(req);
1074 		if (ret <= 0)
1075 			goto done;
1076 		if (!nvme_tcp_has_inline_data(req))
1077 			return ret;
1078 	}
1079 
1080 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1081 		ret = nvme_tcp_try_send_data_pdu(req);
1082 		if (ret <= 0)
1083 			goto done;
1084 	}
1085 
1086 	if (req->state == NVME_TCP_SEND_DATA) {
1087 		ret = nvme_tcp_try_send_data(req);
1088 		if (ret <= 0)
1089 			goto done;
1090 	}
1091 
1092 	if (req->state == NVME_TCP_SEND_DDGST)
1093 		ret = nvme_tcp_try_send_ddgst(req);
1094 done:
1095 	if (ret == -EAGAIN) {
1096 		ret = 0;
1097 	} else if (ret < 0) {
1098 		dev_err(queue->ctrl->ctrl.device,
1099 			"failed to send request %d\n", ret);
1100 		if (ret != -EPIPE && ret != -ECONNRESET)
1101 			nvme_tcp_fail_request(queue->request);
1102 		nvme_tcp_done_send_req(queue);
1103 	}
1104 	return ret;
1105 }
1106 
1107 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1108 {
1109 	struct socket *sock = queue->sock;
1110 	struct sock *sk = sock->sk;
1111 	read_descriptor_t rd_desc;
1112 	int consumed;
1113 
1114 	rd_desc.arg.data = queue;
1115 	rd_desc.count = 1;
1116 	lock_sock(sk);
1117 	queue->nr_cqe = 0;
1118 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1119 	release_sock(sk);
1120 	return consumed;
1121 }
1122 
1123 static void nvme_tcp_io_work(struct work_struct *w)
1124 {
1125 	struct nvme_tcp_queue *queue =
1126 		container_of(w, struct nvme_tcp_queue, io_work);
1127 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1128 
1129 	do {
1130 		bool pending = false;
1131 		int result;
1132 
1133 		if (mutex_trylock(&queue->send_mutex)) {
1134 			result = nvme_tcp_try_send(queue);
1135 			mutex_unlock(&queue->send_mutex);
1136 			if (result > 0)
1137 				pending = true;
1138 			else if (unlikely(result < 0))
1139 				break;
1140 		}
1141 
1142 		result = nvme_tcp_try_recv(queue);
1143 		if (result > 0)
1144 			pending = true;
1145 		else if (unlikely(result < 0))
1146 			return;
1147 
1148 		if (!pending)
1149 			return;
1150 
1151 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1152 
1153 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1154 }
1155 
1156 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1157 {
1158 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1159 
1160 	ahash_request_free(queue->rcv_hash);
1161 	ahash_request_free(queue->snd_hash);
1162 	crypto_free_ahash(tfm);
1163 }
1164 
1165 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1166 {
1167 	struct crypto_ahash *tfm;
1168 
1169 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1170 	if (IS_ERR(tfm))
1171 		return PTR_ERR(tfm);
1172 
1173 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1174 	if (!queue->snd_hash)
1175 		goto free_tfm;
1176 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1177 
1178 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1179 	if (!queue->rcv_hash)
1180 		goto free_snd_hash;
1181 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1182 
1183 	return 0;
1184 free_snd_hash:
1185 	ahash_request_free(queue->snd_hash);
1186 free_tfm:
1187 	crypto_free_ahash(tfm);
1188 	return -ENOMEM;
1189 }
1190 
1191 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1192 {
1193 	struct nvme_tcp_request *async = &ctrl->async_req;
1194 
1195 	page_frag_free(async->pdu);
1196 }
1197 
1198 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1199 {
1200 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1201 	struct nvme_tcp_request *async = &ctrl->async_req;
1202 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1203 
1204 	async->pdu = page_frag_alloc(&queue->pf_cache,
1205 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1206 		GFP_KERNEL | __GFP_ZERO);
1207 	if (!async->pdu)
1208 		return -ENOMEM;
1209 
1210 	async->queue = &ctrl->queues[0];
1211 	return 0;
1212 }
1213 
1214 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1215 {
1216 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1217 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1218 
1219 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1220 		return;
1221 
1222 	if (queue->hdr_digest || queue->data_digest)
1223 		nvme_tcp_free_crypto(queue);
1224 
1225 	sock_release(queue->sock);
1226 	kfree(queue->pdu);
1227 	mutex_destroy(&queue->queue_lock);
1228 }
1229 
1230 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1231 {
1232 	struct nvme_tcp_icreq_pdu *icreq;
1233 	struct nvme_tcp_icresp_pdu *icresp;
1234 	struct msghdr msg = {};
1235 	struct kvec iov;
1236 	bool ctrl_hdgst, ctrl_ddgst;
1237 	int ret;
1238 
1239 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1240 	if (!icreq)
1241 		return -ENOMEM;
1242 
1243 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1244 	if (!icresp) {
1245 		ret = -ENOMEM;
1246 		goto free_icreq;
1247 	}
1248 
1249 	icreq->hdr.type = nvme_tcp_icreq;
1250 	icreq->hdr.hlen = sizeof(*icreq);
1251 	icreq->hdr.pdo = 0;
1252 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1253 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1254 	icreq->maxr2t = 0; /* single inflight r2t supported */
1255 	icreq->hpda = 0; /* no alignment constraint */
1256 	if (queue->hdr_digest)
1257 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1258 	if (queue->data_digest)
1259 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1260 
1261 	iov.iov_base = icreq;
1262 	iov.iov_len = sizeof(*icreq);
1263 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1264 	if (ret < 0)
1265 		goto free_icresp;
1266 
1267 	memset(&msg, 0, sizeof(msg));
1268 	iov.iov_base = icresp;
1269 	iov.iov_len = sizeof(*icresp);
1270 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1271 			iov.iov_len, msg.msg_flags);
1272 	if (ret < 0)
1273 		goto free_icresp;
1274 
1275 	ret = -EINVAL;
1276 	if (icresp->hdr.type != nvme_tcp_icresp) {
1277 		pr_err("queue %d: bad type returned %d\n",
1278 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1279 		goto free_icresp;
1280 	}
1281 
1282 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1283 		pr_err("queue %d: bad pdu length returned %d\n",
1284 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1285 		goto free_icresp;
1286 	}
1287 
1288 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1289 		pr_err("queue %d: bad pfv returned %d\n",
1290 			nvme_tcp_queue_id(queue), icresp->pfv);
1291 		goto free_icresp;
1292 	}
1293 
1294 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1295 	if ((queue->data_digest && !ctrl_ddgst) ||
1296 	    (!queue->data_digest && ctrl_ddgst)) {
1297 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1298 			nvme_tcp_queue_id(queue),
1299 			queue->data_digest ? "enabled" : "disabled",
1300 			ctrl_ddgst ? "enabled" : "disabled");
1301 		goto free_icresp;
1302 	}
1303 
1304 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1305 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1306 	    (!queue->hdr_digest && ctrl_hdgst)) {
1307 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1308 			nvme_tcp_queue_id(queue),
1309 			queue->hdr_digest ? "enabled" : "disabled",
1310 			ctrl_hdgst ? "enabled" : "disabled");
1311 		goto free_icresp;
1312 	}
1313 
1314 	if (icresp->cpda != 0) {
1315 		pr_err("queue %d: unsupported cpda returned %d\n",
1316 			nvme_tcp_queue_id(queue), icresp->cpda);
1317 		goto free_icresp;
1318 	}
1319 
1320 	ret = 0;
1321 free_icresp:
1322 	kfree(icresp);
1323 free_icreq:
1324 	kfree(icreq);
1325 	return ret;
1326 }
1327 
1328 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1329 {
1330 	return nvme_tcp_queue_id(queue) == 0;
1331 }
1332 
1333 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1334 {
1335 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1336 	int qid = nvme_tcp_queue_id(queue);
1337 
1338 	return !nvme_tcp_admin_queue(queue) &&
1339 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1340 }
1341 
1342 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1343 {
1344 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1345 	int qid = nvme_tcp_queue_id(queue);
1346 
1347 	return !nvme_tcp_admin_queue(queue) &&
1348 		!nvme_tcp_default_queue(queue) &&
1349 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1350 			  ctrl->io_queues[HCTX_TYPE_READ];
1351 }
1352 
1353 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1354 {
1355 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1356 	int qid = nvme_tcp_queue_id(queue);
1357 
1358 	return !nvme_tcp_admin_queue(queue) &&
1359 		!nvme_tcp_default_queue(queue) &&
1360 		!nvme_tcp_read_queue(queue) &&
1361 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1362 			  ctrl->io_queues[HCTX_TYPE_READ] +
1363 			  ctrl->io_queues[HCTX_TYPE_POLL];
1364 }
1365 
1366 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1367 {
1368 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1369 	int qid = nvme_tcp_queue_id(queue);
1370 	int n = 0;
1371 
1372 	if (nvme_tcp_default_queue(queue))
1373 		n = qid - 1;
1374 	else if (nvme_tcp_read_queue(queue))
1375 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1376 	else if (nvme_tcp_poll_queue(queue))
1377 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1378 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1379 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1380 }
1381 
1382 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1383 		int qid, size_t queue_size)
1384 {
1385 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1386 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1387 	int ret, rcv_pdu_size;
1388 
1389 	mutex_init(&queue->queue_lock);
1390 	queue->ctrl = ctrl;
1391 	init_llist_head(&queue->req_list);
1392 	INIT_LIST_HEAD(&queue->send_list);
1393 	mutex_init(&queue->send_mutex);
1394 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1395 	queue->queue_size = queue_size;
1396 
1397 	if (qid > 0)
1398 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1399 	else
1400 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1401 						NVME_TCP_ADMIN_CCSZ;
1402 
1403 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1404 			IPPROTO_TCP, &queue->sock);
1405 	if (ret) {
1406 		dev_err(nctrl->device,
1407 			"failed to create socket: %d\n", ret);
1408 		goto err_destroy_mutex;
1409 	}
1410 
1411 	/* Single syn retry */
1412 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1413 
1414 	/* Set TCP no delay */
1415 	tcp_sock_set_nodelay(queue->sock->sk);
1416 
1417 	/*
1418 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1419 	 * close. This is done to prevent stale data from being sent should
1420 	 * the network connection be restored before TCP times out.
1421 	 */
1422 	sock_no_linger(queue->sock->sk);
1423 
1424 	if (so_priority > 0)
1425 		sock_set_priority(queue->sock->sk, so_priority);
1426 
1427 	/* Set socket type of service */
1428 	if (nctrl->opts->tos >= 0)
1429 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1430 
1431 	/* Set 10 seconds timeout for icresp recvmsg */
1432 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1433 
1434 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1435 	nvme_tcp_set_queue_io_cpu(queue);
1436 	queue->request = NULL;
1437 	queue->data_remaining = 0;
1438 	queue->ddgst_remaining = 0;
1439 	queue->pdu_remaining = 0;
1440 	queue->pdu_offset = 0;
1441 	sk_set_memalloc(queue->sock->sk);
1442 
1443 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1444 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1445 			sizeof(ctrl->src_addr));
1446 		if (ret) {
1447 			dev_err(nctrl->device,
1448 				"failed to bind queue %d socket %d\n",
1449 				qid, ret);
1450 			goto err_sock;
1451 		}
1452 	}
1453 
1454 	queue->hdr_digest = nctrl->opts->hdr_digest;
1455 	queue->data_digest = nctrl->opts->data_digest;
1456 	if (queue->hdr_digest || queue->data_digest) {
1457 		ret = nvme_tcp_alloc_crypto(queue);
1458 		if (ret) {
1459 			dev_err(nctrl->device,
1460 				"failed to allocate queue %d crypto\n", qid);
1461 			goto err_sock;
1462 		}
1463 	}
1464 
1465 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1466 			nvme_tcp_hdgst_len(queue);
1467 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1468 	if (!queue->pdu) {
1469 		ret = -ENOMEM;
1470 		goto err_crypto;
1471 	}
1472 
1473 	dev_dbg(nctrl->device, "connecting queue %d\n",
1474 			nvme_tcp_queue_id(queue));
1475 
1476 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1477 		sizeof(ctrl->addr), 0);
1478 	if (ret) {
1479 		dev_err(nctrl->device,
1480 			"failed to connect socket: %d\n", ret);
1481 		goto err_rcv_pdu;
1482 	}
1483 
1484 	ret = nvme_tcp_init_connection(queue);
1485 	if (ret)
1486 		goto err_init_connect;
1487 
1488 	queue->rd_enabled = true;
1489 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1490 	nvme_tcp_init_recv_ctx(queue);
1491 
1492 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1493 	queue->sock->sk->sk_user_data = queue;
1494 	queue->state_change = queue->sock->sk->sk_state_change;
1495 	queue->data_ready = queue->sock->sk->sk_data_ready;
1496 	queue->write_space = queue->sock->sk->sk_write_space;
1497 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1498 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1499 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1500 #ifdef CONFIG_NET_RX_BUSY_POLL
1501 	queue->sock->sk->sk_ll_usec = 1;
1502 #endif
1503 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1504 
1505 	return 0;
1506 
1507 err_init_connect:
1508 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1509 err_rcv_pdu:
1510 	kfree(queue->pdu);
1511 err_crypto:
1512 	if (queue->hdr_digest || queue->data_digest)
1513 		nvme_tcp_free_crypto(queue);
1514 err_sock:
1515 	sock_release(queue->sock);
1516 	queue->sock = NULL;
1517 err_destroy_mutex:
1518 	mutex_destroy(&queue->queue_lock);
1519 	return ret;
1520 }
1521 
1522 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1523 {
1524 	struct socket *sock = queue->sock;
1525 
1526 	write_lock_bh(&sock->sk->sk_callback_lock);
1527 	sock->sk->sk_user_data  = NULL;
1528 	sock->sk->sk_data_ready = queue->data_ready;
1529 	sock->sk->sk_state_change = queue->state_change;
1530 	sock->sk->sk_write_space  = queue->write_space;
1531 	write_unlock_bh(&sock->sk->sk_callback_lock);
1532 }
1533 
1534 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1535 {
1536 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1537 	nvme_tcp_restore_sock_calls(queue);
1538 	cancel_work_sync(&queue->io_work);
1539 }
1540 
1541 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1542 {
1543 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1544 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1545 
1546 	mutex_lock(&queue->queue_lock);
1547 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1548 		__nvme_tcp_stop_queue(queue);
1549 	mutex_unlock(&queue->queue_lock);
1550 }
1551 
1552 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1553 {
1554 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1555 	int ret;
1556 
1557 	if (idx)
1558 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1559 	else
1560 		ret = nvmf_connect_admin_queue(nctrl);
1561 
1562 	if (!ret) {
1563 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1564 	} else {
1565 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1566 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1567 		dev_err(nctrl->device,
1568 			"failed to connect queue: %d ret=%d\n", idx, ret);
1569 	}
1570 	return ret;
1571 }
1572 
1573 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1574 		bool admin)
1575 {
1576 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1577 	struct blk_mq_tag_set *set;
1578 	int ret;
1579 
1580 	if (admin) {
1581 		set = &ctrl->admin_tag_set;
1582 		memset(set, 0, sizeof(*set));
1583 		set->ops = &nvme_tcp_admin_mq_ops;
1584 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1585 		set->reserved_tags = NVMF_RESERVED_TAGS;
1586 		set->numa_node = nctrl->numa_node;
1587 		set->flags = BLK_MQ_F_BLOCKING;
1588 		set->cmd_size = sizeof(struct nvme_tcp_request);
1589 		set->driver_data = ctrl;
1590 		set->nr_hw_queues = 1;
1591 		set->timeout = NVME_ADMIN_TIMEOUT;
1592 	} else {
1593 		set = &ctrl->tag_set;
1594 		memset(set, 0, sizeof(*set));
1595 		set->ops = &nvme_tcp_mq_ops;
1596 		set->queue_depth = nctrl->sqsize + 1;
1597 		set->reserved_tags = NVMF_RESERVED_TAGS;
1598 		set->numa_node = nctrl->numa_node;
1599 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1600 		set->cmd_size = sizeof(struct nvme_tcp_request);
1601 		set->driver_data = ctrl;
1602 		set->nr_hw_queues = nctrl->queue_count - 1;
1603 		set->timeout = NVME_IO_TIMEOUT;
1604 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1605 	}
1606 
1607 	ret = blk_mq_alloc_tag_set(set);
1608 	if (ret)
1609 		return ERR_PTR(ret);
1610 
1611 	return set;
1612 }
1613 
1614 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1615 {
1616 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1617 		cancel_work_sync(&ctrl->async_event_work);
1618 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1619 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1620 	}
1621 
1622 	nvme_tcp_free_queue(ctrl, 0);
1623 }
1624 
1625 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1626 {
1627 	int i;
1628 
1629 	for (i = 1; i < ctrl->queue_count; i++)
1630 		nvme_tcp_free_queue(ctrl, i);
1631 }
1632 
1633 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1634 {
1635 	int i;
1636 
1637 	for (i = 1; i < ctrl->queue_count; i++)
1638 		nvme_tcp_stop_queue(ctrl, i);
1639 }
1640 
1641 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1642 {
1643 	int i, ret = 0;
1644 
1645 	for (i = 1; i < ctrl->queue_count; i++) {
1646 		ret = nvme_tcp_start_queue(ctrl, i);
1647 		if (ret)
1648 			goto out_stop_queues;
1649 	}
1650 
1651 	return 0;
1652 
1653 out_stop_queues:
1654 	for (i--; i >= 1; i--)
1655 		nvme_tcp_stop_queue(ctrl, i);
1656 	return ret;
1657 }
1658 
1659 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1660 {
1661 	int ret;
1662 
1663 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1664 	if (ret)
1665 		return ret;
1666 
1667 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1668 	if (ret)
1669 		goto out_free_queue;
1670 
1671 	return 0;
1672 
1673 out_free_queue:
1674 	nvme_tcp_free_queue(ctrl, 0);
1675 	return ret;
1676 }
1677 
1678 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1679 {
1680 	int i, ret;
1681 
1682 	for (i = 1; i < ctrl->queue_count; i++) {
1683 		ret = nvme_tcp_alloc_queue(ctrl, i,
1684 				ctrl->sqsize + 1);
1685 		if (ret)
1686 			goto out_free_queues;
1687 	}
1688 
1689 	return 0;
1690 
1691 out_free_queues:
1692 	for (i--; i >= 1; i--)
1693 		nvme_tcp_free_queue(ctrl, i);
1694 
1695 	return ret;
1696 }
1697 
1698 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1699 {
1700 	unsigned int nr_io_queues;
1701 
1702 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1703 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1704 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1705 
1706 	return nr_io_queues;
1707 }
1708 
1709 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1710 		unsigned int nr_io_queues)
1711 {
1712 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1713 	struct nvmf_ctrl_options *opts = nctrl->opts;
1714 
1715 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1716 		/*
1717 		 * separate read/write queues
1718 		 * hand out dedicated default queues only after we have
1719 		 * sufficient read queues.
1720 		 */
1721 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1722 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1723 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1724 			min(opts->nr_write_queues, nr_io_queues);
1725 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1726 	} else {
1727 		/*
1728 		 * shared read/write queues
1729 		 * either no write queues were requested, or we don't have
1730 		 * sufficient queue count to have dedicated default queues.
1731 		 */
1732 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1733 			min(opts->nr_io_queues, nr_io_queues);
1734 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1735 	}
1736 
1737 	if (opts->nr_poll_queues && nr_io_queues) {
1738 		/* map dedicated poll queues only if we have queues left */
1739 		ctrl->io_queues[HCTX_TYPE_POLL] =
1740 			min(opts->nr_poll_queues, nr_io_queues);
1741 	}
1742 }
1743 
1744 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1745 {
1746 	unsigned int nr_io_queues;
1747 	int ret;
1748 
1749 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1750 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1751 	if (ret)
1752 		return ret;
1753 
1754 	ctrl->queue_count = nr_io_queues + 1;
1755 	if (ctrl->queue_count < 2) {
1756 		dev_err(ctrl->device,
1757 			"unable to set any I/O queues\n");
1758 		return -ENOMEM;
1759 	}
1760 
1761 	dev_info(ctrl->device,
1762 		"creating %d I/O queues.\n", nr_io_queues);
1763 
1764 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1765 
1766 	return __nvme_tcp_alloc_io_queues(ctrl);
1767 }
1768 
1769 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1770 {
1771 	nvme_tcp_stop_io_queues(ctrl);
1772 	if (remove) {
1773 		blk_cleanup_queue(ctrl->connect_q);
1774 		blk_mq_free_tag_set(ctrl->tagset);
1775 	}
1776 	nvme_tcp_free_io_queues(ctrl);
1777 }
1778 
1779 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1780 {
1781 	int ret;
1782 
1783 	ret = nvme_tcp_alloc_io_queues(ctrl);
1784 	if (ret)
1785 		return ret;
1786 
1787 	if (new) {
1788 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1789 		if (IS_ERR(ctrl->tagset)) {
1790 			ret = PTR_ERR(ctrl->tagset);
1791 			goto out_free_io_queues;
1792 		}
1793 
1794 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1795 		if (IS_ERR(ctrl->connect_q)) {
1796 			ret = PTR_ERR(ctrl->connect_q);
1797 			goto out_free_tag_set;
1798 		}
1799 	}
1800 
1801 	ret = nvme_tcp_start_io_queues(ctrl);
1802 	if (ret)
1803 		goto out_cleanup_connect_q;
1804 
1805 	if (!new) {
1806 		nvme_start_queues(ctrl);
1807 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1808 			/*
1809 			 * If we timed out waiting for freeze we are likely to
1810 			 * be stuck.  Fail the controller initialization just
1811 			 * to be safe.
1812 			 */
1813 			ret = -ENODEV;
1814 			goto out_wait_freeze_timed_out;
1815 		}
1816 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1817 			ctrl->queue_count - 1);
1818 		nvme_unfreeze(ctrl);
1819 	}
1820 
1821 	return 0;
1822 
1823 out_wait_freeze_timed_out:
1824 	nvme_stop_queues(ctrl);
1825 	nvme_sync_io_queues(ctrl);
1826 	nvme_tcp_stop_io_queues(ctrl);
1827 out_cleanup_connect_q:
1828 	nvme_cancel_tagset(ctrl);
1829 	if (new)
1830 		blk_cleanup_queue(ctrl->connect_q);
1831 out_free_tag_set:
1832 	if (new)
1833 		blk_mq_free_tag_set(ctrl->tagset);
1834 out_free_io_queues:
1835 	nvme_tcp_free_io_queues(ctrl);
1836 	return ret;
1837 }
1838 
1839 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1840 {
1841 	nvme_tcp_stop_queue(ctrl, 0);
1842 	if (remove) {
1843 		blk_cleanup_queue(ctrl->admin_q);
1844 		blk_cleanup_queue(ctrl->fabrics_q);
1845 		blk_mq_free_tag_set(ctrl->admin_tagset);
1846 	}
1847 	nvme_tcp_free_admin_queue(ctrl);
1848 }
1849 
1850 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1851 {
1852 	int error;
1853 
1854 	error = nvme_tcp_alloc_admin_queue(ctrl);
1855 	if (error)
1856 		return error;
1857 
1858 	if (new) {
1859 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1860 		if (IS_ERR(ctrl->admin_tagset)) {
1861 			error = PTR_ERR(ctrl->admin_tagset);
1862 			goto out_free_queue;
1863 		}
1864 
1865 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1866 		if (IS_ERR(ctrl->fabrics_q)) {
1867 			error = PTR_ERR(ctrl->fabrics_q);
1868 			goto out_free_tagset;
1869 		}
1870 
1871 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1872 		if (IS_ERR(ctrl->admin_q)) {
1873 			error = PTR_ERR(ctrl->admin_q);
1874 			goto out_cleanup_fabrics_q;
1875 		}
1876 	}
1877 
1878 	error = nvme_tcp_start_queue(ctrl, 0);
1879 	if (error)
1880 		goto out_cleanup_queue;
1881 
1882 	error = nvme_enable_ctrl(ctrl);
1883 	if (error)
1884 		goto out_stop_queue;
1885 
1886 	blk_mq_unquiesce_queue(ctrl->admin_q);
1887 
1888 	error = nvme_init_identify(ctrl);
1889 	if (error)
1890 		goto out_quiesce_queue;
1891 
1892 	return 0;
1893 
1894 out_quiesce_queue:
1895 	blk_mq_quiesce_queue(ctrl->admin_q);
1896 	blk_sync_queue(ctrl->admin_q);
1897 out_stop_queue:
1898 	nvme_tcp_stop_queue(ctrl, 0);
1899 	nvme_cancel_admin_tagset(ctrl);
1900 out_cleanup_queue:
1901 	if (new)
1902 		blk_cleanup_queue(ctrl->admin_q);
1903 out_cleanup_fabrics_q:
1904 	if (new)
1905 		blk_cleanup_queue(ctrl->fabrics_q);
1906 out_free_tagset:
1907 	if (new)
1908 		blk_mq_free_tag_set(ctrl->admin_tagset);
1909 out_free_queue:
1910 	nvme_tcp_free_admin_queue(ctrl);
1911 	return error;
1912 }
1913 
1914 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1915 		bool remove)
1916 {
1917 	blk_mq_quiesce_queue(ctrl->admin_q);
1918 	blk_sync_queue(ctrl->admin_q);
1919 	nvme_tcp_stop_queue(ctrl, 0);
1920 	nvme_cancel_admin_tagset(ctrl);
1921 	if (remove)
1922 		blk_mq_unquiesce_queue(ctrl->admin_q);
1923 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1924 }
1925 
1926 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1927 		bool remove)
1928 {
1929 	if (ctrl->queue_count <= 1)
1930 		return;
1931 	blk_mq_quiesce_queue(ctrl->admin_q);
1932 	nvme_start_freeze(ctrl);
1933 	nvme_stop_queues(ctrl);
1934 	nvme_sync_io_queues(ctrl);
1935 	nvme_tcp_stop_io_queues(ctrl);
1936 	nvme_cancel_tagset(ctrl);
1937 	if (remove)
1938 		nvme_start_queues(ctrl);
1939 	nvme_tcp_destroy_io_queues(ctrl, remove);
1940 }
1941 
1942 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1943 {
1944 	/* If we are resetting/deleting then do nothing */
1945 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1946 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1947 			ctrl->state == NVME_CTRL_LIVE);
1948 		return;
1949 	}
1950 
1951 	if (nvmf_should_reconnect(ctrl)) {
1952 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1953 			ctrl->opts->reconnect_delay);
1954 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1955 				ctrl->opts->reconnect_delay * HZ);
1956 	} else {
1957 		dev_info(ctrl->device, "Removing controller...\n");
1958 		nvme_delete_ctrl(ctrl);
1959 	}
1960 }
1961 
1962 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1963 {
1964 	struct nvmf_ctrl_options *opts = ctrl->opts;
1965 	int ret;
1966 
1967 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1968 	if (ret)
1969 		return ret;
1970 
1971 	if (ctrl->icdoff) {
1972 		dev_err(ctrl->device, "icdoff is not supported!\n");
1973 		goto destroy_admin;
1974 	}
1975 
1976 	if (opts->queue_size > ctrl->sqsize + 1)
1977 		dev_warn(ctrl->device,
1978 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1979 			opts->queue_size, ctrl->sqsize + 1);
1980 
1981 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1982 		dev_warn(ctrl->device,
1983 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1984 			ctrl->sqsize + 1, ctrl->maxcmd);
1985 		ctrl->sqsize = ctrl->maxcmd - 1;
1986 	}
1987 
1988 	if (ctrl->queue_count > 1) {
1989 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1990 		if (ret)
1991 			goto destroy_admin;
1992 	}
1993 
1994 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1995 		/*
1996 		 * state change failure is ok if we started ctrl delete,
1997 		 * unless we're during creation of a new controller to
1998 		 * avoid races with teardown flow.
1999 		 */
2000 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2001 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2002 		WARN_ON_ONCE(new);
2003 		ret = -EINVAL;
2004 		goto destroy_io;
2005 	}
2006 
2007 	nvme_start_ctrl(ctrl);
2008 	return 0;
2009 
2010 destroy_io:
2011 	if (ctrl->queue_count > 1) {
2012 		nvme_stop_queues(ctrl);
2013 		nvme_sync_io_queues(ctrl);
2014 		nvme_tcp_stop_io_queues(ctrl);
2015 		nvme_cancel_tagset(ctrl);
2016 		nvme_tcp_destroy_io_queues(ctrl, new);
2017 	}
2018 destroy_admin:
2019 	blk_mq_quiesce_queue(ctrl->admin_q);
2020 	blk_sync_queue(ctrl->admin_q);
2021 	nvme_tcp_stop_queue(ctrl, 0);
2022 	nvme_cancel_admin_tagset(ctrl);
2023 	nvme_tcp_destroy_admin_queue(ctrl, new);
2024 	return ret;
2025 }
2026 
2027 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2028 {
2029 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2030 			struct nvme_tcp_ctrl, connect_work);
2031 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2032 
2033 	++ctrl->nr_reconnects;
2034 
2035 	if (nvme_tcp_setup_ctrl(ctrl, false))
2036 		goto requeue;
2037 
2038 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2039 			ctrl->nr_reconnects);
2040 
2041 	ctrl->nr_reconnects = 0;
2042 
2043 	return;
2044 
2045 requeue:
2046 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2047 			ctrl->nr_reconnects);
2048 	nvme_tcp_reconnect_or_remove(ctrl);
2049 }
2050 
2051 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2052 {
2053 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2054 				struct nvme_tcp_ctrl, err_work);
2055 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2056 
2057 	nvme_stop_keep_alive(ctrl);
2058 	nvme_tcp_teardown_io_queues(ctrl, false);
2059 	/* unquiesce to fail fast pending requests */
2060 	nvme_start_queues(ctrl);
2061 	nvme_tcp_teardown_admin_queue(ctrl, false);
2062 	blk_mq_unquiesce_queue(ctrl->admin_q);
2063 
2064 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2065 		/* state change failure is ok if we started ctrl delete */
2066 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2067 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2068 		return;
2069 	}
2070 
2071 	nvme_tcp_reconnect_or_remove(ctrl);
2072 }
2073 
2074 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2075 {
2076 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2077 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2078 
2079 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2080 	blk_mq_quiesce_queue(ctrl->admin_q);
2081 	if (shutdown)
2082 		nvme_shutdown_ctrl(ctrl);
2083 	else
2084 		nvme_disable_ctrl(ctrl);
2085 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2086 }
2087 
2088 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2089 {
2090 	nvme_tcp_teardown_ctrl(ctrl, true);
2091 }
2092 
2093 static void nvme_reset_ctrl_work(struct work_struct *work)
2094 {
2095 	struct nvme_ctrl *ctrl =
2096 		container_of(work, struct nvme_ctrl, reset_work);
2097 
2098 	nvme_stop_ctrl(ctrl);
2099 	nvme_tcp_teardown_ctrl(ctrl, false);
2100 
2101 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2102 		/* state change failure is ok if we started ctrl delete */
2103 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2104 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2105 		return;
2106 	}
2107 
2108 	if (nvme_tcp_setup_ctrl(ctrl, false))
2109 		goto out_fail;
2110 
2111 	return;
2112 
2113 out_fail:
2114 	++ctrl->nr_reconnects;
2115 	nvme_tcp_reconnect_or_remove(ctrl);
2116 }
2117 
2118 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2119 {
2120 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2121 
2122 	if (list_empty(&ctrl->list))
2123 		goto free_ctrl;
2124 
2125 	mutex_lock(&nvme_tcp_ctrl_mutex);
2126 	list_del(&ctrl->list);
2127 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2128 
2129 	nvmf_free_options(nctrl->opts);
2130 free_ctrl:
2131 	kfree(ctrl->queues);
2132 	kfree(ctrl);
2133 }
2134 
2135 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2136 {
2137 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2138 
2139 	sg->addr = 0;
2140 	sg->length = 0;
2141 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2142 			NVME_SGL_FMT_TRANSPORT_A;
2143 }
2144 
2145 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2146 		struct nvme_command *c, u32 data_len)
2147 {
2148 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2149 
2150 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2151 	sg->length = cpu_to_le32(data_len);
2152 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2153 }
2154 
2155 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2156 		u32 data_len)
2157 {
2158 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2159 
2160 	sg->addr = 0;
2161 	sg->length = cpu_to_le32(data_len);
2162 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2163 			NVME_SGL_FMT_TRANSPORT_A;
2164 }
2165 
2166 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2167 {
2168 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2169 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2170 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2171 	struct nvme_command *cmd = &pdu->cmd;
2172 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2173 
2174 	memset(pdu, 0, sizeof(*pdu));
2175 	pdu->hdr.type = nvme_tcp_cmd;
2176 	if (queue->hdr_digest)
2177 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2178 	pdu->hdr.hlen = sizeof(*pdu);
2179 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2180 
2181 	cmd->common.opcode = nvme_admin_async_event;
2182 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2183 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2184 	nvme_tcp_set_sg_null(cmd);
2185 
2186 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2187 	ctrl->async_req.offset = 0;
2188 	ctrl->async_req.curr_bio = NULL;
2189 	ctrl->async_req.data_len = 0;
2190 
2191 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2192 }
2193 
2194 static void nvme_tcp_complete_timed_out(struct request *rq)
2195 {
2196 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2197 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2198 
2199 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2200 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2201 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2202 		blk_mq_complete_request(rq);
2203 	}
2204 }
2205 
2206 static enum blk_eh_timer_return
2207 nvme_tcp_timeout(struct request *rq, bool reserved)
2208 {
2209 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2210 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2211 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2212 
2213 	dev_warn(ctrl->device,
2214 		"queue %d: timeout request %#x type %d\n",
2215 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2216 
2217 	if (ctrl->state != NVME_CTRL_LIVE) {
2218 		/*
2219 		 * If we are resetting, connecting or deleting we should
2220 		 * complete immediately because we may block controller
2221 		 * teardown or setup sequence
2222 		 * - ctrl disable/shutdown fabrics requests
2223 		 * - connect requests
2224 		 * - initialization admin requests
2225 		 * - I/O requests that entered after unquiescing and
2226 		 *   the controller stopped responding
2227 		 *
2228 		 * All other requests should be cancelled by the error
2229 		 * recovery work, so it's fine that we fail it here.
2230 		 */
2231 		nvme_tcp_complete_timed_out(rq);
2232 		return BLK_EH_DONE;
2233 	}
2234 
2235 	/*
2236 	 * LIVE state should trigger the normal error recovery which will
2237 	 * handle completing this request.
2238 	 */
2239 	nvme_tcp_error_recovery(ctrl);
2240 	return BLK_EH_RESET_TIMER;
2241 }
2242 
2243 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2244 			struct request *rq)
2245 {
2246 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2247 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2248 	struct nvme_command *c = &pdu->cmd;
2249 
2250 	c->common.flags |= NVME_CMD_SGL_METABUF;
2251 
2252 	if (!blk_rq_nr_phys_segments(rq))
2253 		nvme_tcp_set_sg_null(c);
2254 	else if (rq_data_dir(rq) == WRITE &&
2255 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2256 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2257 	else
2258 		nvme_tcp_set_sg_host_data(c, req->data_len);
2259 
2260 	return 0;
2261 }
2262 
2263 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2264 		struct request *rq)
2265 {
2266 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2267 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2268 	struct nvme_tcp_queue *queue = req->queue;
2269 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2270 	blk_status_t ret;
2271 
2272 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2273 	if (ret)
2274 		return ret;
2275 
2276 	req->state = NVME_TCP_SEND_CMD_PDU;
2277 	req->offset = 0;
2278 	req->data_sent = 0;
2279 	req->pdu_len = 0;
2280 	req->pdu_sent = 0;
2281 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2282 				blk_rq_payload_bytes(rq) : 0;
2283 	req->curr_bio = rq->bio;
2284 	if (req->curr_bio && req->data_len)
2285 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2286 
2287 	if (rq_data_dir(rq) == WRITE &&
2288 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2289 		req->pdu_len = req->data_len;
2290 
2291 	pdu->hdr.type = nvme_tcp_cmd;
2292 	pdu->hdr.flags = 0;
2293 	if (queue->hdr_digest)
2294 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2295 	if (queue->data_digest && req->pdu_len) {
2296 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2297 		ddgst = nvme_tcp_ddgst_len(queue);
2298 	}
2299 	pdu->hdr.hlen = sizeof(*pdu);
2300 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2301 	pdu->hdr.plen =
2302 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2303 
2304 	ret = nvme_tcp_map_data(queue, rq);
2305 	if (unlikely(ret)) {
2306 		nvme_cleanup_cmd(rq);
2307 		dev_err(queue->ctrl->ctrl.device,
2308 			"Failed to map data (%d)\n", ret);
2309 		return ret;
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2316 {
2317 	struct nvme_tcp_queue *queue = hctx->driver_data;
2318 
2319 	if (!llist_empty(&queue->req_list))
2320 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2321 }
2322 
2323 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2324 		const struct blk_mq_queue_data *bd)
2325 {
2326 	struct nvme_ns *ns = hctx->queue->queuedata;
2327 	struct nvme_tcp_queue *queue = hctx->driver_data;
2328 	struct request *rq = bd->rq;
2329 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2330 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2331 	blk_status_t ret;
2332 
2333 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2334 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2335 
2336 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2337 	if (unlikely(ret))
2338 		return ret;
2339 
2340 	blk_mq_start_request(rq);
2341 
2342 	nvme_tcp_queue_request(req, true, bd->last);
2343 
2344 	return BLK_STS_OK;
2345 }
2346 
2347 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2348 {
2349 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2350 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2351 
2352 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2353 		/* separate read/write queues */
2354 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2355 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2356 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2357 		set->map[HCTX_TYPE_READ].nr_queues =
2358 			ctrl->io_queues[HCTX_TYPE_READ];
2359 		set->map[HCTX_TYPE_READ].queue_offset =
2360 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2361 	} else {
2362 		/* shared read/write queues */
2363 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2364 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2365 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2366 		set->map[HCTX_TYPE_READ].nr_queues =
2367 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2368 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2369 	}
2370 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2371 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2372 
2373 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2374 		/* map dedicated poll queues only if we have queues left */
2375 		set->map[HCTX_TYPE_POLL].nr_queues =
2376 				ctrl->io_queues[HCTX_TYPE_POLL];
2377 		set->map[HCTX_TYPE_POLL].queue_offset =
2378 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2379 			ctrl->io_queues[HCTX_TYPE_READ];
2380 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2381 	}
2382 
2383 	dev_info(ctrl->ctrl.device,
2384 		"mapped %d/%d/%d default/read/poll queues.\n",
2385 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2386 		ctrl->io_queues[HCTX_TYPE_READ],
2387 		ctrl->io_queues[HCTX_TYPE_POLL]);
2388 
2389 	return 0;
2390 }
2391 
2392 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2393 {
2394 	struct nvme_tcp_queue *queue = hctx->driver_data;
2395 	struct sock *sk = queue->sock->sk;
2396 
2397 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2398 		return 0;
2399 
2400 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2401 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2402 		sk_busy_loop(sk, true);
2403 	nvme_tcp_try_recv(queue);
2404 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2405 	return queue->nr_cqe;
2406 }
2407 
2408 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2409 	.queue_rq	= nvme_tcp_queue_rq,
2410 	.commit_rqs	= nvme_tcp_commit_rqs,
2411 	.complete	= nvme_complete_rq,
2412 	.init_request	= nvme_tcp_init_request,
2413 	.exit_request	= nvme_tcp_exit_request,
2414 	.init_hctx	= nvme_tcp_init_hctx,
2415 	.timeout	= nvme_tcp_timeout,
2416 	.map_queues	= nvme_tcp_map_queues,
2417 	.poll		= nvme_tcp_poll,
2418 };
2419 
2420 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2421 	.queue_rq	= nvme_tcp_queue_rq,
2422 	.complete	= nvme_complete_rq,
2423 	.init_request	= nvme_tcp_init_request,
2424 	.exit_request	= nvme_tcp_exit_request,
2425 	.init_hctx	= nvme_tcp_init_admin_hctx,
2426 	.timeout	= nvme_tcp_timeout,
2427 };
2428 
2429 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2430 	.name			= "tcp",
2431 	.module			= THIS_MODULE,
2432 	.flags			= NVME_F_FABRICS,
2433 	.reg_read32		= nvmf_reg_read32,
2434 	.reg_read64		= nvmf_reg_read64,
2435 	.reg_write32		= nvmf_reg_write32,
2436 	.free_ctrl		= nvme_tcp_free_ctrl,
2437 	.submit_async_event	= nvme_tcp_submit_async_event,
2438 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2439 	.get_address		= nvmf_get_address,
2440 };
2441 
2442 static bool
2443 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2444 {
2445 	struct nvme_tcp_ctrl *ctrl;
2446 	bool found = false;
2447 
2448 	mutex_lock(&nvme_tcp_ctrl_mutex);
2449 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2450 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2451 		if (found)
2452 			break;
2453 	}
2454 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2455 
2456 	return found;
2457 }
2458 
2459 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2460 		struct nvmf_ctrl_options *opts)
2461 {
2462 	struct nvme_tcp_ctrl *ctrl;
2463 	int ret;
2464 
2465 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2466 	if (!ctrl)
2467 		return ERR_PTR(-ENOMEM);
2468 
2469 	INIT_LIST_HEAD(&ctrl->list);
2470 	ctrl->ctrl.opts = opts;
2471 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2472 				opts->nr_poll_queues + 1;
2473 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2474 	ctrl->ctrl.kato = opts->kato;
2475 
2476 	INIT_DELAYED_WORK(&ctrl->connect_work,
2477 			nvme_tcp_reconnect_ctrl_work);
2478 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2479 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2480 
2481 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2482 		opts->trsvcid =
2483 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2484 		if (!opts->trsvcid) {
2485 			ret = -ENOMEM;
2486 			goto out_free_ctrl;
2487 		}
2488 		opts->mask |= NVMF_OPT_TRSVCID;
2489 	}
2490 
2491 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2492 			opts->traddr, opts->trsvcid, &ctrl->addr);
2493 	if (ret) {
2494 		pr_err("malformed address passed: %s:%s\n",
2495 			opts->traddr, opts->trsvcid);
2496 		goto out_free_ctrl;
2497 	}
2498 
2499 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2500 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2501 			opts->host_traddr, NULL, &ctrl->src_addr);
2502 		if (ret) {
2503 			pr_err("malformed src address passed: %s\n",
2504 			       opts->host_traddr);
2505 			goto out_free_ctrl;
2506 		}
2507 	}
2508 
2509 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2510 		ret = -EALREADY;
2511 		goto out_free_ctrl;
2512 	}
2513 
2514 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2515 				GFP_KERNEL);
2516 	if (!ctrl->queues) {
2517 		ret = -ENOMEM;
2518 		goto out_free_ctrl;
2519 	}
2520 
2521 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2522 	if (ret)
2523 		goto out_kfree_queues;
2524 
2525 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2526 		WARN_ON_ONCE(1);
2527 		ret = -EINTR;
2528 		goto out_uninit_ctrl;
2529 	}
2530 
2531 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2532 	if (ret)
2533 		goto out_uninit_ctrl;
2534 
2535 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2536 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2537 
2538 	mutex_lock(&nvme_tcp_ctrl_mutex);
2539 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2540 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2541 
2542 	return &ctrl->ctrl;
2543 
2544 out_uninit_ctrl:
2545 	nvme_uninit_ctrl(&ctrl->ctrl);
2546 	nvme_put_ctrl(&ctrl->ctrl);
2547 	if (ret > 0)
2548 		ret = -EIO;
2549 	return ERR_PTR(ret);
2550 out_kfree_queues:
2551 	kfree(ctrl->queues);
2552 out_free_ctrl:
2553 	kfree(ctrl);
2554 	return ERR_PTR(ret);
2555 }
2556 
2557 static struct nvmf_transport_ops nvme_tcp_transport = {
2558 	.name		= "tcp",
2559 	.module		= THIS_MODULE,
2560 	.required_opts	= NVMF_OPT_TRADDR,
2561 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2562 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2563 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2564 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2565 			  NVMF_OPT_TOS,
2566 	.create_ctrl	= nvme_tcp_create_ctrl,
2567 };
2568 
2569 static int __init nvme_tcp_init_module(void)
2570 {
2571 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2572 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2573 	if (!nvme_tcp_wq)
2574 		return -ENOMEM;
2575 
2576 	nvmf_register_transport(&nvme_tcp_transport);
2577 	return 0;
2578 }
2579 
2580 static void __exit nvme_tcp_cleanup_module(void)
2581 {
2582 	struct nvme_tcp_ctrl *ctrl;
2583 
2584 	nvmf_unregister_transport(&nvme_tcp_transport);
2585 
2586 	mutex_lock(&nvme_tcp_ctrl_mutex);
2587 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2588 		nvme_delete_ctrl(&ctrl->ctrl);
2589 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2590 	flush_workqueue(nvme_delete_wq);
2591 
2592 	destroy_workqueue(nvme_tcp_wq);
2593 }
2594 
2595 module_init(nvme_tcp_init_module);
2596 module_exit(nvme_tcp_cleanup_module);
2597 
2598 MODULE_LICENSE("GPL v2");
2599