xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 12fbfc4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		send_mutex;
80 	struct llist_head	req_list;
81 	struct list_head	send_list;
82 	bool			more_requests;
83 
84 	/* recv state */
85 	void			*pdu;
86 	int			pdu_remaining;
87 	int			pdu_offset;
88 	size_t			data_remaining;
89 	size_t			ddgst_remaining;
90 	unsigned int		nr_cqe;
91 
92 	/* send state */
93 	struct nvme_tcp_request *request;
94 
95 	int			queue_size;
96 	size_t			cmnd_capsule_len;
97 	struct nvme_tcp_ctrl	*ctrl;
98 	unsigned long		flags;
99 	bool			rd_enabled;
100 
101 	bool			hdr_digest;
102 	bool			data_digest;
103 	struct ahash_request	*rcv_hash;
104 	struct ahash_request	*snd_hash;
105 	__le32			exp_ddgst;
106 	__le32			recv_ddgst;
107 
108 	struct page_frag_cache	pf_cache;
109 
110 	void (*state_change)(struct sock *);
111 	void (*data_ready)(struct sock *);
112 	void (*write_space)(struct sock *);
113 };
114 
115 struct nvme_tcp_ctrl {
116 	/* read only in the hot path */
117 	struct nvme_tcp_queue	*queues;
118 	struct blk_mq_tag_set	tag_set;
119 
120 	/* other member variables */
121 	struct list_head	list;
122 	struct blk_mq_tag_set	admin_tag_set;
123 	struct sockaddr_storage addr;
124 	struct sockaddr_storage src_addr;
125 	struct nvme_ctrl	ctrl;
126 
127 	struct mutex		teardown_lock;
128 	struct work_struct	err_work;
129 	struct delayed_work	connect_work;
130 	struct nvme_tcp_request async_req;
131 	u32			io_queues[HCTX_MAX_TYPES];
132 };
133 
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140 
141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 {
143 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
144 }
145 
146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 {
148 	return queue - queue->ctrl->queues;
149 }
150 
151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 {
153 	u32 queue_idx = nvme_tcp_queue_id(queue);
154 
155 	if (queue_idx == 0)
156 		return queue->ctrl->admin_tag_set.tags[queue_idx];
157 	return queue->ctrl->tag_set.tags[queue_idx - 1];
158 }
159 
160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 {
162 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
163 }
164 
165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 {
167 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
168 }
169 
170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 {
172 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174 
175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 {
177 	return req == &req->queue->ctrl->async_req;
178 }
179 
180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
181 {
182 	struct request *rq;
183 
184 	if (unlikely(nvme_tcp_async_req(req)))
185 		return false; /* async events don't have a request */
186 
187 	rq = blk_mq_rq_from_pdu(req);
188 
189 	return rq_data_dir(rq) == WRITE && req->data_len &&
190 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
191 }
192 
193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 {
195 	return req->iter.bvec->bv_page;
196 }
197 
198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 {
200 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
201 }
202 
203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 {
205 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
206 			req->pdu_len - req->pdu_sent);
207 }
208 
209 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
210 {
211 	return req->iter.iov_offset;
212 }
213 
214 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
215 {
216 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
217 			req->pdu_len - req->pdu_sent : 0;
218 }
219 
220 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
221 		int len)
222 {
223 	return nvme_tcp_pdu_data_left(req) <= len;
224 }
225 
226 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
227 		unsigned int dir)
228 {
229 	struct request *rq = blk_mq_rq_from_pdu(req);
230 	struct bio_vec *vec;
231 	unsigned int size;
232 	int nsegs;
233 	size_t offset;
234 
235 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
236 		vec = &rq->special_vec;
237 		nsegs = 1;
238 		size = blk_rq_payload_bytes(rq);
239 		offset = 0;
240 	} else {
241 		struct bio *bio = req->curr_bio;
242 
243 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
244 		nsegs = bio_segments(bio);
245 		size = bio->bi_iter.bi_size;
246 		offset = bio->bi_iter.bi_bvec_done;
247 	}
248 
249 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
250 	req->iter.iov_offset = offset;
251 }
252 
253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
254 		int len)
255 {
256 	req->data_sent += len;
257 	req->pdu_sent += len;
258 	iov_iter_advance(&req->iter, len);
259 	if (!iov_iter_count(&req->iter) &&
260 	    req->data_sent < req->data_len) {
261 		req->curr_bio = req->curr_bio->bi_next;
262 		nvme_tcp_init_iter(req, WRITE);
263 	}
264 }
265 
266 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
267 		bool sync, bool last)
268 {
269 	struct nvme_tcp_queue *queue = req->queue;
270 	bool empty;
271 
272 	empty = llist_add(&req->lentry, &queue->req_list) &&
273 		list_empty(&queue->send_list) && !queue->request;
274 
275 	/*
276 	 * if we're the first on the send_list and we can try to send
277 	 * directly, otherwise queue io_work. Also, only do that if we
278 	 * are on the same cpu, so we don't introduce contention.
279 	 */
280 	if (queue->io_cpu == smp_processor_id() &&
281 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
282 		queue->more_requests = !last;
283 		nvme_tcp_try_send(queue);
284 		queue->more_requests = false;
285 		mutex_unlock(&queue->send_mutex);
286 	} else if (last) {
287 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
288 	}
289 }
290 
291 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
292 {
293 	struct nvme_tcp_request *req;
294 	struct llist_node *node;
295 
296 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
297 		req = llist_entry(node, struct nvme_tcp_request, lentry);
298 		list_add(&req->entry, &queue->send_list);
299 	}
300 }
301 
302 static inline struct nvme_tcp_request *
303 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
304 {
305 	struct nvme_tcp_request *req;
306 
307 	req = list_first_entry_or_null(&queue->send_list,
308 			struct nvme_tcp_request, entry);
309 	if (!req) {
310 		nvme_tcp_process_req_list(queue);
311 		req = list_first_entry_or_null(&queue->send_list,
312 				struct nvme_tcp_request, entry);
313 		if (unlikely(!req))
314 			return NULL;
315 	}
316 
317 	list_del(&req->entry);
318 	return req;
319 }
320 
321 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
322 		__le32 *dgst)
323 {
324 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
325 	crypto_ahash_final(hash);
326 }
327 
328 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
329 		struct page *page, off_t off, size_t len)
330 {
331 	struct scatterlist sg;
332 
333 	sg_init_marker(&sg, 1);
334 	sg_set_page(&sg, page, len, off);
335 	ahash_request_set_crypt(hash, &sg, NULL, len);
336 	crypto_ahash_update(hash);
337 }
338 
339 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
340 		void *pdu, size_t len)
341 {
342 	struct scatterlist sg;
343 
344 	sg_init_one(&sg, pdu, len);
345 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
346 	crypto_ahash_digest(hash);
347 }
348 
349 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
350 		void *pdu, size_t pdu_len)
351 {
352 	struct nvme_tcp_hdr *hdr = pdu;
353 	__le32 recv_digest;
354 	__le32 exp_digest;
355 
356 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
357 		dev_err(queue->ctrl->ctrl.device,
358 			"queue %d: header digest flag is cleared\n",
359 			nvme_tcp_queue_id(queue));
360 		return -EPROTO;
361 	}
362 
363 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
364 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
365 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
366 	if (recv_digest != exp_digest) {
367 		dev_err(queue->ctrl->ctrl.device,
368 			"header digest error: recv %#x expected %#x\n",
369 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
370 		return -EIO;
371 	}
372 
373 	return 0;
374 }
375 
376 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
377 {
378 	struct nvme_tcp_hdr *hdr = pdu;
379 	u8 digest_len = nvme_tcp_hdgst_len(queue);
380 	u32 len;
381 
382 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
383 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
384 
385 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
386 		dev_err(queue->ctrl->ctrl.device,
387 			"queue %d: data digest flag is cleared\n",
388 		nvme_tcp_queue_id(queue));
389 		return -EPROTO;
390 	}
391 	crypto_ahash_init(queue->rcv_hash);
392 
393 	return 0;
394 }
395 
396 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
397 		struct request *rq, unsigned int hctx_idx)
398 {
399 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
400 
401 	page_frag_free(req->pdu);
402 }
403 
404 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
405 		struct request *rq, unsigned int hctx_idx,
406 		unsigned int numa_node)
407 {
408 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
409 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
410 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
411 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
412 	u8 hdgst = nvme_tcp_hdgst_len(queue);
413 
414 	req->pdu = page_frag_alloc(&queue->pf_cache,
415 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
416 		GFP_KERNEL | __GFP_ZERO);
417 	if (!req->pdu)
418 		return -ENOMEM;
419 
420 	req->queue = queue;
421 	nvme_req(rq)->ctrl = &ctrl->ctrl;
422 
423 	return 0;
424 }
425 
426 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
427 		unsigned int hctx_idx)
428 {
429 	struct nvme_tcp_ctrl *ctrl = data;
430 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
431 
432 	hctx->driver_data = queue;
433 	return 0;
434 }
435 
436 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
437 		unsigned int hctx_idx)
438 {
439 	struct nvme_tcp_ctrl *ctrl = data;
440 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
441 
442 	hctx->driver_data = queue;
443 	return 0;
444 }
445 
446 static enum nvme_tcp_recv_state
447 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
448 {
449 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
450 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
451 		NVME_TCP_RECV_DATA;
452 }
453 
454 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
455 {
456 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
457 				nvme_tcp_hdgst_len(queue);
458 	queue->pdu_offset = 0;
459 	queue->data_remaining = -1;
460 	queue->ddgst_remaining = 0;
461 }
462 
463 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
464 {
465 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
466 		return;
467 
468 	dev_warn(ctrl->device, "starting error recovery\n");
469 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
470 }
471 
472 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
473 		struct nvme_completion *cqe)
474 {
475 	struct request *rq;
476 
477 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
478 	if (!rq) {
479 		dev_err(queue->ctrl->ctrl.device,
480 			"queue %d tag 0x%x not found\n",
481 			nvme_tcp_queue_id(queue), cqe->command_id);
482 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
483 		return -EINVAL;
484 	}
485 
486 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
487 		nvme_complete_rq(rq);
488 	queue->nr_cqe++;
489 
490 	return 0;
491 }
492 
493 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
494 		struct nvme_tcp_data_pdu *pdu)
495 {
496 	struct request *rq;
497 
498 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
499 	if (!rq) {
500 		dev_err(queue->ctrl->ctrl.device,
501 			"queue %d tag %#x not found\n",
502 			nvme_tcp_queue_id(queue), pdu->command_id);
503 		return -ENOENT;
504 	}
505 
506 	if (!blk_rq_payload_bytes(rq)) {
507 		dev_err(queue->ctrl->ctrl.device,
508 			"queue %d tag %#x unexpected data\n",
509 			nvme_tcp_queue_id(queue), rq->tag);
510 		return -EIO;
511 	}
512 
513 	queue->data_remaining = le32_to_cpu(pdu->data_length);
514 
515 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
516 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
517 		dev_err(queue->ctrl->ctrl.device,
518 			"queue %d tag %#x SUCCESS set but not last PDU\n",
519 			nvme_tcp_queue_id(queue), rq->tag);
520 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
521 		return -EPROTO;
522 	}
523 
524 	return 0;
525 }
526 
527 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
528 		struct nvme_tcp_rsp_pdu *pdu)
529 {
530 	struct nvme_completion *cqe = &pdu->cqe;
531 	int ret = 0;
532 
533 	/*
534 	 * AEN requests are special as they don't time out and can
535 	 * survive any kind of queue freeze and often don't respond to
536 	 * aborts.  We don't even bother to allocate a struct request
537 	 * for them but rather special case them here.
538 	 */
539 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
540 				     cqe->command_id)))
541 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
542 				&cqe->result);
543 	else
544 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
545 
546 	return ret;
547 }
548 
549 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
550 		struct nvme_tcp_r2t_pdu *pdu)
551 {
552 	struct nvme_tcp_data_pdu *data = req->pdu;
553 	struct nvme_tcp_queue *queue = req->queue;
554 	struct request *rq = blk_mq_rq_from_pdu(req);
555 	u8 hdgst = nvme_tcp_hdgst_len(queue);
556 	u8 ddgst = nvme_tcp_ddgst_len(queue);
557 
558 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
559 	req->pdu_sent = 0;
560 
561 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
562 		dev_err(queue->ctrl->ctrl.device,
563 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
564 			rq->tag, req->pdu_len, req->data_len,
565 			req->data_sent);
566 		return -EPROTO;
567 	}
568 
569 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
570 		dev_err(queue->ctrl->ctrl.device,
571 			"req %d unexpected r2t offset %u (expected %zu)\n",
572 			rq->tag, le32_to_cpu(pdu->r2t_offset),
573 			req->data_sent);
574 		return -EPROTO;
575 	}
576 
577 	memset(data, 0, sizeof(*data));
578 	data->hdr.type = nvme_tcp_h2c_data;
579 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
580 	if (queue->hdr_digest)
581 		data->hdr.flags |= NVME_TCP_F_HDGST;
582 	if (queue->data_digest)
583 		data->hdr.flags |= NVME_TCP_F_DDGST;
584 	data->hdr.hlen = sizeof(*data);
585 	data->hdr.pdo = data->hdr.hlen + hdgst;
586 	data->hdr.plen =
587 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
588 	data->ttag = pdu->ttag;
589 	data->command_id = rq->tag;
590 	data->data_offset = cpu_to_le32(req->data_sent);
591 	data->data_length = cpu_to_le32(req->pdu_len);
592 	return 0;
593 }
594 
595 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
596 		struct nvme_tcp_r2t_pdu *pdu)
597 {
598 	struct nvme_tcp_request *req;
599 	struct request *rq;
600 	int ret;
601 
602 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
603 	if (!rq) {
604 		dev_err(queue->ctrl->ctrl.device,
605 			"queue %d tag %#x not found\n",
606 			nvme_tcp_queue_id(queue), pdu->command_id);
607 		return -ENOENT;
608 	}
609 	req = blk_mq_rq_to_pdu(rq);
610 
611 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
612 	if (unlikely(ret))
613 		return ret;
614 
615 	req->state = NVME_TCP_SEND_H2C_PDU;
616 	req->offset = 0;
617 
618 	nvme_tcp_queue_request(req, false, true);
619 
620 	return 0;
621 }
622 
623 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
624 		unsigned int *offset, size_t *len)
625 {
626 	struct nvme_tcp_hdr *hdr;
627 	char *pdu = queue->pdu;
628 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
629 	int ret;
630 
631 	ret = skb_copy_bits(skb, *offset,
632 		&pdu[queue->pdu_offset], rcv_len);
633 	if (unlikely(ret))
634 		return ret;
635 
636 	queue->pdu_remaining -= rcv_len;
637 	queue->pdu_offset += rcv_len;
638 	*offset += rcv_len;
639 	*len -= rcv_len;
640 	if (queue->pdu_remaining)
641 		return 0;
642 
643 	hdr = queue->pdu;
644 	if (queue->hdr_digest) {
645 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
646 		if (unlikely(ret))
647 			return ret;
648 	}
649 
650 
651 	if (queue->data_digest) {
652 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
653 		if (unlikely(ret))
654 			return ret;
655 	}
656 
657 	switch (hdr->type) {
658 	case nvme_tcp_c2h_data:
659 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
660 	case nvme_tcp_rsp:
661 		nvme_tcp_init_recv_ctx(queue);
662 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
663 	case nvme_tcp_r2t:
664 		nvme_tcp_init_recv_ctx(queue);
665 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
666 	default:
667 		dev_err(queue->ctrl->ctrl.device,
668 			"unsupported pdu type (%d)\n", hdr->type);
669 		return -EINVAL;
670 	}
671 }
672 
673 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
674 {
675 	union nvme_result res = {};
676 
677 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
678 		nvme_complete_rq(rq);
679 }
680 
681 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
682 			      unsigned int *offset, size_t *len)
683 {
684 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
685 	struct nvme_tcp_request *req;
686 	struct request *rq;
687 
688 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
689 	if (!rq) {
690 		dev_err(queue->ctrl->ctrl.device,
691 			"queue %d tag %#x not found\n",
692 			nvme_tcp_queue_id(queue), pdu->command_id);
693 		return -ENOENT;
694 	}
695 	req = blk_mq_rq_to_pdu(rq);
696 
697 	while (true) {
698 		int recv_len, ret;
699 
700 		recv_len = min_t(size_t, *len, queue->data_remaining);
701 		if (!recv_len)
702 			break;
703 
704 		if (!iov_iter_count(&req->iter)) {
705 			req->curr_bio = req->curr_bio->bi_next;
706 
707 			/*
708 			 * If we don`t have any bios it means that controller
709 			 * sent more data than we requested, hence error
710 			 */
711 			if (!req->curr_bio) {
712 				dev_err(queue->ctrl->ctrl.device,
713 					"queue %d no space in request %#x",
714 					nvme_tcp_queue_id(queue), rq->tag);
715 				nvme_tcp_init_recv_ctx(queue);
716 				return -EIO;
717 			}
718 			nvme_tcp_init_iter(req, READ);
719 		}
720 
721 		/* we can read only from what is left in this bio */
722 		recv_len = min_t(size_t, recv_len,
723 				iov_iter_count(&req->iter));
724 
725 		if (queue->data_digest)
726 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
727 				&req->iter, recv_len, queue->rcv_hash);
728 		else
729 			ret = skb_copy_datagram_iter(skb, *offset,
730 					&req->iter, recv_len);
731 		if (ret) {
732 			dev_err(queue->ctrl->ctrl.device,
733 				"queue %d failed to copy request %#x data",
734 				nvme_tcp_queue_id(queue), rq->tag);
735 			return ret;
736 		}
737 
738 		*len -= recv_len;
739 		*offset += recv_len;
740 		queue->data_remaining -= recv_len;
741 	}
742 
743 	if (!queue->data_remaining) {
744 		if (queue->data_digest) {
745 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
746 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
747 		} else {
748 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
749 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
750 				queue->nr_cqe++;
751 			}
752 			nvme_tcp_init_recv_ctx(queue);
753 		}
754 	}
755 
756 	return 0;
757 }
758 
759 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
760 		struct sk_buff *skb, unsigned int *offset, size_t *len)
761 {
762 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
763 	char *ddgst = (char *)&queue->recv_ddgst;
764 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
765 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
766 	int ret;
767 
768 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
769 	if (unlikely(ret))
770 		return ret;
771 
772 	queue->ddgst_remaining -= recv_len;
773 	*offset += recv_len;
774 	*len -= recv_len;
775 	if (queue->ddgst_remaining)
776 		return 0;
777 
778 	if (queue->recv_ddgst != queue->exp_ddgst) {
779 		dev_err(queue->ctrl->ctrl.device,
780 			"data digest error: recv %#x expected %#x\n",
781 			le32_to_cpu(queue->recv_ddgst),
782 			le32_to_cpu(queue->exp_ddgst));
783 		return -EIO;
784 	}
785 
786 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
787 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
788 						pdu->command_id);
789 
790 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
791 		queue->nr_cqe++;
792 	}
793 
794 	nvme_tcp_init_recv_ctx(queue);
795 	return 0;
796 }
797 
798 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
799 			     unsigned int offset, size_t len)
800 {
801 	struct nvme_tcp_queue *queue = desc->arg.data;
802 	size_t consumed = len;
803 	int result;
804 
805 	while (len) {
806 		switch (nvme_tcp_recv_state(queue)) {
807 		case NVME_TCP_RECV_PDU:
808 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
809 			break;
810 		case NVME_TCP_RECV_DATA:
811 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
812 			break;
813 		case NVME_TCP_RECV_DDGST:
814 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
815 			break;
816 		default:
817 			result = -EFAULT;
818 		}
819 		if (result) {
820 			dev_err(queue->ctrl->ctrl.device,
821 				"receive failed:  %d\n", result);
822 			queue->rd_enabled = false;
823 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
824 			return result;
825 		}
826 	}
827 
828 	return consumed;
829 }
830 
831 static void nvme_tcp_data_ready(struct sock *sk)
832 {
833 	struct nvme_tcp_queue *queue;
834 
835 	read_lock_bh(&sk->sk_callback_lock);
836 	queue = sk->sk_user_data;
837 	if (likely(queue && queue->rd_enabled) &&
838 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
839 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
840 	read_unlock_bh(&sk->sk_callback_lock);
841 }
842 
843 static void nvme_tcp_write_space(struct sock *sk)
844 {
845 	struct nvme_tcp_queue *queue;
846 
847 	read_lock_bh(&sk->sk_callback_lock);
848 	queue = sk->sk_user_data;
849 	if (likely(queue && sk_stream_is_writeable(sk))) {
850 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
851 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
852 	}
853 	read_unlock_bh(&sk->sk_callback_lock);
854 }
855 
856 static void nvme_tcp_state_change(struct sock *sk)
857 {
858 	struct nvme_tcp_queue *queue;
859 
860 	read_lock(&sk->sk_callback_lock);
861 	queue = sk->sk_user_data;
862 	if (!queue)
863 		goto done;
864 
865 	switch (sk->sk_state) {
866 	case TCP_CLOSE:
867 	case TCP_CLOSE_WAIT:
868 	case TCP_LAST_ACK:
869 	case TCP_FIN_WAIT1:
870 	case TCP_FIN_WAIT2:
871 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
872 		break;
873 	default:
874 		dev_info(queue->ctrl->ctrl.device,
875 			"queue %d socket state %d\n",
876 			nvme_tcp_queue_id(queue), sk->sk_state);
877 	}
878 
879 	queue->state_change(sk);
880 done:
881 	read_unlock(&sk->sk_callback_lock);
882 }
883 
884 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
885 {
886 	return !list_empty(&queue->send_list) ||
887 		!llist_empty(&queue->req_list) || queue->more_requests;
888 }
889 
890 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
891 {
892 	queue->request = NULL;
893 }
894 
895 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
896 {
897 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
898 }
899 
900 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
901 {
902 	struct nvme_tcp_queue *queue = req->queue;
903 
904 	while (true) {
905 		struct page *page = nvme_tcp_req_cur_page(req);
906 		size_t offset = nvme_tcp_req_cur_offset(req);
907 		size_t len = nvme_tcp_req_cur_length(req);
908 		bool last = nvme_tcp_pdu_last_send(req, len);
909 		int ret, flags = MSG_DONTWAIT;
910 
911 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
912 			flags |= MSG_EOR;
913 		else
914 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
915 
916 		/* can't zcopy slab pages */
917 		if (unlikely(PageSlab(page))) {
918 			ret = sock_no_sendpage(queue->sock, page, offset, len,
919 					flags);
920 		} else {
921 			ret = kernel_sendpage(queue->sock, page, offset, len,
922 					flags);
923 		}
924 		if (ret <= 0)
925 			return ret;
926 
927 		nvme_tcp_advance_req(req, ret);
928 		if (queue->data_digest)
929 			nvme_tcp_ddgst_update(queue->snd_hash, page,
930 					offset, ret);
931 
932 		/* fully successful last write*/
933 		if (last && ret == len) {
934 			if (queue->data_digest) {
935 				nvme_tcp_ddgst_final(queue->snd_hash,
936 					&req->ddgst);
937 				req->state = NVME_TCP_SEND_DDGST;
938 				req->offset = 0;
939 			} else {
940 				nvme_tcp_done_send_req(queue);
941 			}
942 			return 1;
943 		}
944 	}
945 	return -EAGAIN;
946 }
947 
948 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
949 {
950 	struct nvme_tcp_queue *queue = req->queue;
951 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
952 	bool inline_data = nvme_tcp_has_inline_data(req);
953 	u8 hdgst = nvme_tcp_hdgst_len(queue);
954 	int len = sizeof(*pdu) + hdgst - req->offset;
955 	int flags = MSG_DONTWAIT;
956 	int ret;
957 
958 	if (inline_data || nvme_tcp_queue_more(queue))
959 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
960 	else
961 		flags |= MSG_EOR;
962 
963 	if (queue->hdr_digest && !req->offset)
964 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
965 
966 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
967 			offset_in_page(pdu) + req->offset, len,  flags);
968 	if (unlikely(ret <= 0))
969 		return ret;
970 
971 	len -= ret;
972 	if (!len) {
973 		if (inline_data) {
974 			req->state = NVME_TCP_SEND_DATA;
975 			if (queue->data_digest)
976 				crypto_ahash_init(queue->snd_hash);
977 			nvme_tcp_init_iter(req, WRITE);
978 		} else {
979 			nvme_tcp_done_send_req(queue);
980 		}
981 		return 1;
982 	}
983 	req->offset += ret;
984 
985 	return -EAGAIN;
986 }
987 
988 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
989 {
990 	struct nvme_tcp_queue *queue = req->queue;
991 	struct nvme_tcp_data_pdu *pdu = req->pdu;
992 	u8 hdgst = nvme_tcp_hdgst_len(queue);
993 	int len = sizeof(*pdu) - req->offset + hdgst;
994 	int ret;
995 
996 	if (queue->hdr_digest && !req->offset)
997 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
998 
999 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1000 			offset_in_page(pdu) + req->offset, len,
1001 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1002 	if (unlikely(ret <= 0))
1003 		return ret;
1004 
1005 	len -= ret;
1006 	if (!len) {
1007 		req->state = NVME_TCP_SEND_DATA;
1008 		if (queue->data_digest)
1009 			crypto_ahash_init(queue->snd_hash);
1010 		if (!req->data_sent)
1011 			nvme_tcp_init_iter(req, WRITE);
1012 		return 1;
1013 	}
1014 	req->offset += ret;
1015 
1016 	return -EAGAIN;
1017 }
1018 
1019 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1020 {
1021 	struct nvme_tcp_queue *queue = req->queue;
1022 	int ret;
1023 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1024 	struct kvec iov = {
1025 		.iov_base = &req->ddgst + req->offset,
1026 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1027 	};
1028 
1029 	if (nvme_tcp_queue_more(queue))
1030 		msg.msg_flags |= MSG_MORE;
1031 	else
1032 		msg.msg_flags |= MSG_EOR;
1033 
1034 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1035 	if (unlikely(ret <= 0))
1036 		return ret;
1037 
1038 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1039 		nvme_tcp_done_send_req(queue);
1040 		return 1;
1041 	}
1042 
1043 	req->offset += ret;
1044 	return -EAGAIN;
1045 }
1046 
1047 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1048 {
1049 	struct nvme_tcp_request *req;
1050 	int ret = 1;
1051 
1052 	if (!queue->request) {
1053 		queue->request = nvme_tcp_fetch_request(queue);
1054 		if (!queue->request)
1055 			return 0;
1056 	}
1057 	req = queue->request;
1058 
1059 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1060 		ret = nvme_tcp_try_send_cmd_pdu(req);
1061 		if (ret <= 0)
1062 			goto done;
1063 		if (!nvme_tcp_has_inline_data(req))
1064 			return ret;
1065 	}
1066 
1067 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1068 		ret = nvme_tcp_try_send_data_pdu(req);
1069 		if (ret <= 0)
1070 			goto done;
1071 	}
1072 
1073 	if (req->state == NVME_TCP_SEND_DATA) {
1074 		ret = nvme_tcp_try_send_data(req);
1075 		if (ret <= 0)
1076 			goto done;
1077 	}
1078 
1079 	if (req->state == NVME_TCP_SEND_DDGST)
1080 		ret = nvme_tcp_try_send_ddgst(req);
1081 done:
1082 	if (ret == -EAGAIN) {
1083 		ret = 0;
1084 	} else if (ret < 0) {
1085 		dev_err(queue->ctrl->ctrl.device,
1086 			"failed to send request %d\n", ret);
1087 		if (ret != -EPIPE && ret != -ECONNRESET)
1088 			nvme_tcp_fail_request(queue->request);
1089 		nvme_tcp_done_send_req(queue);
1090 	}
1091 	return ret;
1092 }
1093 
1094 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1095 {
1096 	struct socket *sock = queue->sock;
1097 	struct sock *sk = sock->sk;
1098 	read_descriptor_t rd_desc;
1099 	int consumed;
1100 
1101 	rd_desc.arg.data = queue;
1102 	rd_desc.count = 1;
1103 	lock_sock(sk);
1104 	queue->nr_cqe = 0;
1105 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1106 	release_sock(sk);
1107 	return consumed;
1108 }
1109 
1110 static void nvme_tcp_io_work(struct work_struct *w)
1111 {
1112 	struct nvme_tcp_queue *queue =
1113 		container_of(w, struct nvme_tcp_queue, io_work);
1114 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1115 
1116 	do {
1117 		bool pending = false;
1118 		int result;
1119 
1120 		if (mutex_trylock(&queue->send_mutex)) {
1121 			result = nvme_tcp_try_send(queue);
1122 			mutex_unlock(&queue->send_mutex);
1123 			if (result > 0)
1124 				pending = true;
1125 			else if (unlikely(result < 0))
1126 				break;
1127 		}
1128 
1129 		result = nvme_tcp_try_recv(queue);
1130 		if (result > 0)
1131 			pending = true;
1132 		else if (unlikely(result < 0))
1133 			return;
1134 
1135 		if (!pending)
1136 			return;
1137 
1138 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1139 
1140 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1141 }
1142 
1143 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1144 {
1145 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1146 
1147 	ahash_request_free(queue->rcv_hash);
1148 	ahash_request_free(queue->snd_hash);
1149 	crypto_free_ahash(tfm);
1150 }
1151 
1152 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1153 {
1154 	struct crypto_ahash *tfm;
1155 
1156 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1157 	if (IS_ERR(tfm))
1158 		return PTR_ERR(tfm);
1159 
1160 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1161 	if (!queue->snd_hash)
1162 		goto free_tfm;
1163 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1164 
1165 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1166 	if (!queue->rcv_hash)
1167 		goto free_snd_hash;
1168 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1169 
1170 	return 0;
1171 free_snd_hash:
1172 	ahash_request_free(queue->snd_hash);
1173 free_tfm:
1174 	crypto_free_ahash(tfm);
1175 	return -ENOMEM;
1176 }
1177 
1178 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1179 {
1180 	struct nvme_tcp_request *async = &ctrl->async_req;
1181 
1182 	page_frag_free(async->pdu);
1183 }
1184 
1185 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1186 {
1187 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1188 	struct nvme_tcp_request *async = &ctrl->async_req;
1189 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1190 
1191 	async->pdu = page_frag_alloc(&queue->pf_cache,
1192 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1193 		GFP_KERNEL | __GFP_ZERO);
1194 	if (!async->pdu)
1195 		return -ENOMEM;
1196 
1197 	async->queue = &ctrl->queues[0];
1198 	return 0;
1199 }
1200 
1201 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1202 {
1203 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1204 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1205 
1206 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1207 		return;
1208 
1209 	if (queue->hdr_digest || queue->data_digest)
1210 		nvme_tcp_free_crypto(queue);
1211 
1212 	sock_release(queue->sock);
1213 	kfree(queue->pdu);
1214 }
1215 
1216 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1217 {
1218 	struct nvme_tcp_icreq_pdu *icreq;
1219 	struct nvme_tcp_icresp_pdu *icresp;
1220 	struct msghdr msg = {};
1221 	struct kvec iov;
1222 	bool ctrl_hdgst, ctrl_ddgst;
1223 	int ret;
1224 
1225 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1226 	if (!icreq)
1227 		return -ENOMEM;
1228 
1229 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1230 	if (!icresp) {
1231 		ret = -ENOMEM;
1232 		goto free_icreq;
1233 	}
1234 
1235 	icreq->hdr.type = nvme_tcp_icreq;
1236 	icreq->hdr.hlen = sizeof(*icreq);
1237 	icreq->hdr.pdo = 0;
1238 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1239 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1240 	icreq->maxr2t = 0; /* single inflight r2t supported */
1241 	icreq->hpda = 0; /* no alignment constraint */
1242 	if (queue->hdr_digest)
1243 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1244 	if (queue->data_digest)
1245 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1246 
1247 	iov.iov_base = icreq;
1248 	iov.iov_len = sizeof(*icreq);
1249 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1250 	if (ret < 0)
1251 		goto free_icresp;
1252 
1253 	memset(&msg, 0, sizeof(msg));
1254 	iov.iov_base = icresp;
1255 	iov.iov_len = sizeof(*icresp);
1256 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1257 			iov.iov_len, msg.msg_flags);
1258 	if (ret < 0)
1259 		goto free_icresp;
1260 
1261 	ret = -EINVAL;
1262 	if (icresp->hdr.type != nvme_tcp_icresp) {
1263 		pr_err("queue %d: bad type returned %d\n",
1264 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1265 		goto free_icresp;
1266 	}
1267 
1268 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1269 		pr_err("queue %d: bad pdu length returned %d\n",
1270 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1271 		goto free_icresp;
1272 	}
1273 
1274 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1275 		pr_err("queue %d: bad pfv returned %d\n",
1276 			nvme_tcp_queue_id(queue), icresp->pfv);
1277 		goto free_icresp;
1278 	}
1279 
1280 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1281 	if ((queue->data_digest && !ctrl_ddgst) ||
1282 	    (!queue->data_digest && ctrl_ddgst)) {
1283 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1284 			nvme_tcp_queue_id(queue),
1285 			queue->data_digest ? "enabled" : "disabled",
1286 			ctrl_ddgst ? "enabled" : "disabled");
1287 		goto free_icresp;
1288 	}
1289 
1290 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1291 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1292 	    (!queue->hdr_digest && ctrl_hdgst)) {
1293 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1294 			nvme_tcp_queue_id(queue),
1295 			queue->hdr_digest ? "enabled" : "disabled",
1296 			ctrl_hdgst ? "enabled" : "disabled");
1297 		goto free_icresp;
1298 	}
1299 
1300 	if (icresp->cpda != 0) {
1301 		pr_err("queue %d: unsupported cpda returned %d\n",
1302 			nvme_tcp_queue_id(queue), icresp->cpda);
1303 		goto free_icresp;
1304 	}
1305 
1306 	ret = 0;
1307 free_icresp:
1308 	kfree(icresp);
1309 free_icreq:
1310 	kfree(icreq);
1311 	return ret;
1312 }
1313 
1314 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1315 {
1316 	return nvme_tcp_queue_id(queue) == 0;
1317 }
1318 
1319 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1320 {
1321 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1322 	int qid = nvme_tcp_queue_id(queue);
1323 
1324 	return !nvme_tcp_admin_queue(queue) &&
1325 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1326 }
1327 
1328 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1329 {
1330 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1331 	int qid = nvme_tcp_queue_id(queue);
1332 
1333 	return !nvme_tcp_admin_queue(queue) &&
1334 		!nvme_tcp_default_queue(queue) &&
1335 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1336 			  ctrl->io_queues[HCTX_TYPE_READ];
1337 }
1338 
1339 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1340 {
1341 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1342 	int qid = nvme_tcp_queue_id(queue);
1343 
1344 	return !nvme_tcp_admin_queue(queue) &&
1345 		!nvme_tcp_default_queue(queue) &&
1346 		!nvme_tcp_read_queue(queue) &&
1347 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1348 			  ctrl->io_queues[HCTX_TYPE_READ] +
1349 			  ctrl->io_queues[HCTX_TYPE_POLL];
1350 }
1351 
1352 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1353 {
1354 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1355 	int qid = nvme_tcp_queue_id(queue);
1356 	int n = 0;
1357 
1358 	if (nvme_tcp_default_queue(queue))
1359 		n = qid - 1;
1360 	else if (nvme_tcp_read_queue(queue))
1361 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1362 	else if (nvme_tcp_poll_queue(queue))
1363 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1364 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1365 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1366 }
1367 
1368 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1369 		int qid, size_t queue_size)
1370 {
1371 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1372 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1373 	int ret, rcv_pdu_size;
1374 
1375 	queue->ctrl = ctrl;
1376 	init_llist_head(&queue->req_list);
1377 	INIT_LIST_HEAD(&queue->send_list);
1378 	mutex_init(&queue->send_mutex);
1379 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1380 	queue->queue_size = queue_size;
1381 
1382 	if (qid > 0)
1383 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1384 	else
1385 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1386 						NVME_TCP_ADMIN_CCSZ;
1387 
1388 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1389 			IPPROTO_TCP, &queue->sock);
1390 	if (ret) {
1391 		dev_err(nctrl->device,
1392 			"failed to create socket: %d\n", ret);
1393 		return ret;
1394 	}
1395 
1396 	/* Single syn retry */
1397 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1398 
1399 	/* Set TCP no delay */
1400 	tcp_sock_set_nodelay(queue->sock->sk);
1401 
1402 	/*
1403 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1404 	 * close. This is done to prevent stale data from being sent should
1405 	 * the network connection be restored before TCP times out.
1406 	 */
1407 	sock_no_linger(queue->sock->sk);
1408 
1409 	if (so_priority > 0)
1410 		sock_set_priority(queue->sock->sk, so_priority);
1411 
1412 	/* Set socket type of service */
1413 	if (nctrl->opts->tos >= 0)
1414 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1415 
1416 	/* Set 10 seconds timeout for icresp recvmsg */
1417 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1418 
1419 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1420 	nvme_tcp_set_queue_io_cpu(queue);
1421 	queue->request = NULL;
1422 	queue->data_remaining = 0;
1423 	queue->ddgst_remaining = 0;
1424 	queue->pdu_remaining = 0;
1425 	queue->pdu_offset = 0;
1426 	sk_set_memalloc(queue->sock->sk);
1427 
1428 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1429 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1430 			sizeof(ctrl->src_addr));
1431 		if (ret) {
1432 			dev_err(nctrl->device,
1433 				"failed to bind queue %d socket %d\n",
1434 				qid, ret);
1435 			goto err_sock;
1436 		}
1437 	}
1438 
1439 	queue->hdr_digest = nctrl->opts->hdr_digest;
1440 	queue->data_digest = nctrl->opts->data_digest;
1441 	if (queue->hdr_digest || queue->data_digest) {
1442 		ret = nvme_tcp_alloc_crypto(queue);
1443 		if (ret) {
1444 			dev_err(nctrl->device,
1445 				"failed to allocate queue %d crypto\n", qid);
1446 			goto err_sock;
1447 		}
1448 	}
1449 
1450 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1451 			nvme_tcp_hdgst_len(queue);
1452 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1453 	if (!queue->pdu) {
1454 		ret = -ENOMEM;
1455 		goto err_crypto;
1456 	}
1457 
1458 	dev_dbg(nctrl->device, "connecting queue %d\n",
1459 			nvme_tcp_queue_id(queue));
1460 
1461 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1462 		sizeof(ctrl->addr), 0);
1463 	if (ret) {
1464 		dev_err(nctrl->device,
1465 			"failed to connect socket: %d\n", ret);
1466 		goto err_rcv_pdu;
1467 	}
1468 
1469 	ret = nvme_tcp_init_connection(queue);
1470 	if (ret)
1471 		goto err_init_connect;
1472 
1473 	queue->rd_enabled = true;
1474 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1475 	nvme_tcp_init_recv_ctx(queue);
1476 
1477 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1478 	queue->sock->sk->sk_user_data = queue;
1479 	queue->state_change = queue->sock->sk->sk_state_change;
1480 	queue->data_ready = queue->sock->sk->sk_data_ready;
1481 	queue->write_space = queue->sock->sk->sk_write_space;
1482 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1483 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1484 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1485 #ifdef CONFIG_NET_RX_BUSY_POLL
1486 	queue->sock->sk->sk_ll_usec = 1;
1487 #endif
1488 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1489 
1490 	return 0;
1491 
1492 err_init_connect:
1493 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1494 err_rcv_pdu:
1495 	kfree(queue->pdu);
1496 err_crypto:
1497 	if (queue->hdr_digest || queue->data_digest)
1498 		nvme_tcp_free_crypto(queue);
1499 err_sock:
1500 	sock_release(queue->sock);
1501 	queue->sock = NULL;
1502 	return ret;
1503 }
1504 
1505 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1506 {
1507 	struct socket *sock = queue->sock;
1508 
1509 	write_lock_bh(&sock->sk->sk_callback_lock);
1510 	sock->sk->sk_user_data  = NULL;
1511 	sock->sk->sk_data_ready = queue->data_ready;
1512 	sock->sk->sk_state_change = queue->state_change;
1513 	sock->sk->sk_write_space  = queue->write_space;
1514 	write_unlock_bh(&sock->sk->sk_callback_lock);
1515 }
1516 
1517 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1518 {
1519 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1520 	nvme_tcp_restore_sock_calls(queue);
1521 	cancel_work_sync(&queue->io_work);
1522 }
1523 
1524 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1525 {
1526 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1527 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1528 
1529 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1530 		return;
1531 	__nvme_tcp_stop_queue(queue);
1532 }
1533 
1534 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1535 {
1536 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1537 	int ret;
1538 
1539 	if (idx)
1540 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1541 	else
1542 		ret = nvmf_connect_admin_queue(nctrl);
1543 
1544 	if (!ret) {
1545 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1546 	} else {
1547 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1548 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1549 		dev_err(nctrl->device,
1550 			"failed to connect queue: %d ret=%d\n", idx, ret);
1551 	}
1552 	return ret;
1553 }
1554 
1555 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1556 		bool admin)
1557 {
1558 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1559 	struct blk_mq_tag_set *set;
1560 	int ret;
1561 
1562 	if (admin) {
1563 		set = &ctrl->admin_tag_set;
1564 		memset(set, 0, sizeof(*set));
1565 		set->ops = &nvme_tcp_admin_mq_ops;
1566 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1567 		set->reserved_tags = 2; /* connect + keep-alive */
1568 		set->numa_node = nctrl->numa_node;
1569 		set->flags = BLK_MQ_F_BLOCKING;
1570 		set->cmd_size = sizeof(struct nvme_tcp_request);
1571 		set->driver_data = ctrl;
1572 		set->nr_hw_queues = 1;
1573 		set->timeout = ADMIN_TIMEOUT;
1574 	} else {
1575 		set = &ctrl->tag_set;
1576 		memset(set, 0, sizeof(*set));
1577 		set->ops = &nvme_tcp_mq_ops;
1578 		set->queue_depth = nctrl->sqsize + 1;
1579 		set->reserved_tags = 1; /* fabric connect */
1580 		set->numa_node = nctrl->numa_node;
1581 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1582 		set->cmd_size = sizeof(struct nvme_tcp_request);
1583 		set->driver_data = ctrl;
1584 		set->nr_hw_queues = nctrl->queue_count - 1;
1585 		set->timeout = NVME_IO_TIMEOUT;
1586 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1587 	}
1588 
1589 	ret = blk_mq_alloc_tag_set(set);
1590 	if (ret)
1591 		return ERR_PTR(ret);
1592 
1593 	return set;
1594 }
1595 
1596 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1597 {
1598 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1599 		cancel_work_sync(&ctrl->async_event_work);
1600 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1601 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1602 	}
1603 
1604 	nvme_tcp_free_queue(ctrl, 0);
1605 }
1606 
1607 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1608 {
1609 	int i;
1610 
1611 	for (i = 1; i < ctrl->queue_count; i++)
1612 		nvme_tcp_free_queue(ctrl, i);
1613 }
1614 
1615 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1616 {
1617 	int i;
1618 
1619 	for (i = 1; i < ctrl->queue_count; i++)
1620 		nvme_tcp_stop_queue(ctrl, i);
1621 }
1622 
1623 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1624 {
1625 	int i, ret = 0;
1626 
1627 	for (i = 1; i < ctrl->queue_count; i++) {
1628 		ret = nvme_tcp_start_queue(ctrl, i);
1629 		if (ret)
1630 			goto out_stop_queues;
1631 	}
1632 
1633 	return 0;
1634 
1635 out_stop_queues:
1636 	for (i--; i >= 1; i--)
1637 		nvme_tcp_stop_queue(ctrl, i);
1638 	return ret;
1639 }
1640 
1641 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1642 {
1643 	int ret;
1644 
1645 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1646 	if (ret)
1647 		return ret;
1648 
1649 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1650 	if (ret)
1651 		goto out_free_queue;
1652 
1653 	return 0;
1654 
1655 out_free_queue:
1656 	nvme_tcp_free_queue(ctrl, 0);
1657 	return ret;
1658 }
1659 
1660 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1661 {
1662 	int i, ret;
1663 
1664 	for (i = 1; i < ctrl->queue_count; i++) {
1665 		ret = nvme_tcp_alloc_queue(ctrl, i,
1666 				ctrl->sqsize + 1);
1667 		if (ret)
1668 			goto out_free_queues;
1669 	}
1670 
1671 	return 0;
1672 
1673 out_free_queues:
1674 	for (i--; i >= 1; i--)
1675 		nvme_tcp_free_queue(ctrl, i);
1676 
1677 	return ret;
1678 }
1679 
1680 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1681 {
1682 	unsigned int nr_io_queues;
1683 
1684 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1685 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1686 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1687 
1688 	return nr_io_queues;
1689 }
1690 
1691 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1692 		unsigned int nr_io_queues)
1693 {
1694 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1695 	struct nvmf_ctrl_options *opts = nctrl->opts;
1696 
1697 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1698 		/*
1699 		 * separate read/write queues
1700 		 * hand out dedicated default queues only after we have
1701 		 * sufficient read queues.
1702 		 */
1703 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1704 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1705 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1706 			min(opts->nr_write_queues, nr_io_queues);
1707 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1708 	} else {
1709 		/*
1710 		 * shared read/write queues
1711 		 * either no write queues were requested, or we don't have
1712 		 * sufficient queue count to have dedicated default queues.
1713 		 */
1714 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1715 			min(opts->nr_io_queues, nr_io_queues);
1716 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1717 	}
1718 
1719 	if (opts->nr_poll_queues && nr_io_queues) {
1720 		/* map dedicated poll queues only if we have queues left */
1721 		ctrl->io_queues[HCTX_TYPE_POLL] =
1722 			min(opts->nr_poll_queues, nr_io_queues);
1723 	}
1724 }
1725 
1726 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1727 {
1728 	unsigned int nr_io_queues;
1729 	int ret;
1730 
1731 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1732 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1733 	if (ret)
1734 		return ret;
1735 
1736 	ctrl->queue_count = nr_io_queues + 1;
1737 	if (ctrl->queue_count < 2)
1738 		return 0;
1739 
1740 	dev_info(ctrl->device,
1741 		"creating %d I/O queues.\n", nr_io_queues);
1742 
1743 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1744 
1745 	return __nvme_tcp_alloc_io_queues(ctrl);
1746 }
1747 
1748 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1749 {
1750 	nvme_tcp_stop_io_queues(ctrl);
1751 	if (remove) {
1752 		blk_cleanup_queue(ctrl->connect_q);
1753 		blk_mq_free_tag_set(ctrl->tagset);
1754 	}
1755 	nvme_tcp_free_io_queues(ctrl);
1756 }
1757 
1758 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1759 {
1760 	int ret;
1761 
1762 	ret = nvme_tcp_alloc_io_queues(ctrl);
1763 	if (ret)
1764 		return ret;
1765 
1766 	if (new) {
1767 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1768 		if (IS_ERR(ctrl->tagset)) {
1769 			ret = PTR_ERR(ctrl->tagset);
1770 			goto out_free_io_queues;
1771 		}
1772 
1773 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1774 		if (IS_ERR(ctrl->connect_q)) {
1775 			ret = PTR_ERR(ctrl->connect_q);
1776 			goto out_free_tag_set;
1777 		}
1778 	}
1779 
1780 	ret = nvme_tcp_start_io_queues(ctrl);
1781 	if (ret)
1782 		goto out_cleanup_connect_q;
1783 
1784 	if (!new) {
1785 		nvme_start_queues(ctrl);
1786 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1787 			/*
1788 			 * If we timed out waiting for freeze we are likely to
1789 			 * be stuck.  Fail the controller initialization just
1790 			 * to be safe.
1791 			 */
1792 			ret = -ENODEV;
1793 			goto out_wait_freeze_timed_out;
1794 		}
1795 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1796 			ctrl->queue_count - 1);
1797 		nvme_unfreeze(ctrl);
1798 	}
1799 
1800 	return 0;
1801 
1802 out_wait_freeze_timed_out:
1803 	nvme_stop_queues(ctrl);
1804 	nvme_tcp_stop_io_queues(ctrl);
1805 out_cleanup_connect_q:
1806 	if (new)
1807 		blk_cleanup_queue(ctrl->connect_q);
1808 out_free_tag_set:
1809 	if (new)
1810 		blk_mq_free_tag_set(ctrl->tagset);
1811 out_free_io_queues:
1812 	nvme_tcp_free_io_queues(ctrl);
1813 	return ret;
1814 }
1815 
1816 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1817 {
1818 	nvme_tcp_stop_queue(ctrl, 0);
1819 	if (remove) {
1820 		blk_cleanup_queue(ctrl->admin_q);
1821 		blk_cleanup_queue(ctrl->fabrics_q);
1822 		blk_mq_free_tag_set(ctrl->admin_tagset);
1823 	}
1824 	nvme_tcp_free_admin_queue(ctrl);
1825 }
1826 
1827 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1828 {
1829 	int error;
1830 
1831 	error = nvme_tcp_alloc_admin_queue(ctrl);
1832 	if (error)
1833 		return error;
1834 
1835 	if (new) {
1836 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1837 		if (IS_ERR(ctrl->admin_tagset)) {
1838 			error = PTR_ERR(ctrl->admin_tagset);
1839 			goto out_free_queue;
1840 		}
1841 
1842 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1843 		if (IS_ERR(ctrl->fabrics_q)) {
1844 			error = PTR_ERR(ctrl->fabrics_q);
1845 			goto out_free_tagset;
1846 		}
1847 
1848 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1849 		if (IS_ERR(ctrl->admin_q)) {
1850 			error = PTR_ERR(ctrl->admin_q);
1851 			goto out_cleanup_fabrics_q;
1852 		}
1853 	}
1854 
1855 	error = nvme_tcp_start_queue(ctrl, 0);
1856 	if (error)
1857 		goto out_cleanup_queue;
1858 
1859 	error = nvme_enable_ctrl(ctrl);
1860 	if (error)
1861 		goto out_stop_queue;
1862 
1863 	blk_mq_unquiesce_queue(ctrl->admin_q);
1864 
1865 	error = nvme_init_identify(ctrl);
1866 	if (error)
1867 		goto out_stop_queue;
1868 
1869 	return 0;
1870 
1871 out_stop_queue:
1872 	nvme_tcp_stop_queue(ctrl, 0);
1873 out_cleanup_queue:
1874 	if (new)
1875 		blk_cleanup_queue(ctrl->admin_q);
1876 out_cleanup_fabrics_q:
1877 	if (new)
1878 		blk_cleanup_queue(ctrl->fabrics_q);
1879 out_free_tagset:
1880 	if (new)
1881 		blk_mq_free_tag_set(ctrl->admin_tagset);
1882 out_free_queue:
1883 	nvme_tcp_free_admin_queue(ctrl);
1884 	return error;
1885 }
1886 
1887 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1888 		bool remove)
1889 {
1890 	mutex_lock(&to_tcp_ctrl(ctrl)->teardown_lock);
1891 	blk_mq_quiesce_queue(ctrl->admin_q);
1892 	nvme_tcp_stop_queue(ctrl, 0);
1893 	if (ctrl->admin_tagset) {
1894 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1895 			nvme_cancel_request, ctrl);
1896 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1897 	}
1898 	if (remove)
1899 		blk_mq_unquiesce_queue(ctrl->admin_q);
1900 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1901 	mutex_unlock(&to_tcp_ctrl(ctrl)->teardown_lock);
1902 }
1903 
1904 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1905 		bool remove)
1906 {
1907 	mutex_lock(&to_tcp_ctrl(ctrl)->teardown_lock);
1908 	if (ctrl->queue_count <= 1)
1909 		goto out;
1910 	blk_mq_quiesce_queue(ctrl->admin_q);
1911 	nvme_start_freeze(ctrl);
1912 	nvme_stop_queues(ctrl);
1913 	nvme_tcp_stop_io_queues(ctrl);
1914 	if (ctrl->tagset) {
1915 		blk_mq_tagset_busy_iter(ctrl->tagset,
1916 			nvme_cancel_request, ctrl);
1917 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1918 	}
1919 	if (remove)
1920 		nvme_start_queues(ctrl);
1921 	nvme_tcp_destroy_io_queues(ctrl, remove);
1922 out:
1923 	mutex_unlock(&to_tcp_ctrl(ctrl)->teardown_lock);
1924 }
1925 
1926 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1927 {
1928 	/* If we are resetting/deleting then do nothing */
1929 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1930 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1931 			ctrl->state == NVME_CTRL_LIVE);
1932 		return;
1933 	}
1934 
1935 	if (nvmf_should_reconnect(ctrl)) {
1936 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1937 			ctrl->opts->reconnect_delay);
1938 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1939 				ctrl->opts->reconnect_delay * HZ);
1940 	} else {
1941 		dev_info(ctrl->device, "Removing controller...\n");
1942 		nvme_delete_ctrl(ctrl);
1943 	}
1944 }
1945 
1946 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1947 {
1948 	struct nvmf_ctrl_options *opts = ctrl->opts;
1949 	int ret;
1950 
1951 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1952 	if (ret)
1953 		return ret;
1954 
1955 	if (ctrl->icdoff) {
1956 		dev_err(ctrl->device, "icdoff is not supported!\n");
1957 		goto destroy_admin;
1958 	}
1959 
1960 	if (opts->queue_size > ctrl->sqsize + 1)
1961 		dev_warn(ctrl->device,
1962 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1963 			opts->queue_size, ctrl->sqsize + 1);
1964 
1965 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1966 		dev_warn(ctrl->device,
1967 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1968 			ctrl->sqsize + 1, ctrl->maxcmd);
1969 		ctrl->sqsize = ctrl->maxcmd - 1;
1970 	}
1971 
1972 	if (ctrl->queue_count > 1) {
1973 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1974 		if (ret)
1975 			goto destroy_admin;
1976 	}
1977 
1978 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1979 		/*
1980 		 * state change failure is ok if we started ctrl delete,
1981 		 * unless we're during creation of a new controller to
1982 		 * avoid races with teardown flow.
1983 		 */
1984 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1985 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
1986 		WARN_ON_ONCE(new);
1987 		ret = -EINVAL;
1988 		goto destroy_io;
1989 	}
1990 
1991 	nvme_start_ctrl(ctrl);
1992 	return 0;
1993 
1994 destroy_io:
1995 	if (ctrl->queue_count > 1)
1996 		nvme_tcp_destroy_io_queues(ctrl, new);
1997 destroy_admin:
1998 	nvme_tcp_stop_queue(ctrl, 0);
1999 	nvme_tcp_destroy_admin_queue(ctrl, new);
2000 	return ret;
2001 }
2002 
2003 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2004 {
2005 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2006 			struct nvme_tcp_ctrl, connect_work);
2007 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2008 
2009 	++ctrl->nr_reconnects;
2010 
2011 	if (nvme_tcp_setup_ctrl(ctrl, false))
2012 		goto requeue;
2013 
2014 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2015 			ctrl->nr_reconnects);
2016 
2017 	ctrl->nr_reconnects = 0;
2018 
2019 	return;
2020 
2021 requeue:
2022 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2023 			ctrl->nr_reconnects);
2024 	nvme_tcp_reconnect_or_remove(ctrl);
2025 }
2026 
2027 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2028 {
2029 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2030 				struct nvme_tcp_ctrl, err_work);
2031 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2032 
2033 	nvme_stop_keep_alive(ctrl);
2034 	nvme_tcp_teardown_io_queues(ctrl, false);
2035 	/* unquiesce to fail fast pending requests */
2036 	nvme_start_queues(ctrl);
2037 	nvme_tcp_teardown_admin_queue(ctrl, false);
2038 	blk_mq_unquiesce_queue(ctrl->admin_q);
2039 
2040 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2041 		/* state change failure is ok if we started ctrl delete */
2042 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2043 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2044 		return;
2045 	}
2046 
2047 	nvme_tcp_reconnect_or_remove(ctrl);
2048 }
2049 
2050 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2051 {
2052 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2053 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2054 
2055 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2056 	blk_mq_quiesce_queue(ctrl->admin_q);
2057 	if (shutdown)
2058 		nvme_shutdown_ctrl(ctrl);
2059 	else
2060 		nvme_disable_ctrl(ctrl);
2061 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2062 }
2063 
2064 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2065 {
2066 	nvme_tcp_teardown_ctrl(ctrl, true);
2067 }
2068 
2069 static void nvme_reset_ctrl_work(struct work_struct *work)
2070 {
2071 	struct nvme_ctrl *ctrl =
2072 		container_of(work, struct nvme_ctrl, reset_work);
2073 
2074 	nvme_stop_ctrl(ctrl);
2075 	nvme_tcp_teardown_ctrl(ctrl, false);
2076 
2077 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2078 		/* state change failure is ok if we started ctrl delete */
2079 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2080 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2081 		return;
2082 	}
2083 
2084 	if (nvme_tcp_setup_ctrl(ctrl, false))
2085 		goto out_fail;
2086 
2087 	return;
2088 
2089 out_fail:
2090 	++ctrl->nr_reconnects;
2091 	nvme_tcp_reconnect_or_remove(ctrl);
2092 }
2093 
2094 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2095 {
2096 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2097 
2098 	if (list_empty(&ctrl->list))
2099 		goto free_ctrl;
2100 
2101 	mutex_lock(&nvme_tcp_ctrl_mutex);
2102 	list_del(&ctrl->list);
2103 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2104 
2105 	nvmf_free_options(nctrl->opts);
2106 free_ctrl:
2107 	kfree(ctrl->queues);
2108 	kfree(ctrl);
2109 }
2110 
2111 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2112 {
2113 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2114 
2115 	sg->addr = 0;
2116 	sg->length = 0;
2117 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2118 			NVME_SGL_FMT_TRANSPORT_A;
2119 }
2120 
2121 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2122 		struct nvme_command *c, u32 data_len)
2123 {
2124 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2125 
2126 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2127 	sg->length = cpu_to_le32(data_len);
2128 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2129 }
2130 
2131 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2132 		u32 data_len)
2133 {
2134 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2135 
2136 	sg->addr = 0;
2137 	sg->length = cpu_to_le32(data_len);
2138 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2139 			NVME_SGL_FMT_TRANSPORT_A;
2140 }
2141 
2142 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2143 {
2144 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2145 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2146 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2147 	struct nvme_command *cmd = &pdu->cmd;
2148 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2149 
2150 	memset(pdu, 0, sizeof(*pdu));
2151 	pdu->hdr.type = nvme_tcp_cmd;
2152 	if (queue->hdr_digest)
2153 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2154 	pdu->hdr.hlen = sizeof(*pdu);
2155 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2156 
2157 	cmd->common.opcode = nvme_admin_async_event;
2158 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2159 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2160 	nvme_tcp_set_sg_null(cmd);
2161 
2162 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2163 	ctrl->async_req.offset = 0;
2164 	ctrl->async_req.curr_bio = NULL;
2165 	ctrl->async_req.data_len = 0;
2166 
2167 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2168 }
2169 
2170 static void nvme_tcp_complete_timed_out(struct request *rq)
2171 {
2172 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2173 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2174 
2175 	/* fence other contexts that may complete the command */
2176 	mutex_lock(&to_tcp_ctrl(ctrl)->teardown_lock);
2177 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2178 	if (!blk_mq_request_completed(rq)) {
2179 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2180 		blk_mq_complete_request(rq);
2181 	}
2182 	mutex_unlock(&to_tcp_ctrl(ctrl)->teardown_lock);
2183 }
2184 
2185 static enum blk_eh_timer_return
2186 nvme_tcp_timeout(struct request *rq, bool reserved)
2187 {
2188 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2189 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2190 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2191 
2192 	dev_warn(ctrl->device,
2193 		"queue %d: timeout request %#x type %d\n",
2194 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2195 
2196 	if (ctrl->state != NVME_CTRL_LIVE) {
2197 		/*
2198 		 * If we are resetting, connecting or deleting we should
2199 		 * complete immediately because we may block controller
2200 		 * teardown or setup sequence
2201 		 * - ctrl disable/shutdown fabrics requests
2202 		 * - connect requests
2203 		 * - initialization admin requests
2204 		 * - I/O requests that entered after unquiescing and
2205 		 *   the controller stopped responding
2206 		 *
2207 		 * All other requests should be cancelled by the error
2208 		 * recovery work, so it's fine that we fail it here.
2209 		 */
2210 		nvme_tcp_complete_timed_out(rq);
2211 		return BLK_EH_DONE;
2212 	}
2213 
2214 	/*
2215 	 * LIVE state should trigger the normal error recovery which will
2216 	 * handle completing this request.
2217 	 */
2218 	nvme_tcp_error_recovery(ctrl);
2219 	return BLK_EH_RESET_TIMER;
2220 }
2221 
2222 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2223 			struct request *rq)
2224 {
2225 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2226 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2227 	struct nvme_command *c = &pdu->cmd;
2228 
2229 	c->common.flags |= NVME_CMD_SGL_METABUF;
2230 
2231 	if (!blk_rq_nr_phys_segments(rq))
2232 		nvme_tcp_set_sg_null(c);
2233 	else if (rq_data_dir(rq) == WRITE &&
2234 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2235 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2236 	else
2237 		nvme_tcp_set_sg_host_data(c, req->data_len);
2238 
2239 	return 0;
2240 }
2241 
2242 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2243 		struct request *rq)
2244 {
2245 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2246 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2247 	struct nvme_tcp_queue *queue = req->queue;
2248 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2249 	blk_status_t ret;
2250 
2251 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2252 	if (ret)
2253 		return ret;
2254 
2255 	req->state = NVME_TCP_SEND_CMD_PDU;
2256 	req->offset = 0;
2257 	req->data_sent = 0;
2258 	req->pdu_len = 0;
2259 	req->pdu_sent = 0;
2260 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2261 				blk_rq_payload_bytes(rq) : 0;
2262 	req->curr_bio = rq->bio;
2263 
2264 	if (rq_data_dir(rq) == WRITE &&
2265 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2266 		req->pdu_len = req->data_len;
2267 	else if (req->curr_bio)
2268 		nvme_tcp_init_iter(req, READ);
2269 
2270 	pdu->hdr.type = nvme_tcp_cmd;
2271 	pdu->hdr.flags = 0;
2272 	if (queue->hdr_digest)
2273 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2274 	if (queue->data_digest && req->pdu_len) {
2275 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2276 		ddgst = nvme_tcp_ddgst_len(queue);
2277 	}
2278 	pdu->hdr.hlen = sizeof(*pdu);
2279 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2280 	pdu->hdr.plen =
2281 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2282 
2283 	ret = nvme_tcp_map_data(queue, rq);
2284 	if (unlikely(ret)) {
2285 		nvme_cleanup_cmd(rq);
2286 		dev_err(queue->ctrl->ctrl.device,
2287 			"Failed to map data (%d)\n", ret);
2288 		return ret;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2295 {
2296 	struct nvme_tcp_queue *queue = hctx->driver_data;
2297 
2298 	if (!llist_empty(&queue->req_list))
2299 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2300 }
2301 
2302 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2303 		const struct blk_mq_queue_data *bd)
2304 {
2305 	struct nvme_ns *ns = hctx->queue->queuedata;
2306 	struct nvme_tcp_queue *queue = hctx->driver_data;
2307 	struct request *rq = bd->rq;
2308 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2309 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2310 	blk_status_t ret;
2311 
2312 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2313 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2314 
2315 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2316 	if (unlikely(ret))
2317 		return ret;
2318 
2319 	blk_mq_start_request(rq);
2320 
2321 	nvme_tcp_queue_request(req, true, bd->last);
2322 
2323 	return BLK_STS_OK;
2324 }
2325 
2326 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2327 {
2328 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2329 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2330 
2331 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2332 		/* separate read/write queues */
2333 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2334 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2335 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2336 		set->map[HCTX_TYPE_READ].nr_queues =
2337 			ctrl->io_queues[HCTX_TYPE_READ];
2338 		set->map[HCTX_TYPE_READ].queue_offset =
2339 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2340 	} else {
2341 		/* shared read/write queues */
2342 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2343 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2344 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2345 		set->map[HCTX_TYPE_READ].nr_queues =
2346 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2347 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2348 	}
2349 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2350 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2351 
2352 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2353 		/* map dedicated poll queues only if we have queues left */
2354 		set->map[HCTX_TYPE_POLL].nr_queues =
2355 				ctrl->io_queues[HCTX_TYPE_POLL];
2356 		set->map[HCTX_TYPE_POLL].queue_offset =
2357 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2358 			ctrl->io_queues[HCTX_TYPE_READ];
2359 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2360 	}
2361 
2362 	dev_info(ctrl->ctrl.device,
2363 		"mapped %d/%d/%d default/read/poll queues.\n",
2364 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2365 		ctrl->io_queues[HCTX_TYPE_READ],
2366 		ctrl->io_queues[HCTX_TYPE_POLL]);
2367 
2368 	return 0;
2369 }
2370 
2371 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2372 {
2373 	struct nvme_tcp_queue *queue = hctx->driver_data;
2374 	struct sock *sk = queue->sock->sk;
2375 
2376 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2377 		return 0;
2378 
2379 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2380 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2381 		sk_busy_loop(sk, true);
2382 	nvme_tcp_try_recv(queue);
2383 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2384 	return queue->nr_cqe;
2385 }
2386 
2387 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2388 	.queue_rq	= nvme_tcp_queue_rq,
2389 	.commit_rqs	= nvme_tcp_commit_rqs,
2390 	.complete	= nvme_complete_rq,
2391 	.init_request	= nvme_tcp_init_request,
2392 	.exit_request	= nvme_tcp_exit_request,
2393 	.init_hctx	= nvme_tcp_init_hctx,
2394 	.timeout	= nvme_tcp_timeout,
2395 	.map_queues	= nvme_tcp_map_queues,
2396 	.poll		= nvme_tcp_poll,
2397 };
2398 
2399 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2400 	.queue_rq	= nvme_tcp_queue_rq,
2401 	.complete	= nvme_complete_rq,
2402 	.init_request	= nvme_tcp_init_request,
2403 	.exit_request	= nvme_tcp_exit_request,
2404 	.init_hctx	= nvme_tcp_init_admin_hctx,
2405 	.timeout	= nvme_tcp_timeout,
2406 };
2407 
2408 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2409 	.name			= "tcp",
2410 	.module			= THIS_MODULE,
2411 	.flags			= NVME_F_FABRICS,
2412 	.reg_read32		= nvmf_reg_read32,
2413 	.reg_read64		= nvmf_reg_read64,
2414 	.reg_write32		= nvmf_reg_write32,
2415 	.free_ctrl		= nvme_tcp_free_ctrl,
2416 	.submit_async_event	= nvme_tcp_submit_async_event,
2417 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2418 	.get_address		= nvmf_get_address,
2419 };
2420 
2421 static bool
2422 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2423 {
2424 	struct nvme_tcp_ctrl *ctrl;
2425 	bool found = false;
2426 
2427 	mutex_lock(&nvme_tcp_ctrl_mutex);
2428 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2429 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2430 		if (found)
2431 			break;
2432 	}
2433 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2434 
2435 	return found;
2436 }
2437 
2438 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2439 		struct nvmf_ctrl_options *opts)
2440 {
2441 	struct nvme_tcp_ctrl *ctrl;
2442 	int ret;
2443 
2444 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2445 	if (!ctrl)
2446 		return ERR_PTR(-ENOMEM);
2447 
2448 	INIT_LIST_HEAD(&ctrl->list);
2449 	ctrl->ctrl.opts = opts;
2450 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2451 				opts->nr_poll_queues + 1;
2452 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2453 	ctrl->ctrl.kato = opts->kato;
2454 
2455 	INIT_DELAYED_WORK(&ctrl->connect_work,
2456 			nvme_tcp_reconnect_ctrl_work);
2457 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2458 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2459 	mutex_init(&ctrl->teardown_lock);
2460 
2461 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2462 		opts->trsvcid =
2463 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2464 		if (!opts->trsvcid) {
2465 			ret = -ENOMEM;
2466 			goto out_free_ctrl;
2467 		}
2468 		opts->mask |= NVMF_OPT_TRSVCID;
2469 	}
2470 
2471 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2472 			opts->traddr, opts->trsvcid, &ctrl->addr);
2473 	if (ret) {
2474 		pr_err("malformed address passed: %s:%s\n",
2475 			opts->traddr, opts->trsvcid);
2476 		goto out_free_ctrl;
2477 	}
2478 
2479 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2480 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2481 			opts->host_traddr, NULL, &ctrl->src_addr);
2482 		if (ret) {
2483 			pr_err("malformed src address passed: %s\n",
2484 			       opts->host_traddr);
2485 			goto out_free_ctrl;
2486 		}
2487 	}
2488 
2489 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2490 		ret = -EALREADY;
2491 		goto out_free_ctrl;
2492 	}
2493 
2494 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2495 				GFP_KERNEL);
2496 	if (!ctrl->queues) {
2497 		ret = -ENOMEM;
2498 		goto out_free_ctrl;
2499 	}
2500 
2501 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2502 	if (ret)
2503 		goto out_kfree_queues;
2504 
2505 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2506 		WARN_ON_ONCE(1);
2507 		ret = -EINTR;
2508 		goto out_uninit_ctrl;
2509 	}
2510 
2511 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2512 	if (ret)
2513 		goto out_uninit_ctrl;
2514 
2515 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2516 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2517 
2518 	mutex_lock(&nvme_tcp_ctrl_mutex);
2519 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2520 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2521 
2522 	return &ctrl->ctrl;
2523 
2524 out_uninit_ctrl:
2525 	nvme_uninit_ctrl(&ctrl->ctrl);
2526 	nvme_put_ctrl(&ctrl->ctrl);
2527 	if (ret > 0)
2528 		ret = -EIO;
2529 	return ERR_PTR(ret);
2530 out_kfree_queues:
2531 	kfree(ctrl->queues);
2532 out_free_ctrl:
2533 	kfree(ctrl);
2534 	return ERR_PTR(ret);
2535 }
2536 
2537 static struct nvmf_transport_ops nvme_tcp_transport = {
2538 	.name		= "tcp",
2539 	.module		= THIS_MODULE,
2540 	.required_opts	= NVMF_OPT_TRADDR,
2541 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2542 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2543 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2544 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2545 			  NVMF_OPT_TOS,
2546 	.create_ctrl	= nvme_tcp_create_ctrl,
2547 };
2548 
2549 static int __init nvme_tcp_init_module(void)
2550 {
2551 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2552 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2553 	if (!nvme_tcp_wq)
2554 		return -ENOMEM;
2555 
2556 	nvmf_register_transport(&nvme_tcp_transport);
2557 	return 0;
2558 }
2559 
2560 static void __exit nvme_tcp_cleanup_module(void)
2561 {
2562 	struct nvme_tcp_ctrl *ctrl;
2563 
2564 	nvmf_unregister_transport(&nvme_tcp_transport);
2565 
2566 	mutex_lock(&nvme_tcp_ctrl_mutex);
2567 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2568 		nvme_delete_ctrl(&ctrl->ctrl);
2569 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2570 	flush_workqueue(nvme_delete_wq);
2571 
2572 	destroy_workqueue(nvme_tcp_wq);
2573 }
2574 
2575 module_init(nvme_tcp_init_module);
2576 module_exit(nvme_tcp_cleanup_module);
2577 
2578 MODULE_LICENSE("GPL v2");
2579